1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/memblock.h>		/* max_low_pfn			*/
11 #include <linux/kfence.h>		/* kfence_handle_page_fault	*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 #include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
20 #include <linux/mm_types.h>
21 #include <linux/mm.h>			/* find_and_lock_vma() */
22 #include <linux/vmalloc.h>
23 
24 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
25 #include <asm/traps.h>			/* dotraplinkage, ...		*/
26 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
27 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
28 #include <asm/vm86.h>			/* struct vm86			*/
29 #include <asm/mmu_context.h>		/* vma_pkey()			*/
30 #include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
31 #include <asm/desc.h>			/* store_idt(), ...		*/
32 #include <asm/cpu_entry_area.h>		/* exception stack		*/
33 #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
34 #include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
35 #include <asm/vdso.h>			/* fixup_vdso_exception()	*/
36 #include <asm/irq_stack.h>
37 #include <asm/fred.h>
38 #include <asm/sev.h>			/* snp_dump_hva_rmpentry()	*/
39 
40 #define CREATE_TRACE_POINTS
41 #include <asm/trace/exceptions.h>
42 
43 /*
44  * Returns 0 if mmiotrace is disabled, or if the fault is not
45  * handled by mmiotrace:
46  */
47 static nokprobe_inline int
kmmio_fault(struct pt_regs * regs,unsigned long addr)48 kmmio_fault(struct pt_regs *regs, unsigned long addr)
49 {
50 	if (unlikely(is_kmmio_active()))
51 		if (kmmio_handler(regs, addr) == 1)
52 			return -1;
53 	return 0;
54 }
55 
56 /*
57  * Prefetch quirks:
58  *
59  * 32-bit mode:
60  *
61  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
62  *   Check that here and ignore it.  This is AMD erratum #91.
63  *
64  * 64-bit mode:
65  *
66  *   Sometimes the CPU reports invalid exceptions on prefetch.
67  *   Check that here and ignore it.
68  *
69  * Opcode checker based on code by Richard Brunner.
70  */
71 static inline int
check_prefetch_opcode(struct pt_regs * regs,unsigned char * instr,unsigned char opcode,int * prefetch)72 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
73 		      unsigned char opcode, int *prefetch)
74 {
75 	unsigned char instr_hi = opcode & 0xf0;
76 	unsigned char instr_lo = opcode & 0x0f;
77 
78 	switch (instr_hi) {
79 	case 0x20:
80 	case 0x30:
81 		/*
82 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
83 		 * In X86_64 long mode, the CPU will signal invalid
84 		 * opcode if some of these prefixes are present so
85 		 * X86_64 will never get here anyway
86 		 */
87 		return ((instr_lo & 7) == 0x6);
88 #ifdef CONFIG_X86_64
89 	case 0x40:
90 		/*
91 		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
92 		 */
93 		return (!user_mode(regs) || user_64bit_mode(regs));
94 #endif
95 	case 0x60:
96 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
97 		return (instr_lo & 0xC) == 0x4;
98 	case 0xF0:
99 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
100 		return !instr_lo || (instr_lo>>1) == 1;
101 	case 0x00:
102 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
103 		if (get_kernel_nofault(opcode, instr))
104 			return 0;
105 
106 		*prefetch = (instr_lo == 0xF) &&
107 			(opcode == 0x0D || opcode == 0x18);
108 		return 0;
109 	default:
110 		return 0;
111 	}
112 }
113 
is_amd_k8_pre_npt(void)114 static bool is_amd_k8_pre_npt(void)
115 {
116 	struct cpuinfo_x86 *c = &boot_cpu_data;
117 
118 	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
119 			c->x86_vendor == X86_VENDOR_AMD &&
120 			c->x86 == 0xf && c->x86_model < 0x40);
121 }
122 
123 static int
is_prefetch(struct pt_regs * regs,unsigned long error_code,unsigned long addr)124 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
125 {
126 	unsigned char *max_instr;
127 	unsigned char *instr;
128 	int prefetch = 0;
129 
130 	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
131 	if (!is_amd_k8_pre_npt())
132 		return 0;
133 
134 	/*
135 	 * If it was a exec (instruction fetch) fault on NX page, then
136 	 * do not ignore the fault:
137 	 */
138 	if (error_code & X86_PF_INSTR)
139 		return 0;
140 
141 	instr = (void *)convert_ip_to_linear(current, regs);
142 	max_instr = instr + 15;
143 
144 	/*
145 	 * This code has historically always bailed out if IP points to a
146 	 * not-present page (e.g. due to a race).  No one has ever
147 	 * complained about this.
148 	 */
149 	pagefault_disable();
150 
151 	while (instr < max_instr) {
152 		unsigned char opcode;
153 
154 		if (user_mode(regs)) {
155 			if (get_user(opcode, (unsigned char __user *) instr))
156 				break;
157 		} else {
158 			if (get_kernel_nofault(opcode, instr))
159 				break;
160 		}
161 
162 		instr++;
163 
164 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
165 			break;
166 	}
167 
168 	pagefault_enable();
169 	return prefetch;
170 }
171 
172 DEFINE_SPINLOCK(pgd_lock);
173 LIST_HEAD(pgd_list);
174 
175 #ifdef CONFIG_X86_32
vmalloc_sync_one(pgd_t * pgd,unsigned long address)176 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
177 {
178 	unsigned index = pgd_index(address);
179 	pgd_t *pgd_k;
180 	p4d_t *p4d, *p4d_k;
181 	pud_t *pud, *pud_k;
182 	pmd_t *pmd, *pmd_k;
183 
184 	pgd += index;
185 	pgd_k = init_mm.pgd + index;
186 
187 	if (!pgd_present(*pgd_k))
188 		return NULL;
189 
190 	/*
191 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
192 	 * and redundant with the set_pmd() on non-PAE. As would
193 	 * set_p4d/set_pud.
194 	 */
195 	p4d = p4d_offset(pgd, address);
196 	p4d_k = p4d_offset(pgd_k, address);
197 	if (!p4d_present(*p4d_k))
198 		return NULL;
199 
200 	pud = pud_offset(p4d, address);
201 	pud_k = pud_offset(p4d_k, address);
202 	if (!pud_present(*pud_k))
203 		return NULL;
204 
205 	pmd = pmd_offset(pud, address);
206 	pmd_k = pmd_offset(pud_k, address);
207 
208 	if (pmd_present(*pmd) != pmd_present(*pmd_k))
209 		set_pmd(pmd, *pmd_k);
210 
211 	if (!pmd_present(*pmd_k))
212 		return NULL;
213 	else
214 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
215 
216 	return pmd_k;
217 }
218 
219 /*
220  *   Handle a fault on the vmalloc or module mapping area
221  *
222  *   This is needed because there is a race condition between the time
223  *   when the vmalloc mapping code updates the PMD to the point in time
224  *   where it synchronizes this update with the other page-tables in the
225  *   system.
