1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <[email protected]>
14  *   Yaniv Kamay  <[email protected]>
15  *   Amit Shah    <[email protected]>
16  *   Ben-Ami Yassour <[email protected]>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36 
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65 
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68 
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91 
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94 
95 /*
96  * Note, kvm_caps fields should *never* have default values, all fields must be
97  * recomputed from scratch during vendor module load, e.g. to account for a
98  * vendor module being reloaded with different module parameters.
99  */
100 struct kvm_caps kvm_caps __read_mostly;
101 EXPORT_SYMBOL_GPL(kvm_caps);
102 
103 struct kvm_host_values kvm_host __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_host);
105 
106 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
107 
108 #define emul_to_vcpu(ctxt) \
109 	((struct kvm_vcpu *)(ctxt)->vcpu)
110 
111 /* EFER defaults:
112  * - enable syscall per default because its emulated by KVM
113  * - enable LME and LMA per default on 64 bit KVM
114  */
115 #ifdef CONFIG_X86_64
116 static
117 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
118 #else
119 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
120 #endif
121 
122 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
123 
124 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
125 
126 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
127                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
128 
129 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
130 static void process_nmi(struct kvm_vcpu *vcpu);
131 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
132 static void store_regs(struct kvm_vcpu *vcpu);
133 static int sync_regs(struct kvm_vcpu *vcpu);
134 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
135 
136 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
137 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
138 
139 static DEFINE_MUTEX(vendor_module_lock);
140 struct kvm_x86_ops kvm_x86_ops __read_mostly;
141 
142 #define KVM_X86_OP(func)					     \
143 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
144 				*(((struct kvm_x86_ops *)0)->func));
145 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
146 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
147 #include <asm/kvm-x86-ops.h>
148 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
149 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
150 
151 static bool __read_mostly ignore_msrs = 0;
152 module_param(ignore_msrs, bool, 0644);
153 
154 bool __read_mostly report_ignored_msrs = true;
155 module_param(report_ignored_msrs, bool, 0644);
156 EXPORT_SYMBOL_GPL(report_ignored_msrs);
157 
158 unsigned int min_timer_period_us = 200;
159 module_param(min_timer_period_us, uint, 0644);
160 
161 static bool __read_mostly kvmclock_periodic_sync = true;
162 module_param(kvmclock_periodic_sync, bool, 0444);
163 
164 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
165 static u32 __read_mostly tsc_tolerance_ppm = 250;
166 module_param(tsc_tolerance_ppm, uint, 0644);
167 
168 static bool __read_mostly vector_hashing = true;
169 module_param(vector_hashing, bool, 0444);
170 
171 bool __read_mostly enable_vmware_backdoor = false;
172 module_param(enable_vmware_backdoor, bool, 0444);
173 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
174 
175 /*
176  * Flags to manipulate forced emulation behavior (any non-zero value will
177  * enable forced emulation).
178  */
179 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
180 static int __read_mostly force_emulation_prefix;
181 module_param(force_emulation_prefix, int, 0644);
182 
183 int __read_mostly pi_inject_timer = -1;
184 module_param(pi_inject_timer, bint, 0644);
185 
186 /* Enable/disable PMU virtualization */
187 bool __read_mostly enable_pmu = true;
188 EXPORT_SYMBOL_GPL(enable_pmu);
189 module_param(enable_pmu, bool, 0444);
190 
191 bool __read_mostly eager_page_split = true;
192 module_param(eager_page_split, bool, 0644);
193 
194 /* Enable/disable SMT_RSB bug mitigation */
195 static bool __read_mostly mitigate_smt_rsb;
196 module_param(mitigate_smt_rsb, bool, 0444);
197 
198 /*
199  * Restoring the host value for MSRs that are only consumed when running in
200  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
201  * returns to userspace, i.e. the kernel can run with the guest's value.
202  */
203 #define KVM_MAX_NR_USER_RETURN_MSRS 16
204 
205 struct kvm_user_return_msrs {
206 	struct user_return_notifier urn;
207 	bool registered;
208 	struct kvm_user_return_msr_values {
209 		u64 host;
210 		u64 curr;
211 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
212 };
213 
214 u32 __read_mostly kvm_nr_uret_msrs;
215 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
216 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
217 static struct kvm_user_return_msrs __percpu *user_return_msrs;
218 
219 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
220 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
221 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
222 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
223 
224 bool __read_mostly allow_smaller_maxphyaddr = 0;
225 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
226 
227 bool __read_mostly enable_apicv = true;
228 EXPORT_SYMBOL_GPL(enable_apicv);
229 
230 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
231 	KVM_GENERIC_VM_STATS(),
232 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
233 	STATS_DESC_COUNTER(VM, mmu_pte_write),
234 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
235 	STATS_DESC_COUNTER(VM, mmu_flooded),
236 	STATS_DESC_COUNTER(VM, mmu_recycled),
237 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
238 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
239 	STATS_DESC_ICOUNTER(VM, pages_4k),
240 	STATS_DESC_ICOUNTER(VM, pages_2m),
241 	STATS_DESC_ICOUNTER(VM, pages_1g),
242 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
243 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
244 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
245 };
246 
247 const struct kvm_stats_header kvm_vm_stats_header = {
248 	.name_size = KVM_STATS_NAME_SIZE,
249 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
250 	.id_offset = sizeof(struct kvm_stats_header),
251 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
252 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
253 		       sizeof(kvm_vm_stats_desc),
254 };
255 
256 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
257 	KVM_GENERIC_VCPU_STATS(),
258 	STATS_DESC_COUNTER(VCPU, pf_taken),
259 	STATS_DESC_COUNTER(VCPU, pf_fixed),
260 	STATS_DESC_COUNTER(VCPU, pf_emulate),
261 	STATS_DESC_COUNTER(VCPU, pf_spurious),
262 	STATS_DESC_COUNTER(VCPU, pf_fast),
263 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
264 	STATS_DESC_COUNTER(VCPU, pf_guest),
265 	STATS_DESC_COUNTER(VCPU, tlb_flush),
266 	STATS_DESC_COUNTER(VCPU, invlpg),
267 	STATS_DESC_COUNTER(VCPU, exits),
268 	STATS_DESC_COUNTER(VCPU, io_exits),
269 	STATS_DESC_COUNTER(VCPU, mmio_exits),
270 	STATS_DESC_COUNTER(VCPU, signal_exits),
271 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
272 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
273 	STATS_DESC_COUNTER(VCPU, l1d_flush),
274 	STATS_DESC_COUNTER(VCPU, halt_exits),
275 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
276 	STATS_DESC_COUNTER(VCPU, irq_exits),
277 	STATS_DESC_COUNTER(VCPU, host_state_reload),
278 	STATS_DESC_COUNTER(VCPU, fpu_reload),
279 	STATS_DESC_COUNTER(VCPU, insn_emulation),
280 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
281 	STATS_DESC_COUNTER(VCPU, hypercalls),
282 	STATS_DESC_COUNTER(VCPU, irq_injections),
283 	STATS_DESC_COUNTER(VCPU, nmi_injections),
284 	STATS_DESC_COUNTER(VCPU, req_event),
285 	STATS_DESC_COUNTER(VCPU, nested_run),
286 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
287 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
288 	STATS_DESC_COUNTER(VCPU, preemption_reported),
289 	STATS_DESC_COUNTER(VCPU, preemption_other),
290 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
291 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
292 };
293 
294 const struct kvm_stats_header kvm_vcpu_stats_header = {
295 	.name_size = KVM_STATS_NAME_SIZE,
296 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
297 	.id_offset = sizeof(struct kvm_stats_header),
298 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
299 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
300 		       sizeof(kvm_vcpu_stats_desc),
301 };
302 
303 static struct kmem_cache *x86_emulator_cache;
304 
305 /*
306  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
307  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
308  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
309  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
310  * MSRs that KVM emulates without strictly requiring host support.
311  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
312  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
313  * msrs_to_save and emulated_msrs.
314  */
315 
316 static const u32 msrs_to_save_base[] = {
317 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
318 	MSR_STAR,
319 #ifdef CONFIG_X86_64
320 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
321 #endif
322 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
323 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
324 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
325 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
326 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
327 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
328 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
329 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
330 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
331 	MSR_IA32_UMWAIT_CONTROL,
332 
333 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
334 };
335 
336 static const u32 msrs_to_save_pmu[] = {
337 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
338 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
339 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
340 	MSR_CORE_PERF_GLOBAL_CTRL,
341 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
342 
343 	/* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
344 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
345 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
346 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
347 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
348 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
349 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
350 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
351 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
352 
353 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
354 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
355 
356 	/* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
357 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
358 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
359 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
360 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
361 
362 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
363 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
364 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
365 };
366 
367 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
368 			ARRAY_SIZE(msrs_to_save_pmu)];
369 static unsigned num_msrs_to_save;
370 
371 static const u32 emulated_msrs_all[] = {
372 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
373 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
374 
375 #ifdef CONFIG_KVM_HYPERV
376 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
377 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
378 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
379 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
380 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
381 	HV_X64_MSR_RESET,
382 	HV_X64_MSR_VP_INDEX,
383 	HV_X64_MSR_VP_RUNTIME,
384 	HV_X64_MSR_SCONTROL,
385 	HV_X64_MSR_STIMER0_CONFIG,
386 	HV_X64_MSR_VP_ASSIST_PAGE,
387 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
388 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
389 	HV_X64_MSR_SYNDBG_OPTIONS,
390 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
391 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
392 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
393 #endif
394 
395 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
396 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
397 
398 	MSR_IA32_TSC_ADJUST,
399 	MSR_IA32_TSC_DEADLINE,
400 	MSR_IA32_ARCH_CAPABILITIES,
401 	MSR_IA32_PERF_CAPABILITIES,
402 	MSR_IA32_MISC_ENABLE,
403 	MSR_IA32_MCG_STATUS,
404 	MSR_IA32_MCG_CTL,
405 	MSR_IA32_MCG_EXT_CTL,
406 	MSR_IA32_SMBASE,
407 	MSR_SMI_COUNT,
408 	MSR_PLATFORM_INFO,
409 	MSR_MISC_FEATURES_ENABLES,
410 	MSR_AMD64_VIRT_SPEC_CTRL,
411 	MSR_AMD64_TSC_RATIO,
412 	MSR_IA32_POWER_CTL,
413 	MSR_IA32_UCODE_REV,
414 
415 	/*
416 	 * KVM always supports the "true" VMX control MSRs, even if the host
417 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
418 	 * doesn't strictly require them to exist in the host (ignoring that
419 	 * KVM would refuse to load in the first place if the core set of MSRs
420 	 * aren't supported).
421 	 */
422 	MSR_IA32_VMX_BASIC,
423 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
424 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
425 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
426 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
427 	MSR_IA32_VMX_MISC,
428 	MSR_IA32_VMX_CR0_FIXED0,
429 	MSR_IA32_VMX_CR4_FIXED0,
430 	MSR_IA32_VMX_VMCS_ENUM,
431 	MSR_IA32_VMX_PROCBASED_CTLS2,
432 	MSR_IA32_VMX_EPT_VPID_CAP,
433 	MSR_IA32_VMX_VMFUNC,
434 
435 	MSR_K7_HWCR,
436 	MSR_KVM_POLL_CONTROL,
437 };
438 
439 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
440 static unsigned num_emulated_msrs;
441 
442 /*
443  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
444  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
445  * feature MSRs, but are handled separately to allow expedited lookups.
446  */
447 static const u32 msr_based_features_all_except_vmx[] = {
448 	MSR_AMD64_DE_CFG,
449 	MSR_IA32_UCODE_REV,
450 	MSR_IA32_ARCH_CAPABILITIES,
451 	MSR_IA32_PERF_CAPABILITIES,
452 	MSR_PLATFORM_INFO,
453 };
454 
455 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
456 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
457 static unsigned int num_msr_based_features;
458 
459 /*
460  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
461  * patch, are immutable once the vCPU model is defined.
462  */
kvm_is_immutable_feature_msr(u32 msr)463 static bool kvm_is_immutable_feature_msr(u32 msr)
464 {
465 	int i;
466 
467 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
468 		return true;
469 
470 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
471 		if (msr == msr_based_features_all_except_vmx[i])
472 			return msr != MSR_IA32_UCODE_REV;
473 	}
474 
475 	return false;
476 }
477 
kvm_is_advertised_msr(u32 msr_index)478 static bool kvm_is_advertised_msr(u32 msr_index)
479 {
480 	unsigned int i;
481 
482 	for (i = 0; i < num_msrs_to_save; i++) {
483 		if (msrs_to_save[i] == msr_index)
484 			return true;
485 	}
486 
487 	for (i = 0; i < num_emulated_msrs; i++) {
488 		if (emulated_msrs[i] == msr_index)
489 			return true;
490 	}
491 
492 	return false;
493 }
494 
495 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
496 			    bool host_initiated);
497 
kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)498 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
499 					     u64 *data, bool host_initiated,
500 					     enum kvm_msr_access rw,
501 					     msr_access_t msr_access_fn)
502 {
503 	const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
504 	int ret;
505 
506 	BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
507 
508 	/*
509 	 * Zero the data on read failures to avoid leaking stack data to the
510 	 * guest and/or userspace, e.g. if the failure is ignored below.
511 	 */
512 	ret = msr_access_fn(vcpu, msr, data, host_initiated);
513 	if (ret && rw == MSR_TYPE_R)
514 		*data = 0;
515 
516 	if (ret != KVM_MSR_RET_UNSUPPORTED)
517 		return ret;
518 
519 	/*
520 	 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
521 	 * advertises to userspace, even if an MSR isn't fully supported.
522 	 * Simply check that @data is '0', which covers both the write '0' case
523 	 * and all reads (in which case @data is zeroed on failure; see above).
524 	 */
525 	if (host_initiated && !*data && kvm_is_advertised_msr(msr))
526 		return 0;
527 
528 	if (!ignore_msrs) {
529 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
530 				      op, msr, *data);
531 		return ret;
532 	}
533 
534 	if (report_ignored_msrs)
535 		kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
536 
537 	return 0;
538 }
539 
kvm_alloc_emulator_cache(void)540 static struct kmem_cache *kvm_alloc_emulator_cache(void)
541 {
542 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
543 	unsigned int size = sizeof(struct x86_emulate_ctxt);
544 
545 	return kmem_cache_create_usercopy("x86_emulator", size,
546 					  __alignof__(struct x86_emulate_ctxt),
547 					  SLAB_ACCOUNT, useroffset,
548 					  size - useroffset, NULL);
549 }
550 
551 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
552 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)553 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
554 {
555 	int i;
556 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
557 		vcpu->arch.apf.gfns[i] = ~0;
558 }
559 
kvm_on_user_return(struct user_return_notifier * urn)560 static void kvm_on_user_return(struct user_return_notifier *urn)
561 {
562 	unsigned slot;
563 	struct kvm_user_return_msrs *msrs
564 		= container_of(urn, struct kvm_user_return_msrs, urn);
565 	struct kvm_user_return_msr_values *values;
566 	unsigned long flags;
567 
568 	/*
569 	 * Disabling irqs at this point since the following code could be
570 	 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
571 	 */
572 	local_irq_save(flags);
573 	if (msrs->registered) {
574 		msrs->registered = false;
575 		user_return_notifier_unregister(urn);
576 	}
577 	local_irq_restore(flags);
578 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
579 		values = &msrs->values[slot];
580 		if (values->host != values->curr) {
581 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
582 			values->curr = values->host;
583 		}
584 	}
585 }
586 
kvm_probe_user_return_msr(u32 msr)587 static int kvm_probe_user_return_msr(u32 msr)
588 {
589 	u64 val;
590 	int ret;
591 
592 	preempt_disable();
593 	ret = rdmsrl_safe(msr, &val);
594 	if (ret)
595 		goto out;
596 	ret = wrmsrl_safe(msr, val);
597 out:
598 	preempt_enable();
599 	return ret;
600 }
601 
kvm_add_user_return_msr(u32 msr)602 int kvm_add_user_return_msr(u32 msr)
603 {
604 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
605 
606 	if (kvm_probe_user_return_msr(msr))
607 		return -1;
608 
609 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
610 	return kvm_nr_uret_msrs++;
611 }
612 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
613 
kvm_find_user_return_msr(u32 msr)614 int kvm_find_user_return_msr(u32 msr)
615 {
616 	int i;
617 
618 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
619 		if (kvm_uret_msrs_list[i] == msr)
620 			return i;
621 	}
622 	return -1;
623 }
624 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
625 
kvm_user_return_msr_cpu_online(void)626 static void kvm_user_return_msr_cpu_online(void)
627 {
628 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
629 	u64 value;
630 	int i;
631 
632 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
633 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
634 		msrs->values[i].host = value;
635 		msrs->values[i].curr = value;
636 	}
637 }
638 
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)639 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
640 {
641 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
642 	int err;
643 
644 	value = (value & mask) | (msrs->values[slot].host & ~mask);
645 	if (value == msrs->values[slot].curr)
646 		return 0;
647 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
648 	if (err)
649 		return 1;
650 
651 	msrs->values[slot].curr = value;
652 	if (!msrs->registered) {
653 		msrs->urn.on_user_return = kvm_on_user_return;
654 		user_return_notifier_register(&msrs->urn);
655 		msrs->registered = true;
656 	}
657 	return 0;
658 }
659 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
660 
drop_user_return_notifiers(void)661 static void drop_user_return_notifiers(void)
662 {
663 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
664 
665 	if (msrs->registered)
666 		kvm_on_user_return(&msrs->urn);
667 }
668 
669 /*
670  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
671  *
672  * Hardware virtualization extension instructions may fault if a reboot turns
673  * off virtualization while processes are running.  Usually after catching the
674  * fault we just panic; during reboot instead the instruction is ignored.
675  */
kvm_spurious_fault(void)676 noinstr void kvm_spurious_fault(void)
677 {
678 	/* Fault while not rebooting.  We want the trace. */
679 	BUG_ON(!kvm_rebooting);
680 }
681 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
682 
683 #define EXCPT_BENIGN		0
684 #define EXCPT_CONTRIBUTORY	1
685 #define EXCPT_PF		2
686 
exception_class(int vector)687 static int exception_class(int vector)
688 {
689 	switch (vector) {
690 	case PF_VECTOR:
691 		return EXCPT_PF;
692 	case DE_VECTOR:
693 	case TS_VECTOR:
694 	case NP_VECTOR:
695 	case SS_VECTOR:
696 	case GP_VECTOR:
697 		return EXCPT_CONTRIBUTORY;
698 	default:
699 		break;
700 	}
701 	return EXCPT_BENIGN;
702 }
703 
704 #define EXCPT_FAULT		0
705 #define EXCPT_TRAP		1
706 #define EXCPT_ABORT		2
707 #define EXCPT_INTERRUPT		3
708 #define EXCPT_DB		4
709 
exception_type(int vector)710 static int exception_type(int vector)
711 {
712 	unsigned int mask;
713 
714 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
715 		return EXCPT_INTERRUPT;
716 
717 	mask = 1 << vector;
718 
719 	/*
720 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
721 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
722 	 */
723 	if (mask & (1 << DB_VECTOR))
724 		return EXCPT_DB;
725 
726 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
727 		return EXCPT_TRAP;
728 
729 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
730 		return EXCPT_ABORT;
731 
732 	/* Reserved exceptions will result in fault */
733 	return EXCPT_FAULT;
734 }
735 
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)736 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
737 				   struct kvm_queued_exception *ex)
738 {
739 	if (!ex->has_payload)
740 		return;
741 
742 	switch (ex->vector) {
743 	case DB_VECTOR:
744 		/*
745 		 * "Certain debug exceptions may clear bit 0-3.  The
746 		 * remaining contents of the DR6 register are never
747 		 * cleared by the processor".
748 		 */
749 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
750 		/*
751 		 * In order to reflect the #DB exception payload in guest
752 		 * dr6, three components need to be considered: active low
753 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
754 		 * DR6_BS and DR6_BT)
755 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
756 		 * In the target guest dr6:
757 		 * FIXED_1 bits should always be set.
758 		 * Active low bits should be cleared if 1-setting in payload.
759 		 * Active high bits should be set if 1-setting in payload.
760 		 *
761 		 * Note, the payload is compatible with the pending debug
762 		 * exceptions/exit qualification under VMX, that active_low bits
763 		 * are active high in payload.
764 		 * So they need to be flipped for DR6.
765 		 */
766 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
767 		vcpu->arch.dr6 |= ex->payload;
768 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
769 
770 		/*
771 		 * The #DB payload is defined as compatible with the 'pending
772 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
773 		 * defined in the 'pending debug exceptions' field (enabled
774 		 * breakpoint), it is reserved and must be zero in DR6.
775 		 */
776 		vcpu->arch.dr6 &= ~BIT(12);
777 		break;
778 	case PF_VECTOR:
779 		vcpu->arch.cr2 = ex->payload;
780 		break;
781 	}
782 
783 	ex->has_payload = false;
784 	ex->payload = 0;
785 }
786 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
787 
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)788 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
789 				       bool has_error_code, u32 error_code,
790 				       bool has_payload, unsigned long payload)
791 {
792 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
793 
794 	ex->vector = vector;
795 	ex->injected = false;
796 	ex->pending = true;
797 	ex->has_error_code = has_error_code;
798 	ex->error_code = error_code;
799 	ex->has_payload = has_payload;
800 	ex->payload = payload;
801 }
802 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)803 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
804 		unsigned nr, bool has_error, u32 error_code,
805 	        bool has_payload, unsigned long payload, bool reinject)
806 {
807 	u32 prev_nr;
808 	int class1, class2;
809 
810 	kvm_make_request(KVM_REQ_EVENT, vcpu);
811 
812 	/*
813 	 * If the exception is destined for L2 and isn't being reinjected,
814 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
815 	 * previously injected exception is not checked because it was checked
816 	 * when it was original queued, and re-checking is incorrect if _L1_
817 	 * injected the exception, in which case it's exempt from interception.
818 	 */
819 	if (!reinject && is_guest_mode(vcpu) &&
820 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
821 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
822 					   has_payload, payload);
823 		return;
824 	}
825 
826 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
827 	queue:
828 		if (reinject) {
829 			/*
830 			 * On VM-Entry, an exception can be pending if and only
831 			 * if event injection was blocked by nested_run_pending.
832 			 * In that case, however, vcpu_enter_guest() requests an
833 			 * immediate exit, and the guest shouldn't proceed far
834 			 * enough to need reinjection.
835 			 */
836 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
837 			vcpu->arch.exception.injected = true;
838 			if (WARN_ON_ONCE(has_payload)) {
839 				/*
840 				 * A reinjected event has already
841 				 * delivered its payload.
842 				 */
843 				has_payload = false;
844 				payload = 0;
845 			}
846 		} else {
847 			vcpu->arch.exception.pending = true;
848 			vcpu->arch.exception.injected = false;
849 		}
850 		vcpu->arch.exception.has_error_code = has_error;
851 		vcpu->arch.exception.vector = nr;
852 		vcpu->arch.exception.error_code = error_code;
853 		vcpu->arch.exception.has_payload = has_payload;
854 		vcpu->arch.exception.payload = payload;
855 		if (!is_guest_mode(vcpu))
856 			kvm_deliver_exception_payload(vcpu,
857 						      &vcpu->arch.exception);
858 		return;
859 	}
860 
861 	/* to check exception */
862 	prev_nr = vcpu->arch.exception.vector;
863 	if (prev_nr == DF_VECTOR) {
864 		/* triple fault -> shutdown */
865 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
866 		return;
867 	}
868 	class1 = exception_class(prev_nr);
869 	class2 = exception_class(nr);
870 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
871 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
872 		/*
873 		 * Synthesize #DF.  Clear the previously injected or pending
874 		 * exception so as not to incorrectly trigger shutdown.
875 		 */
876 		vcpu->arch.exception.injected = false;
877 		vcpu->arch.exception.pending = false;
878 
879 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
880 	} else {
881 		/* replace previous exception with a new one in a hope
882 		   that instruction re-execution will regenerate lost
883 		   exception */
884 		goto queue;
885 	}
886 }
887 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)888 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
889 {
890 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
891 }
892 EXPORT_SYMBOL_GPL(kvm_queue_exception);
893 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)894 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
895 {
896 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
897 }
898 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
899 
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)900 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
901 			   unsigned long payload)
902 {
903 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
904 }
905 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
906 
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)907 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
908 				    u32 error_code, unsigned long payload)
909 {
910 	kvm_multiple_exception(vcpu, nr, true, error_code,
911 			       true, payload, false);
912 }
913 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)914 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
915 {
916 	if (err)
917 		kvm_inject_gp(vcpu, 0);
918 	else
919 		return kvm_skip_emulated_instruction(vcpu);
920 
921 	return 1;
922 }
923 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
924 
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)925 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
926 {
927 	if (err) {
928 		kvm_inject_gp(vcpu, 0);
929 		return 1;
930 	}
931 
932 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
933 				       EMULTYPE_COMPLETE_USER_EXIT);
934 }
935 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)936 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
937 {
938 	++vcpu->stat.pf_guest;
939 
940 	/*
941 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
942 	 * whether or not L1 wants to intercept "regular" #PF.
943 	 */
944 	if (is_guest_mode(vcpu) && fault->async_page_fault)
945 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
946 					   true, fault->error_code,
947 					   true, fault->address);
948 	else
949 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
950 					fault->address);
951 }
952 
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)953 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
954 				    struct x86_exception *fault)
955 {
956 	struct kvm_mmu *fault_mmu;
957 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
958 
959 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
960 					       vcpu->arch.walk_mmu;
961 
962 	/*
963 	 * Invalidate the TLB entry for the faulting address, if it exists,
964 	 * else the access will fault indefinitely (and to emulate hardware).
965 	 */
966 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
967 	    !(fault->error_code & PFERR_RSVD_MASK))
968 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
969 					KVM_MMU_ROOT_CURRENT);
970 
971 	fault_mmu->inject_page_fault(vcpu, fault);
972 }
973 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
974 
kvm_inject_nmi(struct kvm_vcpu * vcpu)975 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
976 {
977 	atomic_inc(&vcpu->arch.nmi_queued);
978 	kvm_make_request(KVM_REQ_NMI, vcpu);
979 }
980 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)981 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
982 {
983 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
984 }
985 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
986 
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)987 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
988 {
989 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
990 }
991 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
992 
993 /*
994  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
995  * a #GP and return false.
996  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)997 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
998 {
999 	if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1000 		return true;
1001 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1002 	return false;
1003 }
1004 
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1005 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1006 {
1007 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1008 		return true;
1009 
1010 	kvm_queue_exception(vcpu, UD_VECTOR);
1011 	return false;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_require_dr);
1014 
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1015 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1016 {
1017 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1018 }
1019 
1020 /*
1021  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
1022  */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1023 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1024 {
1025 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1026 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1027 	gpa_t real_gpa;
1028 	int i;
1029 	int ret;
1030 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1031 
1032 	/*
1033 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1034 	 * to an L1 GPA.
1035 	 */
1036 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1037 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1038 	if (real_gpa == INVALID_GPA)
1039 		return 0;
1040 
1041 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1042 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1043 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
1044 	if (ret < 0)
1045 		return 0;
1046 
1047 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1048 		if ((pdpte[i] & PT_PRESENT_MASK) &&
1049 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1050 			return 0;
1051 		}
1052 	}
1053 
1054 	/*
1055 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1056 	 * Shadow page roots need to be reconstructed instead.
1057 	 */
1058 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1059 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1060 
1061 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1062 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1063 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1064 	vcpu->arch.pdptrs_from_userspace = false;
1065 
1066 	return 1;
1067 }
1068 EXPORT_SYMBOL_GPL(load_pdptrs);
1069 
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1070 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1071 {
1072 #ifdef CONFIG_X86_64
1073 	if (cr0 & 0xffffffff00000000UL)
1074 		return false;
1075 #endif
1076 
1077 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1078 		return false;
1079 
1080 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1081 		return false;
1082 
1083 	return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1084 }
1085 
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1086 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1087 {
1088 	/*
1089 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1090 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
1091 	 * as there are no permission bits to emulate.  If TDP is enabled, the
1092 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
1093 	 * translations does the right thing, but there's no need to unload the
1094 	 * root as CR0.WP doesn't affect SPTEs.
1095 	 */
1096 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1097 		if (!(cr0 & X86_CR0_PG))
1098 			return;
1099 
1100 		if (tdp_enabled) {
1101 			kvm_init_mmu(vcpu);
1102 			return;
1103 		}
1104 	}
1105 
1106 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1107 		kvm_clear_async_pf_completion_queue(vcpu);
1108 		kvm_async_pf_hash_reset(vcpu);
1109 
1110 		/*
1111 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
1112 		 * perspective.
1113 		 */
1114 		if (!(cr0 & X86_CR0_PG))
1115 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1116 	}
1117 
1118 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1119 		kvm_mmu_reset_context(vcpu);
1120 }
1121 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
1122 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1123 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1124 {
1125 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
1126 
1127 	if (!kvm_is_valid_cr0(vcpu, cr0))
1128 		return 1;
1129 
1130 	cr0 |= X86_CR0_ET;
1131 
1132 	/* Write to CR0 reserved bits are ignored, even on Intel. */
1133 	cr0 &= ~CR0_RESERVED_BITS;
1134 
1135 #ifdef CONFIG_X86_64
1136 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1137 	    (cr0 & X86_CR0_PG)) {
1138 		int cs_db, cs_l;
1139 
1140 		if (!is_pae(vcpu))
1141 			return 1;
1142 		kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1143 		if (cs_l)
1144 			return 1;
1145 	}
1146 #endif
1147 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1148 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1149 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1150 		return 1;
1151 
1152 	if (!(cr0 & X86_CR0_PG) &&
1153 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1154 		return 1;
1155 
1156 	kvm_x86_call(set_cr0)(vcpu, cr0);
1157 
1158 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1159 
1160 	return 0;
1161 }
1162 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1163 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1164 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1165 {
1166 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1167 }
1168 EXPORT_SYMBOL_GPL(kvm_lmsw);
1169 
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1170 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1171 {
1172 	if (vcpu->arch.guest_state_protected)
1173 		return;
1174 
1175 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1176 
1177 		if (vcpu->arch.xcr0 != kvm_host.xcr0)
1178 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1179 
1180 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1181 		    vcpu->arch.ia32_xss != kvm_host.xss)
1182 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1183 	}
1184 
1185 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1186 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1187 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1188 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1189 		wrpkru(vcpu->arch.pkru);
1190 }
1191 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1192 
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1193 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1194 {
1195 	if (vcpu->arch.guest_state_protected)
1196 		return;
1197 
1198 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1199 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1200 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1201 		vcpu->arch.pkru = rdpkru();
1202 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1203 			wrpkru(vcpu->arch.host_pkru);
1204 	}
1205 
1206 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1207 
1208 		if (vcpu->arch.xcr0 != kvm_host.xcr0)
1209 			xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1210 
1211 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1212 		    vcpu->arch.ia32_xss != kvm_host.xss)
1213 			wrmsrl(MSR_IA32_XSS, kvm_host.xss);
1214 	}
1215 
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1218 
1219 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1220 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1221 {
1222 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1223 }
1224 #endif
1225 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1226 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1227 {
1228 	u64 xcr0 = xcr;
1229 	u64 old_xcr0 = vcpu->arch.xcr0;
1230 	u64 valid_bits;
1231 
1232 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1233 	if (index != XCR_XFEATURE_ENABLED_MASK)
1234 		return 1;
1235 	if (!(xcr0 & XFEATURE_MASK_FP))
1236 		return 1;
1237 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1238 		return 1;
1239 
1240 	/*
1241 	 * Do not allow the guest to set bits that we do not support
1242 	 * saving.  However, xcr0 bit 0 is always set, even if the
1243 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1244 	 */
1245 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1246 	if (xcr0 & ~valid_bits)
1247 		return 1;
1248 
1249 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1250 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1251 		return 1;
1252 
1253 	if (xcr0 & XFEATURE_MASK_AVX512) {
1254 		if (!(xcr0 & XFEATURE_MASK_YMM))
1255 			return 1;
1256 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1257 			return 1;
1258 	}
1259 
1260 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1261 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1262 		return 1;
1263 
1264 	vcpu->arch.xcr0 = xcr0;
1265 
1266 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1267 		kvm_update_cpuid_runtime(vcpu);
1268 	return 0;
1269 }
1270 
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1271 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1272 {
1273 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1274 	if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1275 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1276 		kvm_inject_gp(vcpu, 0);
1277 		return 1;
1278 	}
1279 
1280 	return kvm_skip_emulated_instruction(vcpu);
1281 }
1282 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1283 
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1284 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1285 {
1286 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1287 	       kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1288 }
1289 
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1290 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1291 {
1292 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1293 		kvm_mmu_reset_context(vcpu);
1294 
1295 	/*
1296 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1297 	 * according to the SDM; however, stale prev_roots could be reused
1298 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1299 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1300 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1301 	 * so fall through.
1302 	 */
1303 	if (!tdp_enabled &&
1304 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1305 		kvm_mmu_unload(vcpu);
1306 
1307 	/*
1308 	 * The TLB has to be flushed for all PCIDs if any of the following
1309 	 * (architecturally required) changes happen:
1310 	 * - CR4.PCIDE is changed from 1 to 0
1311 	 * - CR4.PGE is toggled
1312 	 *
1313 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1314 	 */
1315 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1316 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1317 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1318 
1319 	/*
1320 	 * The TLB has to be flushed for the current PCID if any of the
1321 	 * following (architecturally required) changes happen:
1322 	 * - CR4.SMEP is changed from 0 to 1
1323 	 * - CR4.PAE is toggled
1324 	 */
1325 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1326 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1327 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1328 
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1331 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1332 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1333 {
1334 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1335 
1336 	if (!kvm_is_valid_cr4(vcpu, cr4))
1337 		return 1;
1338 
1339 	if (is_long_mode(vcpu)) {
1340 		if (!(cr4 & X86_CR4_PAE))
1341 			return 1;
1342 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1343 			return 1;
1344 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1345 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1346 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1347 		return 1;
1348 
1349 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1350 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1351 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1352 			return 1;
1353 	}
1354 
1355 	kvm_x86_call(set_cr4)(vcpu, cr4);
1356 
1357 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1358 
1359 	return 0;
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1362 
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1363 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1364 {
1365 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1366 	unsigned long roots_to_free = 0;
1367 	int i;
1368 
1369 	/*
1370 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1371 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1372 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1373 	 * the invalidation, but the guest's TLB entries need to be flushed as
1374 	 * the CPU may have cached entries in its TLB for the target PCID.
1375 	 */
1376 	if (unlikely(tdp_enabled)) {
1377 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1378 		return;
1379 	}
1380 
1381 	/*
1382 	 * If neither the current CR3 nor any of the prev_roots use the given
1383 	 * PCID, then nothing needs to be done here because a resync will
1384 	 * happen anyway before switching to any other CR3.
1385 	 */
1386 	if (kvm_get_active_pcid(vcpu) == pcid) {
1387 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1388 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1389 	}
1390 
1391 	/*
1392 	 * If PCID is disabled, there is no need to free prev_roots even if the
1393 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1394 	 * with PCIDE=0.
1395 	 */
1396 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1397 		return;
1398 
1399 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1400 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1401 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1402 
1403 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1404 }
1405 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1406 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1407 {
1408 	bool skip_tlb_flush = false;
1409 	unsigned long pcid = 0;
1410 #ifdef CONFIG_X86_64
1411 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1412 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1413 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1414 		pcid = cr3 & X86_CR3_PCID_MASK;
1415 	}
1416 #endif
1417 
1418 	/* PDPTRs are always reloaded for PAE paging. */
1419 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1420 		goto handle_tlb_flush;
1421 
1422 	/*
1423 	 * Do not condition the GPA check on long mode, this helper is used to
1424 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1425 	 * the current vCPU mode is accurate.
1426 	 */
1427 	if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1428 		return 1;
1429 
1430 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1431 		return 1;
1432 
1433 	if (cr3 != kvm_read_cr3(vcpu))
1434 		kvm_mmu_new_pgd(vcpu, cr3);
1435 
1436 	vcpu->arch.cr3 = cr3;
1437 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1438 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1439 
1440 handle_tlb_flush:
1441 	/*
1442 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1443 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1444 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1445 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1446 	 * i.e. only PCID=0 can be relevant.
1447 	 */
1448 	if (!skip_tlb_flush)
1449 		kvm_invalidate_pcid(vcpu, pcid);
1450 
1451 	return 0;
1452 }
1453 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1454 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1455 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1456 {
1457 	if (cr8 & CR8_RESERVED_BITS)
1458 		return 1;
1459 	if (lapic_in_kernel(vcpu))
1460 		kvm_lapic_set_tpr(vcpu, cr8);
1461 	else
1462 		vcpu->arch.cr8 = cr8;
1463 	return 0;
1464 }
1465 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1466 
kvm_get_cr8(struct kvm_vcpu * vcpu)1467 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1468 {
1469 	if (lapic_in_kernel(vcpu))
1470 		return kvm_lapic_get_cr8(vcpu);
1471 	else
1472 		return vcpu->arch.cr8;
1473 }
1474 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1475 
kvm_update_dr0123(struct kvm_vcpu * vcpu)1476 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1477 {
1478 	int i;
1479 
1480 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1481 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1482 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1483 	}
1484 }
1485 
kvm_update_dr7(struct kvm_vcpu * vcpu)1486 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1487 {
1488 	unsigned long dr7;
1489 
1490 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1491 		dr7 = vcpu->arch.guest_debug_dr7;
1492 	else
1493 		dr7 = vcpu->arch.dr7;
1494 	kvm_x86_call(set_dr7)(vcpu, dr7);
1495 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1496 	if (dr7 & DR7_BP_EN_MASK)
1497 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1498 }
1499 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1500 
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1501 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1502 {
1503 	u64 fixed = DR6_FIXED_1;
1504 
1505 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM))
1506 		fixed |= DR6_RTM;
1507 
1508 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1509 		fixed |= DR6_BUS_LOCK;
1510 	return fixed;
1511 }
1512 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1513 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1514 {
1515 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1516 
1517 	switch (dr) {
1518 	case 0 ... 3:
1519 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1520 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1521 			vcpu->arch.eff_db[dr] = val;
1522 		break;
1523 	case 4:
1524 	case 6:
1525 		if (!kvm_dr6_valid(val))
1526 			return 1; /* #GP */
1527 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1528 		break;
1529 	case 5:
1530 	default: /* 7 */
1531 		if (!kvm_dr7_valid(val))
1532 			return 1; /* #GP */
1533 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1534 		kvm_update_dr7(vcpu);
1535 		break;
1536 	}
1537 
1538 	return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(kvm_set_dr);
1541 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1542 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1543 {
1544 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1545 
1546 	switch (dr) {
1547 	case 0 ... 3:
1548 		return vcpu->arch.db[array_index_nospec(dr, size)];
1549 	case 4:
1550 	case 6:
1551 		return vcpu->arch.dr6;
1552 	case 5:
1553 	default: /* 7 */
1554 		return vcpu->arch.dr7;
1555 	}
1556 }
1557 EXPORT_SYMBOL_GPL(kvm_get_dr);
1558 
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1559 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1560 {
1561 	u32 ecx = kvm_rcx_read(vcpu);
1562 	u64 data;
1563 
1564 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1565 		kvm_inject_gp(vcpu, 0);
1566 		return 1;
1567 	}
1568 
1569 	kvm_rax_write(vcpu, (u32)data);
1570 	kvm_rdx_write(vcpu, data >> 32);
1571 	return kvm_skip_emulated_instruction(vcpu);
1572 }
1573 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1574 
1575 /*
1576  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1577  * does not yet virtualize. These include:
1578  *   10 - MISC_PACKAGE_CTRLS
1579  *   11 - ENERGY_FILTERING_CTL
1580  *   12 - DOITM
1581  *   18 - FB_CLEAR_CTRL
1582  *   21 - XAPIC_DISABLE_STATUS
1583  *   23 - OVERCLOCKING_STATUS
1584  */
1585 
1586 #define KVM_SUPPORTED_ARCH_CAP \
1587 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1588 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1589 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1590 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1591 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1592 	 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1593 
kvm_get_arch_capabilities(void)1594 static u64 kvm_get_arch_capabilities(void)
1595 {
1596 	u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1597 
1598 	/*
1599 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1600 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1601 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1602 	 * L1 guests, so it need not worry about its own (L2) guests.
1603 	 */
1604 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1605 
1606 	/*
1607 	 * If we're doing cache flushes (either "always" or "cond")
1608 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1609 	 * If an outer hypervisor is doing the cache flush for us
1610 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1611 	 * capability to the guest too, and if EPT is disabled we're not
1612 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1613 	 * require a nested hypervisor to do a flush of its own.
1614 	 */
1615 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1616 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1617 
1618 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1619 		data |= ARCH_CAP_RDCL_NO;
1620 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1621 		data |= ARCH_CAP_SSB_NO;
1622 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1623 		data |= ARCH_CAP_MDS_NO;
1624 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
1625 		data |= ARCH_CAP_RFDS_NO;
1626 
1627 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1628 		/*
1629 		 * If RTM=0 because the kernel has disabled TSX, the host might
1630 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1631 		 * and therefore knows that there cannot be TAA) but keep
1632 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1633 		 * and we want to allow migrating those guests to tsx=off hosts.
1634 		 */
1635 		data &= ~ARCH_CAP_TAA_NO;
1636 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1637 		data |= ARCH_CAP_TAA_NO;
1638 	} else {
1639 		/*
1640 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1641 		 * host so the guest can choose between disabling TSX or
1642 		 * using VERW to clear CPU buffers.
1643 		 */
1644 	}
1645 
1646 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1647 		data |= ARCH_CAP_GDS_NO;
1648 
1649 	return data;
1650 }
1651 
kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1652 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1653 			       bool host_initiated)
1654 {
1655 	WARN_ON_ONCE(!host_initiated);
1656 
1657 	switch (index) {
1658 	case MSR_IA32_ARCH_CAPABILITIES:
1659 		*data = kvm_get_arch_capabilities();
1660 		break;
1661 	case MSR_IA32_PERF_CAPABILITIES:
1662 		*data = kvm_caps.supported_perf_cap;
1663 		break;
1664 	case MSR_PLATFORM_INFO:
1665 		*data = MSR_PLATFORM_INFO_CPUID_FAULT;
1666 		break;
1667 	case MSR_IA32_UCODE_REV:
1668 		rdmsrl_safe(index, data);
1669 		break;
1670 	default:
1671 		return kvm_x86_call(get_feature_msr)(index, data);
1672 	}
1673 	return 0;
1674 }
1675 
do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1676 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1677 {
1678 	return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1679 				 kvm_get_feature_msr);
1680 }
1681 
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1682 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1683 {
1684 	if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS))
1685 		return false;
1686 
1687 	if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT))
1688 		return false;
1689 
1690 	if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
1691 		return false;
1692 
1693 	if (efer & (EFER_LME | EFER_LMA) &&
1694 	    !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1695 		return false;
1696 
1697 	if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX))
1698 		return false;
1699 
1700 	return true;
1701 
1702 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1703 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1704 {
1705 	if (efer & efer_reserved_bits)
1706 		return false;
1707 
1708 	return __kvm_valid_efer(vcpu, efer);
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1711 
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1712 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1713 {
1714 	u64 old_efer = vcpu->arch.efer;
1715 	u64 efer = msr_info->data;
1716 	int r;
1717 
1718 	if (efer & efer_reserved_bits)
1719 		return 1;
1720 
1721 	if (!msr_info->host_initiated) {
1722 		if (!__kvm_valid_efer(vcpu, efer))
1723 			return 1;
1724 
1725 		if (is_paging(vcpu) &&
1726 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1727 			return 1;
1728 	}
1729 
1730 	efer &= ~EFER_LMA;
1731 	efer |= vcpu->arch.efer & EFER_LMA;
1732 
1733 	r = kvm_x86_call(set_efer)(vcpu, efer);
1734 	if (r) {
1735 		WARN_ON(r > 0);
1736 		return r;
1737 	}
1738 
1739 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1740 		kvm_mmu_reset_context(vcpu);
1741 
1742 	if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1743 	    (efer & EFER_SVME))
1744 		kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1745 
1746 	return 0;
1747 }
1748 
kvm_enable_efer_bits(u64 mask)1749 void kvm_enable_efer_bits(u64 mask)
1750 {
1751        efer_reserved_bits &= ~mask;
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1754 
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1755 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1756 {
1757 	struct kvm_x86_msr_filter *msr_filter;
1758 	struct msr_bitmap_range *ranges;
1759 	struct kvm *kvm = vcpu->kvm;
1760 	bool allowed;
1761 	int idx;
1762 	u32 i;
1763 
1764 	/* x2APIC MSRs do not support filtering. */
1765 	if (index >= 0x800 && index <= 0x8ff)
1766 		return true;
1767 
1768 	idx = srcu_read_lock(&kvm->srcu);
1769 
1770 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1771 	if (!msr_filter) {
1772 		allowed = true;
1773 		goto out;
1774 	}
1775 
1776 	allowed = msr_filter->default_allow;
1777 	ranges = msr_filter->ranges;
1778 
1779 	for (i = 0; i < msr_filter->count; i++) {
1780 		u32 start = ranges[i].base;
1781 		u32 end = start + ranges[i].nmsrs;
1782 		u32 flags = ranges[i].flags;
1783 		unsigned long *bitmap = ranges[i].bitmap;
1784 
1785 		if ((index >= start) && (index < end) && (flags & type)) {
1786 			allowed = test_bit(index - start, bitmap);
1787 			break;
1788 		}
1789 	}
1790 
1791 out:
1792 	srcu_read_unlock(&kvm->srcu, idx);
1793 
1794 	return allowed;
1795 }
1796 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1797 
1798 /*
1799  * Write @data into the MSR specified by @index.  Select MSR specific fault
1800  * checks are bypassed if @host_initiated is %true.
1801  * Returns 0 on success, non-0 otherwise.
1802  * Assumes vcpu_load() was already called.
1803  */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1804 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1805 			 bool host_initiated)
1806 {
1807 	struct msr_data msr;
1808 
1809 	switch (index) {
1810 	case MSR_FS_BASE:
1811 	case MSR_GS_BASE:
1812 	case MSR_KERNEL_GS_BASE:
1813 	case MSR_CSTAR:
1814 	case MSR_LSTAR:
1815 		if (is_noncanonical_msr_address(data, vcpu))
1816 			return 1;
1817 		break;
1818 	case MSR_IA32_SYSENTER_EIP:
1819 	case MSR_IA32_SYSENTER_ESP:
1820 		/*
1821 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1822 		 * non-canonical address is written on Intel but not on
1823 		 * AMD (which ignores the top 32-bits, because it does
1824 		 * not implement 64-bit SYSENTER).
1825 		 *
1826 		 * 64-bit code should hence be able to write a non-canonical
1827 		 * value on AMD.  Making the address canonical ensures that
1828 		 * vmentry does not fail on Intel after writing a non-canonical
1829 		 * value, and that something deterministic happens if the guest
1830 		 * invokes 64-bit SYSENTER.
1831 		 */
1832 		data = __canonical_address(data, max_host_virt_addr_bits());
1833 		break;
1834 	case MSR_TSC_AUX:
1835 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1836 			return 1;
1837 
1838 		if (!host_initiated &&
1839 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1840 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1841 			return 1;
1842 
1843 		/*
1844 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1845 		 * incomplete and conflicting architectural behavior.  Current
1846 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1847 		 * reserved and always read as zeros.  Enforce Intel's reserved
1848 		 * bits check if the guest CPU is Intel compatible, otherwise
1849 		 * clear the bits.  This ensures cross-vendor migration will
1850 		 * provide consistent behavior for the guest.
1851 		 */
1852 		if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1853 			return 1;
1854 
1855 		data = (u32)data;
1856 		break;
1857 	}
1858 
1859 	msr.data = data;
1860 	msr.index = index;
1861 	msr.host_initiated = host_initiated;
1862 
1863 	return kvm_x86_call(set_msr)(vcpu, &msr);
1864 }
1865 
_kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1866 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1867 			bool host_initiated)
1868 {
1869 	return __kvm_set_msr(vcpu, index, *data, host_initiated);
1870 }
1871 
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1872 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1873 				     u32 index, u64 data, bool host_initiated)
1874 {
1875 	return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1876 				 _kvm_set_msr);
1877 }
1878 
1879 /*
1880  * Read the MSR specified by @index into @data.  Select MSR specific fault
1881  * checks are bypassed if @host_initiated is %true.
1882  * Returns 0 on success, non-0 otherwise.
1883  * Assumes vcpu_load() was already called.
