1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_X86_H
3 #define ARCH_X86_KVM_X86_H
4
5 #include <linux/kvm_host.h>
6 #include <asm/fpu/xstate.h>
7 #include <asm/mce.h>
8 #include <asm/pvclock.h>
9 #include "kvm_cache_regs.h"
10 #include "kvm_emulate.h"
11 #include "cpuid.h"
12
13 struct kvm_caps {
14 /* control of guest tsc rate supported? */
15 bool has_tsc_control;
16 /* maximum supported tsc_khz for guests */
17 u32 max_guest_tsc_khz;
18 /* number of bits of the fractional part of the TSC scaling ratio */
19 u8 tsc_scaling_ratio_frac_bits;
20 /* maximum allowed value of TSC scaling ratio */
21 u64 max_tsc_scaling_ratio;
22 /* 1ull << kvm_caps.tsc_scaling_ratio_frac_bits */
23 u64 default_tsc_scaling_ratio;
24 /* bus lock detection supported? */
25 bool has_bus_lock_exit;
26 /* notify VM exit supported? */
27 bool has_notify_vmexit;
28 /* bit mask of VM types */
29 u32 supported_vm_types;
30
31 u64 supported_mce_cap;
32 u64 supported_xcr0;
33 u64 supported_xss;
34 u64 supported_perf_cap;
35 };
36
37 struct kvm_host_values {
38 /*
39 * The host's raw MAXPHYADDR, i.e. the number of non-reserved physical
40 * address bits irrespective of features that repurpose legal bits,
41 * e.g. MKTME.
42 */
43 u8 maxphyaddr;
44
45 u64 efer;
46 u64 xcr0;
47 u64 xss;
48 u64 arch_capabilities;
49 };
50
51 void kvm_spurious_fault(void);
52
53 #define KVM_NESTED_VMENTER_CONSISTENCY_CHECK(consistency_check) \
54 ({ \
55 bool failed = (consistency_check); \
56 if (failed) \
57 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
58 failed; \
59 })
60
61 /*
62 * The first...last VMX feature MSRs that are emulated by KVM. This may or may
63 * not cover all known VMX MSRs, as KVM doesn't emulate an MSR until there's an
64 * associated feature that KVM supports for nested virtualization.
65 */
66 #define KVM_FIRST_EMULATED_VMX_MSR MSR_IA32_VMX_BASIC
67 #define KVM_LAST_EMULATED_VMX_MSR MSR_IA32_VMX_VMFUNC
68
69 #define KVM_DEFAULT_PLE_GAP 128
70 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
71 #define KVM_DEFAULT_PLE_WINDOW_GROW 2
72 #define KVM_DEFAULT_PLE_WINDOW_SHRINK 0
73 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX UINT_MAX
74 #define KVM_SVM_DEFAULT_PLE_WINDOW_MAX USHRT_MAX
75 #define KVM_SVM_DEFAULT_PLE_WINDOW 3000
76
__grow_ple_window(unsigned int val,unsigned int base,unsigned int modifier,unsigned int max)77 static inline unsigned int __grow_ple_window(unsigned int val,
78 unsigned int base, unsigned int modifier, unsigned int max)
79 {
80 u64 ret = val;
81
82 if (modifier < 1)
83 return base;
84
85 if (modifier < base)
86 ret *= modifier;
87 else
88 ret += modifier;
89
90 return min(ret, (u64)max);
91 }
92
__shrink_ple_window(unsigned int val,unsigned int base,unsigned int modifier,unsigned int min)93 static inline unsigned int __shrink_ple_window(unsigned int val,
94 unsigned int base, unsigned int modifier, unsigned int min)
95 {
96 if (modifier < 1)
97 return base;
98
99 if (modifier < base)
100 val /= modifier;
101 else
102 val -= modifier;
103
104 return max(val, min);
105 }
106