226  *
227  *   In this race window another thread/CPU can map an area on the same
228  *   PMD, finds it already present and does not synchronize it with the
229  *   rest of the system yet. As a result v[mz]alloc might return areas
230  *   which are not mapped in every page-table in the system, causing an
231  *   unhandled page-fault when they are accessed.
232  */
vmalloc_fault(unsigned long address)233 static noinline int vmalloc_fault(unsigned long address)
234 {
235 	unsigned long pgd_paddr;
236 	pmd_t *pmd_k;
237 	pte_t *pte_k;
238 
239 	/* Make sure we are in vmalloc area: */
240 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
241 		return -1;
242 
243 	/*
244 	 * Synchronize this task's top level page-table
245 	 * with the 'reference' page table.
246 	 *
247 	 * Do _not_ use "current" here. We might be inside
248 	 * an interrupt in the middle of a task switch..
249 	 */
250 	pgd_paddr = read_cr3_pa();
251 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
252 	if (!pmd_k)
253 		return -1;
254 
255 	if (pmd_leaf(*pmd_k))
256 		return 0;
257 
258 	pte_k = pte_offset_kernel(pmd_k, address);
259 	if (!pte_present(*pte_k))
260 		return -1;
261 
262 	return 0;
263 }
264 NOKPROBE_SYMBOL(vmalloc_fault);
265 
arch_sync_kernel_mappings(unsigned long start,unsigned long end)266 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
267 {
268 	unsigned long addr;
269 
270 	for (addr = start & PMD_MASK;
271 	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
272 	     addr += PMD_SIZE) {
273 		struct page *page;
274 
275 		spin_lock(&pgd_lock);
276 		list_for_each_entry(page, &pgd_list, lru) {
277 			spinlock_t *pgt_lock;
278 
279 			/* the pgt_lock only for Xen */
280 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
281 
282 			spin_lock(pgt_lock);
283 			vmalloc_sync_one(page_address(page), addr);
284 			spin_unlock(pgt_lock);
285 		}
286 		spin_unlock(&pgd_lock);
287 	}
288 }
289 
low_pfn(unsigned long pfn)290 static bool low_pfn(unsigned long pfn)
291 {
292 	return pfn < max_low_pfn;
293 }
294 
dump_pagetable(unsigned long address)295 static void dump_pagetable(unsigned long address)
296 {
297 	pgd_t *base = __va(read_cr3_pa());
298 	pgd_t *pgd = &base[pgd_index(address)];
299 	p4d_t *p4d;
300 	pud_t *pud;
301 	pmd_t *pmd;
302 	pte_t *pte;
303 
304 #ifdef CONFIG_X86_PAE
305 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
306 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
307 		goto out;
308 #define pr_pde pr_cont
309 #else
310 #define pr_pde pr_info
311 #endif
312 	p4d = p4d_offset(pgd, address);
313 	pud = pud_offset(p4d, address);
314 	pmd = pmd_offset(pud, address);
315 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
316 #undef pr_pde
317 
318 	/*
319 	 * We must not directly access the pte in the highpte
320 	 * case if the page table is located in highmem.
321 	 * And let's rather not kmap-atomic the pte, just in case
322 	 * it's allocated already:
323 	 */
324 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_leaf(*pmd))
325 		goto out;
326 
327 	pte = pte_offset_kernel(pmd, address);
328 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
329 out:
330 	pr_cont("\n");
331 }
332 
333 #else /* CONFIG_X86_64: */
334 
335 #ifdef CONFIG_CPU_SUP_AMD
336 static const char errata93_warning[] =
337 KERN_ERR
338 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
339 "******* Working around it, but it may cause SEGVs or burn power.\n"
340 "******* Please consider a BIOS update.\n"
341 "******* Disabling USB legacy in the BIOS may also help.\n";
342 #endif
343 
bad_address(void * p)344 static int bad_address(void *p)
345 {
346 	unsigned long dummy;
347 
348 	return get_kernel_nofault(dummy, (unsigned long *)p);
349 }
350 
dump_pagetable(unsigned long address)351 static void dump_pagetable(unsigned long address)
352 {
353 	pgd_t *base = __va(read_cr3_pa());
354 	pgd_t *pgd = base + pgd_index(address);
355 	p4d_t *p4d;
356 	pud_t *pud;
357 	pmd_t *pmd;
358 	pte_t *pte;
359 
360 	if (bad_address(pgd))
361 		goto bad;
362 
363 	pr_info("PGD %lx ", pgd_val(*pgd));
364 
365 	if (!pgd_present(*pgd))
366 		goto out;
367 
368 	p4d = p4d_offset(pgd, address);
369 	if (bad_address(p4d))
370 		goto bad;
371 
372 	pr_cont("P4D %lx ", p4d_val(*p4d));
373 	if (!p4d_present(*p4d) || p4d_leaf(*p4d))
374 		goto out;
375 
376 	pud = pud_offset(p4d, address);
377 	if (bad_address(pud))
378 		goto bad;
379 
380 	pr_cont("PUD %lx ", pud_val(*pud));
381 	if (!pud_present(*pud) || pud_leaf(*pud))
382 		goto out;
383 
384 	pmd = pmd_offset(pud, address);
385 	if (bad_address(pmd))
386 		goto bad;
387 
388 	pr_cont("PMD %lx ", pmd_val(*pmd));
389 	if (!pmd_present(*pmd) || pmd_leaf(*pmd))
390 		goto out;
391 
392 	pte = pte_offset_kernel(pmd, address);
393 	if (bad_address(pte))
394 		goto bad;
395 
396 	pr_cont("PTE %lx", pte_val(*pte));
397 out:
398 	pr_cont("\n");
399 	return;
400 bad:
401 	pr_info("BAD\n");
402 }
403 
404 #endif /* CONFIG_X86_64 */
405 
406 /*
407  * Workaround for K8 erratum #93 & buggy BIOS.