1884  */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1885 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1886 		  bool host_initiated)
1887 {
1888 	struct msr_data msr;
1889 	int ret;
1890 
1891 	switch (index) {
1892 	case MSR_TSC_AUX:
1893 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1894 			return 1;
1895 
1896 		if (!host_initiated &&
1897 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1898 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1899 			return 1;
1900 		break;
1901 	}
1902 
1903 	msr.index = index;
1904 	msr.host_initiated = host_initiated;
1905 
1906 	ret = kvm_x86_call(get_msr)(vcpu, &msr);
1907 	if (!ret)
1908 		*data = msr.data;
1909 	return ret;
1910 }
1911 
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1912 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1913 				     u32 index, u64 *data, bool host_initiated)
1914 {
1915 	return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
1916 				 __kvm_get_msr);
1917 }
1918 
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1919 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1920 {
1921 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1922 		return KVM_MSR_RET_FILTERED;
1923 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1924 }
1925 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter);
1926 
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1927 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1928 {
1929 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1930 		return KVM_MSR_RET_FILTERED;
1931 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1932 }
1933 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter);
1934 
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1935 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1936 {
1937 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1938 }
1939 EXPORT_SYMBOL_GPL(kvm_get_msr);
1940 
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1941 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1942 {
1943 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1944 }
1945 EXPORT_SYMBOL_GPL(kvm_set_msr);
1946 
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1947 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1948 {
1949 	if (!vcpu->run->msr.error) {
1950 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1951 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1952 	}
1953 }
1954 
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1955 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1956 {
1957 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1958 }
1959 
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1960 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1961 {
1962 	complete_userspace_rdmsr(vcpu);
1963 	return complete_emulated_msr_access(vcpu);
1964 }
1965 
complete_fast_msr_access(struct kvm_vcpu * vcpu)1966 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1967 {
1968 	return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1969 }
1970 
complete_fast_rdmsr(struct kvm_vcpu * vcpu)1971 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1972 {
1973 	complete_userspace_rdmsr(vcpu);
1974 	return complete_fast_msr_access(vcpu);
1975 }
1976 
kvm_msr_reason(int r)1977 static u64 kvm_msr_reason(int r)
1978 {
1979 	switch (r) {
1980 	case KVM_MSR_RET_UNSUPPORTED:
1981 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1982 	case KVM_MSR_RET_FILTERED:
1983 		return KVM_MSR_EXIT_REASON_FILTER;
1984 	default:
1985 		return KVM_MSR_EXIT_REASON_INVAL;
1986 	}
1987 }
1988 
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1989 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1990 			      u32 exit_reason, u64 data,
1991 			      int (*completion)(struct kvm_vcpu *vcpu),
1992 			      int r)
1993 {
1994 	u64 msr_reason = kvm_msr_reason(r);
1995 
1996 	/* Check if the user wanted to know about this MSR fault */
1997 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1998 		return 0;
1999 
2000 	vcpu->run->exit_reason = exit_reason;
2001 	vcpu->run->msr.error = 0;
2002 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2003 	vcpu->run->msr.reason = msr_reason;
2004 	vcpu->run->msr.index = index;
2005 	vcpu->run->msr.data = data;
2006 	vcpu->arch.complete_userspace_io = completion;
2007 
2008 	return 1;
2009 }
2010 
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2011 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2012 {
2013 	u32 ecx = kvm_rcx_read(vcpu);
2014 	u64 data;
2015 	int r;
2016 
2017 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2018 
2019 	if (!r) {
2020 		trace_kvm_msr_read(ecx, data);
2021 
2022 		kvm_rax_write(vcpu, data & -1u);
2023 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2024 	} else {
2025 		/* MSR read failed? See if we should ask user space */
2026 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2027 				       complete_fast_rdmsr, r))
2028 			return 0;
2029 		trace_kvm_msr_read_ex(ecx);
2030 	}
2031 
2032 	return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2035 
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2036 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2037 {
2038 	u32 ecx = kvm_rcx_read(vcpu);
2039 	u64 data = kvm_read_edx_eax(vcpu);
2040 	int r;
2041 
2042 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2043 
2044 	if (!r) {
2045 		trace_kvm_msr_write(ecx, data);
2046 	} else {
2047 		/* MSR write failed? See if we should ask user space */
2048 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2049 				       complete_fast_msr_access, r))
2050 			return 0;
2051 		/* Signal all other negative errors to userspace */
2052 		if (r < 0)
2053 			return r;
2054 		trace_kvm_msr_write_ex(ecx, data);
2055 	}
2056 
2057 	return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2058 }
2059 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2060 
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2061 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2062 {
2063 	return kvm_skip_emulated_instruction(vcpu);
2064 }
2065 
kvm_emulate_invd(struct kvm_vcpu * vcpu)2066 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2067 {
2068 	/* Treat an INVD instruction as a NOP and just skip it. */
2069 	return kvm_emulate_as_nop(vcpu);
2070 }
2071 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2072 
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2073 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2074 {
2075 	kvm_queue_exception(vcpu, UD_VECTOR);
2076 	return 1;
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2079 
2080 
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2081 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2082 {
2083 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2084 	    !guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT))
2085 		return kvm_handle_invalid_op(vcpu);
2086 
2087 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2088 	return kvm_emulate_as_nop(vcpu);
2089 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2090 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2091 {
2092 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2093 }
2094 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2095 
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2096 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2097 {
2098 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2101 
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2102 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2103 {
2104 	xfer_to_guest_mode_prepare();
2105 
2106 	return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2107 	       kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2108 }
2109 
2110 /*
2111  * The fast path for frequent and performance sensitive wrmsr emulation,
2112  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2113  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2114  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2115  * other cases which must be called after interrupts are enabled on the host.
2116  */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2117 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2118 {
2119 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2120 		return 1;
2121 
2122 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2123 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2124 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2125 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2126 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2127 
2128 	return 1;
2129 }
2130 
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2131 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2132 {
2133 	if (!kvm_can_use_hv_timer(vcpu))
2134 		return 1;
2135 
2136 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2137 	return 0;
2138 }
2139 
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2140 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2141 {
2142 	u32 msr = kvm_rcx_read(vcpu);
2143 	u64 data;
2144 	fastpath_t ret;
2145 	bool handled;
2146 
2147 	kvm_vcpu_srcu_read_lock(vcpu);
2148 
2149 	switch (msr) {
2150 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2151 		data = kvm_read_edx_eax(vcpu);
2152 		handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
2153 		break;
2154 	case MSR_IA32_TSC_DEADLINE:
2155 		data = kvm_read_edx_eax(vcpu);
2156 		handled = !handle_fastpath_set_tscdeadline(vcpu, data);
2157 		break;
2158 	default:
2159 		handled = false;
2160 		break;
2161 	}
2162 
2163 	if (handled) {
2164 		if (!kvm_skip_emulated_instruction(vcpu))
2165 			ret = EXIT_FASTPATH_EXIT_USERSPACE;
2166 		else
2167 			ret = EXIT_FASTPATH_REENTER_GUEST;
2168 		trace_kvm_msr_write(msr, data);
2169 	} else {
2170 		ret = EXIT_FASTPATH_NONE;
2171 	}
2172 
2173 	kvm_vcpu_srcu_read_unlock(vcpu);
2174 
2175 	return ret;
2176 }
2177 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2178 
2179 /*
2180  * Adapt set_msr() to msr_io()'s calling convention
2181  */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2182 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2183 {
2184 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2185 }
2186 
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2187 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2188 {
2189 	u64 val;
2190 
2191 	/*
2192 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2193 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2194 	 * the nVMX capabilities while L2 is running is nonsensical.  Allow
2195 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2196 	 * all MSRs when emulating RESET.
2197 	 */
2198 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2199 	    (do_get_msr(vcpu, index, &val) || *data != val))
2200 		return -EINVAL;
2201 
2202 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2203 }
2204 
2205 #ifdef CONFIG_X86_64
2206 struct pvclock_clock {
2207 	int vclock_mode;
2208 	u64 cycle_last;
2209 	u64 mask;
2210 	u32 mult;
2211 	u32 shift;
2212 	u64 base_cycles;
2213 	u64 offset;
2214 };
2215 
2216 struct pvclock_gtod_data {
2217 	seqcount_t	seq;
2218 
2219 	struct pvclock_clock clock; /* extract of a clocksource struct */
2220 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2221 
2222 	ktime_t		offs_boot;
2223 	u64		wall_time_sec;
2224 };
2225 
2226 static struct pvclock_gtod_data pvclock_gtod_data;
2227 
update_pvclock_gtod(struct timekeeper * tk)2228 static void update_pvclock_gtod(struct timekeeper *tk)
2229 {
2230 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2231 
2232 	write_seqcount_begin(&vdata->seq);
2233 
2234 	/* copy pvclock gtod data */
2235 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2236 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2237 	vdata->clock.mask		= tk->tkr_mono.mask;
2238 	vdata->clock.mult		= tk->tkr_mono.mult;
2239 	vdata->clock.shift		= tk->tkr_mono.shift;
2240 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2241 	vdata->clock.offset		= tk->tkr_mono.base;
2242 
2243 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2244 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2245 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2246 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2247 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2248 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2249 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2250 
2251 	vdata->wall_time_sec            = tk->xtime_sec;
2252 
2253 	vdata->offs_boot		= tk->offs_boot;
2254 
2255 	write_seqcount_end(&vdata->seq);
2256 }
2257 
get_kvmclock_base_ns(void)2258 static s64 get_kvmclock_base_ns(void)
2259 {
2260 	/* Count up from boot time, but with the frequency of the raw clock.  */
2261 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2262 }
2263 #else
get_kvmclock_base_ns(void)2264 static s64 get_kvmclock_base_ns(void)
2265 {
2266 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2267 	return ktime_get_boottime_ns();
2268 }
2269 #endif
2270 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2271 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2272 {
2273 	int version;
2274 	int r;
2275 	struct pvclock_wall_clock wc;
2276 	u32 wc_sec_hi;
2277 	u64 wall_nsec;
2278 
2279 	if (!wall_clock)
2280 		return;
2281 
2282 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2283 	if (r)
2284 		return;
2285 
2286 	if (version & 1)
2287 		++version;  /* first time write, random junk */
2288 
2289 	++version;
2290 
2291 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2292 		return;
2293 
2294 	wall_nsec = kvm_get_wall_clock_epoch(kvm);
2295 
2296 	wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2297 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2298 	wc.version = version;
2299 
2300 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2301 
2302 	if (sec_hi_ofs) {
2303 		wc_sec_hi = wall_nsec >> 32;
2304 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2305 				&wc_sec_hi, sizeof(wc_sec_hi));
2306 	}
2307 
2308 	version++;
2309 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2310 }
2311 
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2312 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2313 				  bool old_msr, bool host_initiated)
2314 {
2315 	struct kvm_arch *ka = &vcpu->kvm->arch;
2316 
2317 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2318 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2319 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2320 
2321 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2322 	}
2323 
2324 	vcpu->arch.time = system_time;
2325 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2326 
2327 	/* we verify if the enable bit is set... */
2328 	if (system_time & 1)
2329 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2330 				 sizeof(struct pvclock_vcpu_time_info));
2331 	else
2332 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2333 
2334 	return;
2335 }
2336 
div_frac(uint32_t dividend,uint32_t divisor)2337 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2338 {
2339 	do_shl32_div32(dividend, divisor);
2340 	return dividend;
2341 }
2342 
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2343 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2344 			       s8 *pshift, u32 *pmultiplier)
2345 {
2346 	uint64_t scaled64;
2347 	int32_t  shift = 0;
2348 	uint64_t tps64;
2349 	uint32_t tps32;
2350 
2351 	tps64 = base_hz;
2352 	scaled64 = scaled_hz;
2353 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2354 		tps64 >>= 1;
2355 		shift--;
2356 	}
2357 
2358 	tps32 = (uint32_t)tps64;
2359 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2360 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2361 			scaled64 >>= 1;
2362 		else
2363 			tps32 <<= 1;
2364 		shift++;
2365 	}
2366 
2367 	*pshift = shift;
2368 	*pmultiplier = div_frac(scaled64, tps32);
2369 }
2370 
2371 #ifdef CONFIG_X86_64
2372 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2373 #endif
2374 
2375 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2376 static unsigned long max_tsc_khz;
2377 
adjust_tsc_khz(u32 khz,s32 ppm)2378 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2379 {
2380 	u64 v = (u64)khz * (1000000 + ppm);
2381 	do_div(v, 1000000);
2382 	return v;
2383 }
2384 
2385 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2386 
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2387 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2388 {
2389 	u64 ratio;
2390 
2391 	/* Guest TSC same frequency as host TSC? */
2392 	if (!scale) {
2393 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2394 		return 0;
2395 	}
2396 
2397 	/* TSC scaling supported? */
2398 	if (!kvm_caps.has_tsc_control) {
2399 		if (user_tsc_khz > tsc_khz) {
2400 			vcpu->arch.tsc_catchup = 1;
2401 			vcpu->arch.tsc_always_catchup = 1;
2402 			return 0;
2403 		} else {
2404 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2405 			return -1;
2406 		}
2407 	}
2408 
2409 	/* TSC scaling required  - calculate ratio */
2410 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2411 				user_tsc_khz, tsc_khz);
2412 
2413 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2414 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2415 			            user_tsc_khz);
2416 		return -1;
2417 	}
2418 
2419 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2420 	return 0;
2421 }
2422 
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2423 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2424 {
2425 	u32 thresh_lo, thresh_hi;
2426 	int use_scaling = 0;
2427 
2428 	/* tsc_khz can be zero if TSC calibration fails */
2429 	if (user_tsc_khz == 0) {
2430 		/* set tsc_scaling_ratio to a safe value */
2431 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2432 		return -1;
2433 	}
2434 
2435 	/* Compute a scale to convert nanoseconds in TSC cycles */
2436 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2437 			   &vcpu->arch.virtual_tsc_shift,
2438 			   &vcpu->arch.virtual_tsc_mult);
2439 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2440 
2441 	/*
2442 	 * Compute the variation in TSC rate which is acceptable
2443 	 * within the range of tolerance and decide if the
2444 	 * rate being applied is within that bounds of the hardware
2445 	 * rate.  If so, no scaling or compensation need be done.
2446 	 */
2447 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2448 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2449 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2450 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2451 			 user_tsc_khz, thresh_lo, thresh_hi);
2452 		use_scaling = 1;
2453 	}
2454 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2455 }
2456 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2457 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2458 {
2459 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2460 				      vcpu->arch.virtual_tsc_mult,
2461 				      vcpu->arch.virtual_tsc_shift);
2462 	tsc += vcpu->arch.this_tsc_write;
2463 	return tsc;
2464 }
2465 
2466 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2467 static inline bool gtod_is_based_on_tsc(int mode)
2468 {
2469 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2470 }
2471 #endif
2472 
kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2473 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2474 {
2475 #ifdef CONFIG_X86_64
2476 	struct kvm_arch *ka = &vcpu->kvm->arch;
2477 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2478 
2479 	/*
2480 	 * To use the masterclock, the host clocksource must be based on TSC
2481 	 * and all vCPUs must have matching TSCs.  Note, the count for matching
2482 	 * vCPUs doesn't include the reference vCPU, hence "+1".
2483 	 */
2484 	bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2485 				 atomic_read(&vcpu->kvm->online_vcpus)) &&
2486 				gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2487 
2488 	/*
2489 	 * Request a masterclock update if the masterclock needs to be toggled
2490 	 * on/off, or when starting a new generation and the masterclock is
2491 	 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2492 	 * taken _after_ the new generation is created).
2493 	 */
2494 	if ((ka->use_master_clock && new_generation) ||
2495 	    (ka->use_master_clock != use_master_clock))
2496 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2497 
2498 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2499 			    atomic_read(&vcpu->kvm->online_vcpus),
2500 		            ka->use_master_clock, gtod->clock.vclock_mode);
2501 #endif
2502 }
2503 
2504 /*
2505  * Multiply tsc by a fixed point number represented by ratio.
2506  *
2507  * The most significant 64-N bits (mult) of ratio represent the
2508  * integral part of the fixed point number; the remaining N bits
2509  * (frac) represent the fractional part, ie. ratio represents a fixed
2510  * point number (mult + frac * 2^(-N)).
2511  *
2512  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2513  */
__scale_tsc(u64 ratio,u64 tsc)2514 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2515 {
2516 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2517 }
2518 
kvm_scale_tsc(u64 tsc,u64 ratio)2519 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2520 {
2521 	u64 _tsc = tsc;
2522 
2523 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2524 		_tsc = __scale_tsc(ratio, tsc);
2525 
2526 	return _tsc;
2527 }
2528 
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2529 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2530 {
2531 	u64 tsc;
2532 
2533 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2534 
2535 	return target_tsc - tsc;
2536 }
2537 
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2538 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2539 {
2540 	return vcpu->arch.l1_tsc_offset +
2541 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2542 }
2543 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2544 
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2545 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2546 {
2547 	u64 nested_offset;
2548 
2549 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2550 		nested_offset = l1_offset;
2551 	else
2552 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2553 						kvm_caps.tsc_scaling_ratio_frac_bits);
2554 
2555 	nested_offset += l2_offset;
2556 	return nested_offset;
2557 }
2558 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2559 
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2560 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2561 {
2562 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2563 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2564 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2565 
2566 	return l1_multiplier;
2567 }
2568 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2569 
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2570 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2571 {
2572 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2573 				   vcpu->arch.l1_tsc_offset,
2574 				   l1_offset);
2575 
2576 	vcpu->arch.l1_tsc_offset = l1_offset;
2577 
2578 	/*
2579 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2580 	 * according to the spec this should set L1's TSC (as opposed to
2581 	 * setting L1's offset for L2).
2582 	 */
2583 	if (is_guest_mode(vcpu))
2584 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2585 			l1_offset,
2586 			kvm_x86_call(get_l2_tsc_offset)(vcpu),
2587 			kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2588 	else
2589 		vcpu->arch.tsc_offset = l1_offset;
2590 
2591 	kvm_x86_call(write_tsc_offset)(vcpu);
2592 }
2593 
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2594 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2595 {
2596 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2597 
2598 	/* Userspace is changing the multiplier while L2 is active */
2599 	if (is_guest_mode(vcpu))
2600 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2601 			l1_multiplier,
2602 			kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2603 	else
2604 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2605 
2606 	if (kvm_caps.has_tsc_control)
2607 		kvm_x86_call(write_tsc_multiplier)(vcpu);
2608 }
2609 
kvm_check_tsc_unstable(void)2610 static inline bool kvm_check_tsc_unstable(void)
2611 {
2612 #ifdef CONFIG_X86_64
2613 	/*
2614 	 * TSC is marked unstable when we're running on Hyper-V,
2615 	 * 'TSC page' clocksource is good.
2616 	 */
2617 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2618 		return false;
2619 #endif
2620 	return check_tsc_unstable();
2621 }
2622 
2623 /*
2624  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2625  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2626  * participates in.
2627  */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched)2628 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2629 				  u64 ns, bool matched)
2630 {
2631 	struct kvm *kvm = vcpu->kvm;
2632 
2633 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2634 
2635 	/*
2636 	 * We also track th most recent recorded KHZ, write and time to
2637 	 * allow the matching interval to be extended at each write.
2638 	 */
2639 	kvm->arch.last_tsc_nsec = ns;
2640 	kvm->arch.last_tsc_write = tsc;
2641 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2642 	kvm->arch.last_tsc_offset = offset;
2643 
2644 	vcpu->arch.last_guest_tsc = tsc;
2645 
2646 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2647 
2648 	if (!matched) {
2649 		/*
2650 		 * We split periods of matched TSC writes into generations.
2651 		 * For each generation, we track the original measured
2652 		 * nanosecond time, offset, and write, so if TSCs are in
2653 		 * sync, we can match exact offset, and if not, we can match
2654 		 * exact software computation in compute_guest_tsc()
2655 		 *
2656 		 * These values are tracked in kvm->arch.cur_xxx variables.
2657 		 */
2658 		kvm->arch.cur_tsc_generation++;
2659 		kvm->arch.cur_tsc_nsec = ns;
2660 		kvm->arch.cur_tsc_write = tsc;
2661 		kvm->arch.cur_tsc_offset = offset;
2662 		kvm->arch.nr_vcpus_matched_tsc = 0;
2663 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2664 		kvm->arch.nr_vcpus_matched_tsc++;
2665 	}
2666 
2667 	/* Keep track of which generation this VCPU has synchronized to */
2668 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2669 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2670 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2671 
2672 	kvm_track_tsc_matching(vcpu, !matched);
2673 }
2674 
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2675 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2676 {
2677 	u64 data = user_value ? *user_value : 0;
2678 	struct kvm *kvm = vcpu->kvm;
2679 	u64 offset, ns, elapsed;
2680 	unsigned long flags;
2681 	bool matched = false;
2682 	bool synchronizing = false;
2683 
2684 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2685 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2686 	ns = get_kvmclock_base_ns();
2687 	elapsed = ns - kvm->arch.last_tsc_nsec;
2688 
2689 	if (vcpu->arch.virtual_tsc_khz) {
2690 		if (data == 0) {
2691 			/*
2692 			 * Force synchronization when creating a vCPU, or when
2693 			 * userspace explicitly writes a zero value.
2694 			 */
2695 			synchronizing = true;
2696 		} else if (kvm->arch.user_set_tsc) {
2697 			u64 tsc_exp = kvm->arch.last_tsc_write +
2698 						nsec_to_cycles(vcpu, elapsed);
2699 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2700 			/*
2701 			 * Here lies UAPI baggage: when a user-initiated TSC write has
2702 			 * a small delta (1 second) of virtual cycle time against the
2703 			 * previously set vCPU, we assume that they were intended to be
2704 			 * in sync and the delta was only due to the racy nature of the
2705 			 * legacy API.
2706 			 *
2707 			 * This trick falls down when restoring a guest which genuinely
2708 			 * has been running for less time than the 1 second of imprecision
2709 			 * which we allow for in the legacy API. In this case, the first
2710 			 * value written by userspace (on any vCPU) should not be subject
2711 			 * to this 'correction' to make it sync up with values that only
2712 			 * come from the kernel's default vCPU creation. Make the 1-second
2713 			 * slop hack only trigger if the user_set_tsc flag is already set.
2714 			 */
2715 			synchronizing = data < tsc_exp + tsc_hz &&
2716 					data + tsc_hz > tsc_exp;
2717 		}
2718 	}
2719 
2720 	if (user_value)
2721 		kvm->arch.user_set_tsc = true;
2722 
2723 	/*
2724 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2725 	 * TSC, we add elapsed time in this computation.  We could let the
2726 	 * compensation code attempt to catch up if we fall behind, but
2727 	 * it's better to try to match offsets from the beginning.
2728          */
2729 	if (synchronizing &&
2730 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2731 		if (!kvm_check_tsc_unstable()) {
2732 			offset = kvm->arch.cur_tsc_offset;
2733 		} else {
2734 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2735 			data += delta;
2736 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2737 		}
2738 		matched = true;
2739 	}
2740 
2741 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2742 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2743 }
2744 
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2745 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2746 					   s64 adjustment)
2747 {
2748 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2749 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2750 }
2751 
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2752 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2753 {
2754 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2755 		WARN_ON(adjustment < 0);
2756 	adjustment = kvm_scale_tsc((u64) adjustment,
2757 				   vcpu->arch.l1_tsc_scaling_ratio);
2758 	adjust_tsc_offset_guest(vcpu, adjustment);
2759 }
2760 
2761 #ifdef CONFIG_X86_64
2762 
read_tsc(void)2763 static u64 read_tsc(void)
2764 {
2765 	u64 ret = (u64)rdtsc_ordered();
2766 	u64 last = pvclock_gtod_data.clock.cycle_last;
2767 
2768 	if (likely(ret >= last))
2769 		return ret;
2770 
2771 	/*
2772 	 * GCC likes to generate cmov here, but this branch is extremely
2773 	 * predictable (it's just a function of time and the likely is
2774 	 * very likely) and there's a data dependence, so force GCC
2775 	 * to generate a branch instead.  I don't barrier() because
2776 	 * we don't actually need a barrier, and if this function
2777 	 * ever gets inlined it will generate worse code.
2778 	 */
2779 	asm volatile ("");
2780 	return last;
2781 }
2782 
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2783 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2784 			  int *mode)
2785 {
2786 	u64 tsc_pg_val;
2787 	long v;
2788 
2789 	switch (clock->vclock_mode) {
2790 	case VDSO_CLOCKMODE_HVCLOCK:
2791 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2792 					 tsc_timestamp, &tsc_pg_val)) {
2793 			/* TSC page valid */
2794 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2795 			v = (tsc_pg_val - clock->cycle_last) &
2796 				clock->mask;
2797 		} else {
2798 			/* TSC page invalid */
2799 			*mode = VDSO_CLOCKMODE_NONE;
2800 		}
2801 		break;
2802 	case VDSO_CLOCKMODE_TSC:
2803 		*mode = VDSO_CLOCKMODE_TSC;
2804 		*tsc_timestamp = read_tsc();
2805 		v = (*tsc_timestamp - clock->cycle_last) &
2806 			clock->mask;
2807 		break;
2808 	default:
2809 		*mode = VDSO_CLOCKMODE_NONE;
2810 	}
2811 
2812 	if (*mode == VDSO_CLOCKMODE_NONE)
2813 		*tsc_timestamp = v = 0;
2814 
2815 	return v * clock->mult;
2816 }
2817 
2818 /*
2819  * As with get_kvmclock_base_ns(), this counts from boot time, at the
2820  * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2821  */
do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2822 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2823 {
2824 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2825 	unsigned long seq;
2826 	int mode;
2827 	u64 ns;
2828 
2829 	do {
2830 		seq = read_seqcount_begin(&gtod->seq);
2831 		ns = gtod->raw_clock.base_cycles;
2832 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2833 		ns >>= gtod->raw_clock.shift;
2834 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2835 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2836 	*t = ns;
2837 
2838 	return mode;
2839 }
2840 
2841 /*
2842  * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2843  * no boot time offset.
2844  */
do_monotonic(s64 * t,u64 * tsc_timestamp)2845 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2846 {
2847 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2848 	unsigned long seq;
2849 	int mode;
2850 	u64 ns;
2851 
2852 	do {
2853 		seq = read_seqcount_begin(&gtod->seq);
2854 		ns = gtod->clock.base_cycles;
2855 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2856 		ns >>= gtod->clock.shift;
2857 		ns += ktime_to_ns(gtod->clock.offset);
2858 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2859 	*t = ns;
2860 
2861 	return mode;
2862 }
2863 
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2864 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2865 {
2866 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2867 	unsigned long seq;
2868 	int mode;
2869 	u64 ns;
2870 
2871 	do {
2872 		seq = read_seqcount_begin(&gtod->seq);
2873 		ts->tv_sec = gtod->wall_time_sec;
2874 		ns = gtod->clock.base_cycles;
2875 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2876 		ns >>= gtod->clock.shift;
2877 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2878 
2879 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2880 	ts->tv_nsec = ns;
2881 
2882 	return mode;
2883 }
2884 
2885 /*
2886  * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2887  * reports the TSC value from which it do so. Returns true if host is
2888  * using TSC based clocksource.
2889  */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2890 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2891 {
2892 	/* checked again under seqlock below */
2893 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2894 		return false;
2895 
2896 	return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2897 						     tsc_timestamp));
2898 }
2899 
2900 /*
2901  * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2902  * so. Returns true if host is using TSC based clocksource.
2903  */
kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2904 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2905 {
2906 	/* checked again under seqlock below */
2907 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2908 		return false;
2909 
2910 	return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2911 						 tsc_timestamp));
2912 }
2913 
2914 /*
2915  * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2916  * so. Returns true if host is using TSC based clocksource.
2917  *
2918  * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2919  * for that.
2920  */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2921 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2922 					   u64 *tsc_timestamp)
2923 {
2924 	/* checked again under seqlock below */
2925 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2926 		return false;
2927 
2928 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2929 }
2930 #endif
2931 
2932 /*
2933  *
2934  * Assuming a stable TSC across physical CPUS, and a stable TSC
2935  * across virtual CPUs, the following condition is possible.
2936  * Each numbered line represents an event visible to both
2937  * CPUs at the next numbered event.
2938  *
2939  * "timespecX" represents host monotonic time. "tscX" represents
2940  * RDTSC value.
2941  *
2942  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2943  *
2944  * 1.  read timespec0,tsc0
2945  * 2.					| timespec1 = timespec0 + N
2946  * 					| tsc1 = tsc0 + M
2947  * 3. transition to guest		| transition to guest
2948  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2949  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2950  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2951  *
2952  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2953  *
2954  * 	- ret0 < ret1
2955  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2956  *		...
2957  *	- 0 < N - M => M < N
2958  *
2959  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2960  * always the case (the difference between two distinct xtime instances
2961  * might be smaller then the difference between corresponding TSC reads,
2962  * when updating guest vcpus pvclock areas).
2963  *
2964  * To avoid that problem, do not allow visibility of distinct
2965  * system_timestamp/tsc_timestamp values simultaneously: use a master
2966  * copy of host monotonic time values. Update that master copy
2967  * in lockstep.
2968  *
2969  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2970  *
2971  */
2972 
pvclock_update_vm_gtod_copy(struct kvm * kvm)2973 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2974 {
2975 #ifdef CONFIG_X86_64
2976 	struct kvm_arch *ka = &kvm->arch;
2977 	int vclock_mode;
2978 	bool host_tsc_clocksource, vcpus_matched;
2979 
2980 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2981 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2982 			atomic_read(&kvm->online_vcpus));
2983 
2984 	/*
2985 	 * If the host uses TSC clock, then passthrough TSC as stable
2986 	 * to the guest.
2987 	 */
2988 	host_tsc_clocksource = kvm_get_time_and_clockread(
2989 					&ka->master_kernel_ns,
2990 					&ka->master_cycle_now);
2991 
2992 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2993 				&& !ka->backwards_tsc_observed
2994 				&& !ka->boot_vcpu_runs_old_kvmclock;
2995 
2996 	if (ka->use_master_clock)
2997 		atomic_set(&kvm_guest_has_master_clock, 1);
2998 
2999 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3000 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3001 					vcpus_matched);
3002 #endif
3003 }
3004 
kvm_make_mclock_inprogress_request(struct kvm * kvm)3005 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3006 {
3007 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3008 }
3009 
__kvm_start_pvclock_update(struct kvm * kvm)3010 static void __kvm_start_pvclock_update(struct kvm *kvm)
3011 {
3012 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3013 	write_seqcount_begin(&kvm->arch.pvclock_sc);
3014 }
3015 
kvm_start_pvclock_update(struct kvm * kvm)3016 static void kvm_start_pvclock_update(struct kvm *kvm)
3017 {
3018 	kvm_make_mclock_inprogress_request(kvm);
3019 
3020 	/* no guest entries from this point */
3021 	__kvm_start_pvclock_update(kvm);
3022 }
3023 
kvm_end_pvclock_update(struct kvm * kvm)3024 static void kvm_end_pvclock_update(struct kvm *kvm)
3025 {
3026 	struct kvm_arch *ka = &kvm->arch;
3027 	struct kvm_vcpu *vcpu;
3028 	unsigned long i;
3029 
3030 	write_seqcount_end(&ka->pvclock_sc);
3031 	raw_spin_unlock_irq(&ka->tsc_write_lock);
3032 	kvm_for_each_vcpu(i, vcpu, kvm)
3033 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3034 
3035 	/* guest entries allowed */
3036 	kvm_for_each_vcpu(i, vcpu, kvm)
3037 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3038 }
3039 
kvm_update_masterclock(struct kvm * kvm)3040 static void kvm_update_masterclock(struct kvm *kvm)
3041 {
3042 	kvm_hv_request_tsc_page_update(kvm);
3043 	kvm_start_pvclock_update(kvm);
3044 	pvclock_update_vm_gtod_copy(kvm);
3045 	kvm_end_pvclock_update(kvm);
3046 }
3047 
3048 /*
3049  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3050  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3051  * can change during boot even if the TSC is constant, as it's possible for KVM
3052  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3053  * notification when calibration completes, but practically speaking calibration
3054  * will complete before userspace is alive enough to create VMs.
3055  */
get_cpu_tsc_khz(void)3056 static unsigned long get_cpu_tsc_khz(void)
3057 {
3058 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3059 		return tsc_khz;
3060 	else
3061 		return __this_cpu_read(cpu_tsc_khz);
3062 }
3063 
3064 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3065 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3066 {
3067 	struct kvm_arch *ka = &kvm->arch;
3068 	struct pvclock_vcpu_time_info hv_clock;
3069 
3070 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3071 	get_cpu();
3072 
3073 	data->flags = 0;
3074 	if (ka->use_master_clock &&
3075 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3076 #ifdef CONFIG_X86_64
3077 		struct timespec64 ts;
3078 
3079 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3080 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3081 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3082 		} else
3083 #endif
3084 		data->host_tsc = rdtsc();
3085 
3086 		data->flags |= KVM_CLOCK_TSC_STABLE;
3087 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3088 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3089 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3090 				   &hv_clock.tsc_shift,
3091 				   &hv_clock.tsc_to_system_mul);
3092 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3093 	} else {
3094 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3095 	}
3096 
3097 	put_cpu();
3098 }
3099 
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3100 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3101 {
3102 	struct kvm_arch *ka = &kvm->arch;
3103 	unsigned seq;
3104 
3105 	do {
3106 		seq = read_seqcount_begin(&ka->pvclock_sc);
3107 		__get_kvmclock(kvm, data);
3108 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3109 }
3110 
get_kvmclock_ns(struct kvm * kvm)3111 u64 get_kvmclock_ns(struct kvm *kvm)
3112 {
3113 	struct kvm_clock_data data;
3114 
3115 	get_kvmclock(kvm, &data);
3116 	return data.clock;
3117 }
3118 
kvm_setup_guest_pvclock(struct kvm_vcpu * v,struct gfn_to_pfn_cache * gpc,unsigned int offset,bool force_tsc_unstable)3119 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3120 				    struct gfn_to_pfn_cache *gpc,
3121 				    unsigned int offset,
3122 				    bool force_tsc_unstable)
3123 {
3124 	struct kvm_vcpu_arch *vcpu = &v->arch;
3125 	struct pvclock_vcpu_time_info *guest_hv_clock;
3126 	unsigned long flags;
3127 
3128 	read_lock_irqsave(&gpc->lock, flags);
3129 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3130 		read_unlock_irqrestore(&gpc->lock, flags);
3131 
3132 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3133 			return;
3134 
3135 		read_lock_irqsave(&gpc->lock, flags);
3136 	}
3137 
3138 	guest_hv_clock = (void *)(gpc->khva + offset);
3139 
3140 	/*
3141 	 * This VCPU is paused, but it's legal for a guest to read another
3142 	 * VCPU's kvmclock, so we really have to follow the specification where
3143 	 * it says that version is odd if data is being modified, and even after
3144 	 * it is consistent.
3145 	 */
3146 
3147 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3148 	smp_wmb();
3149 
3150 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3151 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3152 
3153 	if (vcpu->pvclock_set_guest_stopped_request) {
3154 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3155 		vcpu->pvclock_set_guest_stopped_request = false;
3156 	}
3157 
3158 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3159 
3160 	if (force_tsc_unstable)
3161 		guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3162 
3163 	smp_wmb();
3164 
3165 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3166 
3167 	kvm_gpc_mark_dirty_in_slot(gpc);
3168 	read_unlock_irqrestore(&gpc->lock, flags);
3169 
3170 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3171 }
3172 
kvm_guest_time_update(struct kvm_vcpu * v)3173 static int kvm_guest_time_update(struct kvm_vcpu *v)
3174 {
3175 	unsigned long flags, tgt_tsc_khz;
3176 	unsigned seq;
3177 	struct kvm_vcpu_arch *vcpu = &v->arch;
3178 	struct kvm_arch *ka = &v->kvm->arch;
3179 	s64 kernel_ns;
3180 	u64 tsc_timestamp, host_tsc;
3181 	u8 pvclock_flags;
3182 	bool use_master_clock;
3183 #ifdef CONFIG_KVM_XEN
3184 	/*
3185 	 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3186 	 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3187 	 * This default behaviour led to bugs in some guest kernels which cause
3188 	 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3189 	 */
3190 	bool xen_pvclock_tsc_unstable =
3191 		ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3192 #endif
3193 
3194 	kernel_ns = 0;
3195 	host_tsc = 0;
3196 
3197 	/*
3198 	 * If the host uses TSC clock, then passthrough TSC as stable
3199 	 * to the guest.
3200 	 */
3201 	do {
3202 		seq = read_seqcount_begin(&ka->pvclock_sc);
3203 		use_master_clock = ka->use_master_clock;
3204 		if (use_master_clock) {
3205 			host_tsc = ka->master_cycle_now;
3206 			kernel_ns = ka->master_kernel_ns;
3207 		}
3208 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3209 
3210 	/* Keep irq disabled to prevent changes to the clock */
3211 	local_irq_save(flags);
3212 	tgt_tsc_khz = get_cpu_tsc_khz();
3213 	if (unlikely(tgt_tsc_khz == 0)) {
3214 		local_irq_restore(flags);
3215 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3216 		return 1;
3217 	}
3218 	if (!use_master_clock) {
3219 		host_tsc = rdtsc();
3220 		kernel_ns = get_kvmclock_base_ns();
3221 	}
3222 
3223 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3224 
3225 	/*
3226 	 * We may have to catch up the TSC to match elapsed wall clock
3227 	 * time for two reasons, even if kvmclock is used.
3228 	 *   1) CPU could have been running below the maximum TSC rate
3229 	 *   2) Broken TSC compensation resets the base at each VCPU
3230 	 *      entry to avoid unknown leaps of TSC even when running
3231 	 *      again on the same CPU.  This may cause apparent elapsed
3232 	 *      time to disappear, and the guest to stand still or run
3233 	 *	very slowly.
3234 	 */
3235 	if (vcpu->tsc_catchup) {
3236 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3237 		if (tsc > tsc_timestamp) {
3238 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3239 			tsc_timestamp = tsc;
3240 		}
3241 	}
3242 
3243 	local_irq_restore(flags);
3244 
3245 	/* With all the info we got, fill in the values */
3246 
3247 	if (kvm_caps.has_tsc_control)
3248 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3249 					    v->arch.l1_tsc_scaling_ratio);
3250 
3251 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3252 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3253 				   &vcpu->hv_clock.tsc_shift,
3254 				   &vcpu->hv_clock.tsc_to_system_mul);
3255 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3256 		kvm_xen_update_tsc_info(v);
3257 	}
3258 
3259 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3260 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3261 	vcpu->last_guest_tsc = tsc_timestamp;
3262 
3263 	/* If the host uses TSC clocksource, then it is stable */
3264 	pvclock_flags = 0;
3265 	if (use_master_clock)
3266 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3267 
3268 	vcpu->hv_clock.flags = pvclock_flags;
3269 
3270 	if (vcpu->pv_time.active)
3271 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3272 #ifdef CONFIG_KVM_XEN
3273 	if (vcpu->xen.vcpu_info_cache.active)
3274 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3275 					offsetof(struct compat_vcpu_info, time),
3276 					xen_pvclock_tsc_unstable);
3277 	if (vcpu->xen.vcpu_time_info_cache.active)
3278 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3279 					xen_pvclock_tsc_unstable);
3280 #endif
3281 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3282 	return 0;
3283 }
3284 
3285 /*
3286  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3287  * which it started (i.e. its epoch, when its kvmclock was zero).
3288  *
3289  * In fact those clocks are subtly different; wall clock frequency is
3290  * adjusted by NTP and has leap seconds, while the kvmclock is a
3291  * simple function of the TSC without any such adjustment.
3292  *
3293  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3294  * that and kvmclock, but even that would be subject to change over
3295  * time.
3296  *
3297  * Attempt to calculate the epoch at a given moment using the *same*
3298  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3299  * wallclock and kvmclock times, and subtracting one from the other.
3300  *
3301  * Fall back to using their values at slightly different moments by
3302  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3303  */
kvm_get_wall_clock_epoch(struct kvm * kvm)3304 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3305 {
3306 #ifdef CONFIG_X86_64
3307 	struct pvclock_vcpu_time_info hv_clock;
3308 	struct kvm_arch *ka = &kvm->arch;
3309 	unsigned long seq, local_tsc_khz;
3310 	struct timespec64 ts;
3311 	uint64_t host_tsc;
3312 
3313 	do {
3314 		seq = read_seqcount_begin(&ka->pvclock_sc);
3315 
3316 		local_tsc_khz = 0;
3317 		if (!ka->use_master_clock)
3318 			break;
3319 
3320 		/*
3321 		 * The TSC read and the call to get_cpu_tsc_khz() must happen
3322 		 * on the same CPU.
3323 		 */
3324 		get_cpu();
3325 
3326 		local_tsc_khz = get_cpu_tsc_khz();
3327 
3328 		if (local_tsc_khz &&
3329 		    !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3330 			local_tsc_khz = 0; /* Fall back to old method */
3331 
3332 		put_cpu();
3333 
3334 		/*
3335 		 * These values must be snapshotted within the seqcount loop.
3336 		 * After that, it's just mathematics which can happen on any
3337 		 * CPU at any time.
3338 		 */
3339 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3340 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3341 
3342 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3343 
3344 	/*
3345 	 * If the conditions were right, and obtaining the wallclock+TSC was
3346 	 * successful, calculate the KVM clock at the corresponding time and
3347 	 * subtract one from the other to get the guest's epoch in nanoseconds
3348 	 * since 1970-01-01.
3349 	 */
3350 	if (local_tsc_khz) {
3351 		kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3352 				   &hv_clock.tsc_shift,
3353 				   &hv_clock.tsc_to_system_mul);
3354 		return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3355 			__pvclock_read_cycles(&hv_clock, host_tsc);
3356 	}
3357 #endif
3358 	return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3359 }
3360 
3361 /*
3362  * kvmclock updates which are isolated to a given vcpu, such as
3363  * vcpu->cpu migration, should not allow system_timestamp from
3364  * the rest of the vcpus to remain static. Otherwise ntp frequency
3365  * correction applies to one vcpu's system_timestamp but not
3366  * the others.
3367  *
3368  * So in those cases, request a kvmclock update for all vcpus.
3369  * We need to rate-limit these requests though, as they can
3370  * considerably slow guests that have a large number of vcpus.
3371  * The time for a remote vcpu to update its kvmclock is bound
3372  * by the delay we use to rate-limit the updates.
3373  */
3374 
3375 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3376 
kvmclock_update_fn(struct work_struct * work)3377 static void kvmclock_update_fn(struct work_struct *work)
3378 {
3379 	unsigned long i;
3380 	struct delayed_work *dwork = to_delayed_work(work);
3381 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3382 					   kvmclock_update_work);
3383 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3384 	struct kvm_vcpu *vcpu;
3385 
3386 	kvm_for_each_vcpu(i, vcpu, kvm) {
3387 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3388 		kvm_vcpu_kick(vcpu);
3389 	}
3390 }
3391 
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3392 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3393 {
3394 	struct kvm *kvm = v->kvm;
3395 
3396 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3397 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3398 					KVMCLOCK_UPDATE_DELAY);
3399 }
3400 
3401 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3402 
kvmclock_sync_fn(struct work_struct * work)3403 static void kvmclock_sync_fn(struct work_struct *work)
3404 {
3405 	struct delayed_work *dwork = to_delayed_work(work);
3406 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3407 					   kvmclock_sync_work);
3408 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3409 
3410 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3411 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3412 					KVMCLOCK_SYNC_PERIOD);
3413 }
3414 
3415 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3416 static bool is_mci_control_msr(u32 msr)
3417 {
3418 	return (msr & 3) == 0;
3419 }
is_mci_status_msr(u32 msr)3420 static bool is_mci_status_msr(u32 msr)
3421 {
3422 	return (msr & 3) == 1;
3423 }
3424 
3425 /*
3426  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3427  */
can_set_mci_status(struct kvm_vcpu * vcpu)3428 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3429 {
3430 	/* McStatusWrEn enabled? */
3431 	if (guest_cpuid_is_amd_compatible(vcpu))
3432 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3433 
3434 	return false;
3435 }
3436 
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3437 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3438 {
3439 	u64 mcg_cap = vcpu->arch.mcg_cap;
3440 	unsigned bank_num = mcg_cap & 0xff;
3441 	u32 msr = msr_info->index;
3442 	u64 data = msr_info->data;
3443 	u32 offset, last_msr;
3444 
3445 	switch (msr) {
3446 	case MSR_IA32_MCG_STATUS:
3447 		vcpu->arch.mcg_status = data;
3448 		break;
3449 	case MSR_IA32_MCG_CTL:
3450 		if (!(mcg_cap & MCG_CTL_P) &&
3451 		    (data || !msr_info->host_initiated))
3452 			return 1;
3453 		if (data != 0 && data != ~(u64)0)
3454 			return 1;
3455 		vcpu->arch.mcg_ctl = data;
3456 		break;
3457 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3458 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3459 		if (msr > last_msr)
3460 			return 1;
3461 
3462 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3463 			return 1;
3464 		/* An attempt to write a 1 to a reserved bit raises #GP */
3465 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3466 			return 1;
3467 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3468 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3469 		vcpu->arch.mci_ctl2_banks[offset] = data;
3470 		break;
3471 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3472 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3473 		if (msr > last_msr)
3474 			return 1;
3475 
3476 		/*
3477 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3478 		 * values are architecturally undefined.  But, some Linux
3479 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3480 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3481 		 * other bits in order to avoid an uncaught #GP in the guest.
3482 		 *
3483 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3484 		 * single-bit ECC data errors.
3485 		 */
3486 		if (is_mci_control_msr(msr) &&
3487 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3488 			return 1;
3489 
3490 		/*
3491 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3492 		 * AMD-based CPUs allow non-zero values, but if and only if
3493 		 * HWCR[McStatusWrEn] is set.
3494 		 */
3495 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3496 		    data != 0 && !can_set_mci_status(vcpu))
3497 			return 1;
3498 
3499 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3500 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3501 		vcpu->arch.mce_banks[offset] = data;
3502 		break;
3503 	default:
3504 		return 1;
3505 	}
3506 	return 0;
3507 }
3508 
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3509 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3510 {
3511 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3512 
3513 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3514 }
3515 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3516 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3517 {
3518 	gpa_t gpa = data & ~0x3f;
3519 
3520 	/* Bits 4:5 are reserved, Should be zero */
3521 	if (data & 0x30)
3522 		return 1;
3523 
3524 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3525 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3526 		return 1;
3527 
3528 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3529 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3530 		return 1;
3531 
3532 	if (!lapic_in_kernel(vcpu))
3533 		return data ? 1 : 0;
3534 
3535 	vcpu->arch.apf.msr_en_val = data;
3536 
3537 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3538 		kvm_clear_async_pf_completion_queue(vcpu);
3539 		kvm_async_pf_hash_reset(vcpu);
3540 		return 0;
3541 	}
3542 
3543 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3544 					sizeof(u64)))
3545 		return 1;
3546 
3547 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3548 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3549 
3550 	kvm_async_pf_wakeup_all(vcpu);
3551 
3552 	return 0;
3553 }
3554 
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3555 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3556 {
3557 	/* Bits 8-63 are reserved */
3558 	if (data >> 8)
3559 		return 1;
3560 
3561 	if (!lapic_in_kernel(vcpu))
3562 		return 1;
3563 
3564 	vcpu->arch.apf.msr_int_val = data;
3565 
3566 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3567 
3568 	return 0;
3569 }
3570 
kvmclock_reset(struct kvm_vcpu * vcpu)3571 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3572 {
3573 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3574 	vcpu->arch.time = 0;
3575 }
3576 
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3577 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3578 {
3579 	++vcpu->stat.tlb_flush;
3580 	kvm_x86_call(flush_tlb_all)(vcpu);
3581 
3582 	/* Flushing all ASIDs flushes the current ASID... */
3583 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3584 }
3585 
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3586 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3587 {
3588 	++vcpu->stat.tlb_flush;
3589 
3590 	if (!tdp_enabled) {
3591 		/*
3592 		 * A TLB flush on behalf of the guest is equivalent to
3593 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3594 		 * a forced sync of the shadow page tables.  Ensure all the
3595 		 * roots are synced and the guest TLB in hardware is clean.
3596 		 */
3597 		kvm_mmu_sync_roots(vcpu);
3598 		kvm_mmu_sync_prev_roots(vcpu);
3599 	}
3600 
3601 	kvm_x86_call(flush_tlb_guest)(vcpu);
3602 
3603 	/*
3604 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3605 	 * grained flushing.
3606 	 */
3607 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3608 }
3609 
3610 
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3611 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3612 {
3613 	++vcpu->stat.tlb_flush;
3614 	kvm_x86_call(flush_tlb_current)(vcpu);
3615 }
3616 
3617 /*
3618  * Service "local" TLB flush requests, which are specific to the current MMU
3619  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3620  * TLB flushes that are targeted at an MMU context also need to be serviced
3621  * prior before nested VM-Enter/VM-Exit.
3622  */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3623 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3624 {
3625 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3626 		kvm_vcpu_flush_tlb_current(vcpu);
3627 
3628 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3629 		kvm_vcpu_flush_tlb_guest(vcpu);
3630 }
3631 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3632 
record_steal_time(struct kvm_vcpu * vcpu)3633 static void record_steal_time(struct kvm_vcpu *vcpu)
3634 {
3635 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3636 	struct kvm_steal_time __user *st;
3637 	struct kvm_memslots *slots;
3638 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3639 	u64 steal;
3640 	u32 version;
3641 
3642 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3643 		kvm_xen_runstate_set_running(vcpu);
3644 		return;
3645 	}
3646 
3647 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3648 		return;
3649 
3650 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3651 		return;
3652 
3653 	slots = kvm_memslots(vcpu->kvm);
3654 
3655 	if (unlikely(slots->generation != ghc->generation ||
3656 		     gpa != ghc->gpa ||
3657 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3658 		/* We rely on the fact that it fits in a single page. */
3659 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3660 
3661 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3662 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3663 			return;
3664 	}
3665 
3666 	st = (struct kvm_steal_time __user *)ghc->hva;
3667 	/*
3668 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3669 	 * expensive IPIs.
