1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/memblock.h> /* max_low_pfn */
11 #include <linux/kfence.h> /* kfence_handle_page_fault */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
19 #include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/
20 #include <linux/mm_types.h>
21 #include <linux/mm.h> /* find_and_lock_vma() */
22 #include <linux/vmalloc.h>
23
24 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
25 #include <asm/traps.h> /* dotraplinkage, ... */
26 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
27 #include <asm/vsyscall.h> /* emulate_vsyscall */
28 #include <asm/vm86.h> /* struct vm86 */
29 #include <asm/mmu_context.h> /* vma_pkey() */
30 #include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/
31 #include <asm/desc.h> /* store_idt(), ... */
32 #include <asm/cpu_entry_area.h> /* exception stack */
33 #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
34 #include <asm/kvm_para.h> /* kvm_handle_async_pf */
35 #include <asm/vdso.h> /* fixup_vdso_exception() */
36 #include <asm/irq_stack.h>
37 #include <asm/fred.h>
38 #include <asm/sev.h> /* snp_dump_hva_rmpentry() */
39
40 #define CREATE_TRACE_POINTS
41 #include <asm/trace/exceptions.h>
42
43 /*
44 * Returns 0 if mmiotrace is disabled, or if the fault is not
45 * handled by mmiotrace:
46 */
47 static nokprobe_inline int
kmmio_fault(struct pt_regs * regs,unsigned long addr)48 kmmio_fault(struct pt_regs *regs, unsigned long addr)
49 {
50 if (unlikely(is_kmmio_active()))
51 if (kmmio_handler(regs, addr) == 1)
52 return -1;
53 return 0;
54 }
55
56 /*
57 * Prefetch quirks:
58 *
59 * 32-bit mode:
60 *
61 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
62 * Check that here and ignore it. This is AMD erratum #91.
63 *
64 * 64-bit mode:
65 *
66 * Sometimes the CPU reports invalid exceptions on prefetch.
67 * Check that here and ignore it.
68 *
69 * Opcode checker based on code by Richard Brunner.
70 */
71 static inline int
check_prefetch_opcode(struct pt_regs * regs,unsigned char * instr,unsigned char opcode,int * prefetch)72 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
73 unsigned char opcode, int *prefetch)
74 {
75 unsigned char instr_hi = opcode & 0xf0;
76 unsigned char instr_lo = opcode & 0x0f;
77
78 switch (instr_hi) {
79 case 0x20:
80 case 0x30:
81 /*
82 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
83 * In X86_64 long mode, the CPU will signal invalid
84 * opcode if some of these prefixes are present so
85 * X86_64 will never get here anyway
86 */
87 return ((instr_lo & 7) == 0x6);
88 #ifdef CONFIG_X86_64
89 case 0x40:
90 /*
91 * In 64-bit mode 0x40..0x4F are valid REX prefixes
92 */
93 return (!user_mode(regs) || user_64bit_mode(regs));
94 #endif
95 case 0x60:
96 /* 0x64 thru 0x67 are valid prefixes in all modes. */
97 return (instr_lo & 0xC) == 0x4;
98 case 0xF0:
99 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
100 return !instr_lo || (instr_lo>>1) == 1;
101 case 0x00:
102 /* Prefetch instruction is 0x0F0D or 0x0F18 */
103 if (get_kernel_nofault(opcode, instr))
104 return 0;
105
106 *prefetch = (instr_lo == 0xF) &&
107 (opcode == 0x0D || opcode == 0x18);
108 return 0;
109 default:
110 return 0;
111 }
112 }
113
is_amd_k8_pre_npt(void)114 static bool is_amd_k8_pre_npt(void)
115 {
116 struct cpuinfo_x86 *c = &boot_cpu_data;
117
118 return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
119 c->x86_vendor == X86_VENDOR_AMD &&
120 c->x86 == 0xf && c->x86_model < 0x40);
121 }
122
123 static int
is_prefetch(struct pt_regs * regs,unsigned long error_code,unsigned long addr)124 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
125 {
126 unsigned char *max_instr;
127 unsigned char *instr;
128 int prefetch = 0;
129
130 /* Erratum #91 affects AMD K8, pre-NPT CPUs */
131 if (!is_amd_k8_pre_npt())
132 return 0;
133
134 /*
135 * If it was a exec (instruction fetch) fault on NX page, then
136 * do not ignore the fault:
137 */
138 if (error_code & X86_PF_INSTR)
139 return 0;
140
141 instr = (void *)convert_ip_to_linear(current, regs);
142 max_instr = instr + 15;
143
144 /*
145 * This code has historically always bailed out if IP points to a
146 * not-present page (e.g. due to a race). No one has ever
147 * complained about this.
148 */
149 pagefault_disable();
150
151 while (instr < max_instr) {
152 unsigned char opcode;
153
154 if (user_mode(regs)) {
155 if (get_user(opcode, (unsigned char __user *) instr))
156 break;
157 } else {
158 if (get_kernel_nofault(opcode, instr))
159 break;
160 }
161
162 instr++;
163
164 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
165 break;
166 }
167
168 pagefault_enable();
169 return prefetch;
170 }
171
172 DEFINE_SPINLOCK(pgd_lock);
173 LIST_HEAD(pgd_list);
174
175 #ifdef CONFIG_X86_32
vmalloc_sync_one(pgd_t * pgd,unsigned long address)176 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
177 {
178 unsigned index = pgd_index(address);
179 pgd_t *pgd_k;
180 p4d_t *p4d, *p4d_k;
181 pud_t *pud, *pud_k;
182 pmd_t *pmd, *pmd_k;
183
184 pgd += index;
185 pgd_k = init_mm.pgd + index;
186
187 if (!pgd_present(*pgd_k))
188 return NULL;
189
190 /*
191 * set_pgd(pgd, *pgd_k); here would be useless on PAE
192 * and redundant with the set_pmd() on non-PAE. As would
193 * set_p4d/set_pud.