408  *
409  * BIOS SMM functions are required to use a specific workaround
410  * to avoid corruption of the 64bit RIP register on C stepping K8.
411  *
412  * A lot of BIOS that didn't get tested properly miss this.
413  *
414  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
415  * Try to work around it here.
416  *
417  * Note we only handle faults in kernel here.
418  * Does nothing on 32-bit.
419  */
is_errata93(struct pt_regs * regs,unsigned long address)420 static int is_errata93(struct pt_regs *regs, unsigned long address)
421 {
422 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
423 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
424 	    || boot_cpu_data.x86 != 0xf)
425 		return 0;
426 
427 	if (user_mode(regs))
428 		return 0;
429 
430 	if (address != regs->ip)
431 		return 0;
432 
433 	if ((address >> 32) != 0)
434 		return 0;
435 
436 	address |= 0xffffffffUL << 32;
437 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
438 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
439 		printk_once(errata93_warning);
440 		regs->ip = address;
441 		return 1;
442 	}
443 #endif
444 	return 0;
445 }
446 
447 /*
448  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
449  * to illegal addresses >4GB.
450  *
451  * We catch this in the page fault handler because these addresses
452  * are not reachable. Just detect this case and return.  Any code
453  * segment in LDT is compatibility mode.
454  */
is_errata100(struct pt_regs * regs,unsigned long address)455 static int is_errata100(struct pt_regs *regs, unsigned long address)
456 {
457 #ifdef CONFIG_X86_64
458 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
459 		return 1;
460 #endif
461 	return 0;
462 }
463 
464 /* Pentium F0 0F C7 C8 bug workaround: */
is_f00f_bug(struct pt_regs * regs,unsigned long error_code,unsigned long address)465 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
466 		       unsigned long address)
467 {
468 #ifdef CONFIG_X86_F00F_BUG
469 	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
470 	    idt_is_f00f_address(address)) {
471 		handle_invalid_op(regs);
472 		return 1;
473 	}
474 #endif
475 	return 0;
476 }
477 
show_ldttss(const struct desc_ptr * gdt,const char * name,u16 index)478 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
479 {
480 	u32 offset = (index >> 3) * sizeof(struct desc_struct);
481 	unsigned long addr;
482 	struct ldttss_desc desc;
483 
484 	if (index == 0) {
485 		pr_alert("%s: NULL\n", name);
486 		return;
487 	}
488 
489 	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
490 		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
491 		return;
492 	}
493 
494 	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
495 			      sizeof(struct ldttss_desc))) {
496 		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
497 			 name, index);
498 		return;
499 	}
500 
501 	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
502 #ifdef CONFIG_X86_64
503 	addr |= ((u64)desc.base3 << 32);
504 #endif
505 	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
506 		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
507 }
508 
509 static void
show_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)510 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
511 {
512 	if (!oops_may_print())
513 		return;
514 
515 	if (error_code & X86_PF_INSTR) {
516 		unsigned int level;
517 		bool nx, rw;
518 		pgd_t *pgd;
519 		pte_t *pte;
520 
521 		pgd = __va(read_cr3_pa());
522 		pgd += pgd_index(address);
523 
524 		pte = lookup_address_in_pgd_attr(pgd, address, &level, &nx, &rw);
525 
526 		if (pte && pte_present(*pte) && (!pte_exec(*pte) || nx))
527 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
528 				from_kuid(&init_user_ns, current_uid()));
529 		if (pte && pte_present(*pte) && pte_exec(*pte) && !nx &&
530 				(pgd_flags(*pgd) & _PAGE_USER) &&
531 				(__read_cr4() & X86_CR4_SMEP))
532 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
533 				from_kuid(&init_user_ns, current_uid()));
534 	}
535 
536 	if (address < PAGE_SIZE && !user_mode(regs))
537 		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
538 			(void *)address);
539 	else
540 		pr_alert("BUG: unable to handle page fault for address: %px\n",
541 			(void *)address);
542 
543 	pr_alert("#PF: %s %s in %s mode\n",
544 		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
545 		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
546 		 (error_code & X86_PF_WRITE) ? "write access" :
547 					       "read access",
548 			     user_mode(regs) ? "user" : "kernel");
549 	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
550 		 !(error_code & X86_PF_PROT) ? "not-present page" :
551 		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
552 		 (error_code & X86_PF_PK)    ? "protection keys violation" :
553 		 (error_code & X86_PF_RMP)   ? "RMP violation" :
554 					       "permissions violation");
555 
556 	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
557 		struct desc_ptr idt, gdt;
558 		u16 ldtr, tr;
559 
560 		/*
561 		 * This can happen for quite a few reasons.  The more obvious
562 		 * ones are faults accessing the GDT, or LDT.  Perhaps
563 		 * surprisingly, if the CPU tries to deliver a benign or
564 		 * contributory exception from user code and gets a page fault
565 		 * during delivery, the page fault can be delivered as though
566 		 * it originated directly from user code.  This could happen
567 		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
568 		 * kernel or IST stack.
569 		 */
570 		store_idt(&idt);
571 
572 		/* Usable even on Xen PV -- it's just slow. */
573 		native_store_gdt(&gdt);
574 
575 		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
576 			 idt.address, idt.size, gdt.address, gdt.size);
577 
578 		store_ldt(ldtr);
579 		show_ldttss(&gdt, "LDTR", ldtr);
580 
581 		store_tr(tr);
582 		show_ldttss(&gdt, "TR", tr);
583 	}
584 
585 	dump_pagetable(address);
586 
587 	if (error_code & X86_PF_RMP)
588 		snp_dump_hva_rmpentry(address);
589 }
590 
591 static noinline void
pgtable_bad(struct pt_regs * regs,unsigned long error_code,unsigned long address)592 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
593 	    unsigned long address)
594 {
595 	struct task_struct *tsk;
596 	unsigned long flags;
597 	int sig;
598 
599 	flags = oops_begin();
600 	tsk = current;
601 	sig = SIGKILL;
602 
603 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
604 	       tsk->comm, address);
605 	dump_pagetable(address);
606 
607 	if (__die("Bad pagetable", regs, error_code))
608 		sig = 0;
609 
610 	oops_end(flags, regs, sig);
611 }
612 
sanitize_error_code(unsigned long address,unsigned long * error_code)613 static void sanitize_error_code(unsigned long address,
614 				unsigned long *error_code)
615 {
616 	/*
617 	 * To avoid leaking information about the kernel page
618 	 * table layout, pretend that user-mode accesses to
619 	 * kernel addresses are always protection faults.