107 #define MSR_IA32_CR_PAT_DEFAULT \
108 PAT_VALUE(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC)
109
110 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu);
111 int kvm_check_nested_events(struct kvm_vcpu *vcpu);
112
113 /* Forcibly leave the nested mode in cases like a vCPU reset */
kvm_leave_nested(struct kvm_vcpu * vcpu)114 static inline void kvm_leave_nested(struct kvm_vcpu *vcpu)
115 {
116 kvm_x86_ops.nested_ops->leave_nested(vcpu);
117 }
118
kvm_vcpu_has_run(struct kvm_vcpu * vcpu)119 static inline bool kvm_vcpu_has_run(struct kvm_vcpu *vcpu)
120 {
121 return vcpu->arch.last_vmentry_cpu != -1;
122 }
123
kvm_is_exception_pending(struct kvm_vcpu * vcpu)124 static inline bool kvm_is_exception_pending(struct kvm_vcpu *vcpu)
125 {
126 return vcpu->arch.exception.pending ||
127 vcpu->arch.exception_vmexit.pending ||
128 kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
129 }
130
kvm_clear_exception_queue(struct kvm_vcpu * vcpu)131 static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu)
132 {
133 vcpu->arch.exception.pending = false;
134 vcpu->arch.exception.injected = false;
135 vcpu->arch.exception_vmexit.pending = false;
136 }
137
kvm_queue_interrupt(struct kvm_vcpu * vcpu,u8 vector,bool soft)138 static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector,
139 bool soft)
140 {
141 vcpu->arch.interrupt.injected = true;
142 vcpu->arch.interrupt.soft = soft;
143 vcpu->arch.interrupt.nr = vector;
144 }
145
kvm_clear_interrupt_queue(struct kvm_vcpu * vcpu)146 static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu)
147 {
148 vcpu->arch.interrupt.injected = false;
149 }
150
kvm_event_needs_reinjection(struct kvm_vcpu * vcpu)151 static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu)
152 {
153 return vcpu->arch.exception.injected || vcpu->arch.interrupt.injected ||
154 vcpu->arch.nmi_injected;
155 }
156
kvm_exception_is_soft(unsigned int nr)157 static inline bool kvm_exception_is_soft(unsigned int nr)
158 {
159 return (nr == BP_VECTOR) || (nr == OF_VECTOR);
160 }
161
is_protmode(struct kvm_vcpu * vcpu)162 static inline bool is_protmode(struct kvm_vcpu *vcpu)
163 {
164 return kvm_is_cr0_bit_set(vcpu, X86_CR0_PE);
165 }
166
is_long_mode(struct kvm_vcpu * vcpu)167 static inline bool is_long_mode(struct kvm_vcpu *vcpu)
168 {
169 #ifdef CONFIG_X86_64
170 return !!(vcpu->arch.efer & EFER_LMA);
171 #else
172 return false;
173 #endif
174 }
175
is_64_bit_mode(struct kvm_vcpu * vcpu)176 static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu)
177 {
178 int cs_db, cs_l;
179
180 WARN_ON_ONCE(vcpu->arch.guest_state_protected);
181
182 if (!is_long_mode(vcpu))
183 return false;
184 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
185 return cs_l;
186 }
187
is_64_bit_hypercall(struct kvm_vcpu * vcpu)188 static inline bool is_64_bit_hypercall(struct kvm_vcpu *vcpu)
189 {
190 /*
191 * If running with protected guest state, the CS register is not
192 * accessible. The hypercall register values will have had to been
193 * provided in 64-bit mode, so assume the guest is in 64-bit.