3670 	 */
3671 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3672 		u8 st_preempted = 0;
3673 		int err = -EFAULT;
3674 
3675 		if (!user_access_begin(st, sizeof(*st)))
3676 			return;
3677 
3678 		asm volatile("1: xchgb %0, %2\n"
3679 			     "xor %1, %1\n"
3680 			     "2:\n"
3681 			     _ASM_EXTABLE_UA(1b, 2b)
3682 			     : "+q" (st_preempted),
3683 			       "+&r" (err),
3684 			       "+m" (st->preempted));
3685 		if (err)
3686 			goto out;
3687 
3688 		user_access_end();
3689 
3690 		vcpu->arch.st.preempted = 0;
3691 
3692 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3693 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3694 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3695 			kvm_vcpu_flush_tlb_guest(vcpu);
3696 
3697 		if (!user_access_begin(st, sizeof(*st)))
3698 			goto dirty;
3699 	} else {
3700 		if (!user_access_begin(st, sizeof(*st)))
3701 			return;
3702 
3703 		unsafe_put_user(0, &st->preempted, out);
3704 		vcpu->arch.st.preempted = 0;
3705 	}
3706 
3707 	unsafe_get_user(version, &st->version, out);
3708 	if (version & 1)
3709 		version += 1;  /* first time write, random junk */
3710 
3711 	version += 1;
3712 	unsafe_put_user(version, &st->version, out);
3713 
3714 	smp_wmb();
3715 
3716 	unsafe_get_user(steal, &st->steal, out);
3717 	steal += current->sched_info.run_delay -
3718 		vcpu->arch.st.last_steal;
3719 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3720 	unsafe_put_user(steal, &st->steal, out);
3721 
3722 	version += 1;
3723 	unsafe_put_user(version, &st->version, out);
3724 
3725  out:
3726 	user_access_end();
3727  dirty:
3728 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3729 }
3730 
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3731 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3732 {
3733 	u32 msr = msr_info->index;
3734 	u64 data = msr_info->data;
3735 
3736 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3737 		return kvm_xen_write_hypercall_page(vcpu, data);
3738 
3739 	switch (msr) {
3740 	case MSR_AMD64_NB_CFG:
3741 	case MSR_IA32_UCODE_WRITE:
3742 	case MSR_VM_HSAVE_PA:
3743 	case MSR_AMD64_PATCH_LOADER:
3744 	case MSR_AMD64_BU_CFG2:
3745 	case MSR_AMD64_DC_CFG:
3746 	case MSR_AMD64_TW_CFG:
3747 	case MSR_F15H_EX_CFG:
3748 		break;
3749 
3750 	case MSR_IA32_UCODE_REV:
3751 		if (msr_info->host_initiated)
3752 			vcpu->arch.microcode_version = data;
3753 		break;
3754 	case MSR_IA32_ARCH_CAPABILITIES:
3755 		if (!msr_info->host_initiated ||
3756 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3757 			return KVM_MSR_RET_UNSUPPORTED;
3758 		vcpu->arch.arch_capabilities = data;
3759 		break;
3760 	case MSR_IA32_PERF_CAPABILITIES:
3761 		if (!msr_info->host_initiated ||
3762 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
3763 			return KVM_MSR_RET_UNSUPPORTED;
3764 
3765 		if (data & ~kvm_caps.supported_perf_cap)
3766 			return 1;
3767 
3768 		/*
3769 		 * Note, this is not just a performance optimization!  KVM
3770 		 * disallows changing feature MSRs after the vCPU has run; PMU
3771 		 * refresh will bug the VM if called after the vCPU has run.
3772 		 */
3773 		if (vcpu->arch.perf_capabilities == data)
3774 			break;
3775 
3776 		vcpu->arch.perf_capabilities = data;
3777 		kvm_pmu_refresh(vcpu);
3778 		break;
3779 	case MSR_IA32_PRED_CMD: {
3780 		u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3781 
3782 		if (!msr_info->host_initiated) {
3783 			if ((!guest_has_pred_cmd_msr(vcpu)))
3784 				return 1;
3785 
3786 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3787 			    !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB))
3788 				reserved_bits |= PRED_CMD_IBPB;
3789 
3790 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB))
3791 				reserved_bits |= PRED_CMD_SBPB;
3792 		}
3793 
3794 		if (!boot_cpu_has(X86_FEATURE_IBPB))
3795 			reserved_bits |= PRED_CMD_IBPB;
3796 
3797 		if (!boot_cpu_has(X86_FEATURE_SBPB))
3798 			reserved_bits |= PRED_CMD_SBPB;
3799 
3800 		if (data & reserved_bits)
3801 			return 1;
3802 
3803 		if (!data)
3804 			break;
3805 
3806 		wrmsrl(MSR_IA32_PRED_CMD, data);
3807 		break;
3808 	}
3809 	case MSR_IA32_FLUSH_CMD:
3810 		if (!msr_info->host_initiated &&
3811 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D))
3812 			return 1;
3813 
3814 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3815 			return 1;
3816 		if (!data)
3817 			break;
3818 
3819 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3820 		break;
3821 	case MSR_EFER:
3822 		return set_efer(vcpu, msr_info);
3823 	case MSR_K7_HWCR:
3824 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3825 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3826 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3827 
3828 		/*
3829 		 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3830 		 * through at least v6.6 whine if TscFreqSel is clear,
3831 		 * depending on F/M/S.
3832 		 */
3833 		if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3834 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3835 			return 1;
3836 		}
3837 		vcpu->arch.msr_hwcr = data;
3838 		break;
3839 	case MSR_FAM10H_MMIO_CONF_BASE:
3840 		if (data != 0) {
3841 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3842 			return 1;
3843 		}
3844 		break;
3845 	case MSR_IA32_CR_PAT:
3846 		if (!kvm_pat_valid(data))
3847 			return 1;
3848 
3849 		vcpu->arch.pat = data;
3850 		break;
3851 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3852 	case MSR_MTRRdefType:
3853 		return kvm_mtrr_set_msr(vcpu, msr, data);
3854 	case MSR_IA32_APICBASE:
3855 		return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
3856 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3857 		return kvm_x2apic_msr_write(vcpu, msr, data);
3858 	case MSR_IA32_TSC_DEADLINE:
3859 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3860 		break;
3861 	case MSR_IA32_TSC_ADJUST:
3862 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3863 			if (!msr_info->host_initiated) {
3864 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3865 				adjust_tsc_offset_guest(vcpu, adj);
3866 				/* Before back to guest, tsc_timestamp must be adjusted
3867 				 * as well, otherwise guest's percpu pvclock time could jump.
3868 				 */
3869 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3870 			}
3871 			vcpu->arch.ia32_tsc_adjust_msr = data;
3872 		}
3873 		break;
3874 	case MSR_IA32_MISC_ENABLE: {
3875 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3876 
3877 		if (!msr_info->host_initiated) {
3878 			/* RO bits */
3879 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3880 				return 1;
3881 
3882 			/* R bits, i.e. writes are ignored, but don't fault. */
3883 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3884 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3885 		}
3886 
3887 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3888 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3889 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3))
3890 				return 1;
3891 			vcpu->arch.ia32_misc_enable_msr = data;
3892 			kvm_update_cpuid_runtime(vcpu);
3893 		} else {
3894 			vcpu->arch.ia32_misc_enable_msr = data;
3895 		}
3896 		break;
3897 	}
3898 	case MSR_IA32_SMBASE:
3899 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3900 			return 1;
3901 		vcpu->arch.smbase = data;
3902 		break;
3903 	case MSR_IA32_POWER_CTL:
3904 		vcpu->arch.msr_ia32_power_ctl = data;
3905 		break;
3906 	case MSR_IA32_TSC:
3907 		if (msr_info->host_initiated) {
3908 			kvm_synchronize_tsc(vcpu, &data);
3909 		} else {
3910 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3911 			adjust_tsc_offset_guest(vcpu, adj);
3912 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3913 		}
3914 		break;
3915 	case MSR_IA32_XSS:
3916 		if (!msr_info->host_initiated &&
3917 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3918 			return 1;
3919 		/*
3920 		 * KVM supports exposing PT to the guest, but does not support
3921 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3922 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3923 		 */
3924 		if (data & ~kvm_caps.supported_xss)
3925 			return 1;
3926 		vcpu->arch.ia32_xss = data;
3927 		kvm_update_cpuid_runtime(vcpu);
3928 		break;
3929 	case MSR_SMI_COUNT:
3930 		if (!msr_info->host_initiated)
3931 			return 1;
3932 		vcpu->arch.smi_count = data;
3933 		break;
3934 	case MSR_KVM_WALL_CLOCK_NEW:
3935 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3936 			return 1;
3937 
3938 		vcpu->kvm->arch.wall_clock = data;
3939 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3940 		break;
3941 	case MSR_KVM_WALL_CLOCK:
3942 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3943 			return 1;
3944 
3945 		vcpu->kvm->arch.wall_clock = data;
3946 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3947 		break;
3948 	case MSR_KVM_SYSTEM_TIME_NEW:
3949 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3950 			return 1;
3951 
3952 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3953 		break;
3954 	case MSR_KVM_SYSTEM_TIME:
3955 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3956 			return 1;
3957 
3958 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3959 		break;
3960 	case MSR_KVM_ASYNC_PF_EN:
3961 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3962 			return 1;
3963 
3964 		if (kvm_pv_enable_async_pf(vcpu, data))
3965 			return 1;
3966 		break;
3967 	case MSR_KVM_ASYNC_PF_INT:
3968 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3969 			return 1;
3970 
3971 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3972 			return 1;
3973 		break;
3974 	case MSR_KVM_ASYNC_PF_ACK:
3975 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3976 			return 1;
3977 		if (data & 0x1) {
3978 			vcpu->arch.apf.pageready_pending = false;
3979 			kvm_check_async_pf_completion(vcpu);
3980 		}
3981 		break;
3982 	case MSR_KVM_STEAL_TIME:
3983 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3984 			return 1;
3985 
3986 		if (unlikely(!sched_info_on()))
3987 			return 1;
3988 
3989 		if (data & KVM_STEAL_RESERVED_MASK)
3990 			return 1;
3991 
3992 		vcpu->arch.st.msr_val = data;
3993 
3994 		if (!(data & KVM_MSR_ENABLED))
3995 			break;
3996 
3997 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3998 
3999 		break;
4000 	case MSR_KVM_PV_EOI_EN:
4001 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4002 			return 1;
4003 
4004 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4005 			return 1;
4006 		break;
4007 
4008 	case MSR_KVM_POLL_CONTROL:
4009 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4010 			return 1;
4011 
4012 		/* only enable bit supported */
4013 		if (data & (-1ULL << 1))
4014 			return 1;
4015 
4016 		vcpu->arch.msr_kvm_poll_control = data;
4017 		break;
4018 
4019 	case MSR_IA32_MCG_CTL:
4020 	case MSR_IA32_MCG_STATUS:
4021 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4022 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4023 		return set_msr_mce(vcpu, msr_info);
4024 
4025 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4026 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4027 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4028 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4029 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4030 			return kvm_pmu_set_msr(vcpu, msr_info);
4031 
4032 		if (data)
4033 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4034 		break;
4035 	case MSR_K7_CLK_CTL:
4036 		/*
4037 		 * Ignore all writes to this no longer documented MSR.
4038 		 * Writes are only relevant for old K7 processors,
4039 		 * all pre-dating SVM, but a recommended workaround from
4040 		 * AMD for these chips. It is possible to specify the
4041 		 * affected processor models on the command line, hence
4042 		 * the need to ignore the workaround.
4043 		 */
4044 		break;
4045 #ifdef CONFIG_KVM_HYPERV
4046 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4047 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4048 	case HV_X64_MSR_SYNDBG_OPTIONS:
4049 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4050 	case HV_X64_MSR_CRASH_CTL:
4051 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4052 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4053 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4054 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4055 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4056 		return kvm_hv_set_msr_common(vcpu, msr, data,
4057 					     msr_info->host_initiated);
4058 #endif
4059 	case MSR_IA32_BBL_CR_CTL3:
4060 		/* Drop writes to this legacy MSR -- see rdmsr
4061 		 * counterpart for further detail.
4062 		 */
4063 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4064 		break;
4065 	case MSR_AMD64_OSVW_ID_LENGTH:
4066 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4067 			return 1;
4068 		vcpu->arch.osvw.length = data;
4069 		break;
4070 	case MSR_AMD64_OSVW_STATUS:
4071 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4072 			return 1;
4073 		vcpu->arch.osvw.status = data;
4074 		break;
4075 	case MSR_PLATFORM_INFO:
4076 		if (!msr_info->host_initiated)
4077 			return 1;
4078 		vcpu->arch.msr_platform_info = data;
4079 		break;
4080 	case MSR_MISC_FEATURES_ENABLES:
4081 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4082 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4083 		     !supports_cpuid_fault(vcpu)))
4084 			return 1;
4085 		vcpu->arch.msr_misc_features_enables = data;
4086 		break;
4087 #ifdef CONFIG_X86_64
4088 	case MSR_IA32_XFD:
4089 		if (!msr_info->host_initiated &&
4090 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4091 			return 1;
4092 
4093 		if (data & ~kvm_guest_supported_xfd(vcpu))
4094 			return 1;
4095 
4096 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4097 		break;
4098 	case MSR_IA32_XFD_ERR:
4099 		if (!msr_info->host_initiated &&
4100 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4101 			return 1;
4102 
4103 		if (data & ~kvm_guest_supported_xfd(vcpu))
4104 			return 1;
4105 
4106 		vcpu->arch.guest_fpu.xfd_err = data;
4107 		break;
4108 #endif
4109 	default:
4110 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4111 			return kvm_pmu_set_msr(vcpu, msr_info);
4112 
4113 		return KVM_MSR_RET_UNSUPPORTED;
4114 	}
4115 	return 0;
4116 }
4117 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4118 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4119 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4120 {
4121 	u64 data;
4122 	u64 mcg_cap = vcpu->arch.mcg_cap;
4123 	unsigned bank_num = mcg_cap & 0xff;
4124 	u32 offset, last_msr;
4125 
4126 	switch (msr) {
4127 	case MSR_IA32_P5_MC_ADDR:
4128 	case MSR_IA32_P5_MC_TYPE:
4129 		data = 0;
4130 		break;
4131 	case MSR_IA32_MCG_CAP:
4132 		data = vcpu->arch.mcg_cap;
4133 		break;
4134 	case MSR_IA32_MCG_CTL:
4135 		if (!(mcg_cap & MCG_CTL_P) && !host)
4136 			return 1;
4137 		data = vcpu->arch.mcg_ctl;
4138 		break;
4139 	case MSR_IA32_MCG_STATUS:
4140 		data = vcpu->arch.mcg_status;
4141 		break;
4142 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4143 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4144 		if (msr > last_msr)
4145 			return 1;
4146 
4147 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4148 			return 1;
4149 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4150 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4151 		data = vcpu->arch.mci_ctl2_banks[offset];
4152 		break;
4153 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4154 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4155 		if (msr > last_msr)
4156 			return 1;
4157 
4158 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4159 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4160 		data = vcpu->arch.mce_banks[offset];
4161 		break;
4162 	default:
4163 		return 1;
4164 	}
4165 	*pdata = data;
4166 	return 0;
4167 }
4168 
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4169 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4170 {
4171 	switch (msr_info->index) {
4172 	case MSR_IA32_PLATFORM_ID:
4173 	case MSR_IA32_EBL_CR_POWERON:
4174 	case MSR_IA32_LASTBRANCHFROMIP:
4175 	case MSR_IA32_LASTBRANCHTOIP:
4176 	case MSR_IA32_LASTINTFROMIP:
4177 	case MSR_IA32_LASTINTTOIP:
4178 	case MSR_AMD64_SYSCFG:
4179 	case MSR_K8_TSEG_ADDR:
4180 	case MSR_K8_TSEG_MASK:
4181 	case MSR_VM_HSAVE_PA:
4182 	case MSR_K8_INT_PENDING_MSG:
4183 	case MSR_AMD64_NB_CFG:
4184 	case MSR_FAM10H_MMIO_CONF_BASE:
4185 	case MSR_AMD64_BU_CFG2:
4186 	case MSR_IA32_PERF_CTL:
4187 	case MSR_AMD64_DC_CFG:
4188 	case MSR_AMD64_TW_CFG:
4189 	case MSR_F15H_EX_CFG:
4190 	/*
4191 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4192 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4193 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4194 	 * so for existing CPU-specific MSRs.
4195 	 */
4196 	case MSR_RAPL_POWER_UNIT:
4197 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4198 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4199 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4200 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4201 		msr_info->data = 0;
4202 		break;
4203 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4204 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4205 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4206 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4207 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4208 			return kvm_pmu_get_msr(vcpu, msr_info);
4209 		msr_info->data = 0;
4210 		break;
4211 	case MSR_IA32_UCODE_REV:
4212 		msr_info->data = vcpu->arch.microcode_version;
4213 		break;
4214 	case MSR_IA32_ARCH_CAPABILITIES:
4215 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4216 			return KVM_MSR_RET_UNSUPPORTED;
4217 		msr_info->data = vcpu->arch.arch_capabilities;
4218 		break;
4219 	case MSR_IA32_PERF_CAPABILITIES:
4220 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
4221 			return KVM_MSR_RET_UNSUPPORTED;
4222 		msr_info->data = vcpu->arch.perf_capabilities;
4223 		break;
4224 	case MSR_IA32_POWER_CTL:
4225 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4226 		break;
4227 	case MSR_IA32_TSC: {
4228 		/*
4229 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4230 		 * even when not intercepted. AMD manual doesn't explicitly
4231 		 * state this but appears to behave the same.
4232 		 *
4233 		 * On userspace reads and writes, however, we unconditionally
4234 		 * return L1's TSC value to ensure backwards-compatible
4235 		 * behavior for migration.
4236 		 */
4237 		u64 offset, ratio;
4238 
4239 		if (msr_info->host_initiated) {
4240 			offset = vcpu->arch.l1_tsc_offset;
4241 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4242 		} else {
4243 			offset = vcpu->arch.tsc_offset;
4244 			ratio = vcpu->arch.tsc_scaling_ratio;
4245 		}
4246 
4247 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4248 		break;
4249 	}
4250 	case MSR_IA32_CR_PAT:
4251 		msr_info->data = vcpu->arch.pat;
4252 		break;
4253 	case MSR_MTRRcap:
4254 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4255 	case MSR_MTRRdefType:
4256 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4257 	case 0xcd: /* fsb frequency */
4258 		msr_info->data = 3;
4259 		break;
4260 		/*
4261 		 * MSR_EBC_FREQUENCY_ID
4262 		 * Conservative value valid for even the basic CPU models.
4263 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4264 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4265 		 * and 266MHz for model 3, or 4. Set Core Clock
4266 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4267 		 * 31:24) even though these are only valid for CPU
4268 		 * models > 2, however guests may end up dividing or
4269 		 * multiplying by zero otherwise.
4270 		 */
4271 	case MSR_EBC_FREQUENCY_ID:
4272 		msr_info->data = 1 << 24;
4273 		break;
4274 	case MSR_IA32_APICBASE:
4275 		msr_info->data = vcpu->arch.apic_base;
4276 		break;
4277 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4278 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4279 	case MSR_IA32_TSC_DEADLINE:
4280 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4281 		break;
4282 	case MSR_IA32_TSC_ADJUST:
4283 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4284 		break;
4285 	case MSR_IA32_MISC_ENABLE:
4286 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4287 		break;
4288 	case MSR_IA32_SMBASE:
4289 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4290 			return 1;
4291 		msr_info->data = vcpu->arch.smbase;
4292 		break;
4293 	case MSR_SMI_COUNT:
4294 		msr_info->data = vcpu->arch.smi_count;
4295 		break;
4296 	case MSR_IA32_PERF_STATUS:
4297 		/* TSC increment by tick */
4298 		msr_info->data = 1000ULL;
4299 		/* CPU multiplier */
4300 		msr_info->data |= (((uint64_t)4ULL) << 40);
4301 		break;
4302 	case MSR_EFER:
4303 		msr_info->data = vcpu->arch.efer;
4304 		break;
4305 	case MSR_KVM_WALL_CLOCK:
4306 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4307 			return 1;
4308 
4309 		msr_info->data = vcpu->kvm->arch.wall_clock;
4310 		break;
4311 	case MSR_KVM_WALL_CLOCK_NEW:
4312 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4313 			return 1;
4314 
4315 		msr_info->data = vcpu->kvm->arch.wall_clock;
4316 		break;
4317 	case MSR_KVM_SYSTEM_TIME:
4318 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4319 			return 1;
4320 
4321 		msr_info->data = vcpu->arch.time;
4322 		break;
4323 	case MSR_KVM_SYSTEM_TIME_NEW:
4324 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4325 			return 1;
4326 
4327 		msr_info->data = vcpu->arch.time;
4328 		break;
4329 	case MSR_KVM_ASYNC_PF_EN:
4330 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4331 			return 1;
4332 
4333 		msr_info->data = vcpu->arch.apf.msr_en_val;
4334 		break;
4335 	case MSR_KVM_ASYNC_PF_INT:
4336 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4337 			return 1;
4338 
4339 		msr_info->data = vcpu->arch.apf.msr_int_val;
4340 		break;
4341 	case MSR_KVM_ASYNC_PF_ACK:
4342 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4343 			return 1;
4344 
4345 		msr_info->data = 0;
4346 		break;
4347 	case MSR_KVM_STEAL_TIME:
4348 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4349 			return 1;
4350 
4351 		msr_info->data = vcpu->arch.st.msr_val;
4352 		break;
4353 	case MSR_KVM_PV_EOI_EN:
4354 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4355 			return 1;
4356 
4357 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4358 		break;
4359 	case MSR_KVM_POLL_CONTROL:
4360 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4361 			return 1;
4362 
4363 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4364 		break;
4365 	case MSR_IA32_P5_MC_ADDR:
4366 	case MSR_IA32_P5_MC_TYPE:
4367 	case MSR_IA32_MCG_CAP:
4368 	case MSR_IA32_MCG_CTL:
4369 	case MSR_IA32_MCG_STATUS:
4370 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4371 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4372 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4373 				   msr_info->host_initiated);
4374 	case MSR_IA32_XSS:
4375 		if (!msr_info->host_initiated &&
4376 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4377 			return 1;
4378 		msr_info->data = vcpu->arch.ia32_xss;
4379 		break;
4380 	case MSR_K7_CLK_CTL:
4381 		/*
4382 		 * Provide expected ramp-up count for K7. All other
4383 		 * are set to zero, indicating minimum divisors for
4384 		 * every field.
4385 		 *
4386 		 * This prevents guest kernels on AMD host with CPU
4387 		 * type 6, model 8 and higher from exploding due to
4388 		 * the rdmsr failing.
4389 		 */
4390 		msr_info->data = 0x20000000;
4391 		break;
4392 #ifdef CONFIG_KVM_HYPERV
4393 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4394 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4395 	case HV_X64_MSR_SYNDBG_OPTIONS:
4396 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4397 	case HV_X64_MSR_CRASH_CTL:
4398 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4399 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4400 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4401 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4402 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4403 		return kvm_hv_get_msr_common(vcpu,
4404 					     msr_info->index, &msr_info->data,
4405 					     msr_info->host_initiated);
4406 #endif
4407 	case MSR_IA32_BBL_CR_CTL3:
4408 		/* This legacy MSR exists but isn't fully documented in current
4409 		 * silicon.  It is however accessed by winxp in very narrow
4410 		 * scenarios where it sets bit #19, itself documented as
4411 		 * a "reserved" bit.  Best effort attempt to source coherent
4412 		 * read data here should the balance of the register be
4413 		 * interpreted by the guest:
4414 		 *
4415 		 * L2 cache control register 3: 64GB range, 256KB size,
4416 		 * enabled, latency 0x1, configured
4417 		 */
4418 		msr_info->data = 0xbe702111;
4419 		break;
4420 	case MSR_AMD64_OSVW_ID_LENGTH:
4421 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4422 			return 1;
4423 		msr_info->data = vcpu->arch.osvw.length;
4424 		break;
4425 	case MSR_AMD64_OSVW_STATUS:
4426 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4427 			return 1;
4428 		msr_info->data = vcpu->arch.osvw.status;
4429 		break;
4430 	case MSR_PLATFORM_INFO:
4431 		if (!msr_info->host_initiated &&
4432 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4433 			return 1;
4434 		msr_info->data = vcpu->arch.msr_platform_info;
4435 		break;
4436 	case MSR_MISC_FEATURES_ENABLES:
4437 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4438 		break;
4439 	case MSR_K7_HWCR:
4440 		msr_info->data = vcpu->arch.msr_hwcr;
4441 		break;
4442 #ifdef CONFIG_X86_64
4443 	case MSR_IA32_XFD:
4444 		if (!msr_info->host_initiated &&
4445 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4446 			return 1;
4447 
4448 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4449 		break;
4450 	case MSR_IA32_XFD_ERR:
4451 		if (!msr_info->host_initiated &&
4452 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4453 			return 1;
4454 
4455 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4456 		break;
4457 #endif
4458 	default:
4459 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4460 			return kvm_pmu_get_msr(vcpu, msr_info);
4461 
4462 		return KVM_MSR_RET_UNSUPPORTED;
4463 	}
4464 	return 0;
4465 }
4466 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4467 
4468 /*
4469  * Read or write a bunch of msrs. All parameters are kernel addresses.
4470  *
4471  * @return number of msrs set successfully.
4472  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4473 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4474 		    struct kvm_msr_entry *entries,
4475 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4476 				  unsigned index, u64 *data))
4477 {
4478 	int i;
4479 
4480 	for (i = 0; i < msrs->nmsrs; ++i)
4481 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4482 			break;
4483 
4484 	return i;
4485 }
4486 
4487 /*
4488  * Read or write a bunch of msrs. Parameters are user addresses.
4489  *
4490  * @return number of msrs set successfully.
4491  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4492 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4493 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4494 				unsigned index, u64 *data),
4495 		  int writeback)
4496 {
4497 	struct kvm_msrs msrs;
4498 	struct kvm_msr_entry *entries;
4499 	unsigned size;
4500 	int r;
4501 
4502 	r = -EFAULT;
4503 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4504 		goto out;
4505 
4506 	r = -E2BIG;
4507 	if (msrs.nmsrs >= MAX_IO_MSRS)
4508 		goto out;
4509 
4510 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4511 	entries = memdup_user(user_msrs->entries, size);
4512 	if (IS_ERR(entries)) {
4513 		r = PTR_ERR(entries);
4514 		goto out;
4515 	}
4516 
4517 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4518 
4519 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4520 		r = -EFAULT;
4521 
4522 	kfree(entries);
4523 out:
4524 	return r;
4525 }
4526 
kvm_can_mwait_in_guest(void)4527 static inline bool kvm_can_mwait_in_guest(void)
4528 {
4529 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4530 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4531 		boot_cpu_has(X86_FEATURE_ARAT);
4532 }
4533 
kvm_get_allowed_disable_exits(void)4534 static u64 kvm_get_allowed_disable_exits(void)
4535 {
4536 	u64 r = KVM_X86_DISABLE_EXITS_PAUSE;
4537 
4538 	if (!mitigate_smt_rsb) {
4539 		r |= KVM_X86_DISABLE_EXITS_HLT |
4540 			KVM_X86_DISABLE_EXITS_CSTATE;
4541 
4542 		if (kvm_can_mwait_in_guest())
4543 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4544 	}
4545 	return r;
4546 }
4547 
4548 #ifdef CONFIG_KVM_HYPERV
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4549 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4550 					    struct kvm_cpuid2 __user *cpuid_arg)
4551 {
4552 	struct kvm_cpuid2 cpuid;
4553 	int r;
4554 
4555 	r = -EFAULT;
4556 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4557 		return r;
4558 
4559 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4560 	if (r)
4561 		return r;
4562 
4563 	r = -EFAULT;
4564 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4565 		return r;
4566 
4567 	return 0;
4568 }
4569 #endif
4570 
kvm_is_vm_type_supported(unsigned long type)4571 static bool kvm_is_vm_type_supported(unsigned long type)
4572 {
4573 	return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4574 }
4575 
kvm_sync_valid_fields(struct kvm * kvm)4576 static inline u32 kvm_sync_valid_fields(struct kvm *kvm)
4577 {
4578 	return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS;
4579 }
4580 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4581 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4582 {
4583 	int r = 0;
4584 
4585 	switch (ext) {
4586 	case KVM_CAP_IRQCHIP:
4587 	case KVM_CAP_HLT:
4588 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4589 	case KVM_CAP_SET_TSS_ADDR:
4590 	case KVM_CAP_EXT_CPUID:
4591 	case KVM_CAP_EXT_EMUL_CPUID:
4592 	case KVM_CAP_CLOCKSOURCE:
4593 	case KVM_CAP_PIT:
4594 	case KVM_CAP_NOP_IO_DELAY:
4595 	case KVM_CAP_MP_STATE:
4596 	case KVM_CAP_SYNC_MMU:
4597 	case KVM_CAP_USER_NMI:
4598 	case KVM_CAP_REINJECT_CONTROL:
4599 	case KVM_CAP_IRQ_INJECT_STATUS:
4600 	case KVM_CAP_IOEVENTFD:
4601 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4602 	case KVM_CAP_PIT2:
4603 	case KVM_CAP_PIT_STATE2:
4604 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4605 	case KVM_CAP_VCPU_EVENTS:
4606 #ifdef CONFIG_KVM_HYPERV
4607 	case KVM_CAP_HYPERV:
4608 	case KVM_CAP_HYPERV_VAPIC:
4609 	case KVM_CAP_HYPERV_SPIN:
4610 	case KVM_CAP_HYPERV_TIME:
4611 	case KVM_CAP_HYPERV_SYNIC:
4612 	case KVM_CAP_HYPERV_SYNIC2:
4613 	case KVM_CAP_HYPERV_VP_INDEX:
4614 	case KVM_CAP_HYPERV_EVENTFD:
4615 	case KVM_CAP_HYPERV_TLBFLUSH:
4616 	case KVM_CAP_HYPERV_SEND_IPI:
4617 	case KVM_CAP_HYPERV_CPUID:
4618 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4619 	case KVM_CAP_SYS_HYPERV_CPUID:
4620 #endif
4621 	case KVM_CAP_PCI_SEGMENT:
4622 	case KVM_CAP_DEBUGREGS:
4623 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4624 	case KVM_CAP_XSAVE:
4625 	case KVM_CAP_ASYNC_PF:
4626 	case KVM_CAP_ASYNC_PF_INT:
4627 	case KVM_CAP_GET_TSC_KHZ:
4628 	case KVM_CAP_KVMCLOCK_CTRL:
4629 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4630 	case KVM_CAP_TSC_DEADLINE_TIMER:
4631 	case KVM_CAP_DISABLE_QUIRKS:
4632 	case KVM_CAP_SET_BOOT_CPU_ID:
4633  	case KVM_CAP_SPLIT_IRQCHIP:
4634 	case KVM_CAP_IMMEDIATE_EXIT:
4635 	case KVM_CAP_PMU_EVENT_FILTER:
4636 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4637 	case KVM_CAP_GET_MSR_FEATURES:
4638 	case KVM_CAP_MSR_PLATFORM_INFO:
4639 	case KVM_CAP_EXCEPTION_PAYLOAD:
4640 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4641 	case KVM_CAP_SET_GUEST_DEBUG:
4642 	case KVM_CAP_LAST_CPU:
4643 	case KVM_CAP_X86_USER_SPACE_MSR:
4644 	case KVM_CAP_X86_MSR_FILTER:
4645 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4646 #ifdef CONFIG_X86_SGX_KVM
4647 	case KVM_CAP_SGX_ATTRIBUTE:
4648 #endif
4649 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4650 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4651 	case KVM_CAP_SREGS2:
4652 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4653 	case KVM_CAP_VCPU_ATTRIBUTES:
4654 	case KVM_CAP_SYS_ATTRIBUTES:
4655 	case KVM_CAP_VAPIC:
4656 	case KVM_CAP_ENABLE_CAP:
4657 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4658 	case KVM_CAP_IRQFD_RESAMPLE:
4659 	case KVM_CAP_MEMORY_FAULT_INFO:
4660 	case KVM_CAP_X86_GUEST_MODE:
4661 		r = 1;
4662 		break;
4663 	case KVM_CAP_PRE_FAULT_MEMORY:
4664 		r = tdp_enabled;
4665 		break;
4666 	case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4667 		r = APIC_BUS_CYCLE_NS_DEFAULT;
4668 		break;
4669 	case KVM_CAP_EXIT_HYPERCALL:
4670 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4671 		break;
4672 	case KVM_CAP_SET_GUEST_DEBUG2:
4673 		return KVM_GUESTDBG_VALID_MASK;
4674 #ifdef CONFIG_KVM_XEN
4675 	case KVM_CAP_XEN_HVM:
4676 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4677 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4678 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4679 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4680 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4681 		    KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4682 		    KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4683 		if (sched_info_on())
4684 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4685 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4686 		break;
4687 #endif
4688 	case KVM_CAP_SYNC_REGS:
4689 		r = kvm_sync_valid_fields(kvm);
4690 		break;
4691 	case KVM_CAP_ADJUST_CLOCK:
4692 		r = KVM_CLOCK_VALID_FLAGS;
4693 		break;
4694 	case KVM_CAP_X86_DISABLE_EXITS:
4695 		r = kvm_get_allowed_disable_exits();
4696 		break;
4697 	case KVM_CAP_X86_SMM:
4698 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4699 			break;
4700 
4701 		/* SMBASE is usually relocated above 1M on modern chipsets,
4702 		 * and SMM handlers might indeed rely on 4G segment limits,
4703 		 * so do not report SMM to be available if real mode is
4704 		 * emulated via vm86 mode.  Still, do not go to great lengths
4705 		 * to avoid userspace's usage of the feature, because it is a
4706 		 * fringe case that is not enabled except via specific settings
4707 		 * of the module parameters.
4708 		 */
4709 		r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4710 		break;
4711 	case KVM_CAP_NR_VCPUS:
4712 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4713 		break;
4714 	case KVM_CAP_MAX_VCPUS:
4715 		r = KVM_MAX_VCPUS;
4716 		break;
4717 	case KVM_CAP_MAX_VCPU_ID:
4718 		r = KVM_MAX_VCPU_IDS;
4719 		break;
4720 	case KVM_CAP_PV_MMU:	/* obsolete */
4721 		r = 0;
4722 		break;
4723 	case KVM_CAP_MCE:
4724 		r = KVM_MAX_MCE_BANKS;
4725 		break;
4726 	case KVM_CAP_XCRS:
4727 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4728 		break;
4729 	case KVM_CAP_TSC_CONTROL:
4730 	case KVM_CAP_VM_TSC_CONTROL:
4731 		r = kvm_caps.has_tsc_control;
4732 		break;
4733 	case KVM_CAP_X2APIC_API:
4734 		r = KVM_X2APIC_API_VALID_FLAGS;
4735 		break;
4736 	case KVM_CAP_NESTED_STATE:
4737 		r = kvm_x86_ops.nested_ops->get_state ?
4738 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4739 		break;
4740 #ifdef CONFIG_KVM_HYPERV
4741 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4742 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4743 		break;
4744 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4745 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4746 		break;
4747 #endif
4748 	case KVM_CAP_SMALLER_MAXPHYADDR:
4749 		r = (int) allow_smaller_maxphyaddr;
4750 		break;
4751 	case KVM_CAP_STEAL_TIME:
4752 		r = sched_info_on();
4753 		break;
4754 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4755 		if (kvm_caps.has_bus_lock_exit)
4756 			r = KVM_BUS_LOCK_DETECTION_OFF |
4757 			    KVM_BUS_LOCK_DETECTION_EXIT;
4758 		else
4759 			r = 0;
4760 		break;
4761 	case KVM_CAP_XSAVE2: {
4762 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4763 		if (r < sizeof(struct kvm_xsave))
4764 			r = sizeof(struct kvm_xsave);
4765 		break;
4766 	}
4767 	case KVM_CAP_PMU_CAPABILITY:
4768 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4769 		break;
4770 	case KVM_CAP_DISABLE_QUIRKS2:
4771 		r = KVM_X86_VALID_QUIRKS;
4772 		break;
4773 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4774 		r = kvm_caps.has_notify_vmexit;
4775 		break;
4776 	case KVM_CAP_VM_TYPES:
4777 		r = kvm_caps.supported_vm_types;
4778 		break;
4779 	case KVM_CAP_READONLY_MEM:
4780 		r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4781 		break;
4782 	default:
4783 		break;
4784 	}
4785 	return r;
4786 }
4787 
__kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)4788 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4789 {
4790 	if (attr->group) {
4791 		if (kvm_x86_ops.dev_get_attr)
4792 			return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4793 		return -ENXIO;
4794 	}
4795 
4796 	switch (attr->attr) {
4797 	case KVM_X86_XCOMP_GUEST_SUPP:
4798 		*val = kvm_caps.supported_xcr0;
4799 		return 0;
4800 	default:
4801 		return -ENXIO;
4802 	}
4803 }
4804 
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4805 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4806 {
4807 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4808 	int r;
4809 	u64 val;
4810 
4811 	r = __kvm_x86_dev_get_attr(attr, &val);
4812 	if (r < 0)
4813 		return r;
4814 
4815 	if (put_user(val, uaddr))
4816 		return -EFAULT;
4817 
4818 	return 0;
4819 }
4820 
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4821 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4822 {
4823 	u64 val;
4824 
4825 	return __kvm_x86_dev_get_attr(attr, &val);
4826 }
4827 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4828 long kvm_arch_dev_ioctl(struct file *filp,
4829 			unsigned int ioctl, unsigned long arg)
4830 {
4831 	void __user *argp = (void __user *)arg;
4832 	long r;
4833 
4834 	switch (ioctl) {
4835 	case KVM_GET_MSR_INDEX_LIST: {
4836 		struct kvm_msr_list __user *user_msr_list = argp;
4837 		struct kvm_msr_list msr_list;
4838 		unsigned n;
4839 
4840 		r = -EFAULT;
4841 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4842 			goto out;
4843 		n = msr_list.nmsrs;
4844 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4845 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4846 			goto out;
4847 		r = -E2BIG;
4848 		if (n < msr_list.nmsrs)
4849 			goto out;
4850 		r = -EFAULT;
4851 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4852 				 num_msrs_to_save * sizeof(u32)))
4853 			goto out;
4854 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4855 				 &emulated_msrs,
4856 				 num_emulated_msrs * sizeof(u32)))
4857 			goto out;
4858 		r = 0;
4859 		break;
4860 	}
4861 	case KVM_GET_SUPPORTED_CPUID:
4862 	case KVM_GET_EMULATED_CPUID: {
4863 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4864 		struct kvm_cpuid2 cpuid;
4865 
4866 		r = -EFAULT;
4867 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4868 			goto out;
4869 
4870 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4871 					    ioctl);
4872 		if (r)
4873 			goto out;
4874 
4875 		r = -EFAULT;
4876 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4877 			goto out;
4878 		r = 0;
4879 		break;
4880 	}
4881 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4882 		r = -EFAULT;
4883 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4884 				 sizeof(kvm_caps.supported_mce_cap)))
4885 			goto out;
4886 		r = 0;
4887 		break;
4888 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4889 		struct kvm_msr_list __user *user_msr_list = argp;
4890 		struct kvm_msr_list msr_list;
4891 		unsigned int n;
4892 
4893 		r = -EFAULT;
4894 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4895 			goto out;
4896 		n = msr_list.nmsrs;
4897 		msr_list.nmsrs = num_msr_based_features;
4898 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4899 			goto out;
4900 		r = -E2BIG;
4901 		if (n < msr_list.nmsrs)
4902 			goto out;
4903 		r = -EFAULT;
4904 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4905 				 num_msr_based_features * sizeof(u32)))
4906 			goto out;
4907 		r = 0;
4908 		break;
4909 	}
4910 	case KVM_GET_MSRS:
4911 		r = msr_io(NULL, argp, do_get_feature_msr, 1);
4912 		break;
4913 #ifdef CONFIG_KVM_HYPERV
4914 	case KVM_GET_SUPPORTED_HV_CPUID:
4915 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4916 		break;
4917 #endif
4918 	case KVM_GET_DEVICE_ATTR: {
4919 		struct kvm_device_attr attr;
4920 		r = -EFAULT;
4921 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4922 			break;
4923 		r = kvm_x86_dev_get_attr(&attr);
4924 		break;
4925 	}
4926 	case KVM_HAS_DEVICE_ATTR: {
4927 		struct kvm_device_attr attr;
4928 		r = -EFAULT;
4929 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4930 			break;
4931 		r = kvm_x86_dev_has_attr(&attr);
4932 		break;
4933 	}
4934 	default:
4935 		r = -EINVAL;
4936 		break;
4937 	}
4938 out:
4939 	return r;
4940 }
4941 
wbinvd_ipi(void * garbage)4942 static void wbinvd_ipi(void *garbage)
4943 {
4944 	wbinvd();
4945 }
4946 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4947 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4948 {
4949 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4950 }
4951 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4952 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4953 {
4954 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
4955 
4956 	vcpu->arch.l1tf_flush_l1d = true;
4957 
4958 	if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
4959 		pmu->need_cleanup = true;
4960 		kvm_make_request(KVM_REQ_PMU, vcpu);
4961 	}
4962 
4963 	/* Address WBINVD may be executed by guest */
4964 	if (need_emulate_wbinvd(vcpu)) {
4965 		if (kvm_x86_call(has_wbinvd_exit)())
4966 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4967 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4968 			smp_call_function_single(vcpu->cpu,
4969 					wbinvd_ipi, NULL, 1);
4970 	}
4971 
4972 	kvm_x86_call(vcpu_load)(vcpu, cpu);
4973 
4974 	/* Save host pkru register if supported */
4975 	vcpu->arch.host_pkru = read_pkru();
4976 
4977 	/* Apply any externally detected TSC adjustments (due to suspend) */
4978 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4979 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4980 		vcpu->arch.tsc_offset_adjustment = 0;
4981 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4982 	}
4983 
4984 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4985 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4986 				rdtsc() - vcpu->arch.last_host_tsc;
4987 		if (tsc_delta < 0)
4988 			mark_tsc_unstable("KVM discovered backwards TSC");
4989 
4990 		if (kvm_check_tsc_unstable()) {
4991 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4992 						vcpu->arch.last_guest_tsc);
4993 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4994 			vcpu->arch.tsc_catchup = 1;
4995 		}
4996 
4997 		if (kvm_lapic_hv_timer_in_use(vcpu))
4998 			kvm_lapic_restart_hv_timer(vcpu);
4999 
5000 		/*
5001 		 * On a host with synchronized TSC, there is no need to update
5002 		 * kvmclock on vcpu->cpu migration
5003 		 */
5004 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5005 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5006 		if (vcpu->cpu != cpu)
5007 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5008 		vcpu->cpu = cpu;
5009 	}
5010 
5011 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5012 }
5013 
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5014 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5015 {
5016 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5017 	struct kvm_steal_time __user *st;
5018 	struct kvm_memslots *slots;
5019 	static const u8 preempted = KVM_VCPU_PREEMPTED;
5020 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5021 
5022 	/*
5023 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
5024 	 * an instruction boundary and will not trigger guest emulation of any
5025 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5026 	 * when this is true, for example allowing the vCPU to be marked
5027 	 * preempted if and only if the VM-Exit was due to a host interrupt.
5028 	 */
5029 	if (!vcpu->arch.at_instruction_boundary) {
5030 		vcpu->stat.preemption_other++;
5031 		return;
5032 	}
5033 
5034 	vcpu->stat.preemption_reported++;
5035 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5036 		return;
5037 
5038 	if (vcpu->arch.st.preempted)
5039 		return;
5040 
5041 	/* This happens on process exit */
5042 	if (unlikely(current->mm != vcpu->kvm->mm))
5043 		return;
5044 
5045 	slots = kvm_memslots(vcpu->kvm);
5046 
5047 	if (unlikely(slots->generation != ghc->generation ||
5048 		     gpa != ghc->gpa ||
5049 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5050 		return;
5051 
5052 	st = (struct kvm_steal_time __user *)ghc->hva;
5053 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5054 
5055 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5056 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5057 
5058 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5059 }
5060 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5061 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5062 {
5063 	int idx;
5064 
5065 	if (vcpu->preempted) {
5066 		/*
5067 		 * Assume protected guests are in-kernel.  Inefficient yielding
5068 		 * due to false positives is preferable to never yielding due
5069 		 * to false negatives.
5070 		 */
5071 		vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5072 						 !kvm_x86_call(get_cpl_no_cache)(vcpu);
5073 
5074 		/*
5075 		 * Take the srcu lock as memslots will be accessed to check the gfn
5076 		 * cache generation against the memslots generation.
5077 		 */
5078 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5079 		if (kvm_xen_msr_enabled(vcpu->kvm))
5080 			kvm_xen_runstate_set_preempted(vcpu);
5081 		else
5082 			kvm_steal_time_set_preempted(vcpu);
5083 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5084 	}
5085 
5086 	kvm_x86_call(vcpu_put)(vcpu);
5087 	vcpu->arch.last_host_tsc = rdtsc();
5088 }
5089 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5090 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5091 				    struct kvm_lapic_state *s)
5092 {
5093 	kvm_x86_call(sync_pir_to_irr)(vcpu);
5094 
5095 	return kvm_apic_get_state(vcpu, s);
5096 }
5097 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5098 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5099 				    struct kvm_lapic_state *s)
5100 {
5101 	int r;
5102 
5103 	r = kvm_apic_set_state(vcpu, s);
5104 	if (r)
5105 		return r;
5106 	update_cr8_intercept(vcpu);
5107 
5108 	return 0;
5109 }
5110 
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5111 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5112 {
5113 	/*
5114 	 * We can accept userspace's request for interrupt injection
5115 	 * as long as we have a place to store the interrupt number.
5116 	 * The actual injection will happen when the CPU is able to
5117 	 * deliver the interrupt.
5118 	 */
5119 	if (kvm_cpu_has_extint(vcpu))
5120 		return false;
5121 
5122 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5123 	return (!lapic_in_kernel(vcpu) ||
5124 		kvm_apic_accept_pic_intr(vcpu));
5125 }
5126 
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5127 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5128 {
5129 	/*
5130 	 * Do not cause an interrupt window exit if an exception
5131 	 * is pending or an event needs reinjection; userspace
5132 	 * might want to inject the interrupt manually using KVM_SET_REGS
5133 	 * or KVM_SET_SREGS.  For that to work, we must be at an
5134 	 * instruction boundary and with no events half-injected.
5135 	 */
5136 	return (kvm_arch_interrupt_allowed(vcpu) &&
5137 		kvm_cpu_accept_dm_intr(vcpu) &&
5138 		!kvm_event_needs_reinjection(vcpu) &&
5139 		!kvm_is_exception_pending(vcpu));
5140 }
5141 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5142 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5143 				    struct kvm_interrupt *irq)
5144 {
5145 	if (irq->irq >= KVM_NR_INTERRUPTS)
5146 		return -EINVAL;
5147 
5148 	if (!irqchip_in_kernel(vcpu->kvm)) {
5149 		kvm_queue_interrupt(vcpu, irq->irq, false);
5150 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5151 		return 0;
5152 	}
5153 
5154 	/*
5155 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5156 	 * fail for in-kernel 8259.