620 	 *
621 	 * NB: This means that failed vsyscalls with vsyscall=none
622 	 * will have the PROT bit.  This doesn't leak any
623 	 * information and does not appear to cause any problems.
624 	 */
625 	if (address >= TASK_SIZE_MAX)
626 		*error_code |= X86_PF_PROT;
627 }
628 
set_signal_archinfo(unsigned long address,unsigned long error_code)629 static void set_signal_archinfo(unsigned long address,
630 				unsigned long error_code)
631 {
632 	struct task_struct *tsk = current;
633 
634 	tsk->thread.trap_nr = X86_TRAP_PF;
635 	tsk->thread.error_code = error_code | X86_PF_USER;
636 	tsk->thread.cr2 = address;
637 }
638 
639 static noinline void
page_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)640 page_fault_oops(struct pt_regs *regs, unsigned long error_code,
641 		unsigned long address)
642 {
643 #ifdef CONFIG_VMAP_STACK
644 	struct stack_info info;
645 #endif
646 	unsigned long flags;
647 	int sig;
648 
649 	if (user_mode(regs)) {
650 		/*
651 		 * Implicit kernel access from user mode?  Skip the stack
652 		 * overflow and EFI special cases.
653 		 */
654 		goto oops;
655 	}
656 
657 #ifdef CONFIG_VMAP_STACK
658 	/*
659 	 * Stack overflow?  During boot, we can fault near the initial
660 	 * stack in the direct map, but that's not an overflow -- check
661 	 * that we're in vmalloc space to avoid this.
662 	 */
663 	if (is_vmalloc_addr((void *)address) &&
664 	    get_stack_guard_info((void *)address, &info)) {
665 		/*
666 		 * We're likely to be running with very little stack space
667 		 * left.  It's plausible that we'd hit this condition but
668 		 * double-fault even before we get this far, in which case
669 		 * we're fine: the double-fault handler will deal with it.
670 		 *
671 		 * We don't want to make it all the way into the oops code
672 		 * and then double-fault, though, because we're likely to
673 		 * break the console driver and lose most of the stack dump.
674 		 */
675 		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
676 			      handle_stack_overflow,
677 			      ASM_CALL_ARG3,
678 			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
679 
680 		BUG();
681 	}
682 #endif
683 
684 	/*
685 	 * Buggy firmware could access regions which might page fault.  If
686 	 * this happens, EFI has a special OOPS path that will try to
687 	 * avoid hanging the system.
688 	 */
689 	if (IS_ENABLED(CONFIG_EFI))
690 		efi_crash_gracefully_on_page_fault(address);
691 
692 	/* Only not-present faults should be handled by KFENCE. */
693 	if (!(error_code & X86_PF_PROT) &&
694 	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
695 		return;
696 
697 oops:
698 	/*
699 	 * Oops. The kernel tried to access some bad page. We'll have to
700 	 * terminate things with extreme prejudice:
701 	 */
702 	flags = oops_begin();
703 
704 	show_fault_oops(regs, error_code, address);
705 
706 	if (task_stack_end_corrupted(current))
707 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
708 
709 	sig = SIGKILL;
710 	if (__die("Oops", regs, error_code))
711 		sig = 0;
712 
713 	/* Executive summary in case the body of the oops scrolled away */
714 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
715 
716 	oops_end(flags, regs, sig);
717 }
718 
719 static noinline void
kernelmode_fixup_or_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address,int signal,int si_code,u32 pkey)720 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
721 			 unsigned long address, int signal, int si_code,
722 			 u32 pkey)
723 {
724 	WARN_ON_ONCE(user_mode(regs));
725 
726 	/* Are we prepared to handle this kernel fault? */
727 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address))
728 		return;
729 
730 	/*
731 	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
732 	 * instruction.
733 	 */
734 	if (is_prefetch(regs, error_code, address))
735 		return;
736 
737 	page_fault_oops(regs, error_code, address);
738 }
739 
740 /*
741  * Print out info about fatal segfaults, if the show_unhandled_signals
742  * sysctl is set:
743  */
744 static inline void
show_signal_msg(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct task_struct * tsk)745 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
746 		unsigned long address, struct task_struct *tsk)
747 {
748 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
749 	/* This is a racy snapshot, but it's better than nothing. */
750 	int cpu = raw_smp_processor_id();
751 
752 	if (!unhandled_signal(tsk, SIGSEGV))
753 		return;
754 
755 	if (!printk_ratelimit())
756 		return;
757 
758 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
759 		loglvl, tsk->comm, task_pid_nr(tsk), address,
760 		(void *)regs->ip, (void *)regs->sp, error_code);
761 
762 	print_vma_addr(KERN_CONT " in ", regs->ip);
763 
764 	/*
765 	 * Dump the likely CPU where the fatal segfault happened.
766 	 * This can help identify faulty hardware.
767 	 */
768 	printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
769 	       topology_core_id(cpu), topology_physical_package_id(cpu));
770 
771 
772 	printk(KERN_CONT "\n");
773 
774 	show_opcodes(regs, loglvl);
775 }
776 
777 static void
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)778 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
779 		       unsigned long address, u32 pkey, int si_code)
780 {
781 	struct task_struct *tsk = current;
782 
783 	if (!user_mode(regs)) {
784 		kernelmode_fixup_or_oops(regs, error_code, address,
785 					 SIGSEGV, si_code, pkey);
786 		return;
787 	}
788 
789 	if (!(error_code & X86_PF_USER)) {
790 		/* Implicit user access to kernel memory -- just oops */
791 		page_fault_oops(regs, error_code, address);
792 		return;
793 	}
794 
795 	/*
796 	 * User mode accesses just cause a SIGSEGV.
797 	 * It's possible to have interrupts off here:
798 	 */
799 	local_irq_enable();
800 
801 	/*
802 	 * Valid to do another page fault here because this one came
803 	 * from user space:
804 	 */
805 	if (is_prefetch(regs, error_code, address))
806 		return;
807 
808 	if (is_errata100(regs, address))
809 		return;
810 
811 	sanitize_error_code(address, &error_code);
812 
813 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
814 		return;
815 
816 	if (likely(show_unhandled_signals))
817 		show_signal_msg(regs, error_code, address, tsk);
818 
819 	set_signal_archinfo(address, error_code);
820 
821 	if (si_code == SEGV_PKUERR)
822 		force_sig_pkuerr((void __user *)address, pkey);
823 	else
824 		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
825 
826 	local_irq_disable();
827 }
828 
829 static noinline void
bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address)830 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
831 		     unsigned long address)
832 {
833 	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
834 }
835 
836 static void
__bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct mm_struct * mm,struct vm_area_struct * vma,u32 pkey,int si_code)837 __bad_area(struct pt_regs *regs, unsigned long error_code,
838 	   unsigned long address, struct mm_struct *mm,
839 	   struct vm_area_struct *vma, u32 pkey, int si_code)
840 {
841 	/*
842 	 * Something tried to access memory that isn't in our memory map..