194 */
195 return vcpu->arch.guest_state_protected || is_64_bit_mode(vcpu);
196 }
197
x86_exception_has_error_code(unsigned int vector)198 static inline bool x86_exception_has_error_code(unsigned int vector)
199 {
200 static u32 exception_has_error_code = BIT(DF_VECTOR) | BIT(TS_VECTOR) |
201 BIT(NP_VECTOR) | BIT(SS_VECTOR) | BIT(GP_VECTOR) |
202 BIT(PF_VECTOR) | BIT(AC_VECTOR);
203
204 return (1U << vector) & exception_has_error_code;
205 }
206
mmu_is_nested(struct kvm_vcpu * vcpu)207 static inline bool mmu_is_nested(struct kvm_vcpu *vcpu)
208 {
209 return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu;
210 }
211
is_pae(struct kvm_vcpu * vcpu)212 static inline bool is_pae(struct kvm_vcpu *vcpu)
213 {
214 return kvm_is_cr4_bit_set(vcpu, X86_CR4_PAE);
215 }
216
is_pse(struct kvm_vcpu * vcpu)217 static inline bool is_pse(struct kvm_vcpu *vcpu)
218 {
219 return kvm_is_cr4_bit_set(vcpu, X86_CR4_PSE);
220 }
221
is_paging(struct kvm_vcpu * vcpu)222 static inline bool is_paging(struct kvm_vcpu *vcpu)
223 {
224 return likely(kvm_is_cr0_bit_set(vcpu, X86_CR0_PG));
225 }
226
is_pae_paging(struct kvm_vcpu * vcpu)227 static inline bool is_pae_paging(struct kvm_vcpu *vcpu)
228 {
229 return !is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu);
230 }
231
vcpu_virt_addr_bits(struct kvm_vcpu * vcpu)232 static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu)
233 {
234 return kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 57 : 48;
235 }
236
max_host_virt_addr_bits(void)237 static inline u8 max_host_virt_addr_bits(void)
238 {
239 return kvm_cpu_cap_has(X86_FEATURE_LA57) ? 57 : 48;
240 }
241
242 /*
243 * x86 MSRs which contain linear addresses, x86 hidden segment bases, and
244 * IDT/GDT bases have static canonicality checks, the size of which depends
245 * only on the CPU's support for 5-level paging, rather than on the state of
246 * CR4.LA57. This applies to both WRMSR and to other instructions that set
247 * their values, e.g. SGDT.
248 *
249 * KVM passes through most of these MSRS and also doesn't intercept the
250 * instructions that set the hidden segment bases.
251 *
252 * Because of this, to be consistent with hardware, even if the guest doesn't
253 * have LA57 enabled in its CPUID, perform canonicality checks based on *host*
254 * support for 5 level paging.
255 *
256 * Finally, instructions which are related to MMU invalidation of a given
257 * linear address, also have a similar static canonical check on address.
258 * This allows for example to invalidate 5-level addresses of a guest from a
259 * host which uses 4-level paging.
260 */
is_noncanonical_address(u64 la,struct kvm_vcpu * vcpu,unsigned int flags)261 static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu,
262 unsigned int flags)
263 {
264 if (flags & (X86EMUL_F_INVLPG | X86EMUL_F_MSR | X86EMUL_F_DT_LOAD))
265 return !__is_canonical_address(la, max_host_virt_addr_bits());
266 else
267 return !__is_canonical_address(la, vcpu_virt_addr_bits(vcpu));
268 }
269
is_noncanonical_msr_address(u64 la,struct kvm_vcpu * vcpu)270 static inline bool is_noncanonical_msr_address(u64 la, struct kvm_vcpu *vcpu)
271 {
272 return is_noncanonical_address(la, vcpu, X86EMUL_F_MSR);
273 }
274
is_noncanonical_base_address(u64 la,struct kvm_vcpu * vcpu)275 static inline bool is_noncanonical_base_address(u64 la, struct kvm_vcpu *vcpu)
276 {
277 return is_noncanonical_address(la, vcpu, X86EMUL_F_DT_LOAD);
278 }
279
is_noncanonical_invlpg_address(u64 la,struct kvm_vcpu * vcpu)280 static inline bool is_noncanonical_invlpg_address(u64 la, struct kvm_vcpu *vcpu)
281 {
282 return is_noncanonical_address(la, vcpu, X86EMUL_F_INVLPG);
283 }
284
vcpu_cache_mmio_info(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,unsigned access)285 static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu,
286 gva_t gva, gfn_t gfn, unsigned access)
287 {
288 u64 gen = kvm_memslots(vcpu->kvm)->generation;
289
290 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
291 return;
292
293 /*
294 * If this is a shadow nested page table, the "GVA" is
295 * actually a nGPA.
296 */
297 vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK;
298 vcpu->arch.mmio_access = access;
299 vcpu->arch.mmio_gfn = gfn;
300 vcpu->arch.mmio_gen = gen;
301 }
302
vcpu_match_mmio_gen(struct kvm_vcpu * vcpu)303 static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu)
304 {
305 return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation;
306 }
307
308 /*
309 * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we
310 * clear all mmio cache info.