5157 	 */
5158 	if (pic_in_kernel(vcpu->kvm))
5159 		return -ENXIO;
5160 
5161 	if (vcpu->arch.pending_external_vector != -1)
5162 		return -EEXIST;
5163 
5164 	vcpu->arch.pending_external_vector = irq->irq;
5165 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5166 	return 0;
5167 }
5168 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5169 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5170 {
5171 	kvm_inject_nmi(vcpu);
5172 
5173 	return 0;
5174 }
5175 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5176 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5177 					   struct kvm_tpr_access_ctl *tac)
5178 {
5179 	if (tac->flags)
5180 		return -EINVAL;
5181 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5182 	return 0;
5183 }
5184 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5185 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5186 					u64 mcg_cap)
5187 {
5188 	int r;
5189 	unsigned bank_num = mcg_cap & 0xff, bank;
5190 
5191 	r = -EINVAL;
5192 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5193 		goto out;
5194 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5195 		goto out;
5196 	r = 0;
5197 	vcpu->arch.mcg_cap = mcg_cap;
5198 	/* Init IA32_MCG_CTL to all 1s */
5199 	if (mcg_cap & MCG_CTL_P)
5200 		vcpu->arch.mcg_ctl = ~(u64)0;
5201 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5202 	for (bank = 0; bank < bank_num; bank++) {
5203 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5204 		if (mcg_cap & MCG_CMCI_P)
5205 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5206 	}
5207 
5208 	kvm_apic_after_set_mcg_cap(vcpu);
5209 
5210 	kvm_x86_call(setup_mce)(vcpu);
5211 out:
5212 	return r;
5213 }
5214 
5215 /*
5216  * Validate this is an UCNA (uncorrectable no action) error by checking the
5217  * MCG_STATUS and MCi_STATUS registers:
5218  * - none of the bits for Machine Check Exceptions are set
5219  * - both the VAL (valid) and UC (uncorrectable) bits are set
5220  * MCI_STATUS_PCC - Processor Context Corrupted
5221  * MCI_STATUS_S - Signaled as a Machine Check Exception
5222  * MCI_STATUS_AR - Software recoverable Action Required
5223  */
is_ucna(struct kvm_x86_mce * mce)5224 static bool is_ucna(struct kvm_x86_mce *mce)
5225 {
5226 	return	!mce->mcg_status &&
5227 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5228 		(mce->status & MCI_STATUS_VAL) &&
5229 		(mce->status & MCI_STATUS_UC);
5230 }
5231 
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5232 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5233 {
5234 	u64 mcg_cap = vcpu->arch.mcg_cap;
5235 
5236 	banks[1] = mce->status;
5237 	banks[2] = mce->addr;
5238 	banks[3] = mce->misc;
5239 	vcpu->arch.mcg_status = mce->mcg_status;
5240 
5241 	if (!(mcg_cap & MCG_CMCI_P) ||
5242 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5243 		return 0;
5244 
5245 	if (lapic_in_kernel(vcpu))
5246 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5247 
5248 	return 0;
5249 }
5250 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5251 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5252 				      struct kvm_x86_mce *mce)
5253 {
5254 	u64 mcg_cap = vcpu->arch.mcg_cap;
5255 	unsigned bank_num = mcg_cap & 0xff;
5256 	u64 *banks = vcpu->arch.mce_banks;
5257 
5258 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5259 		return -EINVAL;
5260 
5261 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5262 
5263 	if (is_ucna(mce))
5264 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5265 
5266 	/*
5267 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5268 	 * reporting is disabled
5269 	 */
5270 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5271 	    vcpu->arch.mcg_ctl != ~(u64)0)
5272 		return 0;
5273 	/*
5274 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5275 	 * reporting is disabled for the bank
5276 	 */
5277 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5278 		return 0;
5279 	if (mce->status & MCI_STATUS_UC) {
5280 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5281 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5282 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5283 			return 0;
5284 		}
5285 		if (banks[1] & MCI_STATUS_VAL)
5286 			mce->status |= MCI_STATUS_OVER;
5287 		banks[2] = mce->addr;
5288 		banks[3] = mce->misc;
5289 		vcpu->arch.mcg_status = mce->mcg_status;
5290 		banks[1] = mce->status;
5291 		kvm_queue_exception(vcpu, MC_VECTOR);
5292 	} else if (!(banks[1] & MCI_STATUS_VAL)
5293 		   || !(banks[1] & MCI_STATUS_UC)) {
5294 		if (banks[1] & MCI_STATUS_VAL)
5295 			mce->status |= MCI_STATUS_OVER;
5296 		banks[2] = mce->addr;
5297 		banks[3] = mce->misc;
5298 		banks[1] = mce->status;
5299 	} else
5300 		banks[1] |= MCI_STATUS_OVER;
5301 	return 0;
5302 }
5303 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5304 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5305 					       struct kvm_vcpu_events *events)
5306 {
5307 	struct kvm_queued_exception *ex;
5308 
5309 	process_nmi(vcpu);
5310 
5311 #ifdef CONFIG_KVM_SMM
5312 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5313 		process_smi(vcpu);
5314 #endif
5315 
5316 	/*
5317 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5318 	 * the only time there can be two queued exceptions is if there's a
5319 	 * non-exiting _injected_ exception, and a pending exiting exception.
5320 	 * In that case, ignore the VM-Exiting exception as it's an extension
5321 	 * of the injected exception.
5322 	 */
5323 	if (vcpu->arch.exception_vmexit.pending &&
5324 	    !vcpu->arch.exception.pending &&
5325 	    !vcpu->arch.exception.injected)
5326 		ex = &vcpu->arch.exception_vmexit;
5327 	else
5328 		ex = &vcpu->arch.exception;
5329 
5330 	/*
5331 	 * In guest mode, payload delivery should be deferred if the exception
5332 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5333 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5334 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5335 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5336 	 * the payload if the capability hasn't been requested.
5337 	 */
5338 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5339 	    ex->pending && ex->has_payload)
5340 		kvm_deliver_exception_payload(vcpu, ex);
5341 
5342 	memset(events, 0, sizeof(*events));
5343 
5344 	/*
5345 	 * The API doesn't provide the instruction length for software
5346 	 * exceptions, so don't report them. As long as the guest RIP
5347 	 * isn't advanced, we should expect to encounter the exception
5348 	 * again.
5349 	 */
5350 	if (!kvm_exception_is_soft(ex->vector)) {
5351 		events->exception.injected = ex->injected;
5352 		events->exception.pending = ex->pending;
5353 		/*
5354 		 * For ABI compatibility, deliberately conflate
5355 		 * pending and injected exceptions when
5356 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5357 		 */
5358 		if (!vcpu->kvm->arch.exception_payload_enabled)
5359 			events->exception.injected |= ex->pending;
5360 	}
5361 	events->exception.nr = ex->vector;
5362 	events->exception.has_error_code = ex->has_error_code;
5363 	events->exception.error_code = ex->error_code;
5364 	events->exception_has_payload = ex->has_payload;
5365 	events->exception_payload = ex->payload;
5366 
5367 	events->interrupt.injected =
5368 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5369 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5370 	events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5371 
5372 	events->nmi.injected = vcpu->arch.nmi_injected;
5373 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5374 	events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5375 
5376 	/* events->sipi_vector is never valid when reporting to user space */
5377 
5378 #ifdef CONFIG_KVM_SMM
5379 	events->smi.smm = is_smm(vcpu);
5380 	events->smi.pending = vcpu->arch.smi_pending;
5381 	events->smi.smm_inside_nmi =
5382 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5383 #endif
5384 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5385 
5386 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5387 			 | KVM_VCPUEVENT_VALID_SHADOW
5388 			 | KVM_VCPUEVENT_VALID_SMM);
5389 	if (vcpu->kvm->arch.exception_payload_enabled)
5390 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5391 	if (vcpu->kvm->arch.triple_fault_event) {
5392 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5393 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5394 	}
5395 }
5396 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5397 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5398 					      struct kvm_vcpu_events *events)
5399 {
5400 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5401 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5402 			      | KVM_VCPUEVENT_VALID_SHADOW
5403 			      | KVM_VCPUEVENT_VALID_SMM
5404 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5405 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5406 		return -EINVAL;
5407 
5408 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5409 		if (!vcpu->kvm->arch.exception_payload_enabled)
5410 			return -EINVAL;
5411 		if (events->exception.pending)
5412 			events->exception.injected = 0;
5413 		else
5414 			events->exception_has_payload = 0;
5415 	} else {
5416 		events->exception.pending = 0;
5417 		events->exception_has_payload = 0;
5418 	}
5419 
5420 	if ((events->exception.injected || events->exception.pending) &&
5421 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5422 		return -EINVAL;
5423 
5424 	/* INITs are latched while in SMM */
5425 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5426 	    (events->smi.smm || events->smi.pending) &&
5427 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5428 		return -EINVAL;
5429 
5430 	process_nmi(vcpu);
5431 
5432 	/*
5433 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5434 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5435 	 * pending exceptions, already-injected exceptions are not subject to
5436 	 * intercpetion.  Note, userspace that conflates pending and injected
5437 	 * is hosed, and will incorrectly convert an injected exception into a
5438 	 * pending exception, which in turn may cause a spurious VM-Exit.
5439 	 */
5440 	vcpu->arch.exception_from_userspace = events->exception.pending;
5441 
5442 	vcpu->arch.exception_vmexit.pending = false;
5443 
5444 	vcpu->arch.exception.injected = events->exception.injected;
5445 	vcpu->arch.exception.pending = events->exception.pending;
5446 	vcpu->arch.exception.vector = events->exception.nr;
5447 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5448 	vcpu->arch.exception.error_code = events->exception.error_code;
5449 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5450 	vcpu->arch.exception.payload = events->exception_payload;
5451 
5452 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5453 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5454 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5455 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5456 		kvm_x86_call(set_interrupt_shadow)(vcpu,
5457 						   events->interrupt.shadow);
5458 
5459 	vcpu->arch.nmi_injected = events->nmi.injected;
5460 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5461 		vcpu->arch.nmi_pending = 0;
5462 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5463 		if (events->nmi.pending)
5464 			kvm_make_request(KVM_REQ_NMI, vcpu);
5465 	}
5466 	kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5467 
5468 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5469 	    lapic_in_kernel(vcpu))
5470 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5471 
5472 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5473 #ifdef CONFIG_KVM_SMM
5474 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5475 			kvm_leave_nested(vcpu);
5476 			kvm_smm_changed(vcpu, events->smi.smm);
5477 		}
5478 
5479 		vcpu->arch.smi_pending = events->smi.pending;
5480 
5481 		if (events->smi.smm) {
5482 			if (events->smi.smm_inside_nmi)
5483 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5484 			else
5485 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5486 		}
5487 
5488 #else
5489 		if (events->smi.smm || events->smi.pending ||
5490 		    events->smi.smm_inside_nmi)
5491 			return -EINVAL;
5492 #endif
5493 
5494 		if (lapic_in_kernel(vcpu)) {
5495 			if (events->smi.latched_init)
5496 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5497 			else
5498 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5499 		}
5500 	}
5501 
5502 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5503 		if (!vcpu->kvm->arch.triple_fault_event)
5504 			return -EINVAL;
5505 		if (events->triple_fault.pending)
5506 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5507 		else
5508 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5509 	}
5510 
5511 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5512 
5513 	return 0;
5514 }
5515 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5516 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5517 					    struct kvm_debugregs *dbgregs)
5518 {
5519 	unsigned int i;
5520 
5521 	if (vcpu->kvm->arch.has_protected_state &&
5522 	    vcpu->arch.guest_state_protected)
5523 		return -EINVAL;
5524 
5525 	memset(dbgregs, 0, sizeof(*dbgregs));
5526 
5527 	BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5528 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5529 		dbgregs->db[i] = vcpu->arch.db[i];
5530 
5531 	dbgregs->dr6 = vcpu->arch.dr6;
5532 	dbgregs->dr7 = vcpu->arch.dr7;
5533 	return 0;
5534 }
5535 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5536 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5537 					    struct kvm_debugregs *dbgregs)
5538 {
5539 	unsigned int i;
5540 
5541 	if (vcpu->kvm->arch.has_protected_state &&
5542 	    vcpu->arch.guest_state_protected)
5543 		return -EINVAL;
5544 
5545 	if (dbgregs->flags)
5546 		return -EINVAL;
5547 
5548 	if (!kvm_dr6_valid(dbgregs->dr6))
5549 		return -EINVAL;
5550 	if (!kvm_dr7_valid(dbgregs->dr7))
5551 		return -EINVAL;
5552 
5553 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5554 		vcpu->arch.db[i] = dbgregs->db[i];
5555 
5556 	kvm_update_dr0123(vcpu);
5557 	vcpu->arch.dr6 = dbgregs->dr6;
5558 	vcpu->arch.dr7 = dbgregs->dr7;
5559 	kvm_update_dr7(vcpu);
5560 
5561 	return 0;
5562 }
5563 
5564 
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5565 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5566 					 u8 *state, unsigned int size)
5567 {
5568 	/*
5569 	 * Only copy state for features that are enabled for the guest.  The
5570 	 * state itself isn't problematic, but setting bits in the header for
5571 	 * features that are supported in *this* host but not exposed to the
5572 	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5573 	 * compatible host without the features that are NOT exposed to the
5574 	 * guest.
5575 	 *
5576 	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5577 	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5578 	 * supported by the host.
5579 	 */
5580 	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5581 			     XFEATURE_MASK_FPSSE;
5582 
5583 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5584 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5585 
5586 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5587 				       supported_xcr0, vcpu->arch.pkru);
5588 	return 0;
5589 }
5590 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5591 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5592 					struct kvm_xsave *guest_xsave)
5593 {
5594 	return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5595 					     sizeof(guest_xsave->region));
5596 }
5597 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5598 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5599 					struct kvm_xsave *guest_xsave)
5600 {
5601 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5602 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5603 
5604 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5605 					      guest_xsave->region,
5606 					      kvm_caps.supported_xcr0,
5607 					      &vcpu->arch.pkru);
5608 }
5609 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5610 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5611 				       struct kvm_xcrs *guest_xcrs)
5612 {
5613 	if (vcpu->kvm->arch.has_protected_state &&
5614 	    vcpu->arch.guest_state_protected)
5615 		return -EINVAL;
5616 
5617 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5618 		guest_xcrs->nr_xcrs = 0;
5619 		return 0;
5620 	}
5621 
5622 	guest_xcrs->nr_xcrs = 1;
5623 	guest_xcrs->flags = 0;
5624 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5625 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5626 	return 0;
5627 }
5628 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5629 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5630 				       struct kvm_xcrs *guest_xcrs)
5631 {
5632 	int i, r = 0;
5633 
5634 	if (vcpu->kvm->arch.has_protected_state &&
5635 	    vcpu->arch.guest_state_protected)
5636 		return -EINVAL;
5637 
5638 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5639 		return -EINVAL;
5640 
5641 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5642 		return -EINVAL;
5643 
5644 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5645 		/* Only support XCR0 currently */
5646 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5647 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5648 				guest_xcrs->xcrs[i].value);
5649 			break;
5650 		}
5651 	if (r)
5652 		r = -EINVAL;
5653 	return r;
5654 }
5655 
5656 /*
5657  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5658  * stopped by the hypervisor.  This function will be called from the host only.
5659  * EINVAL is returned when the host attempts to set the flag for a guest that
5660  * does not support pv clocks.
5661  */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5662 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5663 {
5664 	if (!vcpu->arch.pv_time.active)
5665 		return -EINVAL;
5666 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5667 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5668 	return 0;
5669 }
5670 
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5671 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5672 				 struct kvm_device_attr *attr)
5673 {
5674 	int r;
5675 
5676 	switch (attr->attr) {
5677 	case KVM_VCPU_TSC_OFFSET:
5678 		r = 0;
5679 		break;
5680 	default:
5681 		r = -ENXIO;
5682 	}
5683 
5684 	return r;
5685 }
5686 
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5687 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5688 				 struct kvm_device_attr *attr)
5689 {
5690 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5691 	int r;
5692 
5693 	switch (attr->attr) {
5694 	case KVM_VCPU_TSC_OFFSET:
5695 		r = -EFAULT;
5696 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5697 			break;
5698 		r = 0;
5699 		break;
5700 	default:
5701 		r = -ENXIO;
5702 	}
5703 
5704 	return r;
5705 }
5706 
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5707 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5708 				 struct kvm_device_attr *attr)
5709 {
5710 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5711 	struct kvm *kvm = vcpu->kvm;
5712 	int r;
5713 
5714 	switch (attr->attr) {
5715 	case KVM_VCPU_TSC_OFFSET: {
5716 		u64 offset, tsc, ns;
5717 		unsigned long flags;
5718 		bool matched;
5719 
5720 		r = -EFAULT;
5721 		if (get_user(offset, uaddr))
5722 			break;
5723 
5724 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5725 
5726 		matched = (vcpu->arch.virtual_tsc_khz &&
5727 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5728 			   kvm->arch.last_tsc_offset == offset);
5729 
5730 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5731 		ns = get_kvmclock_base_ns();
5732 
5733 		kvm->arch.user_set_tsc = true;
5734 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5735 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5736 
5737 		r = 0;
5738 		break;
5739 	}
5740 	default:
5741 		r = -ENXIO;
5742 	}
5743 
5744 	return r;
5745 }
5746 
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5747 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5748 				      unsigned int ioctl,
5749 				      void __user *argp)
5750 {
5751 	struct kvm_device_attr attr;
5752 	int r;
5753 
5754 	if (copy_from_user(&attr, argp, sizeof(attr)))
5755 		return -EFAULT;
5756 
5757 	if (attr.group != KVM_VCPU_TSC_CTRL)
5758 		return -ENXIO;
5759 
5760 	switch (ioctl) {
5761 	case KVM_HAS_DEVICE_ATTR:
5762 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5763 		break;
5764 	case KVM_GET_DEVICE_ATTR:
5765 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5766 		break;
5767 	case KVM_SET_DEVICE_ATTR:
5768 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5769 		break;
5770 	}
5771 
5772 	return r;
5773 }
5774 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5775 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5776 				     struct kvm_enable_cap *cap)
5777 {
5778 	if (cap->flags)
5779 		return -EINVAL;
5780 
5781 	switch (cap->cap) {
5782 #ifdef CONFIG_KVM_HYPERV
5783 	case KVM_CAP_HYPERV_SYNIC2:
5784 		if (cap->args[0])
5785 			return -EINVAL;
5786 		fallthrough;
5787 
5788 	case KVM_CAP_HYPERV_SYNIC:
5789 		if (!irqchip_in_kernel(vcpu->kvm))
5790 			return -EINVAL;
5791 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5792 					     KVM_CAP_HYPERV_SYNIC2);
5793 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5794 		{
5795 			int r;
5796 			uint16_t vmcs_version;
5797 			void __user *user_ptr;
5798 
5799 			if (!kvm_x86_ops.nested_ops->enable_evmcs)
5800 				return -ENOTTY;
5801 			r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5802 			if (!r) {
5803 				user_ptr = (void __user *)(uintptr_t)cap->args[0];
5804 				if (copy_to_user(user_ptr, &vmcs_version,
5805 						 sizeof(vmcs_version)))
5806 					r = -EFAULT;
5807 			}
5808 			return r;
5809 		}
5810 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5811 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5812 			return -ENOTTY;
5813 
5814 		return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
5815 
5816 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5817 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5818 #endif
5819 
5820 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5821 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5822 		return 0;
5823 	default:
5824 		return -EINVAL;
5825 	}
5826 }
5827 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5828 long kvm_arch_vcpu_ioctl(struct file *filp,
5829 			 unsigned int ioctl, unsigned long arg)
5830 {
5831 	struct kvm_vcpu *vcpu = filp->private_data;
5832 	void __user *argp = (void __user *)arg;
5833 	int r;
5834 	union {
5835 		struct kvm_sregs2 *sregs2;
5836 		struct kvm_lapic_state *lapic;
5837 		struct kvm_xsave *xsave;
5838 		struct kvm_xcrs *xcrs;
5839 		void *buffer;
5840 	} u;
5841 
5842 	vcpu_load(vcpu);
5843 
5844 	u.buffer = NULL;
5845 	switch (ioctl) {
5846 	case KVM_GET_LAPIC: {
5847 		r = -EINVAL;
5848 		if (!lapic_in_kernel(vcpu))
5849 			goto out;
5850 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
5851 
5852 		r = -ENOMEM;
5853 		if (!u.lapic)
5854 			goto out;
5855 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5856 		if (r)
5857 			goto out;
5858 		r = -EFAULT;
5859 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5860 			goto out;
5861 		r = 0;
5862 		break;
5863 	}
5864 	case KVM_SET_LAPIC: {
5865 		r = -EINVAL;
5866 		if (!lapic_in_kernel(vcpu))
5867 			goto out;
5868 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5869 		if (IS_ERR(u.lapic)) {
5870 			r = PTR_ERR(u.lapic);
5871 			goto out_nofree;
5872 		}
5873 
5874 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5875 		break;
5876 	}
5877 	case KVM_INTERRUPT: {
5878 		struct kvm_interrupt irq;
5879 
5880 		r = -EFAULT;
5881 		if (copy_from_user(&irq, argp, sizeof(irq)))
5882 			goto out;
5883 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5884 		break;
5885 	}
5886 	case KVM_NMI: {
5887 		r = kvm_vcpu_ioctl_nmi(vcpu);
5888 		break;
5889 	}
5890 	case KVM_SMI: {
5891 		r = kvm_inject_smi(vcpu);
5892 		break;
5893 	}
5894 	case KVM_SET_CPUID: {
5895 		struct kvm_cpuid __user *cpuid_arg = argp;
5896 		struct kvm_cpuid cpuid;
5897 
5898 		r = -EFAULT;
5899 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5900 			goto out;
5901 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5902 		break;
5903 	}
5904 	case KVM_SET_CPUID2: {
5905 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5906 		struct kvm_cpuid2 cpuid;
5907 
5908 		r = -EFAULT;
5909 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5910 			goto out;
5911 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5912 					      cpuid_arg->entries);
5913 		break;
5914 	}
5915 	case KVM_GET_CPUID2: {
5916 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5917 		struct kvm_cpuid2 cpuid;
5918 
5919 		r = -EFAULT;
5920 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5921 			goto out;
5922 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5923 					      cpuid_arg->entries);
5924 		if (r)
5925 			goto out;
5926 		r = -EFAULT;
5927 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5928 			goto out;
5929 		r = 0;
5930 		break;
5931 	}
5932 	case KVM_GET_MSRS: {
5933 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5934 		r = msr_io(vcpu, argp, do_get_msr, 1);
5935 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5936 		break;
5937 	}
5938 	case KVM_SET_MSRS: {
5939 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5940 		r = msr_io(vcpu, argp, do_set_msr, 0);
5941 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5942 		break;
5943 	}
5944 	case KVM_TPR_ACCESS_REPORTING: {
5945 		struct kvm_tpr_access_ctl tac;
5946 
5947 		r = -EFAULT;
5948 		if (copy_from_user(&tac, argp, sizeof(tac)))
5949 			goto out;
5950 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5951 		if (r)
5952 			goto out;
5953 		r = -EFAULT;
5954 		if (copy_to_user(argp, &tac, sizeof(tac)))
5955 			goto out;
5956 		r = 0;
5957 		break;
5958 	};
5959 	case KVM_SET_VAPIC_ADDR: {
5960 		struct kvm_vapic_addr va;
5961 		int idx;
5962 
5963 		r = -EINVAL;
5964 		if (!lapic_in_kernel(vcpu))
5965 			goto out;
5966 		r = -EFAULT;
5967 		if (copy_from_user(&va, argp, sizeof(va)))
5968 			goto out;
5969 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5970 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5971 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5972 		break;
5973 	}
5974 	case KVM_X86_SETUP_MCE: {
5975 		u64 mcg_cap;
5976 
5977 		r = -EFAULT;
5978 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5979 			goto out;
5980 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5981 		break;
5982 	}
5983 	case KVM_X86_SET_MCE: {
5984 		struct kvm_x86_mce mce;
5985 
5986 		r = -EFAULT;
5987 		if (copy_from_user(&mce, argp, sizeof(mce)))
5988 			goto out;
5989 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5990 		break;
5991 	}
5992 	case KVM_GET_VCPU_EVENTS: {
5993 		struct kvm_vcpu_events events;
5994 
5995 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5996 
5997 		r = -EFAULT;
5998 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5999 			break;
6000 		r = 0;
6001 		break;
6002 	}
6003 	case KVM_SET_VCPU_EVENTS: {
6004 		struct kvm_vcpu_events events;
6005 
6006 		r = -EFAULT;
6007 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6008 			break;
6009 
6010 		kvm_vcpu_srcu_read_lock(vcpu);
6011 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6012 		kvm_vcpu_srcu_read_unlock(vcpu);
6013 		break;
6014 	}
6015 	case KVM_GET_DEBUGREGS: {
6016 		struct kvm_debugregs dbgregs;
6017 
6018 		r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6019 		if (r < 0)
6020 			break;
6021 
6022 		r = -EFAULT;
6023 		if (copy_to_user(argp, &dbgregs,
6024 				 sizeof(struct kvm_debugregs)))
6025 			break;
6026 		r = 0;
6027 		break;
6028 	}
6029 	case KVM_SET_DEBUGREGS: {
6030 		struct kvm_debugregs dbgregs;
6031 
6032 		r = -EFAULT;
6033 		if (copy_from_user(&dbgregs, argp,
6034 				   sizeof(struct kvm_debugregs)))
6035 			break;
6036 
6037 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6038 		break;
6039 	}
6040 	case KVM_GET_XSAVE: {
6041 		r = -EINVAL;
6042 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6043 			break;
6044 
6045 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6046 		r = -ENOMEM;
6047 		if (!u.xsave)
6048 			break;
6049 
6050 		r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6051 		if (r < 0)
6052 			break;
6053 
6054 		r = -EFAULT;
6055 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6056 			break;
6057 		r = 0;
6058 		break;
6059 	}
6060 	case KVM_SET_XSAVE: {
6061 		int size = vcpu->arch.guest_fpu.uabi_size;
6062 
6063 		u.xsave = memdup_user(argp, size);
6064 		if (IS_ERR(u.xsave)) {
6065 			r = PTR_ERR(u.xsave);
6066 			goto out_nofree;
6067 		}
6068 
6069 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6070 		break;
6071 	}
6072 
6073 	case KVM_GET_XSAVE2: {
6074 		int size = vcpu->arch.guest_fpu.uabi_size;
6075 
6076 		u.xsave = kzalloc(size, GFP_KERNEL);
6077 		r = -ENOMEM;
6078 		if (!u.xsave)
6079 			break;
6080 
6081 		r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6082 		if (r < 0)
6083 			break;
6084 
6085 		r = -EFAULT;
6086 		if (copy_to_user(argp, u.xsave, size))
6087 			break;
6088 
6089 		r = 0;
6090 		break;
6091 	}
6092 
6093 	case KVM_GET_XCRS: {
6094 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6095 		r = -ENOMEM;
6096 		if (!u.xcrs)
6097 			break;
6098 
6099 		r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6100 		if (r < 0)
6101 			break;
6102 
6103 		r = -EFAULT;
6104 		if (copy_to_user(argp, u.xcrs,
6105 				 sizeof(struct kvm_xcrs)))
6106 			break;
6107 		r = 0;
6108 		break;
6109 	}
6110 	case KVM_SET_XCRS: {
6111 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6112 		if (IS_ERR(u.xcrs)) {
6113 			r = PTR_ERR(u.xcrs);
6114 			goto out_nofree;
6115 		}
6116 
6117 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6118 		break;
6119 	}
6120 	case KVM_SET_TSC_KHZ: {
6121 		u32 user_tsc_khz;
6122 
6123 		r = -EINVAL;
6124 		user_tsc_khz = (u32)arg;
6125 
6126 		if (kvm_caps.has_tsc_control &&
6127 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6128 			goto out;
6129 
6130 		if (user_tsc_khz == 0)
6131 			user_tsc_khz = tsc_khz;
6132 
6133 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6134 			r = 0;
6135 
6136 		goto out;
6137 	}
6138 	case KVM_GET_TSC_KHZ: {
6139 		r = vcpu->arch.virtual_tsc_khz;
6140 		goto out;
6141 	}
6142 	case KVM_KVMCLOCK_CTRL: {
6143 		r = kvm_set_guest_paused(vcpu);
6144 		goto out;
6145 	}
6146 	case KVM_ENABLE_CAP: {
6147 		struct kvm_enable_cap cap;
6148 
6149 		r = -EFAULT;
6150 		if (copy_from_user(&cap, argp, sizeof(cap)))
6151 			goto out;
6152 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6153 		break;
6154 	}
6155 	case KVM_GET_NESTED_STATE: {
6156 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6157 		u32 user_data_size;
6158 
6159 		r = -EINVAL;
6160 		if (!kvm_x86_ops.nested_ops->get_state)
6161 			break;
6162 
6163 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6164 		r = -EFAULT;
6165 		if (get_user(user_data_size, &user_kvm_nested_state->size))
6166 			break;
6167 
6168 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6169 						     user_data_size);
6170 		if (r < 0)
6171 			break;
6172 
6173 		if (r > user_data_size) {
6174 			if (put_user(r, &user_kvm_nested_state->size))
6175 				r = -EFAULT;
6176 			else
6177 				r = -E2BIG;
6178 			break;
6179 		}
6180 
6181 		r = 0;
6182 		break;
6183 	}
6184 	case KVM_SET_NESTED_STATE: {
6185 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6186 		struct kvm_nested_state kvm_state;
6187 		int idx;
6188 
6189 		r = -EINVAL;
6190 		if (!kvm_x86_ops.nested_ops->set_state)
6191 			break;
6192 
6193 		r = -EFAULT;
6194 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6195 			break;
6196 
6197 		r = -EINVAL;
6198 		if (kvm_state.size < sizeof(kvm_state))
6199 			break;
6200 
6201 		if (kvm_state.flags &
6202 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6203 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6204 		      | KVM_STATE_NESTED_GIF_SET))
6205 			break;
6206 
6207 		/* nested_run_pending implies guest_mode.  */
6208 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6209 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6210 			break;
6211 
6212 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6213 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6214 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6215 		break;
6216 	}
6217 #ifdef CONFIG_KVM_HYPERV
6218 	case KVM_GET_SUPPORTED_HV_CPUID:
6219 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6220 		break;
6221 #endif
6222 #ifdef CONFIG_KVM_XEN
6223 	case KVM_XEN_VCPU_GET_ATTR: {
6224 		struct kvm_xen_vcpu_attr xva;
6225 
6226 		r = -EFAULT;
6227 		if (copy_from_user(&xva, argp, sizeof(xva)))
6228 			goto out;
6229 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6230 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6231 			r = -EFAULT;
6232 		break;
6233 	}
6234 	case KVM_XEN_VCPU_SET_ATTR: {
6235 		struct kvm_xen_vcpu_attr xva;
6236 
6237 		r = -EFAULT;
6238 		if (copy_from_user(&xva, argp, sizeof(xva)))
6239 			goto out;
6240 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6241 		break;
6242 	}
6243 #endif
6244 	case KVM_GET_SREGS2: {
6245 		r = -EINVAL;
6246 		if (vcpu->kvm->arch.has_protected_state &&
6247 		    vcpu->arch.guest_state_protected)
6248 			goto out;
6249 
6250 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6251 		r = -ENOMEM;
6252 		if (!u.sregs2)
6253 			goto out;
6254 		__get_sregs2(vcpu, u.sregs2);
6255 		r = -EFAULT;
6256 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6257 			goto out;
6258 		r = 0;
6259 		break;
6260 	}
6261 	case KVM_SET_SREGS2: {
6262 		r = -EINVAL;
6263 		if (vcpu->kvm->arch.has_protected_state &&
6264 		    vcpu->arch.guest_state_protected)
6265 			goto out;
6266 
6267 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6268 		if (IS_ERR(u.sregs2)) {
6269 			r = PTR_ERR(u.sregs2);
6270 			u.sregs2 = NULL;
6271 			goto out;
6272 		}
6273 		r = __set_sregs2(vcpu, u.sregs2);
6274 		break;
6275 	}
6276 	case KVM_HAS_DEVICE_ATTR:
6277 	case KVM_GET_DEVICE_ATTR:
6278 	case KVM_SET_DEVICE_ATTR:
6279 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6280 		break;
6281 	default:
6282 		r = -EINVAL;
6283 	}
6284 out:
6285 	kfree(u.buffer);
6286 out_nofree:
6287 	vcpu_put(vcpu);
6288 	return r;
6289 }
6290 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6291 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6292 {
6293 	return VM_FAULT_SIGBUS;
6294 }
6295 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6296 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6297 {
6298 	int ret;
6299 
6300 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6301 		return -EINVAL;
6302 	ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6303 	return ret;
6304 }
6305 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6306 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6307 					      u64 ident_addr)
6308 {
6309 	return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6310 }
6311 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6312 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6313 					 unsigned long kvm_nr_mmu_pages)
6314 {
6315 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6316 		return -EINVAL;
6317 
6318 	mutex_lock(&kvm->slots_lock);
6319 
6320 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6321 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6322 
6323 	mutex_unlock(&kvm->slots_lock);
6324 	return 0;
6325 }
6326 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6327 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6328 {
6329 	struct kvm_pic *pic = kvm->arch.vpic;
6330 	int r;
6331 
6332 	r = 0;
6333 	switch (chip->chip_id) {
6334 	case KVM_IRQCHIP_PIC_MASTER:
6335 		memcpy(&chip->chip.pic, &pic->pics[0],
6336 			sizeof(struct kvm_pic_state));
6337 		break;
6338 	case KVM_IRQCHIP_PIC_SLAVE:
6339 		memcpy(&chip->chip.pic, &pic->pics[1],
6340 			sizeof(struct kvm_pic_state));
6341 		break;
6342 	case KVM_IRQCHIP_IOAPIC:
6343 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6344 		break;
6345 	default:
6346 		r = -EINVAL;
6347 		break;
6348 	}
6349 	return r;
6350 }
6351 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6352 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6353 {
6354 	struct kvm_pic *pic = kvm->arch.vpic;
6355 	int r;
6356 
6357 	r = 0;
6358 	switch (chip->chip_id) {
6359 	case KVM_IRQCHIP_PIC_MASTER:
6360 		spin_lock(&pic->lock);
6361 		memcpy(&pic->pics[0], &chip->chip.pic,
6362 			sizeof(struct kvm_pic_state));
6363 		spin_unlock(&pic->lock);
6364 		break;
6365 	case KVM_IRQCHIP_PIC_SLAVE:
6366 		spin_lock(&pic->lock);
6367 		memcpy(&pic->pics[1], &chip->chip.pic,
6368 			sizeof(struct kvm_pic_state));
6369 		spin_unlock(&pic->lock);
6370 		break;
6371 	case KVM_IRQCHIP_IOAPIC:
6372 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6373 		break;
6374 	default:
6375 		r = -EINVAL;
6376 		break;
6377 	}
6378 	kvm_pic_update_irq(pic);
6379 	return r;
6380 }
6381 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6382 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6383 {
6384 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6385 
6386 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6387 
6388 	mutex_lock(&kps->lock);
6389 	memcpy(ps, &kps->channels, sizeof(*ps));
6390 	mutex_unlock(&kps->lock);
6391 	return 0;
6392 }
6393 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6394 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6395 {
6396 	int i;
6397 	struct kvm_pit *pit = kvm->arch.vpit;
6398 
6399 	mutex_lock(&pit->pit_state.lock);
6400 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6401 	for (i = 0; i < 3; i++)
6402 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6403 	mutex_unlock(&pit->pit_state.lock);
6404 	return 0;
6405 }
6406 
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6407 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6408 {
6409 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6410 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6411 		sizeof(ps->channels));
6412 	ps->flags = kvm->arch.vpit->pit_state.flags;
6413 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6414 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6415 	return 0;
6416 }
6417 
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6418 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6419 {
6420 	int start = 0;
6421 	int i;
6422 	u32 prev_legacy, cur_legacy;
6423 	struct kvm_pit *pit = kvm->arch.vpit;
6424 
6425 	mutex_lock(&pit->pit_state.lock);
6426 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6427 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6428 	if (!prev_legacy && cur_legacy)
6429 		start = 1;
6430 	memcpy(&pit->pit_state.channels, &ps->channels,
6431 	       sizeof(pit->pit_state.channels));
6432 	pit->pit_state.flags = ps->flags;
6433 	for (i = 0; i < 3; i++)
6434 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6435 				   start && i == 0);
6436 	mutex_unlock(&pit->pit_state.lock);
6437 	return 0;
6438 }
6439 
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6440 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6441 				 struct kvm_reinject_control *control)
6442 {
6443 	struct kvm_pit *pit = kvm->arch.vpit;
6444 
6445 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6446 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6447 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6448 	 */
6449 	mutex_lock(&pit->pit_state.lock);
6450 	kvm_pit_set_reinject(pit, control->pit_reinject);
6451 	mutex_unlock(&pit->pit_state.lock);
6452 
6453 	return 0;
6454 }
6455 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6456 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6457 {
6458 
6459 	/*
6460 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6461 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6462 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6463 	 * VM-Exit.
6464 	 */
6465 	struct kvm_vcpu *vcpu;
6466 	unsigned long i;
6467 
6468 	if (!kvm_x86_ops.cpu_dirty_log_size)
6469 		return;
6470 
6471 	kvm_for_each_vcpu(i, vcpu, kvm)
6472 		kvm_vcpu_kick(vcpu);
6473 }
6474 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6475 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6476 			bool line_status)
6477 {
6478 	if (!irqchip_in_kernel(kvm))
6479 		return -ENXIO;
6480 
6481 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6482 					irq_event->irq, irq_event->level,
6483 					line_status);
6484 	return 0;
6485 }
6486 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6487 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6488 			    struct kvm_enable_cap *cap)
6489 {
6490 	int r;
6491 
6492 	if (cap->flags)
6493 		return -EINVAL;
6494 
6495 	switch (cap->cap) {
6496 	case KVM_CAP_DISABLE_QUIRKS2:
6497 		r = -EINVAL;
6498 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6499 			break;
6500 		fallthrough;
6501 	case KVM_CAP_DISABLE_QUIRKS:
6502 		kvm->arch.disabled_quirks = cap->args[0];
6503 		r = 0;
6504 		break;
6505 	case KVM_CAP_SPLIT_IRQCHIP: {
6506 		mutex_lock(&kvm->lock);
6507 		r = -EINVAL;
6508 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6509 			goto split_irqchip_unlock;
6510 		r = -EEXIST;
6511 		if (irqchip_in_kernel(kvm))
6512 			goto split_irqchip_unlock;
6513 		if (kvm->created_vcpus)
6514 			goto split_irqchip_unlock;
6515 		/* Pairs with irqchip_in_kernel. */
6516 		smp_wmb();
6517 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6518 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6519 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6520 		r = 0;
6521 split_irqchip_unlock:
6522 		mutex_unlock(&kvm->lock);
6523 		break;
6524 	}
6525 	case KVM_CAP_X2APIC_API:
6526 		r = -EINVAL;
6527 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6528 			break;
6529 
6530 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6531 			kvm->arch.x2apic_format = true;
6532 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6533 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6534 
6535 		r = 0;
6536 		break;
6537 	case KVM_CAP_X86_DISABLE_EXITS:
6538 		r = -EINVAL;
6539 		if (cap->args[0] & ~kvm_get_allowed_disable_exits())
6540 			break;
6541 
6542 		mutex_lock(&kvm->lock);
6543 		if (kvm->created_vcpus)
6544 			goto disable_exits_unlock;
6545 
6546 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6547 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6548 
6549 		if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) &&
6550 		    cpu_smt_possible() &&
6551 		    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6552 			pr_warn_once(SMT_RSB_MSG);
6553 
6554 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6555 			kvm->arch.pause_in_guest = true;
6556 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT)
6557 			kvm->arch.mwait_in_guest = true;
6558 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6559 			kvm->arch.hlt_in_guest = true;
6560 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6561 			kvm->arch.cstate_in_guest = true;
6562 		r = 0;
6563 disable_exits_unlock:
6564 		mutex_unlock(&kvm->lock);
6565 		break;
6566 	case KVM_CAP_MSR_PLATFORM_INFO:
6567 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6568 		r = 0;
6569 		break;
6570 	case KVM_CAP_EXCEPTION_PAYLOAD:
6571 		kvm->arch.exception_payload_enabled = cap->args[0];
6572 		r = 0;
6573 		break;
6574 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6575 		kvm->arch.triple_fault_event = cap->args[0];
6576 		r = 0;
6577 		break;
6578 	case KVM_CAP_X86_USER_SPACE_MSR:
6579 		r = -EINVAL;
6580 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6581 			break;
6582 		kvm->arch.user_space_msr_mask = cap->args[0];
6583 		r = 0;
6584 		break;
6585 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6586 		r = -EINVAL;
6587 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6588 			break;
6589 
6590 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6591 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6592 			break;
6593 
6594 		if (kvm_caps.has_bus_lock_exit &&
6595 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6596 			kvm->arch.bus_lock_detection_enabled = true;
6597 		r = 0;
6598 		break;
6599 #ifdef CONFIG_X86_SGX_KVM
6600 	case KVM_CAP_SGX_ATTRIBUTE: {
6601 		unsigned long allowed_attributes = 0;
6602 
6603 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6604 		if (r)
6605 			break;
6606 
6607 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6608 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6609 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6610 			kvm->arch.sgx_provisioning_allowed = true;
6611 		else
6612 			r = -EINVAL;
6613 		break;
6614 	}
6615 #endif
6616 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6617 		r = -EINVAL;
6618 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6619 			break;
6620 
6621 		r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6622 		break;
6623 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6624 		r = -EINVAL;
6625 		if (!kvm_x86_ops.vm_move_enc_context_from)
6626 			break;
6627 
6628 		r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6629 		break;
6630 	case KVM_CAP_EXIT_HYPERCALL:
6631 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6632 			r = -EINVAL;
6633 			break;
6634 		}
6635 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6636 		r = 0;
6637 		break;
6638 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6639 		r = -EINVAL;
6640 		if (cap->args[0] & ~1)
6641 			break;
6642 		kvm->arch.exit_on_emulation_error = cap->args[0];
6643 		r = 0;
6644 		break;
6645 	case KVM_CAP_PMU_CAPABILITY:
6646 		r = -EINVAL;
6647 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6648 			break;
6649 
6650 		mutex_lock(&kvm->lock);
6651 		if (!kvm->created_vcpus) {
6652 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6653 			r = 0;
6654 		}
6655 		mutex_unlock(&kvm->lock);
6656 		break;
6657 	case KVM_CAP_MAX_VCPU_ID:
6658 		r = -EINVAL;
6659 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6660 			break;
6661 
6662 		mutex_lock(&kvm->lock);
6663 		if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6664 			;
6665 		} else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6666 			r = 0;
6667 		} else if (!kvm->arch.max_vcpu_ids) {
6668 			kvm->arch.max_vcpu_ids = cap->args[0];
6669 			r = 0;
6670 		}
6671 		mutex_unlock(&kvm->lock);
6672 		break;
6673 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6674 		r = -EINVAL;
6675 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6676 			break;
6677 		if (!kvm_caps.has_notify_vmexit)
6678 			break;
6679 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6680 			break;
6681 		mutex_lock(&kvm->lock);
6682 		if (!kvm->created_vcpus) {
6683 			kvm->arch.notify_window = cap->args[0] >> 32;
6684 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6685 			r = 0;
6686 		}
6687 		mutex_unlock(&kvm->lock);
6688 		break;
6689 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6690 		r = -EINVAL;
6691 
6692 		/*
6693 		 * Since the risk of disabling NX hugepages is a guest crashing
6694 		 * the system, ensure the userspace process has permission to
6695 		 * reboot the system.
6696 		 *
6697 		 * Note that unlike the reboot() syscall, the process must have
6698 		 * this capability in the root namespace because exposing
6699 		 * /dev/kvm into a container does not limit the scope of the
6700 		 * iTLB multihit bug to that container. In other words,
6701 		 * this must use capable(), not ns_capable().
6702 		 */
6703 		if (!capable(CAP_SYS_BOOT)) {
6704 			r = -EPERM;
6705 			break;
6706 		}
6707 
6708 		if (cap->args[0])
6709 			break;
6710 
6711 		mutex_lock(&kvm->lock);
6712 		if (!kvm->created_vcpus) {
6713 			kvm->arch.disable_nx_huge_pages = true;
6714 			r = 0;
6715 		}
6716 		mutex_unlock(&kvm->lock);
6717 		break;
6718 	case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6719 		u64 bus_cycle_ns = cap->args[0];
6720 		u64 unused;
6721 
6722 		/*
6723 		 * Guard against overflow in tmict_to_ns(). 128 is the highest
6724 		 * divide value that can be programmed in APIC_TDCR.
6725 		 */
6726 		r = -EINVAL;
6727 		if (!bus_cycle_ns ||
6728 		    check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6729 			break;
6730 
6731 		r = 0;
6732 		mutex_lock(&kvm->lock);
6733 		if (!irqchip_in_kernel(kvm))
6734 			r = -ENXIO;
6735 		else if (kvm->created_vcpus)
6736 			r = -EINVAL;
6737 		else
6738 			kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6739 		mutex_unlock(&kvm->lock);
6740 		break;
6741 	}
6742 	default:
6743 		r = -EINVAL;
6744 		break;
6745 	}
6746 	return r;
6747 }
6748 
kvm_alloc_msr_filter(bool default_allow)6749 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6750 {
6751 	struct kvm_x86_msr_filter *msr_filter;
6752 
6753 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6754 	if (!msr_filter)
6755 		return NULL;
6756 
6757 	msr_filter->default_allow = default_allow;
6758 	return msr_filter;
6759 }
6760 
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6761 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6762 {
6763 	u32 i;
6764 
6765 	if (!msr_filter)
6766 		return;
6767 
6768 	for (i = 0; i < msr_filter->count; i++)
6769 		kfree(msr_filter->ranges[i].bitmap);
6770 
6771 	kfree(msr_filter);
6772 }
6773 
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6774 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6775 			      struct kvm_msr_filter_range *user_range)
6776 {
6777 	unsigned long *bitmap;
6778 	size_t bitmap_size;
6779 
6780 	if (!user_range->nmsrs)
6781 		return 0;
6782 
6783 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6784 		return -EINVAL;
6785 
6786 	if (!user_range->flags)
6787 		return -EINVAL;
6788 
6789 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6790 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6791 		return -EINVAL;
6792 
6793 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6794 	if (IS_ERR(bitmap))
6795 		return PTR_ERR(bitmap);
6796 
6797 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6798 		.flags = user_range->flags,
6799 		.base = user_range->base,
6800 		.nmsrs = user_range->nmsrs,
6801 		.bitmap = bitmap,
6802 	};
6803 
6804 	msr_filter->count++;
6805 	return 0;
6806 }
6807 
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6808 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6809 				       struct kvm_msr_filter *filter)
6810 {
6811 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6812 	bool default_allow;
6813 	bool empty = true;
6814 	int r;
6815 	u32 i;
6816 
6817 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6818 		return -EINVAL;
6819 
6820 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6821 		empty &= !filter->ranges[i].nmsrs;
6822 
6823 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6824 	if (empty && !default_allow)
6825 		return -EINVAL;
6826 
6827 	new_filter = kvm_alloc_msr_filter(default_allow);
6828 	if (!new_filter)
6829 		return -ENOMEM;
6830 
6831 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6832 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6833 		if (r) {
6834 			kvm_free_msr_filter(new_filter);
6835 			return r;
6836 		}
6837 	}
6838 
6839 	mutex_lock(&kvm->lock);
6840 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6841 					 mutex_is_locked(&kvm->lock));
6842 	mutex_unlock(&kvm->lock);
6843 	synchronize_srcu(&kvm->srcu);
6844 
6845 	kvm_free_msr_filter(old_filter);
6846 
6847 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6848 
6849 	return 0;
6850 }
6851 
6852 #ifdef CONFIG_KVM_COMPAT
6853 /* for KVM_X86_SET_MSR_FILTER */
6854 struct kvm_msr_filter_range_compat {
6855 	__u32 flags;
6856 	__u32 nmsrs;
6857 	__u32 base;
6858 	__u32 bitmap;
6859 };
6860 
6861 struct kvm_msr_filter_compat {
6862 	__u32 flags;
6863 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6864 };
6865 
6866 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6867 
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6868 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6869 			      unsigned long arg)
6870 {
6871 	void __user *argp = (void __user *)arg;
6872 	struct kvm *kvm = filp->private_data;
6873 	long r = -ENOTTY;
6874 
6875 	switch (ioctl) {
6876 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6877 		struct kvm_msr_filter __user *user_msr_filter = argp;
6878 		struct kvm_msr_filter_compat filter_compat;
6879 		struct kvm_msr_filter filter;
6880 		int i;
6881 
6882 		if (copy_from_user(&filter_compat, user_msr_filter,
6883 				   sizeof(filter_compat)))
6884 			return -EFAULT;
6885 
6886 		filter.flags = filter_compat.flags;
6887 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6888 			struct kvm_msr_filter_range_compat *cr;
6889 
6890 			cr = &filter_compat.ranges[i];
6891 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6892 				.flags = cr->flags,
6893 				.nmsrs = cr->nmsrs,
6894 				.base = cr->base,
6895 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6896 			};
6897 		}
6898 
6899 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6900 		break;
6901 	}
6902 	}
6903 
6904 	return r;
6905 }
6906 #endif
6907 
6908 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6909 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6910 {
6911 	struct kvm_vcpu *vcpu;
6912 	unsigned long i;
6913 	int ret = 0;
6914 
6915 	mutex_lock(&kvm->lock);
6916 	kvm_for_each_vcpu(i, vcpu, kvm) {
6917 		if (!vcpu->arch.pv_time.active)
6918 			continue;
6919 
6920 		ret = kvm_set_guest_paused(vcpu);
6921 		if (ret) {
6922 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6923 				vcpu->vcpu_id, ret);
6924 			break;
6925 		}
6926 	}
6927 	mutex_unlock(&kvm->lock);
6928 
6929 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6930 }
6931 
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6932 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6933 {
6934 	switch (state) {
6935 	case PM_HIBERNATION_PREPARE:
6936 	case PM_SUSPEND_PREPARE:
6937 		return kvm_arch_suspend_notifier(kvm);
6938 	}
6939 
6940 	return NOTIFY_DONE;
6941 }
6942 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6943 
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6944 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6945 {
6946 	struct kvm_clock_data data = { 0 };
6947 
6948 	get_kvmclock(kvm, &data);
6949 	if (copy_to_user(argp, &data, sizeof(data)))
6950 		return -EFAULT;
6951 
6952 	return 0;
6953 }
6954 
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6955 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6956 {
6957 	struct kvm_arch *ka = &kvm->arch;
6958 	struct kvm_clock_data data;
6959 	u64 now_raw_ns;
6960 
6961 	if (copy_from_user(&data, argp, sizeof(data)))
6962 		return -EFAULT;
6963 
6964 	/*
6965 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6966 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6967 	 */
6968 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6969 		return -EINVAL;
6970 
6971 	kvm_hv_request_tsc_page_update(kvm);
6972 	kvm_start_pvclock_update(kvm);
6973 	pvclock_update_vm_gtod_copy(kvm);
6974 
6975 	/*
6976 	 * This pairs with kvm_guest_time_update(): when masterclock is
6977 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6978 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6979 	 * is slightly ahead) here we risk going negative on unsigned
6980 	 * 'system_time' when 'data.clock' is very small.
6981 	 */
6982 	if (data.flags & KVM_CLOCK_REALTIME) {
6983 		u64 now_real_ns = ktime_get_real_ns();
6984 
6985 		/*
6986 		 * Avoid stepping the kvmclock backwards.