194 */
195 p4d = p4d_offset(pgd, address);
196 p4d_k = p4d_offset(pgd_k, address);
197 if (!p4d_present(*p4d_k))
198 return NULL;
199
200 pud = pud_offset(p4d, address);
201 pud_k = pud_offset(p4d_k, address);
202 if (!pud_present(*pud_k))
203 return NULL;
204
205 pmd = pmd_offset(pud, address);
206 pmd_k = pmd_offset(pud_k, address);
207
208 if (pmd_present(*pmd) != pmd_present(*pmd_k))
209 set_pmd(pmd, *pmd_k);
210
211 if (!pmd_present(*pmd_k))
212 return NULL;
213 else
214 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
215
216 return pmd_k;
217 }
218
219 /*
220 * Handle a fault on the vmalloc or module mapping area
221 *
222 * This is needed because there is a race condition between the time
223 * when the vmalloc mapping code updates the PMD to the point in time
224 * where it synchronizes this update with the other page-tables in the
225 * system.
226 *
227 * In this race window another thread/CPU can map an area on the same
228 * PMD, finds it already present and does not synchronize it with the
229 * rest of the system yet. As a result v[mz]alloc might return areas
230 * which are not mapped in every page-table in the system, causing an
231 * unhandled page-fault when they are accessed.
232 */
vmalloc_fault(unsigned long address)233 static noinline int vmalloc_fault(unsigned long address)
234 {
235 unsigned long pgd_paddr;
236 pmd_t *pmd_k;
237 pte_t *pte_k;
238
239 /* Make sure we are in vmalloc area: */
240 if (!(address >= VMALLOC_START && address < VMALLOC_END))
241 return -1;
242
243 /*
244 * Synchronize this task's top level page-table
245 * with the 'reference' page table.
246 *
247 * Do _not_ use "current" here. We might be inside
248 * an interrupt in the middle of a task switch..
249 */
250 pgd_paddr = read_cr3_pa();
251 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
252 if (!pmd_k)
253 return -1;
254
255 if (pmd_leaf(*pmd_k))
256 return 0;
257
258 pte_k = pte_offset_kernel(pmd_k, address);
259 if (!pte_present(*pte_k))
260 return -1;
261
262 return 0;
263 }
264 NOKPROBE_SYMBOL(vmalloc_fault);
265
arch_sync_kernel_mappings(unsigned long start,unsigned long end)266 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
267 {
268 unsigned long addr;
269
270 for (addr = start & PMD_MASK;
271 addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
272 addr += PMD_SIZE) {
273 struct page *page;
274
275 spin_lock(&pgd_lock);
276 list_for_each_entry(page, &pgd_list, lru) {
277 spinlock_t *pgt_lock;
278
279 /* the pgt_lock only for Xen */
280 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
281
282 spin_lock(pgt_lock);
283 vmalloc_sync_one(page_address(page), addr);
284 spin_unlock(pgt_lock);
285 }
286 spin_unlock(&pgd_lock);
287 }
288 }
289
low_pfn(unsigned long pfn)290 static bool low_pfn(unsigned long pfn)
291 {
292 return pfn < max_low_pfn;
293 }
294
dump_pagetable(unsigned long address)295 static void dump_pagetable(unsigned long address)
296 {
297 pgd_t *base = __va(read_cr3_pa());
298 pgd_t *pgd = &base[pgd_index(address)];
299 p4d_t *p4d;
300 pud_t *pud;
301 pmd_t *pmd;
302 pte_t *pte;
303
304 #ifdef CONFIG_X86_PAE
305 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
306 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
307 goto out;
308 #define pr_pde pr_cont
309 #else
310 #define pr_pde pr_info
311 #endif
312 p4d = p4d_offset(pgd, address);
313 pud = pud_offset(p4d, address);
314 pmd = pmd_offset(pud, address);
315 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
316 #undef pr_pde
317
318 /*
319 * We must not directly access the pte in the highpte
320 * case if the page table is located in highmem.
321 * And let's rather not kmap-atomic the pte, just in case
322 * it's allocated already:
323 */
324 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_leaf(*pmd))
325 goto out;
326
327 pte = pte_offset_kernel(pmd, address);
328 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
329 out:
330 pr_cont("\n");
331 }
332
333 #else /* CONFIG_X86_64: */
334
335 #ifdef CONFIG_CPU_SUP_AMD
336 static const char errata93_warning[] =
337 KERN_ERR
338 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
339 "******* Working around it, but it may cause SEGVs or burn power.\n"
340 "******* Please consider a BIOS update.\n"
341 "******* Disabling USB legacy in the BIOS may also help.\n";
342 #endif
343
bad_address(void * p)344 static int bad_address(void *p)
345 {
346 unsigned long dummy;
347
348 return get_kernel_nofault(dummy, (unsigned long *)p);
349 }
350
dump_pagetable(unsigned long address)351 static void dump_pagetable(unsigned long address)
352 {
353 pgd_t *base = __va(read_cr3_pa());
354 pgd_t *pgd = base + pgd_index(address);
355 p4d_t *p4d;
356 pud_t *pud;
357 pmd_t *pmd;
358 pte_t *pte;
359
360 if (bad_address(pgd))
361 goto bad;
362
363 pr_info("PGD %lx ", pgd_val(*pgd));
364
365 if (!pgd_present(*pgd))
366 goto out;
367
368 p4d = p4d_offset(pgd, address);
369 if (bad_address(p4d))
370 goto bad;
371
372 pr_cont("P4D %lx ", p4d_val(*p4d));
373 if (!p4d_present(*p4d) || p4d_leaf(*p4d))
374 goto out;
375
376 pud = pud_offset(p4d, address);
377 if (bad_address(pud))
378 goto bad;
379
380 pr_cont("PUD %lx ", pud_val(*pud));
381 if (!pud_present(*pud) || pud_leaf(*pud))
382 goto out;
383
384 pmd = pmd_offset(pud, address);
385 if (bad_address(pmd))
386 goto bad;
387
388 pr_cont("PMD %lx ", pmd_val(*pmd));
389 if (!pmd_present(*pmd) || pmd_leaf(*pmd))
390 goto out;
391
392 pte = pte_offset_kernel(pmd, address);
393 if (bad_address(pte))
394 goto bad;
395
396 pr_cont("PTE %lx", pte_val(*pte));
397 out:
398 pr_cont("\n");
399 return;
400 bad:
401 pr_info("BAD\n");
402 }
403
404 #endif /* CONFIG_X86_64 */
405
406 /*
407 * Workaround for K8 erratum #93 & buggy BIOS.