311 */
312 #define MMIO_GVA_ANY (~(gva_t)0)
313
vcpu_clear_mmio_info(struct kvm_vcpu * vcpu,gva_t gva)314 static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva)
315 {
316 if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK))
317 return;
318
319 vcpu->arch.mmio_gva = 0;
320 }
321
vcpu_match_mmio_gva(struct kvm_vcpu * vcpu,unsigned long gva)322 static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva)
323 {
324 if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva &&
325 vcpu->arch.mmio_gva == (gva & PAGE_MASK))
326 return true;
327
328 return false;
329 }
330
vcpu_match_mmio_gpa(struct kvm_vcpu * vcpu,gpa_t gpa)331 static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
332 {
333 if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn &&
334 vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT)
335 return true;
336
337 return false;
338 }
339
kvm_register_read(struct kvm_vcpu * vcpu,int reg)340 static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu, int reg)
341 {
342 unsigned long val = kvm_register_read_raw(vcpu, reg);
343
344 return is_64_bit_mode(vcpu) ? val : (u32)val;
345 }
346
kvm_register_write(struct kvm_vcpu * vcpu,int reg,unsigned long val)347 static inline void kvm_register_write(struct kvm_vcpu *vcpu,
348 int reg, unsigned long val)
349 {
350 if (!is_64_bit_mode(vcpu))
351 val = (u32)val;
352 return kvm_register_write_raw(vcpu, reg, val);
353 }
354
kvm_check_has_quirk(struct kvm * kvm,u64 quirk)355 static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk)
356 {
357 return !(kvm->arch.disabled_quirks & quirk);
358 }
359
360 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip);
361
362 u64 get_kvmclock_ns(struct kvm *kvm);
363 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm);
364 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp);
365
366 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
367 gva_t addr, void *val, unsigned int bytes,
368 struct x86_exception *exception);
369
370 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu,
371 gva_t addr, void *val, unsigned int bytes,
372 struct x86_exception *exception);
373
374 int handle_ud(struct kvm_vcpu *vcpu);
375
376 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
377 struct kvm_queued_exception *ex);
378
379 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data);
380 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata);
381 bool kvm_vector_hashing_enabled(void);
382 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code);
383 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
384 void *insn, int insn_len);
385 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
386 int emulation_type, void *insn, int insn_len);
387 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu);
388 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu);
389
390 extern struct kvm_caps kvm_caps;
391 extern struct kvm_host_values kvm_host;
392
393 extern bool enable_pmu;
394
395 /*
396 * Get a filtered version of KVM's supported XCR0 that strips out dynamic
397 * features for which the current process doesn't (yet) have permission to use.
398 * This is intended to be used only when enumerating support to userspace,
399 * e.g. in KVM_GET_SUPPORTED_CPUID and KVM_CAP_XSAVE2, it does NOT need to be
400 * used to check/restrict guest behavior as KVM rejects KVM_SET_CPUID{2} if
401 * userspace attempts to enable unpermitted features.
402 */
kvm_get_filtered_xcr0(void)403 static inline u64 kvm_get_filtered_xcr0(void)
404 {
405 u64 permitted_xcr0 = kvm_caps.supported_xcr0;
406
407 BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
408
409 if (permitted_xcr0 & XFEATURE_MASK_USER_DYNAMIC) {
410 permitted_xcr0 &= xstate_get_guest_group_perm();
411
412 /*
413 * Treat XTILE_CFG as unsupported if the current process isn't
414 * allowed to use XTILE_DATA, as attempting to set XTILE_CFG in
415 * XCR0 without setting XTILE_DATA is architecturally illegal.