6987 		 */
6988 		if (now_real_ns > data.realtime)
6989 			data.clock += now_real_ns - data.realtime;
6990 	}
6991 
6992 	if (ka->use_master_clock)
6993 		now_raw_ns = ka->master_kernel_ns;
6994 	else
6995 		now_raw_ns = get_kvmclock_base_ns();
6996 	ka->kvmclock_offset = data.clock - now_raw_ns;
6997 	kvm_end_pvclock_update(kvm);
6998 	return 0;
6999 }
7000 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7001 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7002 {
7003 	struct kvm *kvm = filp->private_data;
7004 	void __user *argp = (void __user *)arg;
7005 	int r = -ENOTTY;
7006 	/*
7007 	 * This union makes it completely explicit to gcc-3.x
7008 	 * that these two variables' stack usage should be
7009 	 * combined, not added together.
7010 	 */
7011 	union {
7012 		struct kvm_pit_state ps;
7013 		struct kvm_pit_state2 ps2;
7014 		struct kvm_pit_config pit_config;
7015 	} u;
7016 
7017 	switch (ioctl) {
7018 	case KVM_SET_TSS_ADDR:
7019 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7020 		break;
7021 	case KVM_SET_IDENTITY_MAP_ADDR: {
7022 		u64 ident_addr;
7023 
7024 		mutex_lock(&kvm->lock);
7025 		r = -EINVAL;
7026 		if (kvm->created_vcpus)
7027 			goto set_identity_unlock;
7028 		r = -EFAULT;
7029 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7030 			goto set_identity_unlock;
7031 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7032 set_identity_unlock:
7033 		mutex_unlock(&kvm->lock);
7034 		break;
7035 	}
7036 	case KVM_SET_NR_MMU_PAGES:
7037 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7038 		break;
7039 	case KVM_CREATE_IRQCHIP: {
7040 		mutex_lock(&kvm->lock);
7041 
7042 		r = -EEXIST;
7043 		if (irqchip_in_kernel(kvm))
7044 			goto create_irqchip_unlock;
7045 
7046 		r = -EINVAL;
7047 		if (kvm->created_vcpus)
7048 			goto create_irqchip_unlock;
7049 
7050 		r = kvm_pic_init(kvm);
7051 		if (r)
7052 			goto create_irqchip_unlock;
7053 
7054 		r = kvm_ioapic_init(kvm);
7055 		if (r) {
7056 			kvm_pic_destroy(kvm);
7057 			goto create_irqchip_unlock;
7058 		}
7059 
7060 		r = kvm_setup_default_irq_routing(kvm);
7061 		if (r) {
7062 			kvm_ioapic_destroy(kvm);
7063 			kvm_pic_destroy(kvm);
7064 			goto create_irqchip_unlock;
7065 		}
7066 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7067 		smp_wmb();
7068 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7069 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7070 	create_irqchip_unlock:
7071 		mutex_unlock(&kvm->lock);
7072 		break;
7073 	}
7074 	case KVM_CREATE_PIT:
7075 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7076 		goto create_pit;
7077 	case KVM_CREATE_PIT2:
7078 		r = -EFAULT;
7079 		if (copy_from_user(&u.pit_config, argp,
7080 				   sizeof(struct kvm_pit_config)))
7081 			goto out;
7082 	create_pit:
7083 		mutex_lock(&kvm->lock);
7084 		r = -EEXIST;
7085 		if (kvm->arch.vpit)
7086 			goto create_pit_unlock;
7087 		r = -ENOENT;
7088 		if (!pic_in_kernel(kvm))
7089 			goto create_pit_unlock;
7090 		r = -ENOMEM;
7091 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7092 		if (kvm->arch.vpit)
7093 			r = 0;
7094 	create_pit_unlock:
7095 		mutex_unlock(&kvm->lock);
7096 		break;
7097 	case KVM_GET_IRQCHIP: {
7098 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7099 		struct kvm_irqchip *chip;
7100 
7101 		chip = memdup_user(argp, sizeof(*chip));
7102 		if (IS_ERR(chip)) {
7103 			r = PTR_ERR(chip);
7104 			goto out;
7105 		}
7106 
7107 		r = -ENXIO;
7108 		if (!irqchip_kernel(kvm))
7109 			goto get_irqchip_out;
7110 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7111 		if (r)
7112 			goto get_irqchip_out;
7113 		r = -EFAULT;
7114 		if (copy_to_user(argp, chip, sizeof(*chip)))
7115 			goto get_irqchip_out;
7116 		r = 0;
7117 	get_irqchip_out:
7118 		kfree(chip);
7119 		break;
7120 	}
7121 	case KVM_SET_IRQCHIP: {
7122 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7123 		struct kvm_irqchip *chip;
7124 
7125 		chip = memdup_user(argp, sizeof(*chip));
7126 		if (IS_ERR(chip)) {
7127 			r = PTR_ERR(chip);
7128 			goto out;
7129 		}
7130 
7131 		r = -ENXIO;
7132 		if (!irqchip_kernel(kvm))
7133 			goto set_irqchip_out;
7134 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7135 	set_irqchip_out:
7136 		kfree(chip);
7137 		break;
7138 	}
7139 	case KVM_GET_PIT: {
7140 		r = -EFAULT;
7141 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7142 			goto out;
7143 		r = -ENXIO;
7144 		if (!kvm->arch.vpit)
7145 			goto out;
7146 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7147 		if (r)
7148 			goto out;
7149 		r = -EFAULT;
7150 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7151 			goto out;
7152 		r = 0;
7153 		break;
7154 	}
7155 	case KVM_SET_PIT: {
7156 		r = -EFAULT;
7157 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7158 			goto out;
7159 		mutex_lock(&kvm->lock);
7160 		r = -ENXIO;
7161 		if (!kvm->arch.vpit)
7162 			goto set_pit_out;
7163 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7164 set_pit_out:
7165 		mutex_unlock(&kvm->lock);
7166 		break;
7167 	}
7168 	case KVM_GET_PIT2: {
7169 		r = -ENXIO;
7170 		if (!kvm->arch.vpit)
7171 			goto out;
7172 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7173 		if (r)
7174 			goto out;
7175 		r = -EFAULT;
7176 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7177 			goto out;
7178 		r = 0;
7179 		break;
7180 	}
7181 	case KVM_SET_PIT2: {
7182 		r = -EFAULT;
7183 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7184 			goto out;
7185 		mutex_lock(&kvm->lock);
7186 		r = -ENXIO;
7187 		if (!kvm->arch.vpit)
7188 			goto set_pit2_out;
7189 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7190 set_pit2_out:
7191 		mutex_unlock(&kvm->lock);
7192 		break;
7193 	}
7194 	case KVM_REINJECT_CONTROL: {
7195 		struct kvm_reinject_control control;
7196 		r =  -EFAULT;
7197 		if (copy_from_user(&control, argp, sizeof(control)))
7198 			goto out;
7199 		r = -ENXIO;
7200 		if (!kvm->arch.vpit)
7201 			goto out;
7202 		r = kvm_vm_ioctl_reinject(kvm, &control);
7203 		break;
7204 	}
7205 	case KVM_SET_BOOT_CPU_ID:
7206 		r = 0;
7207 		mutex_lock(&kvm->lock);
7208 		if (kvm->created_vcpus)
7209 			r = -EBUSY;
7210 		else if (arg > KVM_MAX_VCPU_IDS ||
7211 			 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7212 			r = -EINVAL;
7213 		else
7214 			kvm->arch.bsp_vcpu_id = arg;
7215 		mutex_unlock(&kvm->lock);
7216 		break;
7217 #ifdef CONFIG_KVM_XEN
7218 	case KVM_XEN_HVM_CONFIG: {
7219 		struct kvm_xen_hvm_config xhc;
7220 		r = -EFAULT;
7221 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
7222 			goto out;
7223 		r = kvm_xen_hvm_config(kvm, &xhc);
7224 		break;
7225 	}
7226 	case KVM_XEN_HVM_GET_ATTR: {
7227 		struct kvm_xen_hvm_attr xha;
7228 
7229 		r = -EFAULT;
7230 		if (copy_from_user(&xha, argp, sizeof(xha)))
7231 			goto out;
7232 		r = kvm_xen_hvm_get_attr(kvm, &xha);
7233 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7234 			r = -EFAULT;
7235 		break;
7236 	}
7237 	case KVM_XEN_HVM_SET_ATTR: {
7238 		struct kvm_xen_hvm_attr xha;
7239 
7240 		r = -EFAULT;
7241 		if (copy_from_user(&xha, argp, sizeof(xha)))
7242 			goto out;
7243 		r = kvm_xen_hvm_set_attr(kvm, &xha);
7244 		break;
7245 	}
7246 	case KVM_XEN_HVM_EVTCHN_SEND: {
7247 		struct kvm_irq_routing_xen_evtchn uxe;
7248 
7249 		r = -EFAULT;
7250 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7251 			goto out;
7252 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7253 		break;
7254 	}
7255 #endif
7256 	case KVM_SET_CLOCK:
7257 		r = kvm_vm_ioctl_set_clock(kvm, argp);
7258 		break;
7259 	case KVM_GET_CLOCK:
7260 		r = kvm_vm_ioctl_get_clock(kvm, argp);
7261 		break;
7262 	case KVM_SET_TSC_KHZ: {
7263 		u32 user_tsc_khz;
7264 
7265 		r = -EINVAL;
7266 		user_tsc_khz = (u32)arg;
7267 
7268 		if (kvm_caps.has_tsc_control &&
7269 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7270 			goto out;
7271 
7272 		if (user_tsc_khz == 0)
7273 			user_tsc_khz = tsc_khz;
7274 
7275 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7276 		r = 0;
7277 
7278 		goto out;
7279 	}
7280 	case KVM_GET_TSC_KHZ: {
7281 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7282 		goto out;
7283 	}
7284 	case KVM_MEMORY_ENCRYPT_OP: {
7285 		r = -ENOTTY;
7286 		if (!kvm_x86_ops.mem_enc_ioctl)
7287 			goto out;
7288 
7289 		r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7290 		break;
7291 	}
7292 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7293 		struct kvm_enc_region region;
7294 
7295 		r = -EFAULT;
7296 		if (copy_from_user(&region, argp, sizeof(region)))
7297 			goto out;
7298 
7299 		r = -ENOTTY;
7300 		if (!kvm_x86_ops.mem_enc_register_region)
7301 			goto out;
7302 
7303 		r = kvm_x86_call(mem_enc_register_region)(kvm, &region);
7304 		break;
7305 	}
7306 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7307 		struct kvm_enc_region region;
7308 
7309 		r = -EFAULT;
7310 		if (copy_from_user(&region, argp, sizeof(region)))
7311 			goto out;
7312 
7313 		r = -ENOTTY;
7314 		if (!kvm_x86_ops.mem_enc_unregister_region)
7315 			goto out;
7316 
7317 		r = kvm_x86_call(mem_enc_unregister_region)(kvm, &region);
7318 		break;
7319 	}
7320 #ifdef CONFIG_KVM_HYPERV
7321 	case KVM_HYPERV_EVENTFD: {
7322 		struct kvm_hyperv_eventfd hvevfd;
7323 
7324 		r = -EFAULT;
7325 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7326 			goto out;
7327 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7328 		break;
7329 	}
7330 #endif
7331 	case KVM_SET_PMU_EVENT_FILTER:
7332 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7333 		break;
7334 	case KVM_X86_SET_MSR_FILTER: {
7335 		struct kvm_msr_filter __user *user_msr_filter = argp;
7336 		struct kvm_msr_filter filter;
7337 
7338 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7339 			return -EFAULT;
7340 
7341 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7342 		break;
7343 	}
7344 	default:
7345 		r = -ENOTTY;
7346 	}
7347 out:
7348 	return r;
7349 }
7350 
kvm_probe_feature_msr(u32 msr_index)7351 static void kvm_probe_feature_msr(u32 msr_index)
7352 {
7353 	u64 data;
7354 
7355 	if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7356 		return;
7357 
7358 	msr_based_features[num_msr_based_features++] = msr_index;
7359 }
7360 
kvm_probe_msr_to_save(u32 msr_index)7361 static void kvm_probe_msr_to_save(u32 msr_index)
7362 {
7363 	u32 dummy[2];
7364 
7365 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7366 		return;
7367 
7368 	/*
7369 	 * Even MSRs that are valid in the host may not be exposed to guests in
7370 	 * some cases.
7371 	 */
7372 	switch (msr_index) {
7373 	case MSR_IA32_BNDCFGS:
7374 		if (!kvm_mpx_supported())
7375 			return;
7376 		break;
7377 	case MSR_TSC_AUX:
7378 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7379 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7380 			return;
7381 		break;
7382 	case MSR_IA32_UMWAIT_CONTROL:
7383 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7384 			return;
7385 		break;
7386 	case MSR_IA32_RTIT_CTL:
7387 	case MSR_IA32_RTIT_STATUS:
7388 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7389 			return;
7390 		break;
7391 	case MSR_IA32_RTIT_CR3_MATCH:
7392 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7393 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7394 			return;
7395 		break;
7396 	case MSR_IA32_RTIT_OUTPUT_BASE:
7397 	case MSR_IA32_RTIT_OUTPUT_MASK:
7398 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7399 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7400 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7401 			return;
7402 		break;
7403 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7404 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7405 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7406 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7407 			return;
7408 		break;
7409 	case MSR_ARCH_PERFMON_PERFCTR0 ...
7410 	     MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7411 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7412 		    kvm_pmu_cap.num_counters_gp)
7413 			return;
7414 		break;
7415 	case MSR_ARCH_PERFMON_EVENTSEL0 ...
7416 	     MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7417 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7418 		    kvm_pmu_cap.num_counters_gp)
7419 			return;
7420 		break;
7421 	case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7422 	     MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7423 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7424 		    kvm_pmu_cap.num_counters_fixed)
7425 			return;
7426 		break;
7427 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7428 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7429 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7430 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7431 			return;
7432 		break;
7433 	case MSR_IA32_XFD:
7434 	case MSR_IA32_XFD_ERR:
7435 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7436 			return;
7437 		break;
7438 	case MSR_IA32_TSX_CTRL:
7439 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7440 			return;
7441 		break;
7442 	default:
7443 		break;
7444 	}
7445 
7446 	msrs_to_save[num_msrs_to_save++] = msr_index;
7447 }
7448 
kvm_init_msr_lists(void)7449 static void kvm_init_msr_lists(void)
7450 {
7451 	unsigned i;
7452 
7453 	BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7454 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7455 
7456 	num_msrs_to_save = 0;
7457 	num_emulated_msrs = 0;
7458 	num_msr_based_features = 0;
7459 
7460 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7461 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7462 
7463 	if (enable_pmu) {
7464 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7465 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7466 	}
7467 
7468 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7469 		if (!kvm_x86_call(has_emulated_msr)(NULL,
7470 						    emulated_msrs_all[i]))
7471 			continue;
7472 
7473 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7474 	}
7475 
7476 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7477 		kvm_probe_feature_msr(i);
7478 
7479 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7480 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7481 }
7482 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7483 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7484 			   const void *v)
7485 {
7486 	int handled = 0;
7487 	int n;
7488 
7489 	do {
7490 		n = min(len, 8);
7491 		if (!(lapic_in_kernel(vcpu) &&
7492 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7493 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7494 			break;
7495 		handled += n;
7496 		addr += n;
7497 		len -= n;
7498 		v += n;
7499 	} while (len);
7500 
7501 	return handled;
7502 }
7503 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7504 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7505 {
7506 	int handled = 0;
7507 	int n;
7508 
7509 	do {
7510 		n = min(len, 8);
7511 		if (!(lapic_in_kernel(vcpu) &&
7512 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7513 					 addr, n, v))
7514 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7515 			break;
7516 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7517 		handled += n;
7518 		addr += n;
7519 		len -= n;
7520 		v += n;
7521 	} while (len);
7522 
7523 	return handled;
7524 }
7525 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7526 void kvm_set_segment(struct kvm_vcpu *vcpu,
7527 		     struct kvm_segment *var, int seg)
7528 {
7529 	kvm_x86_call(set_segment)(vcpu, var, seg);
7530 }
7531 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7532 void kvm_get_segment(struct kvm_vcpu *vcpu,
7533 		     struct kvm_segment *var, int seg)
7534 {
7535 	kvm_x86_call(get_segment)(vcpu, var, seg);
7536 }
7537 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7538 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7539 			   struct x86_exception *exception)
7540 {
7541 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7542 	gpa_t t_gpa;
7543 
7544 	BUG_ON(!mmu_is_nested(vcpu));
7545 
7546 	/* NPT walks are always user-walks */
7547 	access |= PFERR_USER_MASK;
7548 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7549 
7550 	return t_gpa;
7551 }
7552 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7553 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7554 			      struct x86_exception *exception)
7555 {
7556 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7557 
7558 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7559 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7560 }
7561 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7562 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7563 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7564 			       struct x86_exception *exception)
7565 {
7566 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7567 
7568 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7569 	access |= PFERR_WRITE_MASK;
7570 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7571 }
7572 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7573 
7574 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7575 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7576 				struct x86_exception *exception)
7577 {
7578 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7579 
7580 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7581 }
7582 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7583 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7584 				      struct kvm_vcpu *vcpu, u64 access,
7585 				      struct x86_exception *exception)
7586 {
7587 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7588 	void *data = val;
7589 	int r = X86EMUL_CONTINUE;
7590 
7591 	while (bytes) {
7592 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7593 		unsigned offset = addr & (PAGE_SIZE-1);
7594 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7595 		int ret;
7596 
7597 		if (gpa == INVALID_GPA)
7598 			return X86EMUL_PROPAGATE_FAULT;
7599 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7600 					       offset, toread);
7601 		if (ret < 0) {
7602 			r = X86EMUL_IO_NEEDED;
7603 			goto out;
7604 		}
7605 
7606 		bytes -= toread;
7607 		data += toread;
7608 		addr += toread;
7609 	}
7610 out:
7611 	return r;
7612 }
7613 
7614 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7615 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7616 				gva_t addr, void *val, unsigned int bytes,
7617 				struct x86_exception *exception)
7618 {
7619 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7620 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7621 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7622 	unsigned offset;
7623 	int ret;
7624 
7625 	/* Inline kvm_read_guest_virt_helper for speed.  */
7626 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7627 				    exception);
7628 	if (unlikely(gpa == INVALID_GPA))
7629 		return X86EMUL_PROPAGATE_FAULT;
7630 
7631 	offset = addr & (PAGE_SIZE-1);
7632 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7633 		bytes = (unsigned)PAGE_SIZE - offset;
7634 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7635 				       offset, bytes);
7636 	if (unlikely(ret < 0))
7637 		return X86EMUL_IO_NEEDED;
7638 
7639 	return X86EMUL_CONTINUE;
7640 }
7641 
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7642 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7643 			       gva_t addr, void *val, unsigned int bytes,
7644 			       struct x86_exception *exception)
7645 {
7646 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7647 
7648 	/*
7649 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7650 	 * is returned, but our callers are not ready for that and they blindly
7651 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7652 	 * uninitialized kernel stack memory into cr2 and error code.
7653 	 */
7654 	memset(exception, 0, sizeof(*exception));
7655 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7656 					  exception);
7657 }
7658 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7659 
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7660 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7661 			     gva_t addr, void *val, unsigned int bytes,
7662 			     struct x86_exception *exception, bool system)
7663 {
7664 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7665 	u64 access = 0;
7666 
7667 	if (system)
7668 		access |= PFERR_IMPLICIT_ACCESS;
7669 	else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7670 		access |= PFERR_USER_MASK;
7671 
7672 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7673 }
7674 
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7675 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7676 				      struct kvm_vcpu *vcpu, u64 access,
7677 				      struct x86_exception *exception)
7678 {
7679 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7680 	void *data = val;
7681 	int r = X86EMUL_CONTINUE;
7682 
7683 	while (bytes) {
7684 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7685 		unsigned offset = addr & (PAGE_SIZE-1);
7686 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7687 		int ret;
7688 
7689 		if (gpa == INVALID_GPA)
7690 			return X86EMUL_PROPAGATE_FAULT;
7691 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7692 		if (ret < 0) {
7693 			r = X86EMUL_IO_NEEDED;
7694 			goto out;
7695 		}
7696 
7697 		bytes -= towrite;
7698 		data += towrite;
7699 		addr += towrite;
7700 	}
7701 out:
7702 	return r;
7703 }
7704 
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7705 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7706 			      unsigned int bytes, struct x86_exception *exception,
7707 			      bool system)
7708 {
7709 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7710 	u64 access = PFERR_WRITE_MASK;
7711 
7712 	if (system)
7713 		access |= PFERR_IMPLICIT_ACCESS;
7714 	else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7715 		access |= PFERR_USER_MASK;
7716 
7717 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7718 					   access, exception);
7719 }
7720 
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7721 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7722 				unsigned int bytes, struct x86_exception *exception)
7723 {
7724 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7725 	vcpu->arch.l1tf_flush_l1d = true;
7726 
7727 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7728 					   PFERR_WRITE_MASK, exception);
7729 }
7730 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7731 
kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7732 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7733 				  void *insn, int insn_len)
7734 {
7735 	return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7736 						       insn, insn_len);
7737 }
7738 
handle_ud(struct kvm_vcpu * vcpu)7739 int handle_ud(struct kvm_vcpu *vcpu)
7740 {
7741 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7742 	int fep_flags = READ_ONCE(force_emulation_prefix);
7743 	int emul_type = EMULTYPE_TRAP_UD;
7744 	char sig[5]; /* ud2; .ascii "kvm" */
7745 	struct x86_exception e;
7746 	int r;
7747 
7748 	r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7749 	if (r != X86EMUL_CONTINUE)
7750 		return 1;
7751 
7752 	if (fep_flags &&
7753 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7754 				sig, sizeof(sig), &e) == 0 &&
7755 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7756 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7757 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7758 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7759 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7760 	}
7761 
7762 	return kvm_emulate_instruction(vcpu, emul_type);
7763 }
7764 EXPORT_SYMBOL_GPL(handle_ud);
7765 
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7766 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7767 			    gpa_t gpa, bool write)
7768 {
7769 	/* For APIC access vmexit */
7770 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7771 		return 1;
7772 
7773 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7774 		trace_vcpu_match_mmio(gva, gpa, write, true);
7775 		return 1;
7776 	}
7777 
7778 	return 0;
7779 }
7780 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7781 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7782 				gpa_t *gpa, struct x86_exception *exception,
7783 				bool write)
7784 {
7785 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7786 	u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7787 		     | (write ? PFERR_WRITE_MASK : 0);
7788 
7789 	/*
7790 	 * currently PKRU is only applied to ept enabled guest so
7791 	 * there is no pkey in EPT page table for L1 guest or EPT
7792 	 * shadow page table for L2 guest.
7793 	 */
7794 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7795 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7796 			      vcpu->arch.mmio_access, 0, access))) {
7797 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7798 					(gva & (PAGE_SIZE - 1));
7799 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7800 		return 1;
7801 	}
7802 
7803 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7804 
7805 	if (*gpa == INVALID_GPA)
7806 		return -1;
7807 
7808 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7809 }
7810 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7811 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7812 			const void *val, int bytes)
7813 {
7814 	int ret;
7815 
7816 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7817 	if (ret < 0)
7818 		return 0;
7819 	kvm_page_track_write(vcpu, gpa, val, bytes);
7820 	return 1;
7821 }
7822 
7823 struct read_write_emulator_ops {
7824 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7825 				  int bytes);
7826 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7827 				  void *val, int bytes);
7828 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7829 			       int bytes, void *val);
7830 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7831 				    void *val, int bytes);
7832 	bool write;
7833 };
7834 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7835 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7836 {
7837 	if (vcpu->mmio_read_completed) {
7838 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7839 			       vcpu->mmio_fragments[0].gpa, val);
7840 		vcpu->mmio_read_completed = 0;
7841 		return 1;
7842 	}
7843 
7844 	return 0;
7845 }
7846 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7847 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7848 			void *val, int bytes)
7849 {
7850 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7851 }
7852 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7853 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7854 			 void *val, int bytes)
7855 {
7856 	return emulator_write_phys(vcpu, gpa, val, bytes);
7857 }
7858 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7859 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7860 {
7861 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7862 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7863 }
7864 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7865 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7866 			  void *val, int bytes)
7867 {
7868 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7869 	return X86EMUL_IO_NEEDED;
7870 }
7871 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7872 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7873 			   void *val, int bytes)
7874 {
7875 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7876 
7877 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7878 	return X86EMUL_CONTINUE;
7879 }
7880 
7881 static const struct read_write_emulator_ops read_emultor = {
7882 	.read_write_prepare = read_prepare,
7883 	.read_write_emulate = read_emulate,
7884 	.read_write_mmio = vcpu_mmio_read,
7885 	.read_write_exit_mmio = read_exit_mmio,
7886 };
7887 
7888 static const struct read_write_emulator_ops write_emultor = {
7889 	.read_write_emulate = write_emulate,
7890 	.read_write_mmio = write_mmio,
7891 	.read_write_exit_mmio = write_exit_mmio,
7892 	.write = true,
7893 };
7894 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7895 static int emulator_read_write_onepage(unsigned long addr, void *val,
7896 				       unsigned int bytes,
7897 				       struct x86_exception *exception,
7898 				       struct kvm_vcpu *vcpu,
7899 				       const struct read_write_emulator_ops *ops)
7900 {
7901 	gpa_t gpa;
7902 	int handled, ret;
7903 	bool write = ops->write;
7904 	struct kvm_mmio_fragment *frag;
7905 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7906 
7907 	/*
7908 	 * If the exit was due to a NPF we may already have a GPA.
7909 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7910 	 * Note, this cannot be used on string operations since string
7911 	 * operation using rep will only have the initial GPA from the NPF
7912 	 * occurred.
7913 	 */
7914 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7915 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7916 		gpa = ctxt->gpa_val;
7917 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7918 	} else {
7919 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7920 		if (ret < 0)
7921 			return X86EMUL_PROPAGATE_FAULT;
7922 	}
7923 
7924 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7925 		return X86EMUL_CONTINUE;
7926 
7927 	/*
7928 	 * Is this MMIO handled locally?
7929 	 */
7930 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7931 	if (handled == bytes)
7932 		return X86EMUL_CONTINUE;
7933 
7934 	gpa += handled;
7935 	bytes -= handled;
7936 	val += handled;
7937 
7938 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7939 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7940 	frag->gpa = gpa;
7941 	frag->data = val;
7942 	frag->len = bytes;
7943 	return X86EMUL_CONTINUE;
7944 }
7945 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7946 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7947 			unsigned long addr,
7948 			void *val, unsigned int bytes,
7949 			struct x86_exception *exception,
7950 			const struct read_write_emulator_ops *ops)
7951 {
7952 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7953 	gpa_t gpa;
7954 	int rc;
7955 
7956 	if (ops->read_write_prepare &&
7957 		  ops->read_write_prepare(vcpu, val, bytes))
7958 		return X86EMUL_CONTINUE;
7959 
7960 	vcpu->mmio_nr_fragments = 0;
7961 
7962 	/* Crossing a page boundary? */
7963 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7964 		int now;
7965 
7966 		now = -addr & ~PAGE_MASK;
7967 		rc = emulator_read_write_onepage(addr, val, now, exception,
7968 						 vcpu, ops);
7969 
7970 		if (rc != X86EMUL_CONTINUE)
7971 			return rc;
7972 		addr += now;
7973 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7974 			addr = (u32)addr;
7975 		val += now;
7976 		bytes -= now;
7977 	}
7978 
7979 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7980 					 vcpu, ops);
7981 	if (rc != X86EMUL_CONTINUE)
7982 		return rc;
7983 
7984 	if (!vcpu->mmio_nr_fragments)
7985 		return rc;
7986 
7987 	gpa = vcpu->mmio_fragments[0].gpa;
7988 
7989 	vcpu->mmio_needed = 1;
7990 	vcpu->mmio_cur_fragment = 0;
7991 
7992 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7993 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7994 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7995 	vcpu->run->mmio.phys_addr = gpa;
7996 
7997 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7998 }
7999 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)8000 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8001 				  unsigned long addr,
8002 				  void *val,
8003 				  unsigned int bytes,
8004 				  struct x86_exception *exception)
8005 {
8006 	return emulator_read_write(ctxt, addr, val, bytes,
8007 				   exception, &read_emultor);
8008 }
8009 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8010 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8011 			    unsigned long addr,
8012 			    const void *val,
8013 			    unsigned int bytes,
8014 			    struct x86_exception *exception)
8015 {
8016 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
8017 				   exception, &write_emultor);
8018 }
8019 
8020 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8021 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8022 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8023 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8024 				     unsigned long addr,
8025 				     const void *old,
8026 				     const void *new,
8027 				     unsigned int bytes,
8028 				     struct x86_exception *exception)
8029 {
8030 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8031 	u64 page_line_mask;
8032 	unsigned long hva;
8033 	gpa_t gpa;
8034 	int r;
8035 
8036 	/* guests cmpxchg8b have to be emulated atomically */
8037 	if (bytes > 8 || (bytes & (bytes - 1)))
8038 		goto emul_write;
8039 
8040 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8041 
8042 	if (gpa == INVALID_GPA ||
8043 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8044 		goto emul_write;
8045 
8046 	/*
8047 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
8048 	 * enabled in the host and the access splits a cache line.
8049 	 */
8050 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8051 		page_line_mask = ~(cache_line_size() - 1);
8052 	else
8053 		page_line_mask = PAGE_MASK;
8054 
8055 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8056 		goto emul_write;
8057 
8058 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8059 	if (kvm_is_error_hva(hva))
8060 		goto emul_write;
8061 
8062 	hva += offset_in_page(gpa);
8063 
8064 	switch (bytes) {
8065 	case 1:
8066 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
8067 		break;
8068 	case 2:
8069 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
8070 		break;
8071 	case 4:
8072 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
8073 		break;
8074 	case 8:
8075 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
8076 		break;
8077 	default:
8078 		BUG();
8079 	}
8080 
8081 	if (r < 0)
8082 		return X86EMUL_UNHANDLEABLE;
8083 
8084 	/*
8085 	 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8086 	 * successful, as the old value is written back on failure.  Note, for
8087 	 * live migration, this is unnecessarily conservative as CMPXCHG writes
8088 	 * back the original value and the access is atomic, but KVM's ABI is
8089 	 * that all writes are dirty logged, regardless of the value written.
8090 	 */
8091 	kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8092 
8093 	if (r)
8094 		return X86EMUL_CMPXCHG_FAILED;
8095 
8096 	kvm_page_track_write(vcpu, gpa, new, bytes);
8097 
8098 	return X86EMUL_CONTINUE;
8099 
8100 emul_write:
8101 	pr_warn_once("emulating exchange as write\n");
8102 
8103 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8104 }
8105 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8106 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8107 			       unsigned short port, void *data,
8108 			       unsigned int count, bool in)
8109 {
8110 	unsigned i;
8111 	int r;
8112 
8113 	WARN_ON_ONCE(vcpu->arch.pio.count);
8114 	for (i = 0; i < count; i++) {
8115 		if (in)
8116 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8117 		else
8118 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8119 
8120 		if (r) {
8121 			if (i == 0)
8122 				goto userspace_io;
8123 
8124 			/*
8125 			 * Userspace must have unregistered the device while PIO
8126 			 * was running.  Drop writes / read as 0.
8127 			 */
8128 			if (in)
8129 				memset(data, 0, size * (count - i));
8130 			break;
8131 		}
8132 
8133 		data += size;
8134 	}
8135 	return 1;
8136 
8137 userspace_io:
8138 	vcpu->arch.pio.port = port;
8139 	vcpu->arch.pio.in = in;
8140 	vcpu->arch.pio.count = count;
8141 	vcpu->arch.pio.size = size;
8142 
8143 	if (in)
8144 		memset(vcpu->arch.pio_data, 0, size * count);
8145 	else
8146 		memcpy(vcpu->arch.pio_data, data, size * count);
8147 
8148 	vcpu->run->exit_reason = KVM_EXIT_IO;
8149 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8150 	vcpu->run->io.size = size;
8151 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8152 	vcpu->run->io.count = count;
8153 	vcpu->run->io.port = port;
8154 	return 0;
8155 }
8156 
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8157 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8158       			   unsigned short port, void *val, unsigned int count)
8159 {
8160 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8161 	if (r)
8162 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8163 
8164 	return r;
8165 }
8166 
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8167 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8168 {
8169 	int size = vcpu->arch.pio.size;
8170 	unsigned int count = vcpu->arch.pio.count;
8171 	memcpy(val, vcpu->arch.pio_data, size * count);
8172 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8173 	vcpu->arch.pio.count = 0;
8174 }
8175 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8176 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8177 				    int size, unsigned short port, void *val,
8178 				    unsigned int count)
8179 {
8180 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8181 	if (vcpu->arch.pio.count) {
8182 		/*
8183 		 * Complete a previous iteration that required userspace I/O.
8184 		 * Note, @count isn't guaranteed to match pio.count as userspace
8185 		 * can modify ECX before rerunning the vCPU.  Ignore any such
8186 		 * shenanigans as KVM doesn't support modifying the rep count,
8187 		 * and the emulator ensures @count doesn't overflow the buffer.
8188 		 */
8189 		complete_emulator_pio_in(vcpu, val);
8190 		return 1;
8191 	}
8192 
8193 	return emulator_pio_in(vcpu, size, port, val, count);
8194 }
8195 
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8196 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8197 			    unsigned short port, const void *val,
8198 			    unsigned int count)
8199 {
8200 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8201 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8202 }
8203 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8204 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8205 				     int size, unsigned short port,
8206 				     const void *val, unsigned int count)
8207 {
8208 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8209 }
8210 
get_segment_base(struct kvm_vcpu * vcpu,int seg)8211 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8212 {
8213 	return kvm_x86_call(get_segment_base)(vcpu, seg);
8214 }
8215 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8216 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8217 {
8218 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8219 }
8220 
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8221 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8222 {
8223 	if (!need_emulate_wbinvd(vcpu))
8224 		return X86EMUL_CONTINUE;
8225 
8226 	if (kvm_x86_call(has_wbinvd_exit)()) {
8227 		int cpu = get_cpu();
8228 
8229 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8230 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8231 				wbinvd_ipi, NULL, 1);
8232 		put_cpu();
8233 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8234 	} else
8235 		wbinvd();
8236 	return X86EMUL_CONTINUE;
8237 }
8238 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8239 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8240 {
8241 	kvm_emulate_wbinvd_noskip(vcpu);
8242 	return kvm_skip_emulated_instruction(vcpu);
8243 }
8244 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8245 
8246 
8247 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8248 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8249 {
8250 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8251 }
8252 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8253 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8254 {
8255 	return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8256 }
8257 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8258 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8259 			   unsigned long value)
8260 {
8261 
8262 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8263 }
8264 
mk_cr_64(u64 curr_cr,u32 new_val)8265 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8266 {
8267 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8268 }
8269 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8270 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8271 {
8272 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8273 	unsigned long value;
8274 
8275 	switch (cr) {
8276 	case 0:
8277 		value = kvm_read_cr0(vcpu);
8278 		break;
8279 	case 2:
8280 		value = vcpu->arch.cr2;
8281 		break;
8282 	case 3:
8283 		value = kvm_read_cr3(vcpu);
8284 		break;
8285 	case 4:
8286 		value = kvm_read_cr4(vcpu);
8287 		break;
8288 	case 8:
8289 		value = kvm_get_cr8(vcpu);
8290 		break;
8291 	default:
8292 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8293 		return 0;
8294 	}
8295 
8296 	return value;
8297 }
8298 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8299 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8300 {
8301 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8302 	int res = 0;
8303 
8304 	switch (cr) {
8305 	case 0:
8306 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8307 		break;
8308 	case 2:
8309 		vcpu->arch.cr2 = val;
8310 		break;
8311 	case 3:
8312 		res = kvm_set_cr3(vcpu, val);
8313 		break;
8314 	case 4:
8315 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8316 		break;
8317 	case 8:
8318 		res = kvm_set_cr8(vcpu, val);
8319 		break;
8320 	default:
8321 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8322 		res = -1;
8323 	}
8324 
8325 	return res;
8326 }
8327 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8328 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8329 {
8330 	return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8331 }
8332 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8333 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8334 {
8335 	kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8336 }
8337 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8338 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8339 {
8340 	kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8341 }
8342 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8343 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8344 {
8345 	kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8346 }
8347 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8348 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8349 {
8350 	kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8351 }
8352 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8353 static unsigned long emulator_get_cached_segment_base(
8354 	struct x86_emulate_ctxt *ctxt, int seg)
8355 {
8356 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8357 }
8358 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8359 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8360 				 struct desc_struct *desc, u32 *base3,
8361 				 int seg)
8362 {
8363 	struct kvm_segment var;
8364 
8365 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8366 	*selector = var.selector;
8367 
8368 	if (var.unusable) {
8369 		memset(desc, 0, sizeof(*desc));
8370 		if (base3)
8371 			*base3 = 0;
8372 		return false;
8373 	}
8374 
8375 	if (var.g)
8376 		var.limit >>= 12;
8377 	set_desc_limit(desc, var.limit);
8378 	set_desc_base(desc, (unsigned long)var.base);
8379 #ifdef CONFIG_X86_64
8380 	if (base3)
8381 		*base3 = var.base >> 32;
8382 #endif
8383 	desc->type = var.type;
8384 	desc->s = var.s;
8385 	desc->dpl = var.dpl;
8386 	desc->p = var.present;
8387 	desc->avl = var.avl;
8388 	desc->l = var.l;
8389 	desc->d = var.db;
8390 	desc->g = var.g;
8391 
8392 	return true;
8393 }
8394 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8395 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8396 				 struct desc_struct *desc, u32 base3,
8397 				 int seg)
8398 {
8399 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8400 	struct kvm_segment var;
8401 
8402 	var.selector = selector;
8403 	var.base = get_desc_base(desc);
8404 #ifdef CONFIG_X86_64
8405 	var.base |= ((u64)base3) << 32;
8406 #endif
8407 	var.limit = get_desc_limit(desc);
8408 	if (desc->g)
8409 		var.limit = (var.limit << 12) | 0xfff;
8410 	var.type = desc->type;
8411 	var.dpl = desc->dpl;
8412 	var.db = desc->d;
8413 	var.s = desc->s;
8414 	var.l = desc->l;
8415 	var.g = desc->g;
8416 	var.avl = desc->avl;
8417 	var.present = desc->p;
8418 	var.unusable = !var.present;
8419 	var.padding = 0;
8420 
8421 	kvm_set_segment(vcpu, &var, seg);
8422 	return;
8423 }
8424 
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8425 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8426 					u32 msr_index, u64 *pdata)
8427 {
8428 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8429 	int r;
8430 
8431 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8432 	if (r < 0)
8433 		return X86EMUL_UNHANDLEABLE;
8434 
8435 	if (r) {
8436 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8437 				       complete_emulated_rdmsr, r))
8438 			return X86EMUL_IO_NEEDED;
8439 
8440 		trace_kvm_msr_read_ex(msr_index);
8441 		return X86EMUL_PROPAGATE_FAULT;
8442 	}
8443 
8444 	trace_kvm_msr_read(msr_index, *pdata);
8445 	return X86EMUL_CONTINUE;
8446 }
8447 
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8448 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8449 					u32 msr_index, u64 data)
8450 {
8451 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8452 	int r;
8453 
8454 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8455 	if (r < 0)
8456 		return X86EMUL_UNHANDLEABLE;
8457 
8458 	if (r) {
8459 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8460 				       complete_emulated_msr_access, r))
8461 			return X86EMUL_IO_NEEDED;
8462 
8463 		trace_kvm_msr_write_ex(msr_index, data);
8464 		return X86EMUL_PROPAGATE_FAULT;
8465 	}
8466 
8467 	trace_kvm_msr_write(msr_index, data);
8468 	return X86EMUL_CONTINUE;
8469 }
8470 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8471 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8472 			    u32 msr_index, u64 *pdata)
8473 {
8474 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8475 }
8476 
emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8477 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8478 {
8479 	return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8480 }
8481 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8482 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8483 			     u32 pmc, u64 *pdata)
8484 {
8485 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8486 }
8487 
emulator_halt(struct x86_emulate_ctxt * ctxt)8488 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8489 {
8490 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8491 }
8492 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8493 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8494 			      struct x86_instruction_info *info,
8495 			      enum x86_intercept_stage stage)
8496 {
8497 	return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8498 					     &ctxt->exception);
8499 }
8500 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8501 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8502 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8503 			      bool exact_only)
8504 {
8505 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8506 }
8507 
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8508 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8509 {
8510 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8511 }
8512 
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8513 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8514 {
8515 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8516 }
8517 
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8518 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8519 {
8520 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8521 }
8522 
emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8523 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8524 {
8525 	return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8526 }
8527 
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8528 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8529 {
8530 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8531 }
8532 
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8533 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8534 {
8535 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8536 }
8537 
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8538 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8539 {
8540 	kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8541 }
8542 
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8543 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8544 {
8545 	return is_smm(emul_to_vcpu(ctxt));
8546 }
8547 
emulator_is_guest_mode(struct x86_emulate_ctxt * ctxt)8548 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8549 {
8550 	return is_guest_mode(emul_to_vcpu(ctxt));
8551 }
8552 
8553 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8554 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8555 {
8556 	WARN_ON_ONCE(1);
8557 	return X86EMUL_UNHANDLEABLE;
8558 }
8559 #endif
8560 
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8561 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8562 {
8563 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8564 }
8565 
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8566 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8567 {
8568 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8569 }
8570 
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8571 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8572 {
8573 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8574 
8575 	if (!kvm->vm_bugged)
8576 		kvm_vm_bugged(kvm);
8577 }
8578 
emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8579 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8580 					gva_t addr, unsigned int flags)
8581 {
8582 	if (!kvm_x86_ops.get_untagged_addr)
8583 		return addr;
8584 
8585 	return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8586 					       addr, flags);
8587 }
8588 
emulator_is_canonical_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8589 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8590 				       gva_t addr, unsigned int flags)
8591 {
8592 	return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8593 }
8594 
8595 static const struct x86_emulate_ops emulate_ops = {
8596 	.vm_bugged           = emulator_vm_bugged,
8597 	.read_gpr            = emulator_read_gpr,
8598 	.write_gpr           = emulator_write_gpr,
8599 	.read_std            = emulator_read_std,
8600 	.write_std           = emulator_write_std,
8601 	.fetch               = kvm_fetch_guest_virt,
8602 	.read_emulated       = emulator_read_emulated,
8603 	.write_emulated      = emulator_write_emulated,
8604 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8605 	.invlpg              = emulator_invlpg,
8606 	.pio_in_emulated     = emulator_pio_in_emulated,
8607 	.pio_out_emulated    = emulator_pio_out_emulated,
8608 	.get_segment         = emulator_get_segment,
8609 	.set_segment         = emulator_set_segment,
8610 	.get_cached_segment_base = emulator_get_cached_segment_base,
8611 	.get_gdt             = emulator_get_gdt,
8612 	.get_idt	     = emulator_get_idt,
8613 	.set_gdt             = emulator_set_gdt,
8614 	.set_idt	     = emulator_set_idt,
8615 	.get_cr              = emulator_get_cr,
8616 	.set_cr              = emulator_set_cr,
8617 	.cpl                 = emulator_get_cpl,
8618 	.get_dr              = emulator_get_dr,
8619 	.set_dr              = emulator_set_dr,
8620 	.set_msr_with_filter = emulator_set_msr_with_filter,
8621 	.get_msr_with_filter = emulator_get_msr_with_filter,
8622 	.get_msr             = emulator_get_msr,
8623 	.check_rdpmc_early   = emulator_check_rdpmc_early,
8624 	.read_pmc            = emulator_read_pmc,
8625 	.halt                = emulator_halt,
8626 	.wbinvd              = emulator_wbinvd,
8627 	.fix_hypercall       = emulator_fix_hypercall,
8628 	.intercept           = emulator_intercept,
8629 	.get_cpuid           = emulator_get_cpuid,
8630 	.guest_has_movbe     = emulator_guest_has_movbe,
8631 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8632 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8633 	.guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8634 	.set_nmi_mask        = emulator_set_nmi_mask,
8635 	.is_smm              = emulator_is_smm,
8636 	.is_guest_mode       = emulator_is_guest_mode,
8637 	.leave_smm           = emulator_leave_smm,
8638 	.triple_fault        = emulator_triple_fault,
8639 	.set_xcr             = emulator_set_xcr,
8640 	.get_untagged_addr   = emulator_get_untagged_addr,
8641 	.is_canonical_addr   = emulator_is_canonical_addr,
8642 };
8643 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8644 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8645 {
8646 	u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8647 	/*
8648 	 * an sti; sti; sequence only disable interrupts for the first
8649 	 * instruction. So, if the last instruction, be it emulated or
8650 	 * not, left the system with the INT_STI flag enabled, it
8651 	 * means that the last instruction is an sti. We should not
8652 	 * leave the flag on in this case. The same goes for mov ss
8653 	 */
8654 	if (int_shadow & mask)
8655 		mask = 0;
8656 	if (unlikely(int_shadow || mask)) {
8657 		kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8658 		if (!mask)
8659 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8660 	}
8661 }
8662 
inject_emulated_exception(struct kvm_vcpu * vcpu)8663 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8664 {
8665 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8666 
8667 	if (ctxt->exception.vector == PF_VECTOR)
8668 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8669 	else if (ctxt->exception.error_code_valid)
8670 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8671 				      ctxt->exception.error_code);
8672 	else
8673 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8674 }
8675 
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8676 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8677 {
8678 	struct x86_emulate_ctxt *ctxt;
8679 
8680 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8681 	if (!ctxt) {
8682 		pr_err("failed to allocate vcpu's emulator\n");
8683 		return NULL;
8684 	}
8685 
8686 	ctxt->vcpu = vcpu;
8687 	ctxt->ops = &emulate_ops;
8688 	vcpu->arch.emulate_ctxt = ctxt;
8689 
8690 	return ctxt;
8691 }
8692 
init_emulate_ctxt(struct kvm_vcpu * vcpu)8693 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8694 {
8695 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8696 	int cs_db, cs_l;
8697 
8698 	kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8699 
8700 	ctxt->gpa_available = false;
8701 	ctxt->eflags = kvm_get_rflags(vcpu);
8702 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8703 
8704 	ctxt->eip = kvm_rip_read(vcpu);
8705 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8706 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8707 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8708 		     cs_db				? X86EMUL_MODE_PROT32 :
8709 							  X86EMUL_MODE_PROT16;
8710 	ctxt->interruptibility = 0;
8711 	ctxt->have_exception = false;
8712 	ctxt->exception.vector = -1;
8713 	ctxt->perm_ok = false;
8714 
8715 	init_decode_cache(ctxt);
8716 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8717 }
8718 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8719 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8720 {
8721 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8722 	int ret;
8723 
8724 	init_emulate_ctxt(vcpu);
8725 
8726 	ctxt->op_bytes = 2;
8727 	ctxt->ad_bytes = 2;
8728 	ctxt->_eip = ctxt->eip + inc_eip;
8729 	ret = emulate_int_real(ctxt, irq);
8730 
8731 	if (ret != X86EMUL_CONTINUE) {
8732 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8733 	} else {
8734 		ctxt->eip = ctxt->_eip;
8735 		kvm_rip_write(vcpu, ctxt->eip);
8736 		kvm_set_rflags(vcpu, ctxt->eflags);
8737 	}
8738 }
8739 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8740 
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8741 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8742 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8743 {
8744 	struct kvm_run *run = vcpu->run;
8745 	u64 info[5];
8746 	u8 info_start;
8747 
8748 	/*
8749 	 * Zero the whole array used to retrieve the exit info, as casting to
8750 	 * u32 for select entries will leave some chunks uninitialized.
8751 	 */
8752 	memset(&info, 0, sizeof(info));
8753 
8754 	kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
8755 				    (u32 *)&info[3], (u32 *)&info[4]);
8756 
8757 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8758 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8759 
8760 	/*
8761 	 * There's currently space for 13 entries, but 5 are used for the exit
8762 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8763 	 * when expanding kvm_run.emulation_failure in the future.