408 *
409 * BIOS SMM functions are required to use a specific workaround
410 * to avoid corruption of the 64bit RIP register on C stepping K8.
411 *
412 * A lot of BIOS that didn't get tested properly miss this.
413 *
414 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
415 * Try to work around it here.
416 *
417 * Note we only handle faults in kernel here.
418 * Does nothing on 32-bit.
419 */
is_errata93(struct pt_regs * regs,unsigned long address)420 static int is_errata93(struct pt_regs *regs, unsigned long address)
421 {
422 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
423 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
424 || boot_cpu_data.x86 != 0xf)
425 return 0;
426
427 if (user_mode(regs))
428 return 0;
429
430 if (address != regs->ip)
431 return 0;
432
433 if ((address >> 32) != 0)
434 return 0;
435
436 address |= 0xffffffffUL << 32;
437 if ((address >= (u64)_stext && address <= (u64)_etext) ||
438 (address >= MODULES_VADDR && address <= MODULES_END)) {
439 printk_once(errata93_warning);
440 regs->ip = address;
441 return 1;
442 }
443 #endif
444 return 0;
445 }
446
447 /*
448 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
449 * to illegal addresses >4GB.
450 *
451 * We catch this in the page fault handler because these addresses
452 * are not reachable. Just detect this case and return. Any code
453 * segment in LDT is compatibility mode.
454 */
is_errata100(struct pt_regs * regs,unsigned long address)455 static int is_errata100(struct pt_regs *regs, unsigned long address)
456 {
457 #ifdef CONFIG_X86_64
458 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
459 return 1;
460 #endif
461 return 0;
462 }
463
464 /* Pentium F0 0F C7 C8 bug workaround: */
is_f00f_bug(struct pt_regs * regs,unsigned long error_code,unsigned long address)465 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
466 unsigned long address)
467 {
468 #ifdef CONFIG_X86_F00F_BUG
469 if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
470 idt_is_f00f_address(address)) {
471 handle_invalid_op(regs);
472 return 1;
473 }
474 #endif
475 return 0;
476 }
477
show_ldttss(const struct desc_ptr * gdt,const char * name,u16 index)478 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
479 {
480 u32 offset = (index >> 3) * sizeof(struct desc_struct);
481 unsigned long addr;
482 struct ldttss_desc desc;
483
484 if (index == 0) {
485 pr_alert("%s: NULL\n", name);
486 return;
487 }
488
489 if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
490 pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
491 return;
492 }
493
494 if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
495 sizeof(struct ldttss_desc))) {
496 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
497 name, index);
498 return;
499 }
500
501 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
502 #ifdef CONFIG_X86_64
503 addr |= ((u64)desc.base3 << 32);
504 #endif
505 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
506 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
507 }
508
509 static void
show_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)510 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
511 {
512 if (!oops_may_print())
513 return;
514
515 if (error_code & X86_PF_INSTR) {
516 unsigned int level;
517 bool nx, rw;
518 pgd_t *pgd;
519 pte_t *pte;
520
521 pgd = __va(read_cr3_pa());
522 pgd += pgd_index(address);
523
524 pte = lookup_address_in_pgd_attr(pgd, address, &level, &nx, &rw);
525
526 if (pte && pte_present(*pte) && (!pte_exec(*pte) || nx))
527 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
528 from_kuid(&init_user_ns, current_uid()));
529 if (pte && pte_present(*pte) && pte_exec(*pte) && !nx &&
530 (pgd_flags(*pgd) & _PAGE_USER) &&
531 (__read_cr4() & X86_CR4_SMEP))
532 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
533 from_kuid(&init_user_ns, current_uid()));
534 }
535
536 if (address < PAGE_SIZE && !user_mode(regs))
537 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
538 (void *)address);
539 else
540 pr_alert("BUG: unable to handle page fault for address: %px\n",
541 (void *)address);
542
543 pr_alert("#PF: %s %s in %s mode\n",
544 (error_code & X86_PF_USER) ? "user" : "supervisor",
545 (error_code & X86_PF_INSTR) ? "instruction fetch" :
546 (error_code & X86_PF_WRITE) ? "write access" :
547 "read access",
548 user_mode(regs) ? "user" : "kernel");
549 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
550 !(error_code & X86_PF_PROT) ? "not-present page" :
551 (error_code & X86_PF_RSVD) ? "reserved bit violation" :
552 (error_code & X86_PF_PK) ? "protection keys violation" :
553 (error_code & X86_PF_RMP) ? "RMP violation" :
554 "permissions violation");
555
556 if (!(error_code & X86_PF_USER) && user_mode(regs)) {
557 struct desc_ptr idt, gdt;
558 u16 ldtr, tr;
559
560 /*
561 * This can happen for quite a few reasons. The more obvious
562 * ones are faults accessing the GDT, or LDT. Perhaps
563 * surprisingly, if the CPU tries to deliver a benign or
564 * contributory exception from user code and gets a page fault
565 * during delivery, the page fault can be delivered as though
566 * it originated directly from user code. This could happen
567 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
568 * kernel or IST stack.
569 */
570 store_idt(&idt);
571
572 /* Usable even on Xen PV -- it's just slow. */
573 native_store_gdt(&gdt);
574
575 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
576 idt.address, idt.size, gdt.address, gdt.size);
577
578 store_ldt(ldtr);
579 show_ldttss(&gdt, "LDTR", ldtr);
580
581 store_tr(tr);
582 show_ldttss(&gdt, "TR", tr);
583 }
584
585 dump_pagetable(address);
586
587 if (error_code & X86_PF_RMP)
588 snp_dump_hva_rmpentry(address);
589 }
590
591 static noinline void
pgtable_bad(struct pt_regs * regs,unsigned long error_code,unsigned long address)592 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
593 unsigned long address)
594 {
595 struct task_struct *tsk;
596 unsigned long flags;
597 int sig;
598
599 flags = oops_begin();
600 tsk = current;
601 sig = SIGKILL;
602
603 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
604 tsk->comm, address);
605 dump_pagetable(address);
606
607 if (__die("Bad pagetable", regs, error_code))
608 sig = 0;
609
610 oops_end(flags, regs, sig);
611 }
612
sanitize_error_code(unsigned long address,unsigned long * error_code)613 static void sanitize_error_code(unsigned long address,
614 unsigned long *error_code)
615 {
616 /*
617 * To avoid leaking information about the kernel page
618 * table layout, pretend that user-mode accesses to
619 * kernel addresses are always protection faults.