843 	 * Fix it, but check if it's kernel or user first..
844 	 */
845 	if (mm)
846 		mmap_read_unlock(mm);
847 	else
848 		vma_end_read(vma);
849 
850 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
851 }
852 
bad_area_access_from_pkeys(unsigned long error_code,struct vm_area_struct * vma)853 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
854 		struct vm_area_struct *vma)
855 {
856 	/* This code is always called on the current mm */
857 	bool foreign = false;
858 
859 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
860 		return false;
861 	if (error_code & X86_PF_PK)
862 		return true;
863 	/* this checks permission keys on the VMA: */
864 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
865 				       (error_code & X86_PF_INSTR), foreign))
866 		return true;
867 	return false;
868 }
869 
870 static noinline void
bad_area_access_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct mm_struct * mm,struct vm_area_struct * vma)871 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
872 		      unsigned long address, struct mm_struct *mm,
873 		      struct vm_area_struct *vma)
874 {
875 	/*
876 	 * This OSPKE check is not strictly necessary at runtime.
877 	 * But, doing it this way allows compiler optimizations
878 	 * if pkeys are compiled out.
879 	 */
880 	if (bad_area_access_from_pkeys(error_code, vma)) {
881 		/*
882 		 * A protection key fault means that the PKRU value did not allow
883 		 * access to some PTE.  Userspace can figure out what PKRU was
884 		 * from the XSAVE state.  This function captures the pkey from
885 		 * the vma and passes it to userspace so userspace can discover
886 		 * which protection key was set on the PTE.
887 		 *
888 		 * If we get here, we know that the hardware signaled a X86_PF_PK
889 		 * fault and that there was a VMA once we got in the fault
890 		 * handler.  It does *not* guarantee that the VMA we find here
891 		 * was the one that we faulted on.
892 		 *
893 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
894 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
895 		 * 3. T1   : faults...
896 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
897 		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
898 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
899 		 *	     faulted on a pte with its pkey=4.
900 		 */
901 		u32 pkey = vma_pkey(vma);
902 
903 		__bad_area(regs, error_code, address, mm, vma, pkey, SEGV_PKUERR);
904 	} else {
905 		__bad_area(regs, error_code, address, mm, vma, 0, SEGV_ACCERR);
906 	}
907 }
908 
909 static void
do_sigbus(struct pt_regs * regs,unsigned long error_code,unsigned long address,vm_fault_t fault)910 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
911 	  vm_fault_t fault)
912 {
913 	/* Kernel mode? Handle exceptions or die: */
914 	if (!user_mode(regs)) {
915 		kernelmode_fixup_or_oops(regs, error_code, address,
916 					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
917 		return;
918 	}
919 
920 	/* User-space => ok to do another page fault: */
921 	if (is_prefetch(regs, error_code, address))
922 		return;
923 
924 	sanitize_error_code(address, &error_code);
925 
926 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
927 		return;
928 
929 	set_signal_archinfo(address, error_code);
930 
931 #ifdef CONFIG_MEMORY_FAILURE
932 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
933 		struct task_struct *tsk = current;
934 		unsigned lsb = 0;
935 
936 		pr_err(
937 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
938 			tsk->comm, tsk->pid, address);
939 		if (fault & VM_FAULT_HWPOISON_LARGE)
940 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
941 		if (fault & VM_FAULT_HWPOISON)
942 			lsb = PAGE_SHIFT;
943 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
944 		return;
945 	}
946 #endif
947 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
948 }
949 
spurious_kernel_fault_check(unsigned long error_code,pte_t * pte)950 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
951 {
952 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
953 		return 0;
954 
955 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
956 		return 0;
957 
958 	return 1;
959 }
960 
961 /*
962  * Handle a spurious fault caused by a stale TLB entry.
963  *
964  * This allows us to lazily refresh the TLB when increasing the
965  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
966  * eagerly is very expensive since that implies doing a full
967  * cross-processor TLB flush, even if no stale TLB entries exist
968  * on other processors.
969  *
970  * Spurious faults may only occur if the TLB contains an entry with
971  * fewer permission than the page table entry.  Non-present (P = 0)
972  * and reserved bit (R = 1) faults are never spurious.
973  *
974  * There are no security implications to leaving a stale TLB when
975  * increasing the permissions on a page.
976  *
977  * Returns non-zero if a spurious fault was handled, zero otherwise.
978  *
979  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
980  * (Optional Invalidation).
981  */
982 static noinline int
spurious_kernel_fault(unsigned long error_code,unsigned long address)983 spurious_kernel_fault(unsigned long error_code, unsigned long address)
984 {
985 	pgd_t *pgd;
986 	p4d_t *p4d;
987 	pud_t *pud;
988 	pmd_t *pmd;
989 	pte_t *pte;
990 	int ret;
991 
992 	/*
993 	 * Only writes to RO or instruction fetches from NX may cause
994 	 * spurious faults.
995 	 *
996 	 * These could be from user or supervisor accesses but the TLB
997 	 * is only lazily flushed after a kernel mapping protection
998 	 * change, so user accesses are not expected to cause spurious
999 	 * faults.
1000 	 */
1001 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1002 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1003 		return 0;
1004 
1005 	pgd = init_mm.pgd + pgd_index(address);
1006 	if (!pgd_present(*pgd))
1007 		return 0;
1008 
1009 	p4d = p4d_offset(pgd, address);
1010 	if (!p4d_present(*p4d))
1011 		return 0;
1012 
1013 	if (p4d_leaf(*p4d))
1014 		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1015 
1016 	pud = pud_offset(p4d, address);
1017 	if (!pud_present(*pud))
1018 		return 0;
1019 
1020 	if (pud_leaf(*pud))
1021 		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1022 
1023 	pmd = pmd_offset(pud, address);
1024 	if (!pmd_present(*pmd))
1025 		return 0;
1026 
1027 	if (pmd_leaf(*pmd))
1028 		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1029 
1030 	pte = pte_offset_kernel(pmd, address);
1031 	if (!pte_present(*pte))
1032 		return 0;
1033 
1034 	ret = spurious_kernel_fault_check(error_code, pte);
1035 	if (!ret)
1036 		return 0;
1037 
1038 	/*
1039 	 * Make sure we have permissions in PMD.