8764 	 */
8765 	if (WARN_ON_ONCE(ndata > 4))
8766 		ndata = 4;
8767 
8768 	/* Always include the flags as a 'data' entry. */
8769 	info_start = 1;
8770 	run->emulation_failure.flags = 0;
8771 
8772 	if (insn_size) {
8773 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8774 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8775 		info_start += 2;
8776 		run->emulation_failure.flags |=
8777 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8778 		run->emulation_failure.insn_size = insn_size;
8779 		memset(run->emulation_failure.insn_bytes, 0x90,
8780 		       sizeof(run->emulation_failure.insn_bytes));
8781 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8782 	}
8783 
8784 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8785 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8786 	       ndata * sizeof(data[0]));
8787 
8788 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8789 }
8790 
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8791 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8792 {
8793 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8794 
8795 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8796 				       ctxt->fetch.end - ctxt->fetch.data);
8797 }
8798 
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8799 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8800 					  u8 ndata)
8801 {
8802 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8803 }
8804 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8805 
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8806 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8807 {
8808 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8809 }
8810 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8811 
kvm_prepare_event_vectoring_exit(struct kvm_vcpu * vcpu,gpa_t gpa)8812 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa)
8813 {
8814 	u32 reason, intr_info, error_code;
8815 	struct kvm_run *run = vcpu->run;
8816 	u64 info1, info2;
8817 	int ndata = 0;
8818 
8819 	kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2,
8820 				    &intr_info, &error_code);
8821 
8822 	run->internal.data[ndata++] = info2;
8823 	run->internal.data[ndata++] = reason;
8824 	run->internal.data[ndata++] = info1;
8825 	run->internal.data[ndata++] = gpa;
8826 	run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
8827 
8828 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8829 	run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8830 	run->internal.ndata = ndata;
8831 }
8832 EXPORT_SYMBOL_GPL(kvm_prepare_event_vectoring_exit);
8833 
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8834 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8835 {
8836 	struct kvm *kvm = vcpu->kvm;
8837 
8838 	++vcpu->stat.insn_emulation_fail;
8839 	trace_kvm_emulate_insn_failed(vcpu);
8840 
8841 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8842 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8843 		return 1;
8844 	}
8845 
8846 	if (kvm->arch.exit_on_emulation_error ||
8847 	    (emulation_type & EMULTYPE_SKIP)) {
8848 		prepare_emulation_ctxt_failure_exit(vcpu);
8849 		return 0;
8850 	}
8851 
8852 	kvm_queue_exception(vcpu, UD_VECTOR);
8853 
8854 	if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
8855 		prepare_emulation_ctxt_failure_exit(vcpu);
8856 		return 0;
8857 	}
8858 
8859 	return 1;
8860 }
8861 
kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8862 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
8863 					       gpa_t cr2_or_gpa,
8864 					       int emulation_type)
8865 {
8866 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8867 		return false;
8868 
8869 	/*
8870 	 * If the failed instruction faulted on an access to page tables that
8871 	 * are used to translate any part of the instruction, KVM can't resolve
8872 	 * the issue by unprotecting the gfn, as zapping the shadow page will
8873 	 * result in the instruction taking a !PRESENT page fault and thus put
8874 	 * the vCPU into an infinite loop of page faults.  E.g. KVM will create
8875 	 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8876 	 * then zap the SPTE to unprotect the gfn, and then do it all over
8877 	 * again.  Report the error to userspace.
8878 	 */
8879 	if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
8880 		return false;
8881 
8882 	/*
8883 	 * If emulation may have been triggered by a write to a shadowed page
8884 	 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8885 	 * guest to let the CPU re-execute the instruction in the hope that the
8886 	 * CPU can cleanly execute the instruction that KVM failed to emulate.
8887 	 */
8888 	__kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
8889 
8890 	/*
8891 	 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
8892 	 * all SPTEs were already zapped by a different task.  The alternative
8893 	 * is to report the error to userspace and likely terminate the guest,
8894 	 * and the last_retry_{eip,addr} checks will prevent retrying the page
8895 	 * fault indefinitely, i.e. there's nothing to lose by retrying.
8896 	 */
8897 	return true;
8898 }
8899 
8900 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8901 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8902 
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8903 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8904 				unsigned long *db)
8905 {
8906 	u32 dr6 = 0;
8907 	int i;
8908 	u32 enable, rwlen;
8909 
8910 	enable = dr7;
8911 	rwlen = dr7 >> 16;
8912 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8913 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8914 			dr6 |= (1 << i);
8915 	return dr6;
8916 }
8917 
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8918 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8919 {
8920 	struct kvm_run *kvm_run = vcpu->run;
8921 
8922 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8923 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8924 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8925 		kvm_run->debug.arch.exception = DB_VECTOR;
8926 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8927 		return 0;
8928 	}
8929 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8930 	return 1;
8931 }
8932 
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8933 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8934 {
8935 	unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
8936 	int r;
8937 
8938 	r = kvm_x86_call(skip_emulated_instruction)(vcpu);
8939 	if (unlikely(!r))
8940 		return 0;
8941 
8942 	kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8943 
8944 	/*
8945 	 * rflags is the old, "raw" value of the flags.  The new value has
8946 	 * not been saved yet.
8947 	 *
8948 	 * This is correct even for TF set by the guest, because "the
8949 	 * processor will not generate this exception after the instruction
8950 	 * that sets the TF flag".
8951 	 */
8952 	if (unlikely(rflags & X86_EFLAGS_TF))
8953 		r = kvm_vcpu_do_singlestep(vcpu);
8954 	return r;
8955 }
8956 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8957 
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)8958 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8959 {
8960 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8961 		return true;
8962 
8963 	/*
8964 	 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
8965 	 * active, but AMD compatible CPUs do not.
8966 	 */
8967 	if (!guest_cpuid_is_intel_compatible(vcpu))
8968 		return false;
8969 
8970 	return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
8971 }
8972 
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)8973 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8974 					   int emulation_type, int *r)
8975 {
8976 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8977 
8978 	/*
8979 	 * Do not check for code breakpoints if hardware has already done the
8980 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8981 	 * the instruction has passed all exception checks, and all intercepted
8982 	 * exceptions that trigger emulation have lower priority than code
8983 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8984 	 * means any code breakpoints have already been serviced.
8985 	 *
8986 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8987 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8988 	 * the instruction being emulated.  The intent of forced emulation is
8989 	 * to behave as if KVM intercepted the instruction without an exception
8990 	 * and without a prefix.
8991 	 */
8992 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8993 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8994 		return false;
8995 
8996 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8997 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8998 		struct kvm_run *kvm_run = vcpu->run;
8999 		unsigned long eip = kvm_get_linear_rip(vcpu);
9000 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9001 					   vcpu->arch.guest_debug_dr7,
9002 					   vcpu->arch.eff_db);
9003 
9004 		if (dr6 != 0) {
9005 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9006 			kvm_run->debug.arch.pc = eip;
9007 			kvm_run->debug.arch.exception = DB_VECTOR;
9008 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
9009 			*r = 0;
9010 			return true;
9011 		}
9012 	}
9013 
9014 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9015 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
9016 		unsigned long eip = kvm_get_linear_rip(vcpu);
9017 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9018 					   vcpu->arch.dr7,
9019 					   vcpu->arch.db);
9020 
9021 		if (dr6 != 0) {
9022 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9023 			*r = 1;
9024 			return true;
9025 		}
9026 	}
9027 
9028 	return false;
9029 }
9030 
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9031 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9032 {
9033 	switch (ctxt->opcode_len) {
9034 	case 1:
9035 		switch (ctxt->b) {
9036 		case 0xe4:	/* IN */
9037 		case 0xe5:
9038 		case 0xec:
9039 		case 0xed:
9040 		case 0xe6:	/* OUT */
9041 		case 0xe7:
9042 		case 0xee:
9043 		case 0xef:
9044 		case 0x6c:	/* INS */
9045 		case 0x6d:
9046 		case 0x6e:	/* OUTS */
9047 		case 0x6f:
9048 			return true;
9049 		}
9050 		break;
9051 	case 2:
9052 		switch (ctxt->b) {
9053 		case 0x33:	/* RDPMC */
9054 			return true;
9055 		}
9056 		break;
9057 	}
9058 
9059 	return false;
9060 }
9061 
9062 /*
9063  * Decode an instruction for emulation.  The caller is responsible for handling
9064  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9065  * (and wrong) when emulating on an intercepted fault-like exception[*], as
9066  * code breakpoints have higher priority and thus have already been done by
9067  * hardware.
9068  *
9069  * [*] Except #MC, which is higher priority, but KVM should never emulate in
9070  *     response to a machine check.
9071  */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9072 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9073 				    void *insn, int insn_len)
9074 {
9075 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9076 	int r;
9077 
9078 	init_emulate_ctxt(vcpu);
9079 
9080 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9081 
9082 	trace_kvm_emulate_insn_start(vcpu);
9083 	++vcpu->stat.insn_emulation;
9084 
9085 	return r;
9086 }
9087 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9088 
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9089 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9090 			    int emulation_type, void *insn, int insn_len)
9091 {
9092 	int r;
9093 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9094 	bool writeback = true;
9095 
9096 	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9097 	    (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9098 	     WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9099 		emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9100 
9101 	r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9102 	if (r != X86EMUL_CONTINUE) {
9103 		if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9104 			return 1;
9105 
9106 		if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9107 						       emulation_type))
9108 			return 1;
9109 
9110 		if (r == X86EMUL_UNHANDLEABLE_VECTORING) {
9111 			kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa);
9112 			return 0;
9113 		}
9114 
9115 		WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9116 		return handle_emulation_failure(vcpu, emulation_type);
9117 	}
9118 
9119 	vcpu->arch.l1tf_flush_l1d = true;
9120 
9121 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9122 		kvm_clear_exception_queue(vcpu);
9123 
9124 		/*
9125 		 * Return immediately if RIP hits a code breakpoint, such #DBs
9126 		 * are fault-like and are higher priority than any faults on
9127 		 * the code fetch itself.
9128 		 */
9129 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9130 			return r;
9131 
9132 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
9133 						    insn, insn_len);
9134 		if (r != EMULATION_OK)  {
9135 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
9136 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9137 				kvm_queue_exception(vcpu, UD_VECTOR);
9138 				return 1;
9139 			}
9140 			if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9141 							       emulation_type))
9142 				return 1;
9143 
9144 			if (ctxt->have_exception &&
9145 			    !(emulation_type & EMULTYPE_SKIP)) {
9146 				/*
9147 				 * #UD should result in just EMULATION_FAILED, and trap-like
9148 				 * exception should not be encountered during decode.
9149 				 */
9150 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9151 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9152 				inject_emulated_exception(vcpu);
9153 				return 1;
9154 			}
9155 			return handle_emulation_failure(vcpu, emulation_type);
9156 		}
9157 	}
9158 
9159 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9160 	    !is_vmware_backdoor_opcode(ctxt)) {
9161 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9162 		return 1;
9163 	}
9164 
9165 	/*
9166 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9167 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9168 	 * The caller is responsible for updating interruptibility state and
9169 	 * injecting single-step #DBs.
9170 	 */
9171 	if (emulation_type & EMULTYPE_SKIP) {
9172 		if (ctxt->mode != X86EMUL_MODE_PROT64)
9173 			ctxt->eip = (u32)ctxt->_eip;
9174 		else
9175 			ctxt->eip = ctxt->_eip;
9176 
9177 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9178 			r = 1;
9179 			goto writeback;
9180 		}
9181 
9182 		kvm_rip_write(vcpu, ctxt->eip);
9183 		if (ctxt->eflags & X86_EFLAGS_RF)
9184 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9185 		return 1;
9186 	}
9187 
9188 	/*
9189 	 * If emulation was caused by a write-protection #PF on a non-page_table
9190 	 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9191 	 * and retry the instruction, as the vCPU is likely no longer using the
9192 	 * gfn as a page table.
9193 	 */
9194 	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9195 	    !x86_page_table_writing_insn(ctxt) &&
9196 	    kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9197 		return 1;
9198 
9199 	/* this is needed for vmware backdoor interface to work since it
9200 	   changes registers values  during IO operation */
9201 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9202 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9203 		emulator_invalidate_register_cache(ctxt);
9204 	}
9205 
9206 restart:
9207 	if (emulation_type & EMULTYPE_PF) {
9208 		/* Save the faulting GPA (cr2) in the address field */
9209 		ctxt->exception.address = cr2_or_gpa;
9210 
9211 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
9212 		if (vcpu->arch.mmu->root_role.direct) {
9213 			ctxt->gpa_available = true;
9214 			ctxt->gpa_val = cr2_or_gpa;
9215 		}
9216 	} else {
9217 		/* Sanitize the address out of an abundance of paranoia. */
9218 		ctxt->exception.address = 0;
9219 	}
9220 
9221 	r = x86_emulate_insn(ctxt);
9222 
9223 	if (r == EMULATION_INTERCEPTED)
9224 		return 1;
9225 
9226 	if (r == EMULATION_FAILED) {
9227 		if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9228 						       emulation_type))
9229 			return 1;
9230 
9231 		return handle_emulation_failure(vcpu, emulation_type);
9232 	}
9233 
9234 	if (ctxt->have_exception) {
9235 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9236 		vcpu->mmio_needed = false;
9237 		r = 1;
9238 		inject_emulated_exception(vcpu);
9239 	} else if (vcpu->arch.pio.count) {
9240 		if (!vcpu->arch.pio.in) {
9241 			/* FIXME: return into emulator if single-stepping.  */
9242 			vcpu->arch.pio.count = 0;
9243 		} else {
9244 			writeback = false;
9245 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9246 		}
9247 		r = 0;
9248 	} else if (vcpu->mmio_needed) {
9249 		++vcpu->stat.mmio_exits;
9250 
9251 		if (!vcpu->mmio_is_write)
9252 			writeback = false;
9253 		r = 0;
9254 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9255 	} else if (vcpu->arch.complete_userspace_io) {
9256 		writeback = false;
9257 		r = 0;
9258 	} else if (r == EMULATION_RESTART)
9259 		goto restart;
9260 	else
9261 		r = 1;
9262 
9263 writeback:
9264 	if (writeback) {
9265 		unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9266 		toggle_interruptibility(vcpu, ctxt->interruptibility);
9267 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9268 
9269 		/*
9270 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9271 		 * only supports code breakpoints and general detect #DB, both
9272 		 * of which are fault-like.
9273 		 */
9274 		if (!ctxt->have_exception ||
9275 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9276 			kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9277 			if (ctxt->is_branch)
9278 				kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9279 			kvm_rip_write(vcpu, ctxt->eip);
9280 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9281 				r = kvm_vcpu_do_singlestep(vcpu);
9282 			kvm_x86_call(update_emulated_instruction)(vcpu);
9283 			__kvm_set_rflags(vcpu, ctxt->eflags);
9284 		}
9285 
9286 		/*
9287 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9288 		 * do nothing, and it will be requested again as soon as
9289 		 * the shadow expires.  But we still need to check here,
9290 		 * because POPF has no interrupt shadow.
9291 		 */
9292 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9293 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9294 	} else
9295 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9296 
9297 	return r;
9298 }
9299 
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9300 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9301 {
9302 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9303 }
9304 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9305 
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9306 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9307 					void *insn, int insn_len)
9308 {
9309 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9310 }
9311 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9312 
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9313 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9314 {
9315 	vcpu->arch.pio.count = 0;
9316 	return 1;
9317 }
9318 
complete_fast_pio_out(struct kvm_vcpu * vcpu)9319 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9320 {
9321 	vcpu->arch.pio.count = 0;
9322 
9323 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9324 		return 1;
9325 
9326 	return kvm_skip_emulated_instruction(vcpu);
9327 }
9328 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9329 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9330 			    unsigned short port)
9331 {
9332 	unsigned long val = kvm_rax_read(vcpu);
9333 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9334 
9335 	if (ret)
9336 		return ret;
9337 
9338 	/*
9339 	 * Workaround userspace that relies on old KVM behavior of %rip being
9340 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9341 	 */
9342 	if (port == 0x7e &&
9343 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9344 		vcpu->arch.complete_userspace_io =
9345 			complete_fast_pio_out_port_0x7e;
9346 		kvm_skip_emulated_instruction(vcpu);
9347 	} else {
9348 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9349 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9350 	}
9351 	return 0;
9352 }
9353 
complete_fast_pio_in(struct kvm_vcpu * vcpu)9354 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9355 {
9356 	unsigned long val;
9357 
9358 	/* We should only ever be called with arch.pio.count equal to 1 */
9359 	BUG_ON(vcpu->arch.pio.count != 1);
9360 
9361 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9362 		vcpu->arch.pio.count = 0;
9363 		return 1;
9364 	}
9365 
9366 	/* For size less than 4 we merge, else we zero extend */
9367 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9368 
9369 	complete_emulator_pio_in(vcpu, &val);
9370 	kvm_rax_write(vcpu, val);
9371 
9372 	return kvm_skip_emulated_instruction(vcpu);
9373 }
9374 
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9375 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9376 			   unsigned short port)
9377 {
9378 	unsigned long val;
9379 	int ret;
9380 
9381 	/* For size less than 4 we merge, else we zero extend */
9382 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9383 
9384 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9385 	if (ret) {
9386 		kvm_rax_write(vcpu, val);
9387 		return ret;
9388 	}
9389 
9390 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9391 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9392 
9393 	return 0;
9394 }
9395 
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9396 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9397 {
9398 	int ret;
9399 
9400 	if (in)
9401 		ret = kvm_fast_pio_in(vcpu, size, port);
9402 	else
9403 		ret = kvm_fast_pio_out(vcpu, size, port);
9404 	return ret && kvm_skip_emulated_instruction(vcpu);
9405 }
9406 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9407 
kvmclock_cpu_down_prep(unsigned int cpu)9408 static int kvmclock_cpu_down_prep(unsigned int cpu)
9409 {
9410 	__this_cpu_write(cpu_tsc_khz, 0);
9411 	return 0;
9412 }
9413 
tsc_khz_changed(void * data)9414 static void tsc_khz_changed(void *data)
9415 {
9416 	struct cpufreq_freqs *freq = data;
9417 	unsigned long khz;
9418 
9419 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9420 
9421 	if (data)
9422 		khz = freq->new;
9423 	else
9424 		khz = cpufreq_quick_get(raw_smp_processor_id());
9425 	if (!khz)
9426 		khz = tsc_khz;
9427 	__this_cpu_write(cpu_tsc_khz, khz);
9428 }
9429 
9430 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9431 static void kvm_hyperv_tsc_notifier(void)
9432 {
9433 	struct kvm *kvm;
9434 	int cpu;
9435 
9436 	mutex_lock(&kvm_lock);
9437 	list_for_each_entry(kvm, &vm_list, vm_list)
9438 		kvm_make_mclock_inprogress_request(kvm);
9439 
9440 	/* no guest entries from this point */
9441 	hyperv_stop_tsc_emulation();
9442 
9443 	/* TSC frequency always matches when on Hyper-V */
9444 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9445 		for_each_present_cpu(cpu)
9446 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9447 	}
9448 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9449 
9450 	list_for_each_entry(kvm, &vm_list, vm_list) {
9451 		__kvm_start_pvclock_update(kvm);
9452 		pvclock_update_vm_gtod_copy(kvm);
9453 		kvm_end_pvclock_update(kvm);
9454 	}
9455 
9456 	mutex_unlock(&kvm_lock);
9457 }
9458 #endif
9459 
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9460 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9461 {
9462 	struct kvm *kvm;
9463 	struct kvm_vcpu *vcpu;
9464 	int send_ipi = 0;
9465 	unsigned long i;
9466 
9467 	/*
9468 	 * We allow guests to temporarily run on slowing clocks,
9469 	 * provided we notify them after, or to run on accelerating
9470 	 * clocks, provided we notify them before.  Thus time never
9471 	 * goes backwards.
9472 	 *
9473 	 * However, we have a problem.  We can't atomically update
9474 	 * the frequency of a given CPU from this function; it is
9475 	 * merely a notifier, which can be called from any CPU.
9476 	 * Changing the TSC frequency at arbitrary points in time
9477 	 * requires a recomputation of local variables related to
9478 	 * the TSC for each VCPU.  We must flag these local variables
9479 	 * to be updated and be sure the update takes place with the
9480 	 * new frequency before any guests proceed.
9481 	 *
9482 	 * Unfortunately, the combination of hotplug CPU and frequency
9483 	 * change creates an intractable locking scenario; the order
9484 	 * of when these callouts happen is undefined with respect to
9485 	 * CPU hotplug, and they can race with each other.  As such,
9486 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9487 	 * undefined; you can actually have a CPU frequency change take
9488 	 * place in between the computation of X and the setting of the
9489 	 * variable.  To protect against this problem, all updates of
9490 	 * the per_cpu tsc_khz variable are done in an interrupt
9491 	 * protected IPI, and all callers wishing to update the value
9492 	 * must wait for a synchronous IPI to complete (which is trivial
9493 	 * if the caller is on the CPU already).  This establishes the
9494 	 * necessary total order on variable updates.
9495 	 *
9496 	 * Note that because a guest time update may take place
9497 	 * anytime after the setting of the VCPU's request bit, the
9498 	 * correct TSC value must be set before the request.  However,
9499 	 * to ensure the update actually makes it to any guest which
9500 	 * starts running in hardware virtualization between the set
9501 	 * and the acquisition of the spinlock, we must also ping the
9502 	 * CPU after setting the request bit.
9503 	 *
9504 	 */
9505 
9506 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9507 
9508 	mutex_lock(&kvm_lock);
9509 	list_for_each_entry(kvm, &vm_list, vm_list) {
9510 		kvm_for_each_vcpu(i, vcpu, kvm) {
9511 			if (vcpu->cpu != cpu)
9512 				continue;
9513 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9514 			if (vcpu->cpu != raw_smp_processor_id())
9515 				send_ipi = 1;
9516 		}
9517 	}
9518 	mutex_unlock(&kvm_lock);
9519 
9520 	if (freq->old < freq->new && send_ipi) {
9521 		/*
9522 		 * We upscale the frequency.  Must make the guest
9523 		 * doesn't see old kvmclock values while running with
9524 		 * the new frequency, otherwise we risk the guest sees
9525 		 * time go backwards.
9526 		 *
9527 		 * In case we update the frequency for another cpu
9528 		 * (which might be in guest context) send an interrupt
9529 		 * to kick the cpu out of guest context.  Next time
9530 		 * guest context is entered kvmclock will be updated,
9531 		 * so the guest will not see stale values.
9532 		 */
9533 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9534 	}
9535 }
9536 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9537 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9538 				     void *data)
9539 {
9540 	struct cpufreq_freqs *freq = data;
9541 	int cpu;
9542 
9543 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9544 		return 0;
9545 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9546 		return 0;
9547 
9548 	for_each_cpu(cpu, freq->policy->cpus)
9549 		__kvmclock_cpufreq_notifier(freq, cpu);
9550 
9551 	return 0;
9552 }
9553 
9554 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9555 	.notifier_call  = kvmclock_cpufreq_notifier
9556 };
9557 
kvmclock_cpu_online(unsigned int cpu)9558 static int kvmclock_cpu_online(unsigned int cpu)
9559 {
9560 	tsc_khz_changed(NULL);
9561 	return 0;
9562 }
9563 
kvm_timer_init(void)9564 static void kvm_timer_init(void)
9565 {
9566 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9567 		max_tsc_khz = tsc_khz;
9568 
9569 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9570 			struct cpufreq_policy *policy;
9571 			int cpu;
9572 
9573 			cpu = get_cpu();
9574 			policy = cpufreq_cpu_get(cpu);
9575 			if (policy) {
9576 				if (policy->cpuinfo.max_freq)
9577 					max_tsc_khz = policy->cpuinfo.max_freq;
9578 				cpufreq_cpu_put(policy);
9579 			}
9580 			put_cpu();
9581 		}
9582 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9583 					  CPUFREQ_TRANSITION_NOTIFIER);
9584 
9585 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9586 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9587 	}
9588 }
9589 
9590 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9591 static void pvclock_gtod_update_fn(struct work_struct *work)
9592 {
9593 	struct kvm *kvm;
9594 	struct kvm_vcpu *vcpu;
9595 	unsigned long i;
9596 
9597 	mutex_lock(&kvm_lock);
9598 	list_for_each_entry(kvm, &vm_list, vm_list)
9599 		kvm_for_each_vcpu(i, vcpu, kvm)
9600 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9601 	atomic_set(&kvm_guest_has_master_clock, 0);
9602 	mutex_unlock(&kvm_lock);
9603 }
9604 
9605 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9606 
9607 /*
9608  * Indirection to move queue_work() out of the tk_core.seq write held
9609  * region to prevent possible deadlocks against time accessors which
9610  * are invoked with work related locks held.
9611  */
pvclock_irq_work_fn(struct irq_work * w)9612 static void pvclock_irq_work_fn(struct irq_work *w)
9613 {
9614 	queue_work(system_long_wq, &pvclock_gtod_work);
9615 }
9616 
9617 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9618 
9619 /*
9620  * Notification about pvclock gtod data update.
9621  */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9622 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9623 			       void *priv)
9624 {
9625 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9626 	struct timekeeper *tk = priv;
9627 
9628 	update_pvclock_gtod(tk);
9629 
9630 	/*
9631 	 * Disable master clock if host does not trust, or does not use,
9632 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9633 	 * this is invoked with tk_core.seq write held.
9634 	 */
9635 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9636 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9637 		irq_work_queue(&pvclock_irq_work);
9638 	return 0;
9639 }
9640 
9641 static struct notifier_block pvclock_gtod_notifier = {
9642 	.notifier_call = pvclock_gtod_notify,
9643 };
9644 #endif
9645 
kvm_ops_update(struct kvm_x86_init_ops * ops)9646 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9647 {
9648 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9649 
9650 #define __KVM_X86_OP(func) \
9651 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9652 #define KVM_X86_OP(func) \
9653 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9654 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9655 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9656 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9657 					   (void *)__static_call_return0);
9658 #include <asm/kvm-x86-ops.h>
9659 #undef __KVM_X86_OP
9660 
9661 	kvm_pmu_ops_update(ops->pmu_ops);
9662 }
9663 
kvm_x86_check_processor_compatibility(void)9664 static int kvm_x86_check_processor_compatibility(void)
9665 {
9666 	int cpu = smp_processor_id();
9667 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9668 
9669 	/*
9670 	 * Compatibility checks are done when loading KVM and when enabling
9671 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9672 	 * compatible, i.e. KVM should never perform a compatibility check on
9673 	 * an offline CPU.
9674 	 */
9675 	WARN_ON(!cpu_online(cpu));
9676 
9677 	if (__cr4_reserved_bits(cpu_has, c) !=
9678 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9679 		return -EIO;
9680 
9681 	return kvm_x86_call(check_processor_compatibility)();
9682 }
9683 
kvm_x86_check_cpu_compat(void * ret)9684 static void kvm_x86_check_cpu_compat(void *ret)
9685 {
9686 	*(int *)ret = kvm_x86_check_processor_compatibility();
9687 }
9688 
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9689 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9690 {
9691 	u64 host_pat;
9692 	int r, cpu;
9693 
9694 	guard(mutex)(&vendor_module_lock);
9695 
9696 	if (kvm_x86_ops.enable_virtualization_cpu) {
9697 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9698 		return -EEXIST;
9699 	}
9700 
9701 	/*
9702 	 * KVM explicitly assumes that the guest has an FPU and
9703 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9704 	 * vCPU's FPU state as a fxregs_state struct.
9705 	 */
9706 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9707 		pr_err("inadequate fpu\n");
9708 		return -EOPNOTSUPP;
9709 	}
9710 
9711 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9712 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9713 		return -EOPNOTSUPP;
9714 	}
9715 
9716 	/*
9717 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9718 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9719 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9720 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9721 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9722 	 */
9723 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9724 	    (host_pat & GENMASK(2, 0)) != 6) {
9725 		pr_err("host PAT[0] is not WB\n");
9726 		return -EIO;
9727 	}
9728 
9729 	memset(&kvm_caps, 0, sizeof(kvm_caps));
9730 
9731 	x86_emulator_cache = kvm_alloc_emulator_cache();
9732 	if (!x86_emulator_cache) {
9733 		pr_err("failed to allocate cache for x86 emulator\n");
9734 		return -ENOMEM;
9735 	}
9736 
9737 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9738 	if (!user_return_msrs) {
9739 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9740 		r = -ENOMEM;
9741 		goto out_free_x86_emulator_cache;
9742 	}
9743 	kvm_nr_uret_msrs = 0;
9744 
9745 	r = kvm_mmu_vendor_module_init();
9746 	if (r)
9747 		goto out_free_percpu;
9748 
9749 	kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9750 	kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9751 
9752 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9753 		kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9754 		kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
9755 	}
9756 
9757 	rdmsrl_safe(MSR_EFER, &kvm_host.efer);
9758 
9759 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9760 		rdmsrl(MSR_IA32_XSS, kvm_host.xss);
9761 
9762 	kvm_init_pmu_capability(ops->pmu_ops);
9763 
9764 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9765 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
9766 
9767 	r = ops->hardware_setup();
9768 	if (r != 0)
9769 		goto out_mmu_exit;
9770 
9771 	kvm_ops_update(ops);
9772 
9773 	for_each_online_cpu(cpu) {
9774 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9775 		if (r < 0)
9776 			goto out_unwind_ops;
9777 	}
9778 
9779 	/*
9780 	 * Point of no return!  DO NOT add error paths below this point unless
9781 	 * absolutely necessary, as most operations from this point forward
9782 	 * require unwinding.
9783 	 */
9784 	kvm_timer_init();
9785 
9786 	if (pi_inject_timer == -1)
9787 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9788 #ifdef CONFIG_X86_64
9789 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9790 
9791 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9792 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9793 #endif
9794 
9795 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9796 
9797 	if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9798 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9799 
9800 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9801 		kvm_caps.supported_xss = 0;
9802 
9803 	if (kvm_caps.has_tsc_control) {
9804 		/*
9805 		 * Make sure the user can only configure tsc_khz values that
9806 		 * fit into a signed integer.
9807 		 * A min value is not calculated because it will always
9808 		 * be 1 on all machines.
9809 		 */
9810 		u64 max = min(0x7fffffffULL,
9811 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9812 		kvm_caps.max_guest_tsc_khz = max;
9813 	}
9814 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9815 	kvm_init_msr_lists();
9816 	return 0;
9817 
9818 out_unwind_ops:
9819 	kvm_x86_ops.enable_virtualization_cpu = NULL;
9820 	kvm_x86_call(hardware_unsetup)();
9821 out_mmu_exit:
9822 	kvm_mmu_vendor_module_exit();
9823 out_free_percpu:
9824 	free_percpu(user_return_msrs);
9825 out_free_x86_emulator_cache:
9826 	kmem_cache_destroy(x86_emulator_cache);
9827 	return r;
9828 }
9829 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9830 
kvm_x86_vendor_exit(void)9831 void kvm_x86_vendor_exit(void)
9832 {
9833 	kvm_unregister_perf_callbacks();
9834 
9835 #ifdef CONFIG_X86_64
9836 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9837 		clear_hv_tscchange_cb();
9838 #endif
9839 	kvm_lapic_exit();
9840 
9841 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9842 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9843 					    CPUFREQ_TRANSITION_NOTIFIER);
9844 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9845 	}
9846 #ifdef CONFIG_X86_64
9847 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9848 	irq_work_sync(&pvclock_irq_work);
9849 	cancel_work_sync(&pvclock_gtod_work);
9850 #endif
9851 	kvm_x86_call(hardware_unsetup)();
9852 	kvm_mmu_vendor_module_exit();
9853 	free_percpu(user_return_msrs);
9854 	kmem_cache_destroy(x86_emulator_cache);
9855 #ifdef CONFIG_KVM_XEN
9856 	static_key_deferred_flush(&kvm_xen_enabled);
9857 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9858 #endif
9859 	mutex_lock(&vendor_module_lock);
9860 	kvm_x86_ops.enable_virtualization_cpu = NULL;
9861 	mutex_unlock(&vendor_module_lock);
9862 }
9863 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9864 
9865 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9866 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9867 			        unsigned long clock_type)
9868 {
9869 	struct kvm_clock_pairing clock_pairing;
9870 	struct timespec64 ts;
9871 	u64 cycle;
9872 	int ret;
9873 
9874 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9875 		return -KVM_EOPNOTSUPP;
9876 
9877 	/*
9878 	 * When tsc is in permanent catchup mode guests won't be able to use
9879 	 * pvclock_read_retry loop to get consistent view of pvclock
9880 	 */
9881 	if (vcpu->arch.tsc_always_catchup)
9882 		return -KVM_EOPNOTSUPP;
9883 
9884 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9885 		return -KVM_EOPNOTSUPP;
9886 
9887 	clock_pairing.sec = ts.tv_sec;
9888 	clock_pairing.nsec = ts.tv_nsec;
9889 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9890 	clock_pairing.flags = 0;
9891 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9892 
9893 	ret = 0;
9894 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9895 			    sizeof(struct kvm_clock_pairing)))
9896 		ret = -KVM_EFAULT;
9897 
9898 	return ret;
9899 }
9900 #endif
9901 
9902 /*
9903  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9904  *
9905  * @apicid - apicid of vcpu to be kicked.
9906  */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9907 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9908 {
9909 	/*
9910 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9911 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9912 	 */
9913 	struct kvm_lapic_irq lapic_irq = {
9914 		.delivery_mode = APIC_DM_REMRD,
9915 		.dest_mode = APIC_DEST_PHYSICAL,
9916 		.shorthand = APIC_DEST_NOSHORT,
9917 		.dest_id = apicid,
9918 	};
9919 
9920 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9921 }
9922 
kvm_apicv_activated(struct kvm * kvm)9923 bool kvm_apicv_activated(struct kvm *kvm)
9924 {
9925 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9926 }
9927 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9928 
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9929 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9930 {
9931 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9932 	ulong vcpu_reasons =
9933 			kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
9934 
9935 	return (vm_reasons | vcpu_reasons) == 0;
9936 }
9937 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9938 
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9939 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9940 				       enum kvm_apicv_inhibit reason, bool set)
9941 {
9942 	const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
9943 
9944 	BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
9945 
9946 	if (set)
9947 		__set_bit(reason, inhibits);
9948 	else
9949 		__clear_bit(reason, inhibits);
9950 
9951 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9952 }
9953 
kvm_apicv_init(struct kvm * kvm)9954 static void kvm_apicv_init(struct kvm *kvm)
9955 {
9956 	enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
9957 						       APICV_INHIBIT_REASON_DISABLED;
9958 
9959 	set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
9960 
9961 	init_rwsem(&kvm->arch.apicv_update_lock);
9962 }
9963 
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9964 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9965 {
9966 	struct kvm_vcpu *target = NULL;
9967 	struct kvm_apic_map *map;
9968 
9969 	vcpu->stat.directed_yield_attempted++;
9970 
9971 	if (single_task_running())
9972 		goto no_yield;
9973 
9974 	rcu_read_lock();
9975 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9976 
9977 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9978 		target = map->phys_map[dest_id]->vcpu;
9979 
9980 	rcu_read_unlock();
9981 
9982 	if (!target || !READ_ONCE(target->ready))
9983 		goto no_yield;
9984 
9985 	/* Ignore requests to yield to self */
9986 	if (vcpu == target)
9987 		goto no_yield;
9988 
9989 	if (kvm_vcpu_yield_to(target) <= 0)
9990 		goto no_yield;
9991 
9992 	vcpu->stat.directed_yield_successful++;
9993 
9994 no_yield:
9995 	return;
9996 }
9997 
complete_hypercall_exit(struct kvm_vcpu * vcpu)9998 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9999 {
10000 	u64 ret = vcpu->run->hypercall.ret;
10001 
10002 	if (!is_64_bit_hypercall(vcpu))
10003 		ret = (u32)ret;
10004 	kvm_rax_write(vcpu, ret);
10005 	return kvm_skip_emulated_instruction(vcpu);
10006 }
10007 
____kvm_emulate_hypercall(struct kvm_vcpu * vcpu,unsigned long nr,unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,int op_64_bit,int cpl,int (* complete_hypercall)(struct kvm_vcpu *))10008 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
10009 			      unsigned long a0, unsigned long a1,
10010 			      unsigned long a2, unsigned long a3,
10011 			      int op_64_bit, int cpl,
10012 			      int (*complete_hypercall)(struct kvm_vcpu *))
10013 {
10014 	unsigned long ret;
10015 
10016 	++vcpu->stat.hypercalls;
10017 
10018 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
10019 
10020 	if (!op_64_bit) {
10021 		nr &= 0xFFFFFFFF;
10022 		a0 &= 0xFFFFFFFF;
10023 		a1 &= 0xFFFFFFFF;
10024 		a2 &= 0xFFFFFFFF;
10025 		a3 &= 0xFFFFFFFF;
10026 	}
10027 
10028 	if (cpl) {
10029 		ret = -KVM_EPERM;
10030 		goto out;
10031 	}
10032 
10033 	ret = -KVM_ENOSYS;
10034 
10035 	switch (nr) {
10036 	case KVM_HC_VAPIC_POLL_IRQ:
10037 		ret = 0;
10038 		break;
10039 	case KVM_HC_KICK_CPU:
10040 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10041 			break;
10042 
10043 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10044 		kvm_sched_yield(vcpu, a1);
10045 		ret = 0;
10046 		break;
10047 #ifdef CONFIG_X86_64
10048 	case KVM_HC_CLOCK_PAIRING:
10049 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10050 		break;
10051 #endif
10052 	case KVM_HC_SEND_IPI:
10053 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10054 			break;
10055 
10056 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10057 		break;
10058 	case KVM_HC_SCHED_YIELD:
10059 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10060 			break;
10061 
10062 		kvm_sched_yield(vcpu, a0);
10063 		ret = 0;
10064 		break;
10065 	case KVM_HC_MAP_GPA_RANGE: {
10066 		u64 gpa = a0, npages = a1, attrs = a2;
10067 
10068 		ret = -KVM_ENOSYS;
10069 		if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE))
10070 			break;
10071 
10072 		if (!PAGE_ALIGNED(gpa) || !npages ||
10073 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10074 			ret = -KVM_EINVAL;
10075 			break;
10076 		}
10077 
10078 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10079 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10080 		/*
10081 		 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
10082 		 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
10083 		 * it was always zero on KVM_EXIT_HYPERCALL.  Since KVM is now overwriting
10084 		 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
10085 		 */
10086 		vcpu->run->hypercall.ret = 0;
10087 		vcpu->run->hypercall.args[0]  = gpa;
10088 		vcpu->run->hypercall.args[1]  = npages;
10089 		vcpu->run->hypercall.args[2]  = attrs;
10090 		vcpu->run->hypercall.flags    = 0;
10091 		if (op_64_bit)
10092 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10093 
10094 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10095 		vcpu->arch.complete_userspace_io = complete_hypercall;
10096 		return 0;
10097 	}
10098 	default:
10099 		ret = -KVM_ENOSYS;
10100 		break;
10101 	}
10102 
10103 out:
10104 	vcpu->run->hypercall.ret = ret;
10105 	return 1;
10106 }
10107 EXPORT_SYMBOL_GPL(____kvm_emulate_hypercall);
10108 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10109 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10110 {
10111 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
10112 		return kvm_xen_hypercall(vcpu);
10113 
10114 	if (kvm_hv_hypercall_enabled(vcpu))
10115 		return kvm_hv_hypercall(vcpu);
10116 
10117 	return __kvm_emulate_hypercall(vcpu, rax, rbx, rcx, rdx, rsi,
10118 				       is_64_bit_hypercall(vcpu),
10119 				       kvm_x86_call(get_cpl)(vcpu),
10120 				       complete_hypercall_exit);
10121 }
10122 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10123 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10124 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10125 {
10126 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10127 	char instruction[3];
10128 	unsigned long rip = kvm_rip_read(vcpu);
10129 
10130 	/*
10131 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10132 	 * the pieces.
10133 	 */
10134 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10135 		ctxt->exception.error_code_valid = false;
10136 		ctxt->exception.vector = UD_VECTOR;
10137 		ctxt->have_exception = true;
10138 		return X86EMUL_PROPAGATE_FAULT;
10139 	}
10140 
10141 	kvm_x86_call(patch_hypercall)(vcpu, instruction);
10142 
10143 	return emulator_write_emulated(ctxt, rip, instruction, 3,
10144 		&ctxt->exception);
10145 }
10146 
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10147 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10148 {
10149 	return vcpu->run->request_interrupt_window &&
10150 		likely(!pic_in_kernel(vcpu->kvm));
10151 }
10152 
10153 /* Called within kvm->srcu read side.  */
post_kvm_run_save(struct kvm_vcpu * vcpu)10154 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10155 {
10156 	struct kvm_run *kvm_run = vcpu->run;
10157 
10158 	kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10159 	kvm_run->cr8 = kvm_get_cr8(vcpu);
10160 	kvm_run->apic_base = vcpu->arch.apic_base;
10161 
10162 	kvm_run->ready_for_interrupt_injection =
10163 		pic_in_kernel(vcpu->kvm) ||
10164 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
10165 
10166 	if (is_smm(vcpu))
10167 		kvm_run->flags |= KVM_RUN_X86_SMM;
10168 	if (is_guest_mode(vcpu))
10169 		kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10170 }
10171 
update_cr8_intercept(struct kvm_vcpu * vcpu)10172 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10173 {
10174 	int max_irr, tpr;
10175 
10176 	if (!kvm_x86_ops.update_cr8_intercept)
10177 		return;
10178 
10179 	if (!lapic_in_kernel(vcpu))
10180 		return;
10181 
10182 	if (vcpu->arch.apic->apicv_active)
10183 		return;
10184 
10185 	if (!vcpu->arch.apic->vapic_addr)
10186 		max_irr = kvm_lapic_find_highest_irr(vcpu);
10187 	else
10188 		max_irr = -1;
10189 
10190 	if (max_irr != -1)
10191 		max_irr >>= 4;
10192 
10193 	tpr = kvm_lapic_get_cr8(vcpu);
10194 
10195 	kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10196 }
10197 
10198 
kvm_check_nested_events(struct kvm_vcpu * vcpu)10199 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10200 {
10201 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10202 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10203 		return 1;
10204 	}
10205 
10206 	return kvm_x86_ops.nested_ops->check_events(vcpu);
10207 }
10208 
kvm_inject_exception(struct kvm_vcpu * vcpu)10209 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10210 {
10211 	/*
10212 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10213 	 * exceptions don't report error codes.  The presence of an error code
10214 	 * is carried with the exception and only stripped when the exception
10215 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10216 	 * report an error code despite the CPU being in Real Mode.
10217 	 */
10218 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10219 
10220 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10221 				vcpu->arch.exception.has_error_code,
10222 				vcpu->arch.exception.error_code,
10223 				vcpu->arch.exception.injected);
10224 
10225 	kvm_x86_call(inject_exception)(vcpu);
10226 }
10227 
10228 /*
10229  * Check for any event (interrupt or exception) that is ready to be injected,
10230  * and if there is at least one event, inject the event with the highest
10231  * priority.  This handles both "pending" events, i.e. events that have never
10232  * been injected into the guest, and "injected" events, i.e. events that were
10233  * injected as part of a previous VM-Enter, but weren't successfully delivered
10234  * and need to be re-injected.
10235  *
10236  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10237  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10238  * be able to inject exceptions in the "middle" of an instruction, and so must
10239  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10240  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10241  * boundaries is necessary and correct.
10242  *
10243  * For simplicity, KVM uses a single path to inject all events (except events
10244  * that are injected directly from L1 to L2) and doesn't explicitly track
10245  * instruction boundaries for asynchronous events.  However, because VM-Exits
10246  * that can occur during instruction execution typically result in KVM skipping
10247  * the instruction or injecting an exception, e.g. instruction and exception
10248  * intercepts, and because pending exceptions have higher priority than pending
10249  * interrupts, KVM still honors instruction boundaries in most scenarios.
10250  *
10251  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10252  * the instruction or inject an exception, then KVM can incorrecty inject a new
10253  * asynchronous event if the event became pending after the CPU fetched the
10254  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10255  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10256  * injected on the restarted instruction instead of being deferred until the
10257  * instruction completes.
10258  *
10259  * In practice, this virtualization hole is unlikely to be observed by the
10260  * guest, and even less likely to cause functional problems.  To detect the
10261  * hole, the guest would have to trigger an event on a side effect of an early
10262  * phase of instruction execution, e.g. on the instruction fetch from memory.
10263  * And for it to be a functional problem, the guest would need to depend on the
10264  * ordering between that side effect, the instruction completing, _and_ the
10265  * delivery of the asynchronous event.
10266  */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10267 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10268 				       bool *req_immediate_exit)
10269 {
10270 	bool can_inject;
10271 	int r;
10272 
10273 	/*
10274 	 * Process nested events first, as nested VM-Exit supersedes event
10275 	 * re-injection.  If there's an event queued for re-injection, it will
10276 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10277 	 */
10278 	if (is_guest_mode(vcpu))
10279 		r = kvm_check_nested_events(vcpu);
10280 	else
10281 		r = 0;
10282 
10283 	/*
10284 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10285 	 * to/from L2 is needed, as any event that has already been injected
10286 	 * into L2 needs to complete its lifecycle before injecting a new event.
10287 	 *
10288 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10289 	 * This collision arises if an exception occurred while vectoring the
10290 	 * injected event, KVM intercepted said exception, and KVM ultimately
10291 	 * determined the fault belongs to the guest and queues the exception
10292 	 * for injection back into the guest.
10293 	 *
10294 	 * "Injected" interrupts can also collide with pending exceptions if
10295 	 * userspace ignores the "ready for injection" flag and blindly queues
10296 	 * an interrupt.  In that case, prioritizing the exception is correct,
10297 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10298 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10299 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10300 	 * priority, they're only generated (pended) during instruction
10301 	 * execution, and interrupts are recognized at instruction boundaries.
10302 	 * Thus a pending fault-like exception means the fault occurred on the
10303 	 * *previous* instruction and must be serviced prior to recognizing any
10304 	 * new events in order to fully complete the previous instruction.
10305 	 */
10306 	if (vcpu->arch.exception.injected)
10307 		kvm_inject_exception(vcpu);
10308 	else if (kvm_is_exception_pending(vcpu))
10309 		; /* see above */
10310 	else if (vcpu->arch.nmi_injected)
10311 		kvm_x86_call(inject_nmi)(vcpu);
10312 	else if (vcpu->arch.interrupt.injected)
10313 		kvm_x86_call(inject_irq)(vcpu, true);
10314 
10315 	/*
10316 	 * Exceptions that morph to VM-Exits are handled above, and pending
10317 	 * exceptions on top of injected exceptions that do not VM-Exit should
10318 	 * either morph to #DF or, sadly, override the injected exception.
10319 	 */
10320 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10321 		     vcpu->arch.exception.pending);
10322 
10323 	/*
10324 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10325 	 * nested VM-Enter or event re-injection so that a different pending
10326 	 * event can be serviced (or if KVM needs to exit to userspace).
10327 	 *
10328 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10329 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10330 	 * there may now be events that can be injected into L1.
10331 	 */
10332 	if (r < 0)
10333 		goto out;
10334 
10335 	/*
10336 	 * A pending exception VM-Exit should either result in nested VM-Exit
10337 	 * or force an immediate re-entry and exit to/from L2, and exception
10338 	 * VM-Exits cannot be injected (flag should _never_ be set).
10339 	 */
10340 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10341 		     vcpu->arch.exception_vmexit.pending);
10342 
10343 	/*
10344 	 * New events, other than exceptions, cannot be injected if KVM needs
10345 	 * to re-inject a previous event.  See above comments on re-injecting
10346 	 * for why pending exceptions get priority.
10347 	 */
10348 	can_inject = !kvm_event_needs_reinjection(vcpu);
10349 
10350 	if (vcpu->arch.exception.pending) {
10351 		/*
10352 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10353 		 * value pushed on the stack.  Trap-like exception and all #DBs
10354 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10355 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10356 		 *
10357 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10358 		 * describe the behavior of General Detect #DBs, which are
10359 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10360 		 */
10361 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10362 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10363 					     X86_EFLAGS_RF);
10364 
10365 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10366 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10367 			if (vcpu->arch.dr7 & DR7_GD) {
10368 				vcpu->arch.dr7 &= ~DR7_GD;
10369 				kvm_update_dr7(vcpu);
10370 			}
10371 		}
10372 
10373 		kvm_inject_exception(vcpu);
10374 
10375 		vcpu->arch.exception.pending = false;
10376 		vcpu->arch.exception.injected = true;
10377 
10378 		can_inject = false;
10379 	}
10380 
10381 	/* Don't inject interrupts if the user asked to avoid doing so */
10382 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10383 		return 0;
10384 
10385 	/*
10386 	 * Finally, inject interrupt events.  If an event cannot be injected
10387 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10388 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10389 	 * and can architecturally be injected, but we cannot do it right now:
10390 	 * an interrupt could have arrived just now and we have to inject it
10391 	 * as a vmexit, or there could already an event in the queue, which is
10392 	 * indicated by can_inject.  In that case we request an immediate exit
10393 	 * in order to make progress and get back here for another iteration.
10394 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10395 	 */
10396 #ifdef CONFIG_KVM_SMM
10397 	if (vcpu->arch.smi_pending) {
10398 		r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10399 				 -EBUSY;
10400 		if (r < 0)
10401 			goto out;
10402 		if (r) {
10403 			vcpu->arch.smi_pending = false;
10404 			++vcpu->arch.smi_count;
10405 			enter_smm(vcpu);
10406 			can_inject = false;
10407 		} else
10408 			kvm_x86_call(enable_smi_window)(vcpu);
10409 	}
10410 #endif
10411 
10412 	if (vcpu->arch.nmi_pending) {
10413 		r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10414 				 -EBUSY;
10415 		if (r < 0)
10416 			goto out;
10417 		if (r) {
10418 			--vcpu->arch.nmi_pending;
10419 			vcpu->arch.nmi_injected = true;
10420 			kvm_x86_call(inject_nmi)(vcpu);
10421 			can_inject = false;
10422 			WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10423 		}
10424 		if (vcpu->arch.nmi_pending)
10425 			kvm_x86_call(enable_nmi_window)(vcpu);
10426 	}
10427 
10428 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10429 		r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10430 				 -EBUSY;
10431 		if (r < 0)
10432 			goto out;
10433 		if (r) {
10434 			int irq = kvm_cpu_get_interrupt(vcpu);
10435 
10436 			if (!WARN_ON_ONCE(irq == -1)) {
10437 				kvm_queue_interrupt(vcpu, irq, false);
10438 				kvm_x86_call(inject_irq)(vcpu, false);
10439 				WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10440 			}
10441 		}
10442 		if (kvm_cpu_has_injectable_intr(vcpu))
10443 			kvm_x86_call(enable_irq_window)(vcpu);
10444 	}
10445 
10446 	if (is_guest_mode(vcpu) &&
10447 	    kvm_x86_ops.nested_ops->has_events &&
10448 	    kvm_x86_ops.nested_ops->has_events(vcpu, true))
10449 		*req_immediate_exit = true;
10450 
10451 	/*
10452 	 * KVM must never queue a new exception while injecting an event; KVM
10453 	 * is done emulating and should only propagate the to-be-injected event
10454 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10455 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10456 	 * exception and start the cycle all over.