620 *
621 * NB: This means that failed vsyscalls with vsyscall=none
622 * will have the PROT bit. This doesn't leak any
623 * information and does not appear to cause any problems.
624 */
625 if (address >= TASK_SIZE_MAX)
626 *error_code |= X86_PF_PROT;
627 }
628
set_signal_archinfo(unsigned long address,unsigned long error_code)629 static void set_signal_archinfo(unsigned long address,
630 unsigned long error_code)
631 {
632 struct task_struct *tsk = current;
633
634 tsk->thread.trap_nr = X86_TRAP_PF;
635 tsk->thread.error_code = error_code | X86_PF_USER;
636 tsk->thread.cr2 = address;
637 }
638
639 static noinline void
page_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)640 page_fault_oops(struct pt_regs *regs, unsigned long error_code,
641 unsigned long address)
642 {
643 #ifdef CONFIG_VMAP_STACK
644 struct stack_info info;
645 #endif
646 unsigned long flags;
647 int sig;
648
649 if (user_mode(regs)) {
650 /*
651 * Implicit kernel access from user mode? Skip the stack
652 * overflow and EFI special cases.
653 */
654 goto oops;
655 }
656
657 #ifdef CONFIG_VMAP_STACK
658 /*
659 * Stack overflow? During boot, we can fault near the initial
660 * stack in the direct map, but that's not an overflow -- check
661 * that we're in vmalloc space to avoid this.
662 */
663 if (is_vmalloc_addr((void *)address) &&
664 get_stack_guard_info((void *)address, &info)) {
665 /*
666 * We're likely to be running with very little stack space
667 * left. It's plausible that we'd hit this condition but
668 * double-fault even before we get this far, in which case
669 * we're fine: the double-fault handler will deal with it.
670 *
671 * We don't want to make it all the way into the oops code
672 * and then double-fault, though, because we're likely to
673 * break the console driver and lose most of the stack dump.
674 */
675 call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
676 handle_stack_overflow,
677 ASM_CALL_ARG3,
678 , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
679
680 BUG();
681 }
682 #endif
683
684 /*
685 * Buggy firmware could access regions which might page fault. If
686 * this happens, EFI has a special OOPS path that will try to
687 * avoid hanging the system.
688 */
689 if (IS_ENABLED(CONFIG_EFI))
690 efi_crash_gracefully_on_page_fault(address);
691
692 /* Only not-present faults should be handled by KFENCE. */
693 if (!(error_code & X86_PF_PROT) &&
694 kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
695 return;
696
697 oops:
698 /*
699 * Oops. The kernel tried to access some bad page. We'll have to
700 * terminate things with extreme prejudice:
701 */
702 flags = oops_begin();
703
704 show_fault_oops(regs, error_code, address);
705
706 if (task_stack_end_corrupted(current))
707 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
708
709 sig = SIGKILL;
710 if (__die("Oops", regs, error_code))
711 sig = 0;
712
713 /* Executive summary in case the body of the oops scrolled away */
714 printk(KERN_DEFAULT "CR2: %016lx\n", address);
715
716 oops_end(flags, regs, sig);
717 }
718
719 static noinline void
kernelmode_fixup_or_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address,int signal,int si_code,u32 pkey)720 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
721 unsigned long address, int signal, int si_code,
722 u32 pkey)
723 {
724 WARN_ON_ONCE(user_mode(regs));
725
726 /* Are we prepared to handle this kernel fault? */
727 if (fixup_exception(regs, X86_TRAP_PF, error_code, address))
728 return;
729
730 /*
731 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
732 * instruction.
733 */
734 if (is_prefetch(regs, error_code, address))
735 return;
736
737 page_fault_oops(regs, error_code, address);
738 }
739
740 /*
741 * Print out info about fatal segfaults, if the show_unhandled_signals
742 * sysctl is set:
743 */
744 static inline void
show_signal_msg(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct task_struct * tsk)745 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
746 unsigned long address, struct task_struct *tsk)
747 {
748 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
749 /* This is a racy snapshot, but it's better than nothing. */
750 int cpu = raw_smp_processor_id();
751
752 if (!unhandled_signal(tsk, SIGSEGV))
753 return;
754
755 if (!printk_ratelimit())
756 return;
757
758 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
759 loglvl, tsk->comm, task_pid_nr(tsk), address,
760 (void *)regs->ip, (void *)regs->sp, error_code);
761
762 print_vma_addr(KERN_CONT " in ", regs->ip);
763
764 /*
765 * Dump the likely CPU where the fatal segfault happened.
766 * This can help identify faulty hardware.
767 */
768 printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
769 topology_core_id(cpu), topology_physical_package_id(cpu));
770
771
772 printk(KERN_CONT "\n");
773
774 show_opcodes(regs, loglvl);
775 }
776
777 static void
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)778 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
779 unsigned long address, u32 pkey, int si_code)
780 {
781 struct task_struct *tsk = current;
782
783 if (!user_mode(regs)) {
784 kernelmode_fixup_or_oops(regs, error_code, address,
785 SIGSEGV, si_code, pkey);
786 return;
787 }
788
789 if (!(error_code & X86_PF_USER)) {
790 /* Implicit user access to kernel memory -- just oops */
791 page_fault_oops(regs, error_code, address);
792 return;
793 }
794
795 /*
796 * User mode accesses just cause a SIGSEGV.