416 */
417 if (!(permitted_xcr0 & XFEATURE_MASK_XTILE_DATA))
418 permitted_xcr0 &= ~XFEATURE_MASK_XTILE_CFG;
419 }
420 return permitted_xcr0;
421 }
422
kvm_mpx_supported(void)423 static inline bool kvm_mpx_supported(void)
424 {
425 return (kvm_caps.supported_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
426 == (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
427 }
428
429 extern unsigned int min_timer_period_us;
430
431 extern bool enable_vmware_backdoor;
432
433 extern int pi_inject_timer;
434
435 extern bool report_ignored_msrs;
436
437 extern bool eager_page_split;
438
kvm_pr_unimpl_wrmsr(struct kvm_vcpu * vcpu,u32 msr,u64 data)439 static inline void kvm_pr_unimpl_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
440 {
441 if (report_ignored_msrs)
442 vcpu_unimpl(vcpu, "Unhandled WRMSR(0x%x) = 0x%llx\n", msr, data);
443 }
444
kvm_pr_unimpl_rdmsr(struct kvm_vcpu * vcpu,u32 msr)445 static inline void kvm_pr_unimpl_rdmsr(struct kvm_vcpu *vcpu, u32 msr)
446 {
447 if (report_ignored_msrs)
448 vcpu_unimpl(vcpu, "Unhandled RDMSR(0x%x)\n", msr);
449 }
450
nsec_to_cycles(struct kvm_vcpu * vcpu,u64 nsec)451 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
452 {
453 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
454 vcpu->arch.virtual_tsc_shift);
455 }
456
457 /* Same "calling convention" as do_div:
458 * - divide (n << 32) by base
459 * - put result in n
460 * - return remainder
461 */
462 #define do_shl32_div32(n, base) \
463 ({ \
464 u32 __quot, __rem; \
465 asm("divl %2" : "=a" (__quot), "=d" (__rem) \
466 : "rm" (base), "0" (0), "1" ((u32) n)); \
467 n = __quot; \
468 __rem; \
469 })
470
kvm_mwait_in_guest(struct kvm * kvm)471 static inline bool kvm_mwait_in_guest(struct kvm *kvm)
472 {
473 return kvm->arch.mwait_in_guest;
474 }
475
kvm_hlt_in_guest(struct kvm * kvm)476 static inline bool kvm_hlt_in_guest(struct kvm *kvm)
477 {
478 return kvm->arch.hlt_in_guest;
479 }
480
kvm_pause_in_guest(struct kvm * kvm)481 static inline bool kvm_pause_in_guest(struct kvm *kvm)
482 {
483 return kvm->arch.pause_in_guest;
484 }
485
kvm_cstate_in_guest(struct kvm * kvm)486 static inline bool kvm_cstate_in_guest(struct kvm *kvm)
487 {
488 return kvm->arch.cstate_in_guest;
489 }
490
kvm_notify_vmexit_enabled(struct kvm * kvm)491 static inline bool kvm_notify_vmexit_enabled(struct kvm *kvm)
492 {
493 return kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_ENABLED;
494 }
495
kvm_before_interrupt(struct kvm_vcpu * vcpu,enum kvm_intr_type intr)496 static __always_inline void kvm_before_interrupt(struct kvm_vcpu *vcpu,
497 enum kvm_intr_type intr)
498 {
499 WRITE_ONCE(vcpu->arch.handling_intr_from_guest, (u8)intr);
500 }
501
kvm_after_interrupt(struct kvm_vcpu * vcpu)502 static __always_inline void kvm_after_interrupt(struct kvm_vcpu *vcpu)
503 {
504 WRITE_ONCE(vcpu->arch.handling_intr_from_guest, 0);
505 }
506
kvm_handling_nmi_from_guest(struct kvm_vcpu * vcpu)507 static inline bool kvm_handling_nmi_from_guest(struct kvm_vcpu *vcpu)
508 {
509 return vcpu->arch.handling_intr_from_guest == KVM_HANDLING_NMI;
510 }
511
kvm_pat_valid(u64 data)512 static inline bool kvm_pat_valid(u64 data)
513 {
514 if (data & 0xF8F8F8F8F8F8F8F8ull)
515 return false;
516 /* 0, 1, 4, 5, 6, 7 are valid values. */
517 return (data | ((data & 0x0202020202020202ull) << 1)) == data;
518 }
519
kvm_dr7_valid(u64 data)520 static inline bool kvm_dr7_valid(u64 data)
521 {
522 /* Bits [63:32] are reserved */
523 return !(data >> 32);
524 }
kvm_dr6_valid(u64 data)525 static inline bool kvm_dr6_valid(u64 data)
526 {
527 /* Bits [63:32] are reserved */
528 return !(data >> 32);
529 }
530
531 /*
532 * Trigger machine check on the host. We assume all the MSRs are already set up
533 * by the CPU and that we still run on the same CPU as the MCE occurred on.
534 * We pass a fake environment to the machine check handler because we want
535 * the guest to be always treated like user space, no matter what context
536 * it used internally.