10457 	 *
10458 	 * Exempt triple faults as they have special handling and won't put the
10459 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10460 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10461 	 * Mode events (see kvm_inject_realmode_interrupt()).
10462 	 */
10463 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10464 		     vcpu->arch.exception_vmexit.pending);
10465 	return 0;
10466 
10467 out:
10468 	if (r == -EBUSY) {
10469 		*req_immediate_exit = true;
10470 		r = 0;
10471 	}
10472 	return r;
10473 }
10474 
process_nmi(struct kvm_vcpu * vcpu)10475 static void process_nmi(struct kvm_vcpu *vcpu)
10476 {
10477 	unsigned int limit;
10478 
10479 	/*
10480 	 * x86 is limited to one NMI pending, but because KVM can't react to
10481 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10482 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10483 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10484 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10485 	 * waiting for a previous NMI injection to complete (which effectively
10486 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10487 	 * will request an NMI window to handle the second NMI.
10488 	 */
10489 	if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10490 		limit = 1;
10491 	else
10492 		limit = 2;
10493 
10494 	/*
10495 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10496 	 * tracked in vcpu->arch.nmi_pending.
10497 	 */
10498 	if (kvm_x86_call(is_vnmi_pending)(vcpu))
10499 		limit--;
10500 
10501 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10502 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10503 
10504 	if (vcpu->arch.nmi_pending &&
10505 	    (kvm_x86_call(set_vnmi_pending)(vcpu)))
10506 		vcpu->arch.nmi_pending--;
10507 
10508 	if (vcpu->arch.nmi_pending)
10509 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10510 }
10511 
10512 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10513 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10514 {
10515 	return vcpu->arch.nmi_pending +
10516 	       kvm_x86_call(is_vnmi_pending)(vcpu);
10517 }
10518 
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10519 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10520 				       unsigned long *vcpu_bitmap)
10521 {
10522 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10523 }
10524 
kvm_make_scan_ioapic_request(struct kvm * kvm)10525 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10526 {
10527 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10528 }
10529 
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10530 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10531 {
10532 	struct kvm_lapic *apic = vcpu->arch.apic;
10533 	bool activate;
10534 
10535 	if (!lapic_in_kernel(vcpu))
10536 		return;
10537 
10538 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10539 	preempt_disable();
10540 
10541 	/* Do not activate APICV when APIC is disabled */
10542 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10543 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10544 
10545 	if (apic->apicv_active == activate)
10546 		goto out;
10547 
10548 	apic->apicv_active = activate;
10549 	kvm_apic_update_apicv(vcpu);
10550 	kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10551 
10552 	/*
10553 	 * When APICv gets disabled, we may still have injected interrupts
10554 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10555 	 * still active when the interrupt got accepted. Make sure
10556 	 * kvm_check_and_inject_events() is called to check for that.
10557 	 */
10558 	if (!apic->apicv_active)
10559 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10560 
10561 out:
10562 	preempt_enable();
10563 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10564 }
10565 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10566 
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10567 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10568 {
10569 	if (!lapic_in_kernel(vcpu))
10570 		return;
10571 
10572 	/*
10573 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10574 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10575 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10576 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10577 	 * this case so that KVM can use the AVIC doorbell to inject interrupts
10578 	 * to running vCPUs, but KVM must not create SPTEs for the APIC base as
10579 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10580 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10581 	 * access page is sticky.
10582 	 */
10583 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10584 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10585 		kvm_inhibit_apic_access_page(vcpu);
10586 
10587 	__kvm_vcpu_update_apicv(vcpu);
10588 }
10589 
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10590 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10591 				      enum kvm_apicv_inhibit reason, bool set)
10592 {
10593 	unsigned long old, new;
10594 
10595 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10596 
10597 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10598 		return;
10599 
10600 	old = new = kvm->arch.apicv_inhibit_reasons;
10601 
10602 	set_or_clear_apicv_inhibit(&new, reason, set);
10603 
10604 	if (!!old != !!new) {
10605 		/*
10606 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10607 		 * false positives in the sanity check WARN in vcpu_enter_guest().
10608 		 * This task will wait for all vCPUs to ack the kick IRQ before
10609 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10610 		 * block on acquiring apicv_update_lock so that vCPUs can't
10611 		 * redo vcpu_enter_guest() without seeing the new inhibit state.
10612 		 *
10613 		 * Note, holding apicv_update_lock and taking it in the read
10614 		 * side (handling the request) also prevents other vCPUs from
10615 		 * servicing the request with a stale apicv_inhibit_reasons.
10616 		 */
10617 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10618 		kvm->arch.apicv_inhibit_reasons = new;
10619 		if (new) {
10620 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10621 			int idx = srcu_read_lock(&kvm->srcu);
10622 
10623 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10624 			srcu_read_unlock(&kvm->srcu, idx);
10625 		}
10626 	} else {
10627 		kvm->arch.apicv_inhibit_reasons = new;
10628 	}
10629 }
10630 
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10631 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10632 				    enum kvm_apicv_inhibit reason, bool set)
10633 {
10634 	if (!enable_apicv)
10635 		return;
10636 
10637 	down_write(&kvm->arch.apicv_update_lock);
10638 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10639 	up_write(&kvm->arch.apicv_update_lock);
10640 }
10641 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10642 
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10643 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10644 {
10645 	if (!kvm_apic_present(vcpu))
10646 		return;
10647 
10648 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10649 
10650 	kvm_x86_call(sync_pir_to_irr)(vcpu);
10651 
10652 	if (irqchip_split(vcpu->kvm))
10653 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10654 	else if (ioapic_in_kernel(vcpu->kvm))
10655 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10656 
10657 	if (is_guest_mode(vcpu))
10658 		vcpu->arch.load_eoi_exitmap_pending = true;
10659 	else
10660 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10661 }
10662 
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10663 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10664 {
10665 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10666 		return;
10667 
10668 #ifdef CONFIG_KVM_HYPERV
10669 	if (to_hv_vcpu(vcpu)) {
10670 		u64 eoi_exit_bitmap[4];
10671 
10672 		bitmap_or((ulong *)eoi_exit_bitmap,
10673 			  vcpu->arch.ioapic_handled_vectors,
10674 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10675 		kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10676 		return;
10677 	}
10678 #endif
10679 	kvm_x86_call(load_eoi_exitmap)(
10680 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10681 }
10682 
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10683 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10684 {
10685 	kvm_x86_call(guest_memory_reclaimed)(kvm);
10686 }
10687 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10688 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10689 {
10690 	if (!lapic_in_kernel(vcpu))
10691 		return;
10692 
10693 	kvm_x86_call(set_apic_access_page_addr)(vcpu);
10694 }
10695 
10696 /*
10697  * Called within kvm->srcu read side.
10698  * Returns 1 to let vcpu_run() continue the guest execution loop without
10699  * exiting to the userspace.  Otherwise, the value will be returned to the
10700  * userspace.
10701  */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10702 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10703 {
10704 	int r;
10705 	bool req_int_win =
10706 		dm_request_for_irq_injection(vcpu) &&
10707 		kvm_cpu_accept_dm_intr(vcpu);
10708 	fastpath_t exit_fastpath;
10709 
10710 	bool req_immediate_exit = false;
10711 
10712 	if (kvm_request_pending(vcpu)) {
10713 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10714 			r = -EIO;
10715 			goto out;
10716 		}
10717 
10718 		if (kvm_dirty_ring_check_request(vcpu)) {
10719 			r = 0;
10720 			goto out;
10721 		}
10722 
10723 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10724 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10725 				r = 0;
10726 				goto out;
10727 			}
10728 		}
10729 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10730 			kvm_mmu_free_obsolete_roots(vcpu);
10731 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10732 			__kvm_migrate_timers(vcpu);
10733 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10734 			kvm_update_masterclock(vcpu->kvm);
10735 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10736 			kvm_gen_kvmclock_update(vcpu);
10737 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10738 			r = kvm_guest_time_update(vcpu);
10739 			if (unlikely(r))
10740 				goto out;
10741 		}
10742 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10743 			kvm_mmu_sync_roots(vcpu);
10744 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10745 			kvm_mmu_load_pgd(vcpu);
10746 
10747 		/*
10748 		 * Note, the order matters here, as flushing "all" TLB entries
10749 		 * also flushes the "current" TLB entries, i.e. servicing the
10750 		 * flush "all" will clear any request to flush "current".
10751 		 */
10752 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10753 			kvm_vcpu_flush_tlb_all(vcpu);
10754 
10755 		kvm_service_local_tlb_flush_requests(vcpu);
10756 
10757 		/*
10758 		 * Fall back to a "full" guest flush if Hyper-V's precise
10759 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10760 		 * the flushes are considered "remote" and not "local" because
10761 		 * the requests can be initiated from other vCPUs.
10762 		 */
10763 #ifdef CONFIG_KVM_HYPERV
10764 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10765 		    kvm_hv_vcpu_flush_tlb(vcpu))
10766 			kvm_vcpu_flush_tlb_guest(vcpu);
10767 #endif
10768 
10769 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10770 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10771 			r = 0;
10772 			goto out;
10773 		}
10774 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10775 			if (is_guest_mode(vcpu))
10776 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10777 
10778 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10779 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10780 				vcpu->mmio_needed = 0;
10781 				r = 0;
10782 				goto out;
10783 			}
10784 		}
10785 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10786 			/* Page is swapped out. Do synthetic halt */
10787 			vcpu->arch.apf.halted = true;
10788 			r = 1;
10789 			goto out;
10790 		}
10791 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10792 			record_steal_time(vcpu);
10793 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10794 			kvm_pmu_handle_event(vcpu);
10795 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10796 			kvm_pmu_deliver_pmi(vcpu);
10797 #ifdef CONFIG_KVM_SMM
10798 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10799 			process_smi(vcpu);
10800 #endif
10801 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10802 			process_nmi(vcpu);
10803 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10804 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10805 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10806 				     vcpu->arch.ioapic_handled_vectors)) {
10807 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10808 				vcpu->run->eoi.vector =
10809 						vcpu->arch.pending_ioapic_eoi;
10810 				r = 0;
10811 				goto out;
10812 			}
10813 		}
10814 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10815 			vcpu_scan_ioapic(vcpu);
10816 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10817 			vcpu_load_eoi_exitmap(vcpu);
10818 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10819 			kvm_vcpu_reload_apic_access_page(vcpu);
10820 #ifdef CONFIG_KVM_HYPERV
10821 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10822 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10823 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10824 			vcpu->run->system_event.ndata = 0;
10825 			r = 0;
10826 			goto out;
10827 		}
10828 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10829 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10830 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10831 			vcpu->run->system_event.ndata = 0;
10832 			r = 0;
10833 			goto out;
10834 		}
10835 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10836 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10837 
10838 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10839 			vcpu->run->hyperv = hv_vcpu->exit;
10840 			r = 0;
10841 			goto out;
10842 		}
10843 
10844 		/*
10845 		 * KVM_REQ_HV_STIMER has to be processed after
10846 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10847 		 * depend on the guest clock being up-to-date
10848 		 */
10849 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10850 			kvm_hv_process_stimers(vcpu);
10851 #endif
10852 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10853 			kvm_vcpu_update_apicv(vcpu);
10854 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10855 			kvm_check_async_pf_completion(vcpu);
10856 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10857 			kvm_x86_call(msr_filter_changed)(vcpu);
10858 
10859 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10860 			kvm_x86_call(update_cpu_dirty_logging)(vcpu);
10861 
10862 		if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
10863 			kvm_vcpu_reset(vcpu, true);
10864 			if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
10865 				r = 1;
10866 				goto out;
10867 			}
10868 		}
10869 	}
10870 
10871 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10872 	    kvm_xen_has_interrupt(vcpu)) {
10873 		++vcpu->stat.req_event;
10874 		r = kvm_apic_accept_events(vcpu);
10875 		if (r < 0) {
10876 			r = 0;
10877 			goto out;
10878 		}
10879 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10880 			r = 1;
10881 			goto out;
10882 		}
10883 
10884 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10885 		if (r < 0) {
10886 			r = 0;
10887 			goto out;
10888 		}
10889 		if (req_int_win)
10890 			kvm_x86_call(enable_irq_window)(vcpu);
10891 
10892 		if (kvm_lapic_enabled(vcpu)) {
10893 			update_cr8_intercept(vcpu);
10894 			kvm_lapic_sync_to_vapic(vcpu);
10895 		}
10896 	}
10897 
10898 	r = kvm_mmu_reload(vcpu);
10899 	if (unlikely(r)) {
10900 		goto cancel_injection;
10901 	}
10902 
10903 	preempt_disable();
10904 
10905 	kvm_x86_call(prepare_switch_to_guest)(vcpu);
10906 
10907 	/*
10908 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10909 	 * IPI are then delayed after guest entry, which ensures that they
10910 	 * result in virtual interrupt delivery.
10911 	 */
10912 	local_irq_disable();
10913 
10914 	/* Store vcpu->apicv_active before vcpu->mode.  */
10915 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10916 
10917 	kvm_vcpu_srcu_read_unlock(vcpu);
10918 
10919 	/*
10920 	 * 1) We should set ->mode before checking ->requests.  Please see
10921 	 * the comment in kvm_vcpu_exiting_guest_mode().
10922 	 *
10923 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10924 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10925 	 * (see vmx_deliver_posted_interrupt).
10926 	 *
10927 	 * 3) This also orders the write to mode from any reads to the page
10928 	 * tables done while the VCPU is running.  Please see the comment
10929 	 * in kvm_flush_remote_tlbs.
10930 	 */
10931 	smp_mb__after_srcu_read_unlock();
10932 
10933 	/*
10934 	 * Process pending posted interrupts to handle the case where the
10935 	 * notification IRQ arrived in the host, or was never sent (because the
10936 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10937 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10938 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10939 	 */
10940 	if (kvm_lapic_enabled(vcpu))
10941 		kvm_x86_call(sync_pir_to_irr)(vcpu);
10942 
10943 	if (kvm_vcpu_exit_request(vcpu)) {
10944 		vcpu->mode = OUTSIDE_GUEST_MODE;
10945 		smp_wmb();
10946 		local_irq_enable();
10947 		preempt_enable();
10948 		kvm_vcpu_srcu_read_lock(vcpu);
10949 		r = 1;
10950 		goto cancel_injection;
10951 	}
10952 
10953 	if (req_immediate_exit)
10954 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10955 
10956 	fpregs_assert_state_consistent();
10957 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10958 		switch_fpu_return();
10959 
10960 	if (vcpu->arch.guest_fpu.xfd_err)
10961 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10962 
10963 	if (unlikely(vcpu->arch.switch_db_regs)) {
10964 		set_debugreg(0, 7);
10965 		set_debugreg(vcpu->arch.eff_db[0], 0);
10966 		set_debugreg(vcpu->arch.eff_db[1], 1);
10967 		set_debugreg(vcpu->arch.eff_db[2], 2);
10968 		set_debugreg(vcpu->arch.eff_db[3], 3);
10969 		/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
10970 		if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
10971 			kvm_x86_call(set_dr6)(vcpu, vcpu->arch.dr6);
10972 	} else if (unlikely(hw_breakpoint_active())) {
10973 		set_debugreg(0, 7);
10974 	}
10975 
10976 	vcpu->arch.host_debugctl = get_debugctlmsr();
10977 
10978 	guest_timing_enter_irqoff();
10979 
10980 	for (;;) {
10981 		/*
10982 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10983 		 * update must kick and wait for all vCPUs before toggling the
10984 		 * per-VM state, and responding vCPUs must wait for the update
10985 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10986 		 */
10987 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10988 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10989 
10990 		exit_fastpath = kvm_x86_call(vcpu_run)(vcpu,
10991 						       req_immediate_exit);
10992 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10993 			break;
10994 
10995 		if (kvm_lapic_enabled(vcpu))
10996 			kvm_x86_call(sync_pir_to_irr)(vcpu);
10997 
10998 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10999 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11000 			break;
11001 		}
11002 
11003 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
11004 		++vcpu->stat.exits;
11005 	}
11006 
11007 	/*
11008 	 * Do this here before restoring debug registers on the host.  And
11009 	 * since we do this before handling the vmexit, a DR access vmexit
11010 	 * can (a) read the correct value of the debug registers, (b) set
11011 	 * KVM_DEBUGREG_WONT_EXIT again.
11012 	 */
11013 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11014 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11015 		kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11016 		kvm_update_dr0123(vcpu);
11017 		kvm_update_dr7(vcpu);
11018 	}
11019 
11020 	/*
11021 	 * If the guest has used debug registers, at least dr7
11022 	 * will be disabled while returning to the host.
11023 	 * If we don't have active breakpoints in the host, we don't
11024 	 * care about the messed up debug address registers. But if
11025 	 * we have some of them active, restore the old state.
11026 	 */
11027 	if (hw_breakpoint_active())
11028 		hw_breakpoint_restore();
11029 
11030 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11031 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11032 
11033 	vcpu->mode = OUTSIDE_GUEST_MODE;
11034 	smp_wmb();
11035 
11036 	/*
11037 	 * Sync xfd before calling handle_exit_irqoff() which may
11038 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11039 	 * in #NM irqoff handler).
11040 	 */
11041 	if (vcpu->arch.xfd_no_write_intercept)
11042 		fpu_sync_guest_vmexit_xfd_state();
11043 
11044 	kvm_x86_call(handle_exit_irqoff)(vcpu);
11045 
11046 	if (vcpu->arch.guest_fpu.xfd_err)
11047 		wrmsrl(MSR_IA32_XFD_ERR, 0);
11048 
11049 	/*
11050 	 * Consume any pending interrupts, including the possible source of
11051 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11052 	 * An instruction is required after local_irq_enable() to fully unblock
11053 	 * interrupts on processors that implement an interrupt shadow, the
11054 	 * stat.exits increment will do nicely.
11055 	 */
11056 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11057 	local_irq_enable();
11058 	++vcpu->stat.exits;
11059 	local_irq_disable();
11060 	kvm_after_interrupt(vcpu);
11061 
11062 	/*
11063 	 * Wait until after servicing IRQs to account guest time so that any
11064 	 * ticks that occurred while running the guest are properly accounted
11065 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11066 	 * of accounting via context tracking, but the loss of accuracy is
11067 	 * acceptable for all known use cases.
11068 	 */
11069 	guest_timing_exit_irqoff();
11070 
11071 	local_irq_enable();
11072 	preempt_enable();
11073 
11074 	kvm_vcpu_srcu_read_lock(vcpu);
11075 
11076 	/*
11077 	 * Call this to ensure WC buffers in guest are evicted after each VM
11078 	 * Exit, so that the evicted WC writes can be snooped across all cpus
11079 	 */
11080 	smp_mb__after_srcu_read_lock();
11081 
11082 	/*
11083 	 * Profile KVM exit RIPs:
11084 	 */
11085 	if (unlikely(prof_on == KVM_PROFILING)) {
11086 		unsigned long rip = kvm_rip_read(vcpu);
11087 		profile_hit(KVM_PROFILING, (void *)rip);
11088 	}
11089 
11090 	if (unlikely(vcpu->arch.tsc_always_catchup))
11091 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11092 
11093 	if (vcpu->arch.apic_attention)
11094 		kvm_lapic_sync_from_vapic(vcpu);
11095 
11096 	if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11097 		return 0;
11098 
11099 	r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11100 	return r;
11101 
11102 cancel_injection:
11103 	if (req_immediate_exit)
11104 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11105 	kvm_x86_call(cancel_injection)(vcpu);
11106 	if (unlikely(vcpu->arch.apic_attention))
11107 		kvm_lapic_sync_from_vapic(vcpu);
11108 out:
11109 	return r;
11110 }
11111 
kvm_vcpu_running(struct kvm_vcpu * vcpu)11112 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11113 {
11114 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11115 		!vcpu->arch.apf.halted);
11116 }
11117 
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11118 static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11119 {
11120 	if (!list_empty_careful(&vcpu->async_pf.done))
11121 		return true;
11122 
11123 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11124 	    kvm_apic_init_sipi_allowed(vcpu))
11125 		return true;
11126 
11127 	if (vcpu->arch.pv.pv_unhalted)
11128 		return true;
11129 
11130 	if (kvm_is_exception_pending(vcpu))
11131 		return true;
11132 
11133 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11134 	    (vcpu->arch.nmi_pending &&
11135 	     kvm_x86_call(nmi_allowed)(vcpu, false)))
11136 		return true;
11137 
11138 #ifdef CONFIG_KVM_SMM
11139 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11140 	    (vcpu->arch.smi_pending &&
11141 	     kvm_x86_call(smi_allowed)(vcpu, false)))
11142 		return true;
11143 #endif
11144 
11145 	if (kvm_test_request(KVM_REQ_PMI, vcpu))
11146 		return true;
11147 
11148 	if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11149 		return true;
11150 
11151 	if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11152 		return true;
11153 
11154 	if (kvm_hv_has_stimer_pending(vcpu))
11155 		return true;
11156 
11157 	if (is_guest_mode(vcpu) &&
11158 	    kvm_x86_ops.nested_ops->has_events &&
11159 	    kvm_x86_ops.nested_ops->has_events(vcpu, false))
11160 		return true;
11161 
11162 	if (kvm_xen_has_pending_events(vcpu))
11163 		return true;
11164 
11165 	return false;
11166 }
11167 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11168 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11169 {
11170 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11171 }
11172 
11173 /* Called within kvm->srcu read side.  */
vcpu_block(struct kvm_vcpu * vcpu)11174 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11175 {
11176 	bool hv_timer;
11177 
11178 	if (!kvm_arch_vcpu_runnable(vcpu)) {
11179 		/*
11180 		 * Switch to the software timer before halt-polling/blocking as
11181 		 * the guest's timer may be a break event for the vCPU, and the
11182 		 * hypervisor timer runs only when the CPU is in guest mode.
11183 		 * Switch before halt-polling so that KVM recognizes an expired
11184 		 * timer before blocking.
11185 		 */
11186 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11187 		if (hv_timer)
11188 			kvm_lapic_switch_to_sw_timer(vcpu);
11189 
11190 		kvm_vcpu_srcu_read_unlock(vcpu);
11191 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11192 			kvm_vcpu_halt(vcpu);
11193 		else
11194 			kvm_vcpu_block(vcpu);
11195 		kvm_vcpu_srcu_read_lock(vcpu);
11196 
11197 		if (hv_timer)
11198 			kvm_lapic_switch_to_hv_timer(vcpu);
11199 
11200 		/*
11201 		 * If the vCPU is not runnable, a signal or another host event
11202 		 * of some kind is pending; service it without changing the
11203 		 * vCPU's activity state.
11204 		 */
11205 		if (!kvm_arch_vcpu_runnable(vcpu))
11206 			return 1;
11207 	}
11208 
11209 	/*
11210 	 * Evaluate nested events before exiting the halted state.  This allows
11211 	 * the halt state to be recorded properly in the VMCS12's activity
11212 	 * state field (AMD does not have a similar field and a VM-Exit always
11213 	 * causes a spurious wakeup from HLT).
11214 	 */
11215 	if (is_guest_mode(vcpu)) {
11216 		int r = kvm_check_nested_events(vcpu);
11217 
11218 		WARN_ON_ONCE(r == -EBUSY);
11219 		if (r < 0)
11220 			return 0;
11221 	}
11222 
11223 	if (kvm_apic_accept_events(vcpu) < 0)
11224 		return 0;
11225 	switch(vcpu->arch.mp_state) {
11226 	case KVM_MP_STATE_HALTED:
11227 	case KVM_MP_STATE_AP_RESET_HOLD:
11228 		vcpu->arch.pv.pv_unhalted = false;
11229 		vcpu->arch.mp_state =
11230 			KVM_MP_STATE_RUNNABLE;
11231 		fallthrough;
11232 	case KVM_MP_STATE_RUNNABLE:
11233 		vcpu->arch.apf.halted = false;
11234 		break;
11235 	case KVM_MP_STATE_INIT_RECEIVED:
11236 		break;
11237 	default:
11238 		WARN_ON_ONCE(1);
11239 		break;
11240 	}
11241 	return 1;
11242 }
11243 
11244 /* Called within kvm->srcu read side.  */
vcpu_run(struct kvm_vcpu * vcpu)11245 static int vcpu_run(struct kvm_vcpu *vcpu)
11246 {
11247 	int r;
11248 
11249 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11250 
11251 	for (;;) {
11252 		/*
11253 		 * If another guest vCPU requests a PV TLB flush in the middle
11254 		 * of instruction emulation, the rest of the emulation could
11255 		 * use a stale page translation. Assume that any code after
11256 		 * this point can start executing an instruction.
11257 		 */
11258 		vcpu->arch.at_instruction_boundary = false;
11259 		if (kvm_vcpu_running(vcpu)) {
11260 			r = vcpu_enter_guest(vcpu);
11261 		} else {
11262 			r = vcpu_block(vcpu);
11263 		}
11264 
11265 		if (r <= 0)
11266 			break;
11267 
11268 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11269 		if (kvm_xen_has_pending_events(vcpu))
11270 			kvm_xen_inject_pending_events(vcpu);
11271 
11272 		if (kvm_cpu_has_pending_timer(vcpu))
11273 			kvm_inject_pending_timer_irqs(vcpu);
11274 
11275 		if (dm_request_for_irq_injection(vcpu) &&
11276 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11277 			r = 0;
11278 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11279 			++vcpu->stat.request_irq_exits;
11280 			break;
11281 		}
11282 
11283 		if (__xfer_to_guest_mode_work_pending()) {
11284 			kvm_vcpu_srcu_read_unlock(vcpu);
11285 			r = xfer_to_guest_mode_handle_work(vcpu);
11286 			kvm_vcpu_srcu_read_lock(vcpu);
11287 			if (r)
11288 				return r;
11289 		}
11290 	}
11291 
11292 	return r;
11293 }
11294 
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11295 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11296 {
11297 	/*
11298 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
11299 	 * local APIC is in-kernel, the run loop will detect the non-runnable
11300 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
11301 	 * managed by userspace, in which case userspace is responsible for
11302 	 * handling wake events.
11303 	 */
11304 	++vcpu->stat.halt_exits;
11305 	if (lapic_in_kernel(vcpu)) {
11306 		if (kvm_vcpu_has_events(vcpu))
11307 			vcpu->arch.pv.pv_unhalted = false;
11308 		else
11309 			vcpu->arch.mp_state = state;
11310 		return 1;
11311 	} else {
11312 		vcpu->run->exit_reason = reason;
11313 		return 0;
11314 	}
11315 }
11316 
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11317 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11318 {
11319 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11320 }
11321 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
11322 
kvm_emulate_halt(struct kvm_vcpu * vcpu)11323 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11324 {
11325 	int ret = kvm_skip_emulated_instruction(vcpu);
11326 	/*
11327 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11328 	 * KVM_EXIT_DEBUG here.
11329 	 */
11330 	return kvm_emulate_halt_noskip(vcpu) && ret;
11331 }
11332 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
11333 
handle_fastpath_hlt(struct kvm_vcpu * vcpu)11334 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11335 {
11336 	int ret;
11337 
11338 	kvm_vcpu_srcu_read_lock(vcpu);
11339 	ret = kvm_emulate_halt(vcpu);
11340 	kvm_vcpu_srcu_read_unlock(vcpu);
11341 
11342 	if (!ret)
11343 		return EXIT_FASTPATH_EXIT_USERSPACE;
11344 
11345 	if (kvm_vcpu_running(vcpu))
11346 		return EXIT_FASTPATH_REENTER_GUEST;
11347 
11348 	return EXIT_FASTPATH_EXIT_HANDLED;
11349 }
11350 EXPORT_SYMBOL_GPL(handle_fastpath_hlt);
11351 
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11352 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11353 {
11354 	int ret = kvm_skip_emulated_instruction(vcpu);
11355 
11356 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11357 					KVM_EXIT_AP_RESET_HOLD) && ret;
11358 }
11359 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
11360 
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11361 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11362 {
11363 	return kvm_vcpu_apicv_active(vcpu) &&
11364 	       kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11365 }
11366 
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11367 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11368 {
11369 	return vcpu->arch.preempted_in_kernel;
11370 }
11371 
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11372 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11373 {
11374 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11375 		return true;
11376 
11377 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11378 #ifdef CONFIG_KVM_SMM
11379 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
11380 #endif
11381 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11382 		return true;
11383 
11384 	return kvm_arch_dy_has_pending_interrupt(vcpu);
11385 }
11386 
complete_emulated_io(struct kvm_vcpu * vcpu)11387 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11388 {
11389 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11390 }
11391 
complete_emulated_pio(struct kvm_vcpu * vcpu)11392 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11393 {
11394 	BUG_ON(!vcpu->arch.pio.count);
11395 
11396 	return complete_emulated_io(vcpu);
11397 }
11398 
11399 /*
11400  * Implements the following, as a state machine:
11401  *
11402  * read:
11403  *   for each fragment
11404  *     for each mmio piece in the fragment
11405  *       write gpa, len
11406  *       exit
11407  *       copy data
11408  *   execute insn
11409  *
11410  * write:
11411  *   for each fragment
11412  *     for each mmio piece in the fragment
11413  *       write gpa, len
11414  *       copy data
11415  *       exit
11416  */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11417 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11418 {
11419 	struct kvm_run *run = vcpu->run;
11420 	struct kvm_mmio_fragment *frag;
11421 	unsigned len;
11422 
11423 	BUG_ON(!vcpu->mmio_needed);
11424 
11425 	/* Complete previous fragment */
11426 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11427 	len = min(8u, frag->len);
11428 	if (!vcpu->mmio_is_write)
11429 		memcpy(frag->data, run->mmio.data, len);
11430 
11431 	if (frag->len <= 8) {
11432 		/* Switch to the next fragment. */
11433 		frag++;
11434 		vcpu->mmio_cur_fragment++;
11435 	} else {
11436 		/* Go forward to the next mmio piece. */
11437 		frag->data += len;
11438 		frag->gpa += len;
11439 		frag->len -= len;
11440 	}
11441 
11442 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11443 		vcpu->mmio_needed = 0;
11444 
11445 		/* FIXME: return into emulator if single-stepping.  */
11446 		if (vcpu->mmio_is_write)
11447 			return 1;
11448 		vcpu->mmio_read_completed = 1;
11449 		return complete_emulated_io(vcpu);
11450 	}
11451 
11452 	run->exit_reason = KVM_EXIT_MMIO;
11453 	run->mmio.phys_addr = frag->gpa;
11454 	if (vcpu->mmio_is_write)
11455 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11456 	run->mmio.len = min(8u, frag->len);
11457 	run->mmio.is_write = vcpu->mmio_is_write;
11458 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11459 	return 0;
11460 }
11461 
11462 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11463 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11464 {
11465 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11466 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11467 	trace_kvm_fpu(1);
11468 }
11469 
11470 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11471 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11472 {
11473 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11474 	++vcpu->stat.fpu_reload;
11475 	trace_kvm_fpu(0);
11476 }
11477 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11478 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11479 {
11480 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11481 	struct kvm_run *kvm_run = vcpu->run;
11482 	u32 sync_valid_fields;
11483 	int r;
11484 
11485 	r = kvm_mmu_post_init_vm(vcpu->kvm);
11486 	if (r)
11487 		return r;
11488 
11489 	vcpu_load(vcpu);
11490 	kvm_sigset_activate(vcpu);
11491 	kvm_run->flags = 0;
11492 	kvm_load_guest_fpu(vcpu);
11493 
11494 	kvm_vcpu_srcu_read_lock(vcpu);
11495 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11496 		if (!vcpu->wants_to_run) {
11497 			r = -EINTR;
11498 			goto out;
11499 		}
11500 
11501 		/*
11502 		 * Don't bother switching APIC timer emulation from the
11503 		 * hypervisor timer to the software timer, the only way for the
11504 		 * APIC timer to be active is if userspace stuffed vCPU state,
11505 		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11506 		 * will transition the vCPU out of UNINITIALIZED (without more
11507 		 * state stuffing from userspace), which will reset the local
11508 		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11509 		 * already expired).
11510 		 */
11511 		kvm_vcpu_srcu_read_unlock(vcpu);
11512 		kvm_vcpu_block(vcpu);
11513 		kvm_vcpu_srcu_read_lock(vcpu);
11514 
11515 		if (kvm_apic_accept_events(vcpu) < 0) {
11516 			r = 0;
11517 			goto out;
11518 		}
11519 		r = -EAGAIN;
11520 		if (signal_pending(current)) {
11521 			r = -EINTR;
11522 			kvm_run->exit_reason = KVM_EXIT_INTR;
11523 			++vcpu->stat.signal_exits;
11524 		}
11525 		goto out;
11526 	}
11527 
11528 	sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm);
11529 	if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) ||
11530 	    (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) {
11531 		r = -EINVAL;
11532 		goto out;
11533 	}
11534 
11535 	if (kvm_run->kvm_dirty_regs) {
11536 		r = sync_regs(vcpu);
11537 		if (r != 0)
11538 			goto out;
11539 	}
11540 
11541 	/* re-sync apic's tpr */
11542 	if (!lapic_in_kernel(vcpu)) {
11543 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11544 			r = -EINVAL;
11545 			goto out;
11546 		}
11547 	}
11548 
11549 	/*
11550 	 * If userspace set a pending exception and L2 is active, convert it to
11551 	 * a pending VM-Exit if L1 wants to intercept the exception.
11552 	 */
11553 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11554 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11555 							ex->error_code)) {
11556 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11557 					   ex->has_error_code, ex->error_code,
11558 					   ex->has_payload, ex->payload);
11559 		ex->injected = false;
11560 		ex->pending = false;
11561 	}
11562 	vcpu->arch.exception_from_userspace = false;
11563 
11564 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11565 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11566 		vcpu->arch.complete_userspace_io = NULL;
11567 		r = cui(vcpu);
11568 		if (r <= 0)
11569 			goto out;
11570 	} else {
11571 		WARN_ON_ONCE(vcpu->arch.pio.count);
11572 		WARN_ON_ONCE(vcpu->mmio_needed);
11573 	}
11574 
11575 	if (!vcpu->wants_to_run) {
11576 		r = -EINTR;
11577 		goto out;
11578 	}
11579 
11580 	r = kvm_x86_call(vcpu_pre_run)(vcpu);
11581 	if (r <= 0)
11582 		goto out;
11583 
11584 	r = vcpu_run(vcpu);
11585 
11586 out:
11587 	kvm_put_guest_fpu(vcpu);
11588 	if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected))
11589 		store_regs(vcpu);
11590 	post_kvm_run_save(vcpu);
11591 	kvm_vcpu_srcu_read_unlock(vcpu);
11592 
11593 	kvm_sigset_deactivate(vcpu);
11594 	vcpu_put(vcpu);
11595 	return r;
11596 }
11597 
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11598 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11599 {
11600 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11601 		/*
11602 		 * We are here if userspace calls get_regs() in the middle of
11603 		 * instruction emulation. Registers state needs to be copied
11604 		 * back from emulation context to vcpu. Userspace shouldn't do
11605 		 * that usually, but some bad designed PV devices (vmware
11606 		 * backdoor interface) need this to work
11607 		 */
11608 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11609 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11610 	}
11611 	regs->rax = kvm_rax_read(vcpu);
11612 	regs->rbx = kvm_rbx_read(vcpu);
11613 	regs->rcx = kvm_rcx_read(vcpu);
11614 	regs->rdx = kvm_rdx_read(vcpu);
11615 	regs->rsi = kvm_rsi_read(vcpu);
11616 	regs->rdi = kvm_rdi_read(vcpu);
11617 	regs->rsp = kvm_rsp_read(vcpu);
11618 	regs->rbp = kvm_rbp_read(vcpu);
11619 #ifdef CONFIG_X86_64
11620 	regs->r8 = kvm_r8_read(vcpu);
11621 	regs->r9 = kvm_r9_read(vcpu);
11622 	regs->r10 = kvm_r10_read(vcpu);
11623 	regs->r11 = kvm_r11_read(vcpu);
11624 	regs->r12 = kvm_r12_read(vcpu);
11625 	regs->r13 = kvm_r13_read(vcpu);
11626 	regs->r14 = kvm_r14_read(vcpu);
11627 	regs->r15 = kvm_r15_read(vcpu);
11628 #endif
11629 
11630 	regs->rip = kvm_rip_read(vcpu);
11631 	regs->rflags = kvm_get_rflags(vcpu);
11632 }
11633 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11634 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11635 {
11636 	if (vcpu->kvm->arch.has_protected_state &&
11637 	    vcpu->arch.guest_state_protected)
11638 		return -EINVAL;
11639 
11640 	vcpu_load(vcpu);
11641 	__get_regs(vcpu, regs);
11642 	vcpu_put(vcpu);
11643 	return 0;
11644 }
11645 
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11646 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11647 {
11648 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11649 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11650 
11651 	kvm_rax_write(vcpu, regs->rax);
11652 	kvm_rbx_write(vcpu, regs->rbx);
11653 	kvm_rcx_write(vcpu, regs->rcx);
11654 	kvm_rdx_write(vcpu, regs->rdx);
11655 	kvm_rsi_write(vcpu, regs->rsi);
11656 	kvm_rdi_write(vcpu, regs->rdi);
11657 	kvm_rsp_write(vcpu, regs->rsp);
11658 	kvm_rbp_write(vcpu, regs->rbp);
11659 #ifdef CONFIG_X86_64
11660 	kvm_r8_write(vcpu, regs->r8);
11661 	kvm_r9_write(vcpu, regs->r9);
11662 	kvm_r10_write(vcpu, regs->r10);
11663 	kvm_r11_write(vcpu, regs->r11);
11664 	kvm_r12_write(vcpu, regs->r12);
11665 	kvm_r13_write(vcpu, regs->r13);
11666 	kvm_r14_write(vcpu, regs->r14);
11667 	kvm_r15_write(vcpu, regs->r15);
11668 #endif
11669 
11670 	kvm_rip_write(vcpu, regs->rip);
11671 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11672 
11673 	vcpu->arch.exception.pending = false;
11674 	vcpu->arch.exception_vmexit.pending = false;
11675 
11676 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11677 }
11678 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11679 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11680 {
11681 	if (vcpu->kvm->arch.has_protected_state &&
11682 	    vcpu->arch.guest_state_protected)
11683 		return -EINVAL;
11684 
11685 	vcpu_load(vcpu);
11686 	__set_regs(vcpu, regs);
11687 	vcpu_put(vcpu);
11688 	return 0;
11689 }
11690 
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11691 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11692 {
11693 	struct desc_ptr dt;
11694 
11695 	if (vcpu->arch.guest_state_protected)
11696 		goto skip_protected_regs;
11697 
11698 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11699 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11700 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11701 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11702 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11703 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11704 
11705 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11706 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11707 
11708 	kvm_x86_call(get_idt)(vcpu, &dt);
11709 	sregs->idt.limit = dt.size;
11710 	sregs->idt.base = dt.address;
11711 	kvm_x86_call(get_gdt)(vcpu, &dt);
11712 	sregs->gdt.limit = dt.size;
11713 	sregs->gdt.base = dt.address;
11714 
11715 	sregs->cr2 = vcpu->arch.cr2;
11716 	sregs->cr3 = kvm_read_cr3(vcpu);
11717 
11718 skip_protected_regs:
11719 	sregs->cr0 = kvm_read_cr0(vcpu);
11720 	sregs->cr4 = kvm_read_cr4(vcpu);
11721 	sregs->cr8 = kvm_get_cr8(vcpu);
11722 	sregs->efer = vcpu->arch.efer;
11723 	sregs->apic_base = vcpu->arch.apic_base;
11724 }
11725 
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11726 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11727 {
11728 	__get_sregs_common(vcpu, sregs);
11729 
11730 	if (vcpu->arch.guest_state_protected)
11731 		return;
11732 
11733 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11734 		set_bit(vcpu->arch.interrupt.nr,
11735 			(unsigned long *)sregs->interrupt_bitmap);
11736 }
11737 
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11738 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11739 {
11740 	int i;
11741 
11742 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11743 
11744 	if (vcpu->arch.guest_state_protected)
11745 		return;
11746 
11747 	if (is_pae_paging(vcpu)) {
11748 		for (i = 0 ; i < 4 ; i++)
11749 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11750 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11751 	}
11752 }
11753 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11754 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11755 				  struct kvm_sregs *sregs)
11756 {
11757 	if (vcpu->kvm->arch.has_protected_state &&
11758 	    vcpu->arch.guest_state_protected)
11759 		return -EINVAL;
11760 
11761 	vcpu_load(vcpu);
11762 	__get_sregs(vcpu, sregs);
11763 	vcpu_put(vcpu);
11764 	return 0;
11765 }
11766 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11767 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11768 				    struct kvm_mp_state *mp_state)
11769 {
11770 	int r;
11771 
11772 	vcpu_load(vcpu);
11773 	if (kvm_mpx_supported())
11774 		kvm_load_guest_fpu(vcpu);
11775 
11776 	kvm_vcpu_srcu_read_lock(vcpu);
11777 
11778 	r = kvm_apic_accept_events(vcpu);
11779 	if (r < 0)
11780 		goto out;
11781 	r = 0;
11782 
11783 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11784 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11785 	    vcpu->arch.pv.pv_unhalted)
11786 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11787 	else
11788 		mp_state->mp_state = vcpu->arch.mp_state;
11789 
11790 out:
11791 	kvm_vcpu_srcu_read_unlock(vcpu);
11792 
11793 	if (kvm_mpx_supported())
11794 		kvm_put_guest_fpu(vcpu);
11795 	vcpu_put(vcpu);
11796 	return r;
11797 }
11798 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11799 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11800 				    struct kvm_mp_state *mp_state)
11801 {
11802 	int ret = -EINVAL;
11803 
11804 	vcpu_load(vcpu);
11805 
11806 	switch (mp_state->mp_state) {
11807 	case KVM_MP_STATE_UNINITIALIZED:
11808 	case KVM_MP_STATE_HALTED:
11809 	case KVM_MP_STATE_AP_RESET_HOLD:
11810 	case KVM_MP_STATE_INIT_RECEIVED:
11811 	case KVM_MP_STATE_SIPI_RECEIVED:
11812 		if (!lapic_in_kernel(vcpu))
11813 			goto out;
11814 		break;
11815 
11816 	case KVM_MP_STATE_RUNNABLE:
11817 		break;
11818 
11819 	default:
11820 		goto out;
11821 	}
11822 
11823 	/*
11824 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11825 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11826 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11827 	 * if an SMI is pending as well.
11828 	 */
11829 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11830 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11831 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11832 		goto out;
11833 
11834 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11835 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11836 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11837 	} else
11838 		vcpu->arch.mp_state = mp_state->mp_state;
11839 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11840 
11841 	ret = 0;
11842 out:
11843 	vcpu_put(vcpu);
11844 	return ret;
11845 }
11846 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11847 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11848 		    int reason, bool has_error_code, u32 error_code)
11849 {
11850 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11851 	int ret;
11852 
11853 	init_emulate_ctxt(vcpu);
11854 
11855 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11856 				   has_error_code, error_code);
11857 
11858 	/*
11859 	 * Report an error userspace if MMIO is needed, as KVM doesn't support
11860 	 * MMIO during a task switch (or any other complex operation).
11861 	 */
11862 	if (ret || vcpu->mmio_needed) {
11863 		vcpu->mmio_needed = false;
11864 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11865 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11866 		vcpu->run->internal.ndata = 0;
11867 		return 0;
11868 	}
11869 
11870 	kvm_rip_write(vcpu, ctxt->eip);
11871 	kvm_set_rflags(vcpu, ctxt->eflags);
11872 	return 1;
11873 }
11874 EXPORT_SYMBOL_GPL(kvm_task_switch);
11875 
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11876 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11877 {
11878 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11879 		/*
11880 		 * When EFER.LME and CR0.PG are set, the processor is in
11881 		 * 64-bit mode (though maybe in a 32-bit code segment).
11882 		 * CR4.PAE and EFER.LMA must be set.
11883 		 */
11884 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11885 			return false;
11886 		if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11887 			return false;
11888 	} else {
11889 		/*
11890 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11891 		 * segment cannot be 64-bit.
11892 		 */
11893 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11894 			return false;
11895 	}
11896 
11897 	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11898 	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11899 }
11900 
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11901 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11902 		int *mmu_reset_needed, bool update_pdptrs)
11903 {
11904 	int idx;
11905 	struct desc_ptr dt;
11906 
11907 	if (!kvm_is_valid_sregs(vcpu, sregs))
11908 		return -EINVAL;
11909 
11910 	if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
11911 		return -EINVAL;
11912 
11913 	if (vcpu->arch.guest_state_protected)
11914 		return 0;
11915 
11916 	dt.size = sregs->idt.limit;
11917 	dt.address = sregs->idt.base;
11918 	kvm_x86_call(set_idt)(vcpu, &dt);
11919 	dt.size = sregs->gdt.limit;
11920 	dt.address = sregs->gdt.base;
11921 	kvm_x86_call(set_gdt)(vcpu, &dt);
11922 
11923 	vcpu->arch.cr2 = sregs->cr2;
11924 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11925 	vcpu->arch.cr3 = sregs->cr3;
11926 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11927 	kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
11928 
11929 	kvm_set_cr8(vcpu, sregs->cr8);
11930 
11931 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11932 	kvm_x86_call(set_efer)(vcpu, sregs->efer);
11933 
11934 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11935 	kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
11936 
11937 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11938 	kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
11939 
11940 	if (update_pdptrs) {
11941 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11942 		if (is_pae_paging(vcpu)) {
11943 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11944 			*mmu_reset_needed = 1;
11945 		}
11946 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11947 	}
11948 
11949 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11950 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11951 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11952 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11953 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11954 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11955 
11956 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11957 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11958 
11959 	update_cr8_intercept(vcpu);
11960 
11961 	/* Older userspace won't unhalt the vcpu on reset. */
11962 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11963 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11964 	    !is_protmode(vcpu))
11965 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11966 
11967 	return 0;
11968 }
11969 
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11970 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11971 {
11972 	int pending_vec, max_bits;
11973 	int mmu_reset_needed = 0;
11974 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11975 
11976 	if (ret)
11977 		return ret;
11978 
11979 	if (mmu_reset_needed) {
11980 		kvm_mmu_reset_context(vcpu);
11981 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11982 	}
11983 
11984 	max_bits = KVM_NR_INTERRUPTS;
11985 	pending_vec = find_first_bit(
11986 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11987 
11988 	if (pending_vec < max_bits) {
11989 		kvm_queue_interrupt(vcpu, pending_vec, false);
11990 		pr_debug("Set back pending irq %d\n", pending_vec);
11991 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11992 	}
11993 	return 0;
11994 }
11995 
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11996 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11997 {
11998 	int mmu_reset_needed = 0;
11999 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
12000 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
12001 		!(sregs2->efer & EFER_LMA);
12002 	int i, ret;
12003 
12004 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
12005 		return -EINVAL;
12006 
12007 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
12008 		return -EINVAL;
12009 
12010 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12011 				 &mmu_reset_needed, !valid_pdptrs);
12012 	if (ret)
12013 		return ret;
12014 
12015 	if (valid_pdptrs) {
12016 		for (i = 0; i < 4 ; i++)
12017 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12018 
12019 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12020 		mmu_reset_needed = 1;
12021 		vcpu->arch.pdptrs_from_userspace = true;
12022 	}
12023 	if (mmu_reset_needed) {
12024 		kvm_mmu_reset_context(vcpu);
12025 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12026 	}
12027 	return 0;
12028 }
12029 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12030 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12031 				  struct kvm_sregs *sregs)
12032 {
12033 	int ret;
12034 
12035 	if (vcpu->kvm->arch.has_protected_state &&
12036 	    vcpu->arch.guest_state_protected)
12037 		return -EINVAL;
12038 
12039 	vcpu_load(vcpu);
12040 	ret = __set_sregs(vcpu, sregs);
12041 	vcpu_put(vcpu);
12042 	return ret;
12043 }
12044 
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12045 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12046 {
12047 	bool set = false;
12048 	struct kvm_vcpu *vcpu;
12049 	unsigned long i;
12050 
12051 	if (!enable_apicv)
12052 		return;
12053 
12054 	down_write(&kvm->arch.apicv_update_lock);
12055 
12056 	kvm_for_each_vcpu(i, vcpu, kvm) {
12057 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12058 			set = true;
12059 			break;
12060 		}
12061 	}
12062 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12063 	up_write(&kvm->arch.apicv_update_lock);
12064 }
12065 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12066 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12067 					struct kvm_guest_debug *dbg)
12068 {
12069 	unsigned long rflags;
12070 	int i, r;
12071 
12072 	if (vcpu->arch.guest_state_protected)
12073 		return -EINVAL;
12074 
12075 	vcpu_load(vcpu);
12076 
12077 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12078 		r = -EBUSY;
12079 		if (kvm_is_exception_pending(vcpu))
12080 			goto out;
12081 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12082 			kvm_queue_exception(vcpu, DB_VECTOR);
12083 		else
12084 			kvm_queue_exception(vcpu, BP_VECTOR);
12085 	}
12086 
12087 	/*
12088 	 * Read rflags as long as potentially injected trace flags are still
12089 	 * filtered out.