797 * It's possible to have interrupts off here:
798 */
799 local_irq_enable();
800
801 /*
802 * Valid to do another page fault here because this one came
803 * from user space:
804 */
805 if (is_prefetch(regs, error_code, address))
806 return;
807
808 if (is_errata100(regs, address))
809 return;
810
811 sanitize_error_code(address, &error_code);
812
813 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
814 return;
815
816 if (likely(show_unhandled_signals))
817 show_signal_msg(regs, error_code, address, tsk);
818
819 set_signal_archinfo(address, error_code);
820
821 if (si_code == SEGV_PKUERR)
822 force_sig_pkuerr((void __user *)address, pkey);
823 else
824 force_sig_fault(SIGSEGV, si_code, (void __user *)address);
825
826 local_irq_disable();
827 }
828
829 static noinline void
bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address)830 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
831 unsigned long address)
832 {
833 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
834 }
835
836 static void
__bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct mm_struct * mm,struct vm_area_struct * vma,u32 pkey,int si_code)837 __bad_area(struct pt_regs *regs, unsigned long error_code,
838 unsigned long address, struct mm_struct *mm,
839 struct vm_area_struct *vma, u32 pkey, int si_code)
840 {
841 /*
842 * Something tried to access memory that isn't in our memory map..
843 * Fix it, but check if it's kernel or user first..
844 */
845 if (mm)
846 mmap_read_unlock(mm);
847 else
848 vma_end_read(vma);
849
850 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
851 }
852
bad_area_access_from_pkeys(unsigned long error_code,struct vm_area_struct * vma)853 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
854 struct vm_area_struct *vma)
855 {
856 /* This code is always called on the current mm */
857 bool foreign = false;
858
859 if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
860 return false;
861 if (error_code & X86_PF_PK)
862 return true;
863 /* this checks permission keys on the VMA: */
864 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
865 (error_code & X86_PF_INSTR), foreign))
866 return true;
867 return false;
868 }
869
870 static noinline void
bad_area_access_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct mm_struct * mm,struct vm_area_struct * vma)871 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
872 unsigned long address, struct mm_struct *mm,
873 struct vm_area_struct *vma)
874 {
875 /*
876 * This OSPKE check is not strictly necessary at runtime.
877 * But, doing it this way allows compiler optimizations
878 * if pkeys are compiled out.
879 */
880 if (bad_area_access_from_pkeys(error_code, vma)) {
881 /*
882 * A protection key fault means that the PKRU value did not allow
883 * access to some PTE. Userspace can figure out what PKRU was
884 * from the XSAVE state. This function captures the pkey from
885 * the vma and passes it to userspace so userspace can discover
886 * which protection key was set on the PTE.
887 *
888 * If we get here, we know that the hardware signaled a X86_PF_PK
889 * fault and that there was a VMA once we got in the fault
890 * handler. It does *not* guarantee that the VMA we find here
891 * was the one that we faulted on.
892 *
893 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
894 * 2. T1 : set PKRU to deny access to pkey=4, touches page
895 * 3. T1 : faults...
896 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
897 * 5. T1 : enters fault handler, takes mmap_lock, etc...
898 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
899 * faulted on a pte with its pkey=4.
900 */
901 u32 pkey = vma_pkey(vma);
902
903 __bad_area(regs, error_code, address, mm, vma, pkey, SEGV_PKUERR);
904 } else {
905 __bad_area(regs, error_code, address, mm, vma, 0, SEGV_ACCERR);
906 }
907 }
908
909 static void
do_sigbus(struct pt_regs * regs,unsigned long error_code,unsigned long address,vm_fault_t fault)910 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
911 vm_fault_t fault)
912 {
913 /* Kernel mode? Handle exceptions or die: */
914 if (!user_mode(regs)) {
915 kernelmode_fixup_or_oops(regs, error_code, address,
916 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
917 return;
918 }
919
920 /* User-space => ok to do another page fault: */
921 if (is_prefetch(regs, error_code, address))
922 return;
923
924 sanitize_error_code(address, &error_code);
925
926 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
927 return;
928
929 set_signal_archinfo(address, error_code);
930
931 #ifdef CONFIG_MEMORY_FAILURE
932 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
933 struct task_struct *tsk = current;
934 unsigned lsb = 0;
935
936 pr_err(
937 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
938 tsk->comm, tsk->pid, address);
939 if (fault & VM_FAULT_HWPOISON_LARGE)
940 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
941 if (fault & VM_FAULT_HWPOISON)
942 lsb = PAGE_SHIFT;
943 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
944 return;
945 }
946 #endif
947 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
948 }
949
spurious_kernel_fault_check(unsigned long error_code,pte_t * pte)950 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
951 {
952 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
953 return 0;
954
955 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
956 return 0;
957
958 return 1;
959 }
960
961 /*
962 * Handle a spurious fault caused by a stale TLB entry.
963 *
964 * This allows us to lazily refresh the TLB when increasing the
965 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
966 * eagerly is very expensive since that implies doing a full
967 * cross-processor TLB flush, even if no stale TLB entries exist
968 * on other processors.
969 *
970 * Spurious faults may only occur if the TLB contains an entry with
971 * fewer permission than the page table entry. Non-present (P = 0)
972 * and reserved bit (R = 1) faults are never spurious.
973 *
974 * There are no security implications to leaving a stale TLB when
975 * increasing the permissions on a page.
976 *
977 * Returns non-zero if a spurious fault was handled, zero otherwise.
978 *
979 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
980 * (Optional Invalidation).
981 */
982 static noinline int
spurious_kernel_fault(unsigned long error_code,unsigned long address)983 spurious_kernel_fault(unsigned long error_code, unsigned long address)
984 {
985 pgd_t *pgd;
986 p4d_t *p4d;
987 pud_t *pud;
988 pmd_t *pmd;
989 pte_t *pte;
990 int ret;
991
992 /*
993 * Only writes to RO or instruction fetches from NX may cause
994 * spurious faults.
995 *
996 * These could be from user or supervisor accesses but the TLB
997 * is only lazily flushed after a kernel mapping protection
998 * change, so user accesses are not expected to cause spurious
999 * faults.