1040 	 * If not, then there's a bug in the page tables:
1041 	 */
1042 	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1043 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1044 
1045 	return ret;
1046 }
1047 NOKPROBE_SYMBOL(spurious_kernel_fault);
1048 
1049 int show_unhandled_signals = 1;
1050 
1051 static inline int
access_error(unsigned long error_code,struct vm_area_struct * vma)1052 access_error(unsigned long error_code, struct vm_area_struct *vma)
1053 {
1054 	/* This is only called for the current mm, so: */
1055 	bool foreign = false;
1056 
1057 	/*
1058 	 * Read or write was blocked by protection keys.  This is
1059 	 * always an unconditional error and can never result in
1060 	 * a follow-up action to resolve the fault, like a COW.
1061 	 */
1062 	if (error_code & X86_PF_PK)
1063 		return 1;
1064 
1065 	/*
1066 	 * SGX hardware blocked the access.  This usually happens
1067 	 * when the enclave memory contents have been destroyed, like
1068 	 * after a suspend/resume cycle. In any case, the kernel can't
1069 	 * fix the cause of the fault.  Handle the fault as an access
1070 	 * error even in cases where no actual access violation
1071 	 * occurred.  This allows userspace to rebuild the enclave in
1072 	 * response to the signal.
1073 	 */
1074 	if (unlikely(error_code & X86_PF_SGX))
1075 		return 1;
1076 
1077 	/*
1078 	 * Make sure to check the VMA so that we do not perform
1079 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1080 	 * page.
1081 	 */
1082 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1083 				       (error_code & X86_PF_INSTR), foreign))
1084 		return 1;
1085 
1086 	/*
1087 	 * Shadow stack accesses (PF_SHSTK=1) are only permitted to
1088 	 * shadow stack VMAs. All other accesses result in an error.
1089 	 */
1090 	if (error_code & X86_PF_SHSTK) {
1091 		if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1092 			return 1;
1093 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1094 			return 1;
1095 		return 0;
1096 	}
1097 
1098 	if (error_code & X86_PF_WRITE) {
1099 		/* write, present and write, not present: */
1100 		if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1101 			return 1;
1102 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1103 			return 1;
1104 		return 0;
1105 	}
1106 
1107 	/* read, present: */
1108 	if (unlikely(error_code & X86_PF_PROT))
1109 		return 1;
1110 
1111 	/* read, not present: */
1112 	if (unlikely(!vma_is_accessible(vma)))
1113 		return 1;
1114 
1115 	return 0;
1116 }
1117 
fault_in_kernel_space(unsigned long address)1118 bool fault_in_kernel_space(unsigned long address)
1119 {
1120 	/*
1121 	 * On 64-bit systems, the vsyscall page is at an address above
1122 	 * TASK_SIZE_MAX, but is not considered part of the kernel
1123 	 * address space.
1124 	 */
1125 	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1126 		return false;
1127 
1128 	return address >= TASK_SIZE_MAX;
1129 }
1130 
1131 /*
1132  * Called for all faults where 'address' is part of the kernel address
1133  * space.  Might get called for faults that originate from *code* that
1134  * ran in userspace or the kernel.
1135  */
1136 static void
do_kern_addr_fault(struct pt_regs * regs,unsigned long hw_error_code,unsigned long address)1137 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1138 		   unsigned long address)
1139 {
1140 	/*
1141 	 * Protection keys exceptions only happen on user pages.  We
1142 	 * have no user pages in the kernel portion of the address
1143 	 * space, so do not expect them here.
1144 	 */
1145 	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1146 
1147 #ifdef CONFIG_X86_32
1148 	/*
1149 	 * We can fault-in kernel-space virtual memory on-demand. The
1150 	 * 'reference' page table is init_mm.pgd.
1151 	 *
1152 	 * NOTE! We MUST NOT take any locks for this case. We may
1153 	 * be in an interrupt or a critical region, and should
1154 	 * only copy the information from the master page table,
1155 	 * nothing more.
1156 	 *
1157 	 * Before doing this on-demand faulting, ensure that the
1158 	 * fault is not any of the following:
1159 	 * 1. A fault on a PTE with a reserved bit set.
1160 	 * 2. A fault caused by a user-mode access.  (Do not demand-
1161 	 *    fault kernel memory due to user-mode accesses).
1162 	 * 3. A fault caused by a page-level protection violation.
1163 	 *    (A demand fault would be on a non-present page which
1164 	 *     would have X86_PF_PROT==0).
1165 	 *
1166 	 * This is only needed to close a race condition on x86-32 in
1167 	 * the vmalloc mapping/unmapping code. See the comment above
1168 	 * vmalloc_fault() for details. On x86-64 the race does not
1169 	 * exist as the vmalloc mappings don't need to be synchronized
1170 	 * there.
1171 	 */
1172 	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1173 		if (vmalloc_fault(address) >= 0)
1174 			return;
1175 	}
1176 #endif
1177 
1178 	if (is_f00f_bug(regs, hw_error_code, address))
1179 		return;
1180 
1181 	/* Was the fault spurious, caused by lazy TLB invalidation? */
1182 	if (spurious_kernel_fault(hw_error_code, address))
1183 		return;
1184 
1185 	/* kprobes don't want to hook the spurious faults: */
1186 	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1187 		return;
1188 
1189 	/*
1190 	 * Note, despite being a "bad area", there are quite a few
1191 	 * acceptable reasons to get here, such as erratum fixups
1192 	 * and handling kernel code that can fault, like get_user().
1193 	 *
1194 	 * Don't take the mm semaphore here. If we fixup a prefetch
1195 	 * fault we could otherwise deadlock:
1196 	 */
1197 	bad_area_nosemaphore(regs, hw_error_code, address);
1198 }
1199 NOKPROBE_SYMBOL(do_kern_addr_fault);
1200 
1201 /*
1202  * Handle faults in the user portion of the address space.  Nothing in here
1203  * should check X86_PF_USER without a specific justification: for almost
1204  * all purposes, we should treat a normal kernel access to user memory
1205  * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1206  * The one exception is AC flag handling, which is, per the x86
1207  * architecture, special for WRUSS.