537 */
kvm_machine_check(void)538 static inline void kvm_machine_check(void)
539 {
540 #if defined(CONFIG_X86_MCE)
541 struct pt_regs regs = {
542 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
543 .flags = X86_EFLAGS_IF,
544 };
545
546 do_machine_check(®s);
547 #endif
548 }
549
550 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu);
551 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu);
552 int kvm_spec_ctrl_test_value(u64 value);
553 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
554 struct x86_exception *e);
555 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva);
556 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type);
557
558 enum kvm_msr_access {
559 MSR_TYPE_R = BIT(0),
560 MSR_TYPE_W = BIT(1),
561 MSR_TYPE_RW = MSR_TYPE_R | MSR_TYPE_W,
562 };
563
564 /*
565 * Internal error codes that are used to indicate that MSR emulation encountered
566 * an error that should result in #GP in the guest, unless userspace handles it.
567 * Note, '1', '0', and negative numbers are off limits, as they are used by KVM
568 * as part of KVM's lightly documented internal KVM_RUN return codes.
569 *
570 * UNSUPPORTED - The MSR isn't supported, either because it is completely
571 * unknown to KVM, or because the MSR should not exist according
572 * to the vCPU model.
573 *
574 * FILTERED - Access to the MSR is denied by a userspace MSR filter.
575 */
576 #define KVM_MSR_RET_UNSUPPORTED 2
577 #define KVM_MSR_RET_FILTERED 3
578
__kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)579 static inline bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
580 {
581 return !(cr4 & vcpu->arch.cr4_guest_rsvd_bits);
582 }
583
584 #define __cr4_reserved_bits(__cpu_has, __c) \
585 ({ \
586 u64 __reserved_bits = CR4_RESERVED_BITS; \
587 \
588 if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \
589 __reserved_bits |= X86_CR4_OSXSAVE; \
590 if (!__cpu_has(__c, X86_FEATURE_SMEP)) \
591 __reserved_bits |= X86_CR4_SMEP; \
592 if (!__cpu_has(__c, X86_FEATURE_SMAP)) \
593 __reserved_bits |= X86_CR4_SMAP; \
594 if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \
595 __reserved_bits |= X86_CR4_FSGSBASE; \
596 if (!__cpu_has(__c, X86_FEATURE_PKU)) \
597 __reserved_bits |= X86_CR4_PKE; \
598 if (!__cpu_has(__c, X86_FEATURE_LA57)) \
599 __reserved_bits |= X86_CR4_LA57; \
600 if (!__cpu_has(__c, X86_FEATURE_UMIP)) \
601 __reserved_bits |= X86_CR4_UMIP; \
602 if (!__cpu_has(__c, X86_FEATURE_VMX)) \
603 __reserved_bits |= X86_CR4_VMXE; \
604 if (!__cpu_has(__c, X86_FEATURE_PCID)) \
605 __reserved_bits |= X86_CR4_PCIDE; \
606 if (!__cpu_has(__c, X86_FEATURE_LAM)) \
607 __reserved_bits |= X86_CR4_LAM_SUP; \
608 __reserved_bits; \
609 })
610
611 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
612 void *dst);
613 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
614 void *dst);
615 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
616 unsigned int port, void *data, unsigned int count,
617 int in);
618
user_exit_on_hypercall(struct kvm * kvm,unsigned long hc_nr)619 static inline bool user_exit_on_hypercall(struct kvm *kvm, unsigned long hc_nr)
620 {
621 return kvm->arch.hypercall_exit_enabled & BIT(hc_nr);
622 }
623
624 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
625 unsigned long a0, unsigned long a1,
626 unsigned long a2, unsigned long a3,
627 int op_64_bit, int cpl,
628 int (*complete_hypercall)(struct kvm_vcpu *));
629
630 #define __kvm_emulate_hypercall(_vcpu, nr, a0, a1, a2, a3, op_64_bit, cpl, complete_hypercall) \
631 ({ \
632 int __ret; \
633 \
634 __ret = ____kvm_emulate_hypercall(_vcpu, \
635 kvm_##nr##_read(_vcpu), kvm_##a0##_read(_vcpu), \
636 kvm_##a1##_read(_vcpu), kvm_##a2##_read(_vcpu), \
637 kvm_##a3##_read(_vcpu), op_64_bit, cpl, \
638 complete_hypercall); \
639 \
640 if (__ret > 0) \
641 __ret = complete_hypercall(_vcpu); \
642 __ret; \
643 })
644
645 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
646
647 #endif
648