1000 */
1001 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1002 error_code != (X86_PF_INSTR | X86_PF_PROT))
1003 return 0;
1004
1005 pgd = init_mm.pgd + pgd_index(address);
1006 if (!pgd_present(*pgd))
1007 return 0;
1008
1009 p4d = p4d_offset(pgd, address);
1010 if (!p4d_present(*p4d))
1011 return 0;
1012
1013 if (p4d_leaf(*p4d))
1014 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1015
1016 pud = pud_offset(p4d, address);
1017 if (!pud_present(*pud))
1018 return 0;
1019
1020 if (pud_leaf(*pud))
1021 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1022
1023 pmd = pmd_offset(pud, address);
1024 if (!pmd_present(*pmd))
1025 return 0;
1026
1027 if (pmd_leaf(*pmd))
1028 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1029
1030 pte = pte_offset_kernel(pmd, address);
1031 if (!pte_present(*pte))
1032 return 0;
1033
1034 ret = spurious_kernel_fault_check(error_code, pte);
1035 if (!ret)
1036 return 0;
1037
1038 /*
1039 * Make sure we have permissions in PMD.
1040 * If not, then there's a bug in the page tables:
1041 */
1042 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1043 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1044
1045 return ret;
1046 }
1047 NOKPROBE_SYMBOL(spurious_kernel_fault);
1048
1049 int show_unhandled_signals = 1;
1050
1051 static inline int
access_error(unsigned long error_code,struct vm_area_struct * vma)1052 access_error(unsigned long error_code, struct vm_area_struct *vma)
1053 {
1054 /* This is only called for the current mm, so: */
1055 bool foreign = false;
1056
1057 /*
1058 * Read or write was blocked by protection keys. This is
1059 * always an unconditional error and can never result in
1060 * a follow-up action to resolve the fault, like a COW.
1061 */
1062 if (error_code & X86_PF_PK)
1063 return 1;
1064
1065 /*
1066 * SGX hardware blocked the access. This usually happens
1067 * when the enclave memory contents have been destroyed, like
1068 * after a suspend/resume cycle. In any case, the kernel can't
1069 * fix the cause of the fault. Handle the fault as an access
1070 * error even in cases where no actual access violation
1071 * occurred. This allows userspace to rebuild the enclave in
1072 * response to the signal.
1073 */
1074 if (unlikely(error_code & X86_PF_SGX))
1075 return 1;
1076
1077 /*
1078 * Make sure to check the VMA so that we do not perform
1079 * faults just to hit a X86_PF_PK as soon as we fill in a
1080 * page.
1081 */
1082 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1083 (error_code & X86_PF_INSTR), foreign))
1084 return 1;
1085
1086 /*
1087 * Shadow stack accesses (PF_SHSTK=1) are only permitted to
1088 * shadow stack VMAs. All other accesses result in an error.
1089 */
1090 if (error_code & X86_PF_SHSTK) {
1091 if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1092 return 1;
1093 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1094 return 1;
1095 return 0;
1096 }
1097
1098 if (error_code & X86_PF_WRITE) {
1099 /* write, present and write, not present: */
1100 if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1101 return 1;
1102 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1103 return 1;
1104 return 0;
1105 }
1106
1107 /* read, present: */
1108 if (unlikely(error_code & X86_PF_PROT))
1109 return 1;
1110
1111 /* read, not present: */
1112 if (unlikely(!vma_is_accessible(vma)))
1113 return 1;
1114
1115 return 0;
1116 }
1117
fault_in_kernel_space(unsigned long address)1118 bool fault_in_kernel_space(unsigned long address)
1119 {
1120 /*
1121 * On 64-bit systems, the vsyscall page is at an address above
1122 * TASK_SIZE_MAX, but is not considered part of the kernel
1123 * address space.
1124 */
1125 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1126 return false;
1127
1128 return address >= TASK_SIZE_MAX;
1129 }
1130
1131 /*
1132 * Called for all faults where 'address' is part of the kernel address
1133 * space. Might get called for faults that originate from *code* that
1134 * ran in userspace or the kernel.
1135 */
1136 static void
do_kern_addr_fault(struct pt_regs * regs,unsigned long hw_error_code,unsigned long address)1137 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1138 unsigned long address)
1139 {
1140 /*
1141 * Protection keys exceptions only happen on user pages. We
1142 * have no user pages in the kernel portion of the address
1143 * space, so do not expect them here.
1144 */
1145 WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1146
1147 #ifdef CONFIG_X86_32
1148 /*
1149 * We can fault-in kernel-space virtual memory on-demand. The
1150 * 'reference' page table is init_mm.pgd.
1151 *
1152 * NOTE! We MUST NOT take any locks for this case. We may
1153 * be in an interrupt or a critical region, and should
1154 * only copy the information from the master page table,
1155 * nothing more.
1156 *
1157 * Before doing this on-demand faulting, ensure that the
1158 * fault is not any of the following:
1159 * 1. A fault on a PTE with a reserved bit set.
1160 * 2. A fault caused by a user-mode access. (Do not demand-
1161 * fault kernel memory due to user-mode accesses).
1162 * 3. A fault caused by a page-level protection violation.
1163 * (A demand fault would be on a non-present page which
1164 * would have X86_PF_PROT==0).
1165 *
1166 * This is only needed to close a race condition on x86-32 in
1167 * the vmalloc mapping/unmapping code. See the comment above
1168 * vmalloc_fault() for details. On x86-64 the race does not
1169 * exist as the vmalloc mappings don't need to be synchronized
1170 * there.
1171 */
1172 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1173 if (vmalloc_fault(address) >= 0)
1174 return;
1175 }
1176 #endif
1177
1178 if (is_f00f_bug(regs, hw_error_code, address))
1179 return;
1180
1181 /* Was the fault spurious, caused by lazy TLB invalidation? */
1182 if (spurious_kernel_fault(hw_error_code, address))
1183 return;
1184
1185 /* kprobes don't want to hook the spurious faults: */
1186 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1187 return;
1188
1189 /*
1190 * Note, despite being a "bad area", there are quite a few
1191 * acceptable reasons to get here, such as erratum fixups
1192 * and handling kernel code that can fault, like get_user().