1208  */
1209 static inline
do_user_addr_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1210 void do_user_addr_fault(struct pt_regs *regs,
1211 			unsigned long error_code,
1212 			unsigned long address)
1213 {
1214 	struct vm_area_struct *vma;
1215 	struct task_struct *tsk;
1216 	struct mm_struct *mm;
1217 	vm_fault_t fault;
1218 	unsigned int flags = FAULT_FLAG_DEFAULT;
1219 
1220 	tsk = current;
1221 	mm = tsk->mm;
1222 
1223 	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1224 		/*
1225 		 * Whoops, this is kernel mode code trying to execute from
1226 		 * user memory.  Unless this is AMD erratum #93, which
1227 		 * corrupts RIP such that it looks like a user address,
1228 		 * this is unrecoverable.  Don't even try to look up the
1229 		 * VMA or look for extable entries.
1230 		 */
1231 		if (is_errata93(regs, address))
1232 			return;
1233 
1234 		page_fault_oops(regs, error_code, address);
1235 		return;
1236 	}
1237 
1238 	/* kprobes don't want to hook the spurious faults: */
1239 	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1240 		return;
1241 
1242 	/*
1243 	 * Reserved bits are never expected to be set on
1244 	 * entries in the user portion of the page tables.
1245 	 */
1246 	if (unlikely(error_code & X86_PF_RSVD))
1247 		pgtable_bad(regs, error_code, address);
1248 
1249 	/*
1250 	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1251 	 * pages in the user address space.  The odd case here is WRUSS,
1252 	 * which, according to the preliminary documentation, does not respect
1253 	 * SMAP and will have the USER bit set so, in all cases, SMAP
1254 	 * enforcement appears to be consistent with the USER bit.
1255 	 */
1256 	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1257 		     !(error_code & X86_PF_USER) &&
1258 		     !(regs->flags & X86_EFLAGS_AC))) {
1259 		/*
1260 		 * No extable entry here.  This was a kernel access to an
1261 		 * invalid pointer.  get_kernel_nofault() will not get here.
1262 		 */
1263 		page_fault_oops(regs, error_code, address);
1264 		return;
1265 	}
1266 
1267 	/*
1268 	 * If we're in an interrupt, have no user context or are running
1269 	 * in a region with pagefaults disabled then we must not take the fault
1270 	 */
1271 	if (unlikely(faulthandler_disabled() || !mm)) {
1272 		bad_area_nosemaphore(regs, error_code, address);
1273 		return;
1274 	}
1275 
1276 	/* Legacy check - remove this after verifying that it doesn't trigger */
1277 	if (WARN_ON_ONCE(!(regs->flags & X86_EFLAGS_IF))) {
1278 		bad_area_nosemaphore(regs, error_code, address);
1279 		return;
1280 	}
1281 
1282 	local_irq_enable();
1283 
1284 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1285 
1286 	/*
1287 	 * Read-only permissions can not be expressed in shadow stack PTEs.
1288 	 * Treat all shadow stack accesses as WRITE faults. This ensures
1289 	 * that the MM will prepare everything (e.g., break COW) such that
1290 	 * maybe_mkwrite() can create a proper shadow stack PTE.
1291 	 */
1292 	if (error_code & X86_PF_SHSTK)
1293 		flags |= FAULT_FLAG_WRITE;
1294 	if (error_code & X86_PF_WRITE)
1295 		flags |= FAULT_FLAG_WRITE;
1296 	if (error_code & X86_PF_INSTR)
1297 		flags |= FAULT_FLAG_INSTRUCTION;
1298 
1299 	/*
1300 	 * We set FAULT_FLAG_USER based on the register state, not
1301 	 * based on X86_PF_USER. User space accesses that cause
1302 	 * system page faults are still user accesses.
1303 	 */
1304 	if (user_mode(regs))
1305 		flags |= FAULT_FLAG_USER;
1306 
1307 #ifdef CONFIG_X86_64
1308 	/*
1309 	 * Faults in the vsyscall page might need emulation.  The
1310 	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1311 	 * considered to be part of the user address space.
1312 	 *
1313 	 * The vsyscall page does not have a "real" VMA, so do this
1314 	 * emulation before we go searching for VMAs.
1315 	 *
1316 	 * PKRU never rejects instruction fetches, so we don't need
1317 	 * to consider the PF_PK bit.
1318 	 */
1319 	if (is_vsyscall_vaddr(address)) {
1320 		if (emulate_vsyscall(error_code, regs, address))
1321 			return;
1322 	}
1323 #endif
1324 
1325 	if (!(flags & FAULT_FLAG_USER))
1326 		goto lock_mmap;
1327 
1328 	vma = lock_vma_under_rcu(mm, address);
1329 	if (!vma)
1330 		goto lock_mmap;
1331 
1332 	if (unlikely(access_error(error_code, vma))) {
1333 		bad_area_access_error(regs, error_code, address, NULL, vma);
1334 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1335 		return;
1336 	}
1337 	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1338 	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1339 		vma_end_read(vma);
1340 
1341 	if (!(fault & VM_FAULT_RETRY)) {
1342 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1343 		goto done;
1344 	}
1345 	count_vm_vma_lock_event(VMA_LOCK_RETRY);
1346 	if (fault & VM_FAULT_MAJOR)
1347 		flags |= FAULT_FLAG_TRIED;
1348 
1349 	/* Quick path to respond to signals */
1350 	if (fault_signal_pending(fault, regs)) {
1351 		if (!user_mode(regs))
1352 			kernelmode_fixup_or_oops(regs, error_code, address,
1353 						 SIGBUS, BUS_ADRERR,
1354 						 ARCH_DEFAULT_PKEY);
1355 		return;
1356 	}
1357 lock_mmap:
1358 
1359 retry:
1360 	vma = lock_mm_and_find_vma(mm, address, regs);
1361 	if (unlikely(!vma)) {
1362 		bad_area_nosemaphore(regs, error_code, address);
1363 		return;
1364 	}
1365 
1366 	/*
1367 	 * Ok, we have a good vm_area for this memory access, so
1368 	 * we can handle it..