1193 *
1194 * Don't take the mm semaphore here. If we fixup a prefetch
1195 * fault we could otherwise deadlock:
1196 */
1197 bad_area_nosemaphore(regs, hw_error_code, address);
1198 }
1199 NOKPROBE_SYMBOL(do_kern_addr_fault);
1200
1201 /*
1202 * Handle faults in the user portion of the address space. Nothing in here
1203 * should check X86_PF_USER without a specific justification: for almost
1204 * all purposes, we should treat a normal kernel access to user memory
1205 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1206 * The one exception is AC flag handling, which is, per the x86
1207 * architecture, special for WRUSS.
1208 */
1209 static inline
do_user_addr_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1210 void do_user_addr_fault(struct pt_regs *regs,
1211 unsigned long error_code,
1212 unsigned long address)
1213 {
1214 struct vm_area_struct *vma;
1215 struct task_struct *tsk;
1216 struct mm_struct *mm;
1217 vm_fault_t fault;
1218 unsigned int flags = FAULT_FLAG_DEFAULT;
1219
1220 tsk = current;
1221 mm = tsk->mm;
1222
1223 if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1224 /*
1225 * Whoops, this is kernel mode code trying to execute from
1226 * user memory. Unless this is AMD erratum #93, which
1227 * corrupts RIP such that it looks like a user address,
1228 * this is unrecoverable. Don't even try to look up the
1229 * VMA or look for extable entries.
1230 */
1231 if (is_errata93(regs, address))
1232 return;
1233
1234 page_fault_oops(regs, error_code, address);
1235 return;
1236 }
1237
1238 /* kprobes don't want to hook the spurious faults: */
1239 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1240 return;
1241
1242 /*
1243 * Reserved bits are never expected to be set on
1244 * entries in the user portion of the page tables.
1245 */
1246 if (unlikely(error_code & X86_PF_RSVD))
1247 pgtable_bad(regs, error_code, address);
1248
1249 /*
1250 * If SMAP is on, check for invalid kernel (supervisor) access to user
1251 * pages in the user address space. The odd case here is WRUSS,
1252 * which, according to the preliminary documentation, does not respect
1253 * SMAP and will have the USER bit set so, in all cases, SMAP
1254 * enforcement appears to be consistent with the USER bit.
1255 */
1256 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1257 !(error_code & X86_PF_USER) &&
1258 !(regs->flags & X86_EFLAGS_AC))) {
1259 /*
1260 * No extable entry here. This was a kernel access to an
1261 * invalid pointer. get_kernel_nofault() will not get here.
1262 */
1263 page_fault_oops(regs, error_code, address);
1264 return;
1265 }
1266
1267 /*
1268 * If we're in an interrupt, have no user context or are running
1269 * in a region with pagefaults disabled then we must not take the fault
1270 */
1271 if (unlikely(faulthandler_disabled() || !mm)) {
1272 bad_area_nosemaphore(regs, error_code, address);
1273 return;
1274 }
1275
1276 /* Legacy check - remove this after verifying that it doesn't trigger */
1277 if (WARN_ON_ONCE(!(regs->flags & X86_EFLAGS_IF))) {
1278 bad_area_nosemaphore(regs, error_code, address);
1279 return;
1280 }
1281
1282 local_irq_enable();
1283
1284 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1285
1286 /*
1287 * Read-only permissions can not be expressed in shadow stack PTEs.
1288 * Treat all shadow stack accesses as WRITE faults. This ensures
1289 * that the MM will prepare everything (e.g., break COW) such that
1290 * maybe_mkwrite() can create a proper shadow stack PTE.
1291 */
1292 if (error_code & X86_PF_SHSTK)
1293 flags |= FAULT_FLAG_WRITE;
1294 if (error_code & X86_PF_WRITE)
1295 flags |= FAULT_FLAG_WRITE;
1296 if (error_code & X86_PF_INSTR)
1297 flags |= FAULT_FLAG_INSTRUCTION;
1298
1299 /*
1300 * We set FAULT_FLAG_USER based on the register state, not
1301 * based on X86_PF_USER. User space accesses that cause
1302 * system page faults are still user accesses.
1303 */
1304 if (user_mode(regs))
1305 flags |= FAULT_FLAG_USER;
1306
1307 #ifdef CONFIG_X86_64
1308 /*
1309 * Faults in the vsyscall page might need emulation. The
1310 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1311 * considered to be part of the user address space.
1312 *
1313 * The vsyscall page does not have a "real" VMA, so do this
1314 * emulation before we go searching for VMAs.
1315 *
1316 * PKRU never rejects instruction fetches, so we don't need
1317 * to consider the PF_PK bit.
1318 */
1319 if (is_vsyscall_vaddr(address)) {
1320 if (emulate_vsyscall(error_code, regs, address))
1321 return;
1322 }
1323 #endif
1324
1325 if (!(flags & FAULT_FLAG_USER))
1326 goto lock_mmap;
1327
1328 vma = lock_vma_under_rcu(mm, address);
1329 if (!vma)
1330 goto lock_mmap;
1331
1332 if (unlikely(access_error(error_code, vma))) {
1333 bad_area_access_error(regs, error_code, address, NULL, vma);
1334 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1335 return;
1336 }
1337 fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1338 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1339 vma_end_read(vma);
1340
1341 if (!(fault & VM_FAULT_RETRY)) {
1342 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1343 goto done;
1344 }
1345 count_vm_vma_lock_event(VMA_LOCK_RETRY);
1346 if (fault & VM_FAULT_MAJOR)
1347 flags |= FAULT_FLAG_TRIED;
1348
1349 /* Quick path to respond to signals */
1350 if (fault_signal_pending(fault, regs)) {
1351 if (!user_mode(regs))
1352 kernelmode_fixup_or_oops(regs, error_code, address,
1353 SIGBUS, BUS_ADRERR,
1354 ARCH_DEFAULT_PKEY);
1355 return;
1356 }
1357 lock_mmap:
1358
1359 retry:
1360 vma = lock_mm_and_find_vma(mm, address, regs);
1361 if (unlikely(!vma)) {
1362 bad_area_nosemaphore(regs, error_code, address);
1363 return;
1364 }
1365
1366 /*
1367 * Ok, we have a good vm_area for this memory access, so
1368 * we can handle it..
1369 */
1370 if (unlikely(access_error(error_code, vma))) {
1371 bad_area_access_error(regs, error_code, address, mm, vma);
1372 return;
1373 }
1374
1375 /*
1376 * If for any reason at all we couldn't handle the fault,
1377 * make sure we exit gracefully rather than endlessly redo
1378 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1379 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1380 *
1381 * Note that handle_userfault() may also release and reacquire mmap_lock
1382 * (and not return with VM_FAULT_RETRY), when returning to userland to
1383 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1384 * (potentially after handling any pending signal during the return to
1385 * userland). The return to userland is identified whenever
1386 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1387 */
1388 fault = handle_mm_fault(vma, address, flags, regs);
1389
1390 if (fault_signal_pending(fault, regs)) {
1391 /*
1392 * Quick path to respond to signals. The core mm code
1393 * has unlocked the mm for us if we get here.
1394 */
1395 if (!user_mode(regs))
1396 kernelmode_fixup_or_oops(regs, error_code, address,
1397 SIGBUS, BUS_ADRERR,
1398 ARCH_DEFAULT_PKEY);
1399 return;
1400 }
1401
1402 /* The fault is fully completed (including releasing mmap lock) */
1403 if (fault & VM_FAULT_COMPLETED)
1404 return;
1405
1406 /*
1407 * If we need to retry the mmap_lock has already been released,
1408 * and if there is a fatal signal pending there is no guarantee
1409 * that we made any progress. Handle this case first.
1410 */
1411 if (unlikely(fault & VM_FAULT_RETRY)) {
1412 flags |= FAULT_FLAG_TRIED;
1413 goto retry;
1414 }
1415
1416 mmap_read_unlock(mm);
1417 done:
1418 if (likely(!(fault & VM_FAULT_ERROR)))
1419 return;
1420
1421 if (fatal_signal_pending(current) && !user_mode(regs)) {
1422 kernelmode_fixup_or_oops(regs, error_code, address,
1423 0, 0, ARCH_DEFAULT_PKEY);
1424 return;
1425 }
1426
1427 if (fault & VM_FAULT_OOM) {
1428 /* Kernel mode? Handle exceptions or die: */
1429 if (!user_mode(regs)) {
1430 kernelmode_fixup_or_oops(regs, error_code, address,
1431 SIGSEGV, SEGV_MAPERR,
1432 ARCH_DEFAULT_PKEY);
1433 return;
1434 }
1435
1436 /*
1437 * We ran out of memory, call the OOM killer, and return the
1438 * userspace (which will retry the fault, or kill us if we got
1439 * oom-killed):
1440 */
1441 pagefault_out_of_memory();
1442 } else {
1443 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1444 VM_FAULT_HWPOISON_LARGE))
1445 do_sigbus(regs, error_code, address, fault);
1446 else if (fault & VM_FAULT_SIGSEGV)
1447 bad_area_nosemaphore(regs, error_code, address);
1448 else
1449 BUG();
1450 }
1451 }
1452 NOKPROBE_SYMBOL(do_user_addr_fault);
1453
1454 static __always_inline void
trace_page_fault_entries(struct pt_regs * regs,unsigned long error_code,unsigned long address)1455 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1456 unsigned long address)
1457 {
1458 if (!trace_pagefault_enabled())
1459 return;
1460
1461 if (user_mode(regs))
1462 trace_page_fault_user(address, regs, error_code);
1463 else
1464 trace_page_fault_kernel(address, regs, error_code);
1465 }
1466
1467 static __always_inline void
handle_page_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1468 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1469 unsigned long address)
1470 {
1471 trace_page_fault_entries(regs, error_code, address);
1472
1473 if (unlikely(kmmio_fault(regs, address)))
1474 return;
1475
1476 /* Was the fault on kernel-controlled part of the address space? */
1477 if (unlikely(fault_in_kernel_space(address))) {
1478 do_kern_addr_fault(regs, error_code, address);
1479 } else {
1480 do_user_addr_fault(regs, error_code, address);
1481 /*
1482 * User address page fault handling might have reenabled
1483 * interrupts. Fixing up all potential exit points of
1484 * do_user_addr_fault() and its leaf functions is just not
1485 * doable w/o creating an unholy mess or turning the code
1486 * upside down.
1487 */
1488 local_irq_disable();
1489 }
1490 }
1491
DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)1492 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1493 {
1494 irqentry_state_t state;
1495 unsigned long address;
1496
1497 address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2();
1498
1499 prefetchw(¤t->mm->mmap_lock);
1500
1501 /*
1502 * KVM uses #PF vector to deliver 'page not present' events to guests
1503 * (asynchronous page fault mechanism). The event happens when a
1504 * userspace task is trying to access some valid (from guest's point of
1505 * view) memory which is not currently mapped by the host (e.g. the
1506 * memory is swapped out). Note, the corresponding "page ready" event
1507 * which is injected when the memory becomes available, is delivered via
1508 * an interrupt mechanism and not a #PF exception
1509 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1510 *
1511 * We are relying on the interrupted context being sane (valid RSP,
1512 * relevant locks not held, etc.), which is fine as long as the
1513 * interrupted context had IF=1. We are also relying on the KVM
1514 * async pf type field and CR2 being read consistently instead of
1515 * getting values from real and async page faults mixed up.
1516 *
1517 * Fingers crossed.
1518 *
1519 * The async #PF handling code takes care of idtentry handling
1520 * itself.
1521 */
1522 if (kvm_handle_async_pf(regs, (u32)address))
1523 return;
1524
1525 /*
1526 * Entry handling for valid #PF from kernel mode is slightly
1527 * different: RCU is already watching and ct_irq_enter() must not
1528 * be invoked because a kernel fault on a user space address might
1529 * sleep.
1530 *
1531 * In case the fault hit a RCU idle region the conditional entry
1532 * code reenabled RCU to avoid subsequent wreckage which helps
1533 * debuggability.
1534 */
1535 state = irqentry_enter(regs);
1536
1537 instrumentation_begin();
1538 handle_page_fault(regs, error_code, address);
1539 instrumentation_end();
1540
1541 irqentry_exit(regs, state);
1542 }
1543