1369 	 */
1370 	if (unlikely(access_error(error_code, vma))) {
1371 		bad_area_access_error(regs, error_code, address, mm, vma);
1372 		return;
1373 	}
1374 
1375 	/*
1376 	 * If for any reason at all we couldn't handle the fault,
1377 	 * make sure we exit gracefully rather than endlessly redo
1378 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1379 	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1380 	 *
1381 	 * Note that handle_userfault() may also release and reacquire mmap_lock
1382 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1383 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1384 	 * (potentially after handling any pending signal during the return to
1385 	 * userland). The return to userland is identified whenever
1386 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1387 	 */
1388 	fault = handle_mm_fault(vma, address, flags, regs);
1389 
1390 	if (fault_signal_pending(fault, regs)) {
1391 		/*
1392 		 * Quick path to respond to signals.  The core mm code
1393 		 * has unlocked the mm for us if we get here.
1394 		 */
1395 		if (!user_mode(regs))
1396 			kernelmode_fixup_or_oops(regs, error_code, address,
1397 						 SIGBUS, BUS_ADRERR,
1398 						 ARCH_DEFAULT_PKEY);
1399 		return;
1400 	}
1401 
1402 	/* The fault is fully completed (including releasing mmap lock) */
1403 	if (fault & VM_FAULT_COMPLETED)
1404 		return;
1405 
1406 	/*
1407 	 * If we need to retry the mmap_lock has already been released,
1408 	 * and if there is a fatal signal pending there is no guarantee
1409 	 * that we made any progress. Handle this case first.
1410 	 */
1411 	if (unlikely(fault & VM_FAULT_RETRY)) {
1412 		flags |= FAULT_FLAG_TRIED;
1413 		goto retry;
1414 	}
1415 
1416 	mmap_read_unlock(mm);
1417 done:
1418 	if (likely(!(fault & VM_FAULT_ERROR)))
1419 		return;
1420 
1421 	if (fatal_signal_pending(current) && !user_mode(regs)) {
1422 		kernelmode_fixup_or_oops(regs, error_code, address,
1423 					 0, 0, ARCH_DEFAULT_PKEY);
1424 		return;
1425 	}
1426 
1427 	if (fault & VM_FAULT_OOM) {
1428 		/* Kernel mode? Handle exceptions or die: */
1429 		if (!user_mode(regs)) {
1430 			kernelmode_fixup_or_oops(regs, error_code, address,
1431 						 SIGSEGV, SEGV_MAPERR,
1432 						 ARCH_DEFAULT_PKEY);
1433 			return;
1434 		}
1435 
1436 		/*
1437 		 * We ran out of memory, call the OOM killer, and return the
1438 		 * userspace (which will retry the fault, or kill us if we got
1439 		 * oom-killed):
1440 		 */
1441 		pagefault_out_of_memory();
1442 	} else {
1443 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1444 			     VM_FAULT_HWPOISON_LARGE))
1445 			do_sigbus(regs, error_code, address, fault);
1446 		else if (fault & VM_FAULT_SIGSEGV)
1447 			bad_area_nosemaphore(regs, error_code, address);
1448 		else
1449 			BUG();
1450 	}
1451 }
1452 NOKPROBE_SYMBOL(do_user_addr_fault);
1453 
1454 static __always_inline void
trace_page_fault_entries(struct pt_regs * regs,unsigned long error_code,unsigned long address)1455 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1456 			 unsigned long address)
1457 {
1458 	if (!trace_pagefault_enabled())
1459 		return;
1460 
1461 	if (user_mode(regs))
1462 		trace_page_fault_user(address, regs, error_code);
1463 	else
1464 		trace_page_fault_kernel(address, regs, error_code);
1465 }
1466 
1467 static __always_inline void
handle_page_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1468 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1469 			      unsigned long address)
1470 {
1471 	trace_page_fault_entries(regs, error_code, address);
1472 
1473 	if (unlikely(kmmio_fault(regs, address)))
1474 		return;
1475 
1476 	/* Was the fault on kernel-controlled part of the address space? */
1477 	if (unlikely(fault_in_kernel_space(address))) {
1478 		do_kern_addr_fault(regs, error_code, address);
1479 	} else {
1480 		do_user_addr_fault(regs, error_code, address);
1481 		/*
1482 		 * User address page fault handling might have reenabled
1483 		 * interrupts. Fixing up all potential exit points of
1484 		 * do_user_addr_fault() and its leaf functions is just not
1485 		 * doable w/o creating an unholy mess or turning the code
1486 		 * upside down.
1487 		 */
1488 		local_irq_disable();
1489 	}
1490 }
1491 
DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)1492 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1493 {
1494 	irqentry_state_t state;
1495 	unsigned long address;
1496 
1497 	address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2();
1498 
1499 	prefetchw(&current->mm->mmap_lock);
1500 
1501 	/*
1502 	 * KVM uses #PF vector to deliver 'page not present' events to guests
1503 	 * (asynchronous page fault mechanism). The event happens when a
1504 	 * userspace task is trying to access some valid (from guest's point of
1505 	 * view) memory which is not currently mapped by the host (e.g. the
1506 	 * memory is swapped out). Note, the corresponding "page ready" event
1507 	 * which is injected when the memory becomes available, is delivered via
1508 	 * an interrupt mechanism and not a #PF exception
1509 	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1510 	 *
1511 	 * We are relying on the interrupted context being sane (valid RSP,
1512 	 * relevant locks not held, etc.), which is fine as long as the
1513 	 * interrupted context had IF=1.  We are also relying on the KVM
1514 	 * async pf type field and CR2 being read consistently instead of
1515 	 * getting values from real and async page faults mixed up.
1516 	 *
1517 	 * Fingers crossed.
1518 	 *
1519 	 * The async #PF handling code takes care of idtentry handling
1520 	 * itself.
1521 	 */
1522 	if (kvm_handle_async_pf(regs, (u32)address))
1523 		return;
1524 
1525 	/*
1526 	 * Entry handling for valid #PF from kernel mode is slightly
1527 	 * different: RCU is already watching and ct_irq_enter() must not
1528 	 * be invoked because a kernel fault on a user space address might
1529 	 * sleep.
1530 	 *
1531 	 * In case the fault hit a RCU idle region the conditional entry
1532 	 * code reenabled RCU to avoid subsequent wreckage which helps
1533 	 * debuggability.
1534 	 */
1535 	state = irqentry_enter(regs);
1536 
1537 	instrumentation_begin();
1538 	handle_page_fault(regs, error_code, address);
1539 	instrumentation_end();
1540 
1541 	irqentry_exit(regs, state);
1542 }
1543