12090 	 */
12091 	rflags = kvm_get_rflags(vcpu);
12092 
12093 	vcpu->guest_debug = dbg->control;
12094 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12095 		vcpu->guest_debug = 0;
12096 
12097 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12098 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
12099 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12100 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12101 	} else {
12102 		for (i = 0; i < KVM_NR_DB_REGS; i++)
12103 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12104 	}
12105 	kvm_update_dr7(vcpu);
12106 
12107 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12108 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12109 
12110 	/*
12111 	 * Trigger an rflags update that will inject or remove the trace
12112 	 * flags.
12113 	 */
12114 	kvm_set_rflags(vcpu, rflags);
12115 
12116 	kvm_x86_call(update_exception_bitmap)(vcpu);
12117 
12118 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12119 
12120 	r = 0;
12121 
12122 out:
12123 	vcpu_put(vcpu);
12124 	return r;
12125 }
12126 
12127 /*
12128  * Translate a guest virtual address to a guest physical address.
12129  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12130 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12131 				    struct kvm_translation *tr)
12132 {
12133 	unsigned long vaddr = tr->linear_address;
12134 	gpa_t gpa;
12135 	int idx;
12136 
12137 	vcpu_load(vcpu);
12138 
12139 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12140 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12141 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12142 	tr->physical_address = gpa;
12143 	tr->valid = gpa != INVALID_GPA;
12144 	tr->writeable = 1;
12145 	tr->usermode = 0;
12146 
12147 	vcpu_put(vcpu);
12148 	return 0;
12149 }
12150 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12151 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12152 {
12153 	struct fxregs_state *fxsave;
12154 
12155 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12156 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12157 
12158 	vcpu_load(vcpu);
12159 
12160 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12161 	memcpy(fpu->fpr, fxsave->st_space, 128);
12162 	fpu->fcw = fxsave->cwd;
12163 	fpu->fsw = fxsave->swd;
12164 	fpu->ftwx = fxsave->twd;
12165 	fpu->last_opcode = fxsave->fop;
12166 	fpu->last_ip = fxsave->rip;
12167 	fpu->last_dp = fxsave->rdp;
12168 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12169 
12170 	vcpu_put(vcpu);
12171 	return 0;
12172 }
12173 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12174 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12175 {
12176 	struct fxregs_state *fxsave;
12177 
12178 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12179 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12180 
12181 	vcpu_load(vcpu);
12182 
12183 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12184 
12185 	memcpy(fxsave->st_space, fpu->fpr, 128);
12186 	fxsave->cwd = fpu->fcw;
12187 	fxsave->swd = fpu->fsw;
12188 	fxsave->twd = fpu->ftwx;
12189 	fxsave->fop = fpu->last_opcode;
12190 	fxsave->rip = fpu->last_ip;
12191 	fxsave->rdp = fpu->last_dp;
12192 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12193 
12194 	vcpu_put(vcpu);
12195 	return 0;
12196 }
12197 
store_regs(struct kvm_vcpu * vcpu)12198 static void store_regs(struct kvm_vcpu *vcpu)
12199 {
12200 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12201 
12202 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12203 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
12204 
12205 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12206 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12207 
12208 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12209 		kvm_vcpu_ioctl_x86_get_vcpu_events(
12210 				vcpu, &vcpu->run->s.regs.events);
12211 }
12212 
sync_regs(struct kvm_vcpu * vcpu)12213 static int sync_regs(struct kvm_vcpu *vcpu)
12214 {
12215 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12216 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
12217 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12218 	}
12219 
12220 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12221 		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12222 
12223 		if (__set_sregs(vcpu, &sregs))
12224 			return -EINVAL;
12225 
12226 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12227 	}
12228 
12229 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12230 		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12231 
12232 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12233 			return -EINVAL;
12234 
12235 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12236 	}
12237 
12238 	return 0;
12239 }
12240 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12241 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12242 {
12243 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12244 		pr_warn_once("SMP vm created on host with unstable TSC; "
12245 			     "guest TSC will not be reliable\n");
12246 
12247 	if (!kvm->arch.max_vcpu_ids)
12248 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12249 
12250 	if (id >= kvm->arch.max_vcpu_ids)
12251 		return -EINVAL;
12252 
12253 	return kvm_x86_call(vcpu_precreate)(kvm);
12254 }
12255 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12256 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12257 {
12258 	struct page *page;
12259 	int r;
12260 
12261 	vcpu->arch.last_vmentry_cpu = -1;
12262 	vcpu->arch.regs_avail = ~0;
12263 	vcpu->arch.regs_dirty = ~0;
12264 
12265 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12266 
12267 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12268 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12269 	else
12270 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12271 
12272 	r = kvm_mmu_create(vcpu);
12273 	if (r < 0)
12274 		return r;
12275 
12276 	r = kvm_create_lapic(vcpu);
12277 	if (r < 0)
12278 		goto fail_mmu_destroy;
12279 
12280 	r = -ENOMEM;
12281 
12282 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12283 	if (!page)
12284 		goto fail_free_lapic;
12285 	vcpu->arch.pio_data = page_address(page);
12286 
12287 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12288 				       GFP_KERNEL_ACCOUNT);
12289 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12290 					    GFP_KERNEL_ACCOUNT);
12291 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12292 		goto fail_free_mce_banks;
12293 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12294 
12295 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12296 				GFP_KERNEL_ACCOUNT))
12297 		goto fail_free_mce_banks;
12298 
12299 	if (!alloc_emulate_ctxt(vcpu))
12300 		goto free_wbinvd_dirty_mask;
12301 
12302 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12303 		pr_err("failed to allocate vcpu's fpu\n");
12304 		goto free_emulate_ctxt;
12305 	}
12306 
12307 	kvm_async_pf_hash_reset(vcpu);
12308 
12309 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12310 		vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12311 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12312 		vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12313 	}
12314 	kvm_pmu_init(vcpu);
12315 
12316 	vcpu->arch.pending_external_vector = -1;
12317 	vcpu->arch.preempted_in_kernel = false;
12318 
12319 #if IS_ENABLED(CONFIG_HYPERV)
12320 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
12321 #endif
12322 
12323 	r = kvm_x86_call(vcpu_create)(vcpu);
12324 	if (r)
12325 		goto free_guest_fpu;
12326 
12327 	kvm_xen_init_vcpu(vcpu);
12328 	vcpu_load(vcpu);
12329 	kvm_vcpu_after_set_cpuid(vcpu);
12330 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12331 	kvm_vcpu_reset(vcpu, false);
12332 	kvm_init_mmu(vcpu);
12333 	vcpu_put(vcpu);
12334 	return 0;
12335 
12336 free_guest_fpu:
12337 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12338 free_emulate_ctxt:
12339 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12340 free_wbinvd_dirty_mask:
12341 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12342 fail_free_mce_banks:
12343 	kfree(vcpu->arch.mce_banks);
12344 	kfree(vcpu->arch.mci_ctl2_banks);
12345 	free_page((unsigned long)vcpu->arch.pio_data);
12346 fail_free_lapic:
12347 	kvm_free_lapic(vcpu);
12348 fail_mmu_destroy:
12349 	kvm_mmu_destroy(vcpu);
12350 	return r;
12351 }
12352 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12353 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12354 {
12355 	struct kvm *kvm = vcpu->kvm;
12356 
12357 	if (mutex_lock_killable(&vcpu->mutex))
12358 		return;
12359 	vcpu_load(vcpu);
12360 	kvm_synchronize_tsc(vcpu, NULL);
12361 	vcpu_put(vcpu);
12362 
12363 	/* poll control enabled by default */
12364 	vcpu->arch.msr_kvm_poll_control = 1;
12365 
12366 	mutex_unlock(&vcpu->mutex);
12367 
12368 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12369 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12370 						KVMCLOCK_SYNC_PERIOD);
12371 }
12372 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12373 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12374 {
12375 	int idx;
12376 
12377 	kvmclock_reset(vcpu);
12378 
12379 	kvm_x86_call(vcpu_free)(vcpu);
12380 
12381 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12382 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12383 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12384 
12385 	kvm_xen_destroy_vcpu(vcpu);
12386 	kvm_hv_vcpu_uninit(vcpu);
12387 	kvm_pmu_destroy(vcpu);
12388 	kfree(vcpu->arch.mce_banks);
12389 	kfree(vcpu->arch.mci_ctl2_banks);
12390 	kvm_free_lapic(vcpu);
12391 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12392 	kvm_mmu_destroy(vcpu);
12393 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12394 	free_page((unsigned long)vcpu->arch.pio_data);
12395 	kvfree(vcpu->arch.cpuid_entries);
12396 }
12397 
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12398 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12399 {
12400 	struct kvm_cpuid_entry2 *cpuid_0x1;
12401 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12402 	unsigned long new_cr0;
12403 
12404 	/*
12405 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12406 	 * to handle side effects.  RESET emulation hits those flows and relies
12407 	 * on emulated/virtualized registers, including those that are loaded
12408 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12409 	 * to detect improper or missing initialization.
12410 	 */
12411 	WARN_ON_ONCE(!init_event &&
12412 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12413 
12414 	/*
12415 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12416 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12417 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12418 	 * bits), i.e. virtualization is disabled.
12419 	 */
12420 	if (is_guest_mode(vcpu))
12421 		kvm_leave_nested(vcpu);
12422 
12423 	kvm_lapic_reset(vcpu, init_event);
12424 
12425 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12426 	vcpu->arch.hflags = 0;
12427 
12428 	vcpu->arch.smi_pending = 0;
12429 	vcpu->arch.smi_count = 0;
12430 	atomic_set(&vcpu->arch.nmi_queued, 0);
12431 	vcpu->arch.nmi_pending = 0;
12432 	vcpu->arch.nmi_injected = false;
12433 	kvm_clear_interrupt_queue(vcpu);
12434 	kvm_clear_exception_queue(vcpu);
12435 
12436 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12437 	kvm_update_dr0123(vcpu);
12438 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12439 	vcpu->arch.dr7 = DR7_FIXED_1;
12440 	kvm_update_dr7(vcpu);
12441 
12442 	vcpu->arch.cr2 = 0;
12443 
12444 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12445 	vcpu->arch.apf.msr_en_val = 0;
12446 	vcpu->arch.apf.msr_int_val = 0;
12447 	vcpu->arch.st.msr_val = 0;
12448 
12449 	kvmclock_reset(vcpu);
12450 
12451 	kvm_clear_async_pf_completion_queue(vcpu);
12452 	kvm_async_pf_hash_reset(vcpu);
12453 	vcpu->arch.apf.halted = false;
12454 
12455 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12456 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12457 
12458 		/*
12459 		 * All paths that lead to INIT are required to load the guest's
12460 		 * FPU state (because most paths are buried in KVM_RUN).
12461 		 */
12462 		if (init_event)
12463 			kvm_put_guest_fpu(vcpu);
12464 
12465 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12466 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12467 
12468 		if (init_event)
12469 			kvm_load_guest_fpu(vcpu);
12470 	}
12471 
12472 	if (!init_event) {
12473 		vcpu->arch.smbase = 0x30000;
12474 
12475 		vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12476 
12477 		vcpu->arch.msr_misc_features_enables = 0;
12478 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12479 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12480 
12481 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12482 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12483 	}
12484 
12485 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12486 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12487 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12488 
12489 	/*
12490 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12491 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12492 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12493 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12494 	 * on RESET.  But, go through the motions in case that's ever remedied.
12495 	 */
12496 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12497 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12498 
12499 	kvm_x86_call(vcpu_reset)(vcpu, init_event);
12500 
12501 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12502 	kvm_rip_write(vcpu, 0xfff0);
12503 
12504 	vcpu->arch.cr3 = 0;
12505 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12506 
12507 	/*
12508 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12509 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12510 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12511 	 */
12512 	new_cr0 = X86_CR0_ET;
12513 	if (init_event)
12514 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12515 	else
12516 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12517 
12518 	kvm_x86_call(set_cr0)(vcpu, new_cr0);
12519 	kvm_x86_call(set_cr4)(vcpu, 0);
12520 	kvm_x86_call(set_efer)(vcpu, 0);
12521 	kvm_x86_call(update_exception_bitmap)(vcpu);
12522 
12523 	/*
12524 	 * On the standard CR0/CR4/EFER modification paths, there are several
12525 	 * complex conditions determining whether the MMU has to be reset and/or
12526 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12527 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12528 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12529 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12530 	 */
12531 	if (old_cr0 & X86_CR0_PG) {
12532 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12533 		kvm_mmu_reset_context(vcpu);
12534 	}
12535 
12536 	/*
12537 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12538 	 * APM states the TLBs are untouched by INIT, but it also states that
12539 	 * the TLBs are flushed on "External initialization of the processor."
12540 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12541 	 * benefit in relying on the guest to flush the TLB immediately after
12542 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12543 	 * performance perspective.
12544 	 */
12545 	if (init_event)
12546 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12547 }
12548 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12549 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12550 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12551 {
12552 	struct kvm_segment cs;
12553 
12554 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12555 	cs.selector = vector << 8;
12556 	cs.base = vector << 12;
12557 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12558 	kvm_rip_write(vcpu, 0);
12559 }
12560 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12561 
kvm_arch_enable_virtualization(void)12562 void kvm_arch_enable_virtualization(void)
12563 {
12564 	cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12565 }
12566 
kvm_arch_disable_virtualization(void)12567 void kvm_arch_disable_virtualization(void)
12568 {
12569 	cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12570 }
12571 
kvm_arch_enable_virtualization_cpu(void)12572 int kvm_arch_enable_virtualization_cpu(void)
12573 {
12574 	struct kvm *kvm;
12575 	struct kvm_vcpu *vcpu;
12576 	unsigned long i;
12577 	int ret;
12578 	u64 local_tsc;
12579 	u64 max_tsc = 0;
12580 	bool stable, backwards_tsc = false;
12581 
12582 	kvm_user_return_msr_cpu_online();
12583 
12584 	ret = kvm_x86_check_processor_compatibility();
12585 	if (ret)
12586 		return ret;
12587 
12588 	ret = kvm_x86_call(enable_virtualization_cpu)();
12589 	if (ret != 0)
12590 		return ret;
12591 
12592 	local_tsc = rdtsc();
12593 	stable = !kvm_check_tsc_unstable();
12594 	list_for_each_entry(kvm, &vm_list, vm_list) {
12595 		kvm_for_each_vcpu(i, vcpu, kvm) {
12596 			if (!stable && vcpu->cpu == smp_processor_id())
12597 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12598 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12599 				backwards_tsc = true;
12600 				if (vcpu->arch.last_host_tsc > max_tsc)
12601 					max_tsc = vcpu->arch.last_host_tsc;
12602 			}
12603 		}
12604 	}
12605 
12606 	/*
12607 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12608 	 * platforms that reset TSC during suspend or hibernate actions, but
12609 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12610 	 * detect that condition here, which happens early in CPU bringup,
12611 	 * before any KVM threads can be running.  Unfortunately, we can't
12612 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12613 	 * enough into CPU bringup that we know how much real time has actually
12614 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12615 	 * variables that haven't been updated yet.
12616 	 *
12617 	 * So we simply find the maximum observed TSC above, then record the
12618 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12619 	 * the adjustment will be applied.  Note that we accumulate
12620 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12621 	 * gets a chance to run again.  In the event that no KVM threads get a
12622 	 * chance to run, we will miss the entire elapsed period, as we'll have
12623 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12624 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12625 	 * uniform across all VCPUs (not to mention the scenario is extremely
12626 	 * unlikely). It is possible that a second hibernate recovery happens
12627 	 * much faster than a first, causing the observed TSC here to be
12628 	 * smaller; this would require additional padding adjustment, which is
12629 	 * why we set last_host_tsc to the local tsc observed here.
12630 	 *
12631 	 * N.B. - this code below runs only on platforms with reliable TSC,
12632 	 * as that is the only way backwards_tsc is set above.  Also note
12633 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12634 	 * have the same delta_cyc adjustment applied if backwards_tsc
12635 	 * is detected.  Note further, this adjustment is only done once,
12636 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12637 	 * called multiple times (one for each physical CPU bringup).
12638 	 *
12639 	 * Platforms with unreliable TSCs don't have to deal with this, they
12640 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12641 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12642 	 * guarantee that they stay in perfect synchronization.
12643 	 */
12644 	if (backwards_tsc) {
12645 		u64 delta_cyc = max_tsc - local_tsc;
12646 		list_for_each_entry(kvm, &vm_list, vm_list) {
12647 			kvm->arch.backwards_tsc_observed = true;
12648 			kvm_for_each_vcpu(i, vcpu, kvm) {
12649 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12650 				vcpu->arch.last_host_tsc = local_tsc;
12651 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12652 			}
12653 
12654 			/*
12655 			 * We have to disable TSC offset matching.. if you were
12656 			 * booting a VM while issuing an S4 host suspend....
12657 			 * you may have some problem.  Solving this issue is
12658 			 * left as an exercise to the reader.
12659 			 */
12660 			kvm->arch.last_tsc_nsec = 0;
12661 			kvm->arch.last_tsc_write = 0;
12662 		}
12663 
12664 	}
12665 	return 0;
12666 }
12667 
kvm_arch_disable_virtualization_cpu(void)12668 void kvm_arch_disable_virtualization_cpu(void)
12669 {
12670 	kvm_x86_call(disable_virtualization_cpu)();
12671 	drop_user_return_notifiers();
12672 }
12673 
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12674 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12675 {
12676 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12677 }
12678 
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12679 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12680 {
12681 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12682 }
12683 
kvm_arch_free_vm(struct kvm * kvm)12684 void kvm_arch_free_vm(struct kvm *kvm)
12685 {
12686 #if IS_ENABLED(CONFIG_HYPERV)
12687 	kfree(kvm->arch.hv_pa_pg);
12688 #endif
12689 	__kvm_arch_free_vm(kvm);
12690 }
12691 
12692 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12693 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12694 {
12695 	int ret;
12696 	unsigned long flags;
12697 
12698 	if (!kvm_is_vm_type_supported(type))
12699 		return -EINVAL;
12700 
12701 	kvm->arch.vm_type = type;
12702 	kvm->arch.has_private_mem =
12703 		(type == KVM_X86_SW_PROTECTED_VM);
12704 	/* Decided by the vendor code for other VM types.  */
12705 	kvm->arch.pre_fault_allowed =
12706 		type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
12707 
12708 	ret = kvm_page_track_init(kvm);
12709 	if (ret)
12710 		goto out;
12711 
12712 	kvm_mmu_init_vm(kvm);
12713 
12714 	ret = kvm_x86_call(vm_init)(kvm);
12715 	if (ret)
12716 		goto out_uninit_mmu;
12717 
12718 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12719 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12720 
12721 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12722 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12723 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12724 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12725 		&kvm->arch.irq_sources_bitmap);
12726 
12727 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12728 	mutex_init(&kvm->arch.apic_map_lock);
12729 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12730 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12731 
12732 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12733 	pvclock_update_vm_gtod_copy(kvm);
12734 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12735 
12736 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12737 	kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
12738 	kvm->arch.guest_can_read_msr_platform_info = true;
12739 	kvm->arch.enable_pmu = enable_pmu;
12740 
12741 #if IS_ENABLED(CONFIG_HYPERV)
12742 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12743 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12744 #endif
12745 
12746 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12747 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12748 
12749 	kvm_apicv_init(kvm);
12750 	kvm_hv_init_vm(kvm);
12751 	kvm_xen_init_vm(kvm);
12752 
12753 	if (ignore_msrs && !report_ignored_msrs) {
12754 		pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
12755 			     "a supported configuration.  Lying to the guest about the existence of MSRs\n"
12756 			     "may cause the guest operating system to hang or produce errors.  If a guest\n"
12757 			     "does not run without ignore_msrs=1, please report it to [email protected].\n");
12758 	}
12759 
12760 	once_init(&kvm->arch.nx_once);
12761 	return 0;
12762 
12763 out_uninit_mmu:
12764 	kvm_mmu_uninit_vm(kvm);
12765 	kvm_page_track_cleanup(kvm);
12766 out:
12767 	return ret;
12768 }
12769 
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)12770 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12771 {
12772 	vcpu_load(vcpu);
12773 	kvm_mmu_unload(vcpu);
12774 	vcpu_put(vcpu);
12775 }
12776 
kvm_unload_vcpu_mmus(struct kvm * kvm)12777 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12778 {
12779 	unsigned long i;
12780 	struct kvm_vcpu *vcpu;
12781 
12782 	kvm_for_each_vcpu(i, vcpu, kvm) {
12783 		kvm_clear_async_pf_completion_queue(vcpu);
12784 		kvm_unload_vcpu_mmu(vcpu);
12785 	}
12786 }
12787 
kvm_arch_sync_events(struct kvm * kvm)12788 void kvm_arch_sync_events(struct kvm *kvm)
12789 {
12790 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12791 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12792 	kvm_free_pit(kvm);
12793 }
12794 
12795 /**
12796  * __x86_set_memory_region: Setup KVM internal memory slot
12797  *
12798  * @kvm: the kvm pointer to the VM.
12799  * @id: the slot ID to setup.
12800  * @gpa: the GPA to install the slot (unused when @size == 0).
12801  * @size: the size of the slot. Set to zero to uninstall a slot.
12802  *
12803  * This function helps to setup a KVM internal memory slot.  Specify
12804  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12805  * slot.  The return code can be one of the following:
12806  *
12807  *   HVA:           on success (uninstall will return a bogus HVA)
12808  *   -errno:        on error
12809  *
12810  * The caller should always use IS_ERR() to check the return value
12811  * before use.  Note, the KVM internal memory slots are guaranteed to
12812  * remain valid and unchanged until the VM is destroyed, i.e., the
12813  * GPA->HVA translation will not change.  However, the HVA is a user
12814  * address, i.e. its accessibility is not guaranteed, and must be
12815  * accessed via __copy_{to,from}_user().
12816  */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12817 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12818 				      u32 size)
12819 {
12820 	int i, r;
12821 	unsigned long hva, old_npages;
12822 	struct kvm_memslots *slots = kvm_memslots(kvm);
12823 	struct kvm_memory_slot *slot;
12824 
12825 	lockdep_assert_held(&kvm->slots_lock);
12826 
12827 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12828 		return ERR_PTR_USR(-EINVAL);
12829 
12830 	slot = id_to_memslot(slots, id);
12831 	if (size) {
12832 		if (slot && slot->npages)
12833 			return ERR_PTR_USR(-EEXIST);
12834 
12835 		/*
12836 		 * MAP_SHARED to prevent internal slot pages from being moved
12837 		 * by fork()/COW.
12838 		 */
12839 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12840 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12841 		if (IS_ERR_VALUE(hva))
12842 			return (void __user *)hva;
12843 	} else {
12844 		if (!slot || !slot->npages)
12845 			return NULL;
12846 
12847 		old_npages = slot->npages;
12848 		hva = slot->userspace_addr;
12849 	}
12850 
12851 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12852 		struct kvm_userspace_memory_region2 m;
12853 
12854 		m.slot = id | (i << 16);
12855 		m.flags = 0;
12856 		m.guest_phys_addr = gpa;
12857 		m.userspace_addr = hva;
12858 		m.memory_size = size;
12859 		r = kvm_set_internal_memslot(kvm, &m);
12860 		if (r < 0)
12861 			return ERR_PTR_USR(r);
12862 	}
12863 
12864 	if (!size)
12865 		vm_munmap(hva, old_npages * PAGE_SIZE);
12866 
12867 	return (void __user *)hva;
12868 }
12869 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12870 
kvm_arch_pre_destroy_vm(struct kvm * kvm)12871 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12872 {
12873 	kvm_mmu_pre_destroy_vm(kvm);
12874 }
12875 
kvm_arch_destroy_vm(struct kvm * kvm)12876 void kvm_arch_destroy_vm(struct kvm *kvm)
12877 {
12878 	if (current->mm == kvm->mm) {
12879 		/*
12880 		 * Free memory regions allocated on behalf of userspace,
12881 		 * unless the memory map has changed due to process exit
12882 		 * or fd copying.
12883 		 */
12884 		mutex_lock(&kvm->slots_lock);
12885 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12886 					0, 0);
12887 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12888 					0, 0);
12889 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12890 		mutex_unlock(&kvm->slots_lock);
12891 	}
12892 	kvm_unload_vcpu_mmus(kvm);
12893 	kvm_destroy_vcpus(kvm);
12894 	kvm_x86_call(vm_destroy)(kvm);
12895 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12896 	kvm_pic_destroy(kvm);
12897 	kvm_ioapic_destroy(kvm);
12898 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12899 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12900 	kvm_mmu_uninit_vm(kvm);
12901 	kvm_page_track_cleanup(kvm);
12902 	kvm_xen_destroy_vm(kvm);
12903 	kvm_hv_destroy_vm(kvm);
12904 }
12905 
memslot_rmap_free(struct kvm_memory_slot * slot)12906 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12907 {
12908 	int i;
12909 
12910 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12911 		vfree(slot->arch.rmap[i]);
12912 		slot->arch.rmap[i] = NULL;
12913 	}
12914 }
12915 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12916 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12917 {
12918 	int i;
12919 
12920 	memslot_rmap_free(slot);
12921 
12922 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12923 		vfree(slot->arch.lpage_info[i - 1]);
12924 		slot->arch.lpage_info[i - 1] = NULL;
12925 	}
12926 
12927 	kvm_page_track_free_memslot(slot);
12928 }
12929 
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12930 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12931 {
12932 	const int sz = sizeof(*slot->arch.rmap[0]);
12933 	int i;
12934 
12935 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12936 		int level = i + 1;
12937 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12938 
12939 		if (slot->arch.rmap[i])
12940 			continue;
12941 
12942 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12943 		if (!slot->arch.rmap[i]) {
12944 			memslot_rmap_free(slot);
12945 			return -ENOMEM;
12946 		}
12947 	}
12948 
12949 	return 0;
12950 }
12951 
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12952 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12953 				      struct kvm_memory_slot *slot)
12954 {
12955 	unsigned long npages = slot->npages;
12956 	int i, r;
12957 
12958 	/*
12959 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12960 	 * old arrays will be freed by kvm_set_memory_region() if installing
12961 	 * the new memslot is successful.
12962 	 */
12963 	memset(&slot->arch, 0, sizeof(slot->arch));
12964 
12965 	if (kvm_memslots_have_rmaps(kvm)) {
12966 		r = memslot_rmap_alloc(slot, npages);
12967 		if (r)
12968 			return r;
12969 	}
12970 
12971 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12972 		struct kvm_lpage_info *linfo;
12973 		unsigned long ugfn;
12974 		int lpages;
12975 		int level = i + 1;
12976 
12977 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12978 
12979 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12980 		if (!linfo)
12981 			goto out_free;
12982 
12983 		slot->arch.lpage_info[i - 1] = linfo;
12984 
12985 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12986 			linfo[0].disallow_lpage = 1;
12987 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12988 			linfo[lpages - 1].disallow_lpage = 1;
12989 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12990 		/*
12991 		 * If the gfn and userspace address are not aligned wrt each
12992 		 * other, disable large page support for this slot.
12993 		 */
12994 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12995 			unsigned long j;
12996 
12997 			for (j = 0; j < lpages; ++j)
12998 				linfo[j].disallow_lpage = 1;
12999 		}
13000 	}
13001 
13002 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
13003 	kvm_mmu_init_memslot_memory_attributes(kvm, slot);
13004 #endif
13005 
13006 	if (kvm_page_track_create_memslot(kvm, slot, npages))
13007 		goto out_free;
13008 
13009 	return 0;
13010 
13011 out_free:
13012 	memslot_rmap_free(slot);
13013 
13014 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13015 		vfree(slot->arch.lpage_info[i - 1]);
13016 		slot->arch.lpage_info[i - 1] = NULL;
13017 	}
13018 	return -ENOMEM;
13019 }
13020 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)13021 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13022 {
13023 	struct kvm_vcpu *vcpu;
13024 	unsigned long i;
13025 
13026 	/*
13027 	 * memslots->generation has been incremented.
13028 	 * mmio generation may have reached its maximum value.
13029 	 */
13030 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13031 
13032 	/* Force re-initialization of steal_time cache */
13033 	kvm_for_each_vcpu(i, vcpu, kvm)
13034 		kvm_vcpu_kick(vcpu);
13035 }
13036 
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13037 int kvm_arch_prepare_memory_region(struct kvm *kvm,
13038 				   const struct kvm_memory_slot *old,
13039 				   struct kvm_memory_slot *new,
13040 				   enum kvm_mr_change change)
13041 {
13042 	/*
13043 	 * KVM doesn't support moving memslots when there are external page
13044 	 * trackers attached to the VM, i.e. if KVMGT is in use.
13045 	 */
13046 	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13047 		return -EINVAL;
13048 
13049 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13050 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13051 			return -EINVAL;
13052 
13053 		if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1))
13054 			return -EINVAL;
13055 
13056 		return kvm_alloc_memslot_metadata(kvm, new);
13057 	}
13058 
13059 	if (change == KVM_MR_FLAGS_ONLY)
13060 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
13061 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13062 		return -EIO;
13063 
13064 	return 0;
13065 }
13066 
13067 
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13068 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13069 {
13070 	int nr_slots;
13071 
13072 	if (!kvm_x86_ops.cpu_dirty_log_size)
13073 		return;
13074 
13075 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13076 	if ((enable && nr_slots == 1) || !nr_slots)
13077 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13078 }
13079 
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13080 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13081 				     struct kvm_memory_slot *old,
13082 				     const struct kvm_memory_slot *new,
13083 				     enum kvm_mr_change change)
13084 {
13085 	u32 old_flags = old ? old->flags : 0;
13086 	u32 new_flags = new ? new->flags : 0;
13087 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13088 
13089 	/*
13090 	 * Update CPU dirty logging if dirty logging is being toggled.  This
13091 	 * applies to all operations.
13092 	 */
13093 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13094 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13095 
13096 	/*
13097 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
13098 	 * made writable) or CREATE/MOVE/DELETE of a slot.
13099 	 *
13100 	 * For a memslot with dirty logging disabled:
13101 	 * CREATE:      No dirty mappings will already exist.
13102 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
13103 	 *		kvm_arch_flush_shadow_memslot()
13104 	 *
13105 	 * For a memslot with dirty logging enabled:
13106 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
13107 	 *		and no dirty bits to clear.
13108 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
13109 	 *		kvm_arch_flush_shadow_memslot().
13110 	 */
13111 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13112 		return;
13113 
13114 	/*
13115 	 * READONLY and non-flags changes were filtered out above, and the only
13116 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13117 	 * logging isn't being toggled on or off.
13118 	 */
13119 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13120 		return;
13121 
13122 	if (!log_dirty_pages) {
13123 		/*
13124 		 * Recover huge page mappings in the slot now that dirty logging
13125 		 * is disabled, i.e. now that KVM does not have to track guest
13126 		 * writes at 4KiB granularity.
13127 		 *
13128 		 * Dirty logging might be disabled by userspace if an ongoing VM
13129 		 * live migration is cancelled and the VM must continue running
13130 		 * on the source.
13131 		 */
13132 		kvm_mmu_recover_huge_pages(kvm, new);
13133 	} else {
13134 		/*
13135 		 * Initially-all-set does not require write protecting any page,
13136 		 * because they're all assumed to be dirty.
13137 		 */
13138 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13139 			return;
13140 
13141 		if (READ_ONCE(eager_page_split))
13142 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13143 
13144 		if (kvm_x86_ops.cpu_dirty_log_size) {
13145 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13146 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13147 		} else {
13148 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13149 		}
13150 
13151 		/*
13152 		 * Unconditionally flush the TLBs after enabling dirty logging.
13153 		 * A flush is almost always going to be necessary (see below),
13154 		 * and unconditionally flushing allows the helpers to omit
13155 		 * the subtly complex checks when removing write access.
13156 		 *
13157 		 * Do the flush outside of mmu_lock to reduce the amount of
13158 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
13159 		 * safe as KVM only needs to guarantee the slot is fully
13160 		 * write-protected before returning to userspace, i.e. before
13161 		 * userspace can consume the dirty status.
13162 		 *
13163 		 * Flushing outside of mmu_lock requires KVM to be careful when
13164 		 * making decisions based on writable status of an SPTE, e.g. a
13165 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13166 		 *
13167 		 * Specifically, KVM also write-protects guest page tables to
13168 		 * monitor changes when using shadow paging, and must guarantee
13169 		 * no CPUs can write to those page before mmu_lock is dropped.
13170 		 * Because CPUs may have stale TLB entries at this point, a
13171 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13172 		 *
13173 		 * KVM also allows making SPTES writable outside of mmu_lock,
13174 		 * e.g. to allow dirty logging without taking mmu_lock.
13175 		 *
13176 		 * To handle these scenarios, KVM uses a separate software-only
13177 		 * bit (MMU-writable) to track if a SPTE is !writable due to
13178 		 * a guest page table being write-protected (KVM clears the
13179 		 * MMU-writable flag when write-protecting for shadow paging).
13180 		 *
13181 		 * The use of MMU-writable is also the primary motivation for
13182 		 * the unconditional flush.  Because KVM must guarantee that a
13183 		 * CPU doesn't contain stale, writable TLB entries for a
13184 		 * !MMU-writable SPTE, KVM must flush if it encounters any
13185 		 * MMU-writable SPTE regardless of whether the actual hardware
13186 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
13187 		 * to flush, while unconditionally flushing allows the "remove
13188 		 * write access" helpers to ignore MMU-writable entirely.
13189 		 *
13190 		 * See is_writable_pte() for more details (the case involving
13191 		 * access-tracked SPTEs is particularly relevant).
13192 		 */
13193 		kvm_flush_remote_tlbs_memslot(kvm, new);
13194 	}
13195 }
13196 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13197 void kvm_arch_commit_memory_region(struct kvm *kvm,
13198 				struct kvm_memory_slot *old,
13199 				const struct kvm_memory_slot *new,
13200 				enum kvm_mr_change change)
13201 {
13202 	if (change == KVM_MR_DELETE)
13203 		kvm_page_track_delete_slot(kvm, old);
13204 
13205 	if (!kvm->arch.n_requested_mmu_pages &&
13206 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13207 		unsigned long nr_mmu_pages;
13208 
13209 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13210 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13211 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13212 	}
13213 
13214 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
13215 
13216 	/* Free the arrays associated with the old memslot. */
13217 	if (change == KVM_MR_MOVE)
13218 		kvm_arch_free_memslot(kvm, old);
13219 }
13220 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13221 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13222 {
13223 	WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13224 
13225 	if (vcpu->arch.guest_state_protected)
13226 		return true;
13227 
13228 	return kvm_x86_call(get_cpl)(vcpu) == 0;
13229 }
13230 
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13231 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13232 {
13233 	WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13234 
13235 	if (vcpu->arch.guest_state_protected)
13236 		return 0;
13237 
13238 	return kvm_rip_read(vcpu);
13239 }
13240 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13241 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13242 {
13243 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13244 }
13245 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13246 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13247 {
13248 	return kvm_x86_call(interrupt_allowed)(vcpu, false);
13249 }
13250 
kvm_get_linear_rip(struct kvm_vcpu * vcpu)13251 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13252 {
13253 	/* Can't read the RIP when guest state is protected, just return 0 */
13254 	if (vcpu->arch.guest_state_protected)
13255 		return 0;
13256 
13257 	if (is_64_bit_mode(vcpu))
13258 		return kvm_rip_read(vcpu);
13259 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13260 		     kvm_rip_read(vcpu));
13261 }
13262 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13263 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13264 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13265 {
13266 	return kvm_get_linear_rip(vcpu) == linear_rip;
13267 }
13268 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13269 
kvm_get_rflags(struct kvm_vcpu * vcpu)13270 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13271 {
13272 	unsigned long rflags;
13273 
13274 	rflags = kvm_x86_call(get_rflags)(vcpu);
13275 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13276 		rflags &= ~X86_EFLAGS_TF;
13277 	return rflags;
13278 }
13279 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13280 
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13281 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13282 {
13283 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13284 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13285 		rflags |= X86_EFLAGS_TF;
13286 	kvm_x86_call(set_rflags)(vcpu, rflags);
13287 }
13288 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13289 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13290 {
13291 	__kvm_set_rflags(vcpu, rflags);
13292 	kvm_make_request(KVM_REQ_EVENT, vcpu);
13293 }
13294 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13295 
kvm_async_pf_hash_fn(gfn_t gfn)13296 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13297 {
13298 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13299 
13300 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13301 }
13302 
kvm_async_pf_next_probe(u32 key)13303 static inline u32 kvm_async_pf_next_probe(u32 key)
13304 {
13305 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13306 }
13307 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13308 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13309 {
13310 	u32 key = kvm_async_pf_hash_fn(gfn);
13311 
13312 	while (vcpu->arch.apf.gfns[key] != ~0)
13313 		key = kvm_async_pf_next_probe(key);
13314 
13315 	vcpu->arch.apf.gfns[key] = gfn;
13316 }
13317 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13318 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13319 {
13320 	int i;
13321 	u32 key = kvm_async_pf_hash_fn(gfn);
13322 
13323 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13324 		     (vcpu->arch.apf.gfns[key] != gfn &&
13325 		      vcpu->arch.apf.gfns[key] != ~0); i++)
13326 		key = kvm_async_pf_next_probe(key);
13327 
13328 	return key;
13329 }
13330 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13331 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13332 {
13333 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13334 }
13335 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13336 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13337 {
13338 	u32 i, j, k;
13339 
13340 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13341 
13342 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13343 		return;
13344 
13345 	while (true) {
13346 		vcpu->arch.apf.gfns[i] = ~0;
13347 		do {
13348 			j = kvm_async_pf_next_probe(j);
13349 			if (vcpu->arch.apf.gfns[j] == ~0)
13350 				return;
13351 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13352 			/*
13353 			 * k lies cyclically in ]i,j]
13354 			 * |    i.k.j |
13355 			 * |....j i.k.| or  |.k..j i...|
13356 			 */
13357 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13358 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13359 		i = j;
13360 	}
13361 }
13362 
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13363 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13364 {
13365 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13366 
13367 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13368 				      sizeof(reason));
13369 }
13370 
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13371 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13372 {
13373 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13374 
13375 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13376 					     &token, offset, sizeof(token));
13377 }
13378 
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13379 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13380 {
13381 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13382 	u32 val;
13383 
13384 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13385 					 &val, offset, sizeof(val)))
13386 		return false;
13387 
13388 	return !val;
13389 }
13390 
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13391 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13392 {
13393 
13394 	if (!kvm_pv_async_pf_enabled(vcpu))
13395 		return false;
13396 
13397 	if (vcpu->arch.apf.send_user_only &&
13398 	    kvm_x86_call(get_cpl)(vcpu) == 0)
13399 		return false;
13400 
13401 	if (is_guest_mode(vcpu)) {
13402 		/*
13403 		 * L1 needs to opt into the special #PF vmexits that are
13404 		 * used to deliver async page faults.
13405 		 */
13406 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13407 	} else {
13408 		/*
13409 		 * Play it safe in case the guest temporarily disables paging.
13410 		 * The real mode IDT in particular is unlikely to have a #PF
13411 		 * exception setup.
13412 		 */
13413 		return is_paging(vcpu);
13414 	}
13415 }
13416 
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13417 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13418 {
13419 	if (unlikely(!lapic_in_kernel(vcpu) ||
13420 		     kvm_event_needs_reinjection(vcpu) ||
13421 		     kvm_is_exception_pending(vcpu)))
13422 		return false;
13423 
13424 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13425 		return false;
13426 
13427 	/*
13428 	 * If interrupts are off we cannot even use an artificial
13429 	 * halt state.
13430 	 */
13431 	return kvm_arch_interrupt_allowed(vcpu);
13432 }
13433 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13434 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13435 				     struct kvm_async_pf *work)
13436 {
13437 	struct x86_exception fault;
13438 
13439 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13440 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13441 
13442 	if (kvm_can_deliver_async_pf(vcpu) &&
13443 	    !apf_put_user_notpresent(vcpu)) {
13444 		fault.vector = PF_VECTOR;
13445 		fault.error_code_valid = true;
13446 		fault.error_code = 0;
13447 		fault.nested_page_fault = false;
13448 		fault.address = work->arch.token;
13449 		fault.async_page_fault = true;
13450 		kvm_inject_page_fault(vcpu, &fault);
13451 		return true;
13452 	} else {
13453 		/*
13454 		 * It is not possible to deliver a paravirtualized asynchronous
13455 		 * page fault, but putting the guest in an artificial halt state
13456 		 * can be beneficial nevertheless: if an interrupt arrives, we
13457 		 * can deliver it timely and perhaps the guest will schedule
13458 		 * another process.  When the instruction that triggered a page
13459 		 * fault is retried, hopefully the page will be ready in the host.
13460 		 */
13461 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13462 		return false;
13463 	}
13464 }
13465 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13466 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13467 				 struct kvm_async_pf *work)
13468 {
13469 	struct kvm_lapic_irq irq = {
13470 		.delivery_mode = APIC_DM_FIXED,
13471 		.vector = vcpu->arch.apf.vec
13472 	};
13473 
13474 	if (work->wakeup_all)
13475 		work->arch.token = ~0; /* broadcast wakeup */
13476 	else
13477 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13478 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13479 
13480 	if ((work->wakeup_all || work->notpresent_injected) &&
13481 	    kvm_pv_async_pf_enabled(vcpu) &&
13482 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13483 		vcpu->arch.apf.pageready_pending = true;
13484 		kvm_apic_set_irq(vcpu, &irq, NULL);
13485 	}
13486 
13487 	vcpu->arch.apf.halted = false;
13488 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13489 }
13490 
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13491 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13492 {
13493 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13494 	if (!vcpu->arch.apf.pageready_pending)
13495 		kvm_vcpu_kick(vcpu);
13496 }
13497 
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13498 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13499 {
13500 	if (!kvm_pv_async_pf_enabled(vcpu))
13501 		return true;
13502 	else
13503 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13504 }
13505 
kvm_arch_start_assignment(struct kvm * kvm)13506 void kvm_arch_start_assignment(struct kvm *kvm)
13507 {
13508 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13509 		kvm_x86_call(pi_start_assignment)(kvm);
13510 }
13511 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13512 
kvm_arch_end_assignment(struct kvm * kvm)13513 void kvm_arch_end_assignment(struct kvm *kvm)
13514 {
13515 	atomic_dec(&kvm->arch.assigned_device_count);
13516 }
13517 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13518 
kvm_arch_has_assigned_device(struct kvm * kvm)13519 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13520 {
13521 	return raw_atomic_read(&kvm->arch.assigned_device_count);
13522 }
13523 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13524 
kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13525 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13526 {
13527 	/*
13528 	 * Non-coherent DMA assignment and de-assignment may affect whether or
13529 	 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13530 	 * due to toggling the "ignore PAT" bit.  Zap all SPTEs when the first
13531 	 * (or last) non-coherent device is (un)registered to so that new SPTEs
13532 	 * with the correct "ignore guest PAT" setting are created.
13533 	 */
13534 	if (kvm_mmu_may_ignore_guest_pat())
13535 		kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13536 }
13537 
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13538 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13539 {
13540 	if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13541 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13542 }
13543 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13544 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13545 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13546 {
13547 	if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13548 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13549 }
13550 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13551 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13552 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13553 {
13554 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13555 }
13556 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13557 
kvm_arch_has_irq_bypass(void)13558 bool kvm_arch_has_irq_bypass(void)
13559 {
13560 	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13561 }
13562 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13563 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13564 				      struct irq_bypass_producer *prod)
13565 {
13566 	struct kvm_kernel_irqfd *irqfd =
13567 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13568 	int ret;
13569 
13570 	irqfd->producer = prod;
13571 	kvm_arch_start_assignment(irqfd->kvm);
13572 	ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13573 					   prod->irq, irqfd->gsi, 1);
13574 	if (ret)
13575 		kvm_arch_end_assignment(irqfd->kvm);
13576 
13577 	return ret;
13578 }
13579 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13580 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13581 				      struct irq_bypass_producer *prod)
13582 {
13583 	int ret;
13584 	struct kvm_kernel_irqfd *irqfd =
13585 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13586 
13587 	WARN_ON(irqfd->producer != prod);
13588 	irqfd->producer = NULL;
13589 
13590 	/*
13591 	 * When producer of consumer is unregistered, we change back to
13592 	 * remapped mode, so we can re-use the current implementation
13593 	 * when the irq is masked/disabled or the consumer side (KVM
13594 	 * int this case doesn't want to receive the interrupts.
13595 	*/
13596 	ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13597 					   prod->irq, irqfd->gsi, 0);
13598 	if (ret)
13599 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13600 		       " fails: %d\n", irqfd->consumer.token, ret);
13601 
13602 	kvm_arch_end_assignment(irqfd->kvm);
13603 }
13604 
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13605 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13606 				   uint32_t guest_irq, bool set)
13607 {
13608 	return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set);
13609 }
13610 
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13611 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13612 				  struct kvm_kernel_irq_routing_entry *new)
13613 {
13614 	if (new->type != KVM_IRQ_ROUTING_MSI)
13615 		return true;
13616 
13617 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13618 }
13619 
kvm_vector_hashing_enabled(void)13620 bool kvm_vector_hashing_enabled(void)
13621 {
13622 	return vector_hashing;
13623 }
13624 
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13625 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13626 {
13627 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13628 }
13629 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13630 
13631 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)13632 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13633 {
13634 	return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13635 }
13636 #endif
13637 
13638 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)13639 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13640 {
13641 	kvm_x86_call(gmem_invalidate)(start, end);
13642 }
13643 #endif
13644 
kvm_spec_ctrl_test_value(u64 value)13645 int kvm_spec_ctrl_test_value(u64 value)
13646 {
13647 	/*
13648 	 * test that setting IA32_SPEC_CTRL to given value
13649 	 * is allowed by the host processor
13650 	 */
13651 
13652 	u64 saved_value;
13653 	unsigned long flags;
13654 	int ret = 0;
13655 
13656 	local_irq_save(flags);
13657 
13658 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13659 		ret = 1;
13660 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13661 		ret = 1;
13662 	else
13663 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13664 
13665 	local_irq_restore(flags);
13666 
13667 	return ret;
13668 }
13669 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13670 
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13671 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13672 {
13673 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13674 	struct x86_exception fault;
13675 	u64 access = error_code &
13676 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13677 
13678 	if (!(error_code & PFERR_PRESENT_MASK) ||
13679 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13680 		/*
13681 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13682 		 * tables probably do not match the TLB.  Just proceed
13683 		 * with the error code that the processor gave.
13684 		 */
13685 		fault.vector = PF_VECTOR;
13686 		fault.error_code_valid = true;
13687 		fault.error_code = error_code;
13688 		fault.nested_page_fault = false;
13689 		fault.address = gva;
13690 		fault.async_page_fault = false;
13691 	}
13692 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13693 }
13694 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13695 
13696 /*
13697  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13698  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13699  * indicates whether exit to userspace is needed.
13700  */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13701 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13702 			      struct x86_exception *e)
13703 {
13704 	if (r == X86EMUL_PROPAGATE_FAULT) {
13705 		if (KVM_BUG_ON(!e, vcpu->kvm))
13706 			return -EIO;
13707 
13708 		kvm_inject_emulated_page_fault(vcpu, e);
13709 		return 1;
13710 	}
13711 
13712 	/*
13713 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13714 	 * while handling a VMX instruction KVM could've handled the request
13715 	 * correctly by exiting to userspace and performing I/O but there
13716 	 * doesn't seem to be a real use-case behind such requests, just return
13717 	 * KVM_EXIT_INTERNAL_ERROR for now.
13718 	 */
13719 	kvm_prepare_emulation_failure_exit(vcpu);
13720 
13721 	return 0;
13722 }
13723 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13724 
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13725 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13726 {
13727 	bool pcid_enabled;
13728 	struct x86_exception e;
13729 	struct {
13730 		u64 pcid;
13731 		u64 gla;
13732 	} operand;
13733 	int r;
13734 
13735 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13736 	if (r != X86EMUL_CONTINUE)
13737 		return kvm_handle_memory_failure(vcpu, r, &e);
13738 
13739 	if (operand.pcid >> 12 != 0) {
13740 		kvm_inject_gp(vcpu, 0);
13741 		return 1;
13742 	}
13743 
13744 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13745 
13746 	switch (type) {
13747 	case INVPCID_TYPE_INDIV_ADDR:
13748 		/*
13749 		 * LAM doesn't apply to addresses that are inputs to TLB
13750 		 * invalidation.
13751 		 */
13752 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13753 		    is_noncanonical_invlpg_address(operand.gla, vcpu)) {
13754 			kvm_inject_gp(vcpu, 0);
13755 			return 1;
13756 		}
13757 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13758 		return kvm_skip_emulated_instruction(vcpu);
13759 
13760 	case INVPCID_TYPE_SINGLE_CTXT:
13761 		if (!pcid_enabled && (operand.pcid != 0)) {
13762 			kvm_inject_gp(vcpu, 0);
13763 			return 1;
13764 		}
13765 
13766 		kvm_invalidate_pcid(vcpu, operand.pcid);
13767 		return kvm_skip_emulated_instruction(vcpu);
13768 
13769 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13770 		/*
13771 		 * Currently, KVM doesn't mark global entries in the shadow
13772 		 * page tables, so a non-global flush just degenerates to a
13773 		 * global flush. If needed, we could optimize this later by
13774 		 * keeping track of global entries in shadow page tables.
13775 		 */
13776 
13777 		fallthrough;
13778 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13779 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13780 		return kvm_skip_emulated_instruction(vcpu);
13781 
13782 	default:
13783 		kvm_inject_gp(vcpu, 0);
13784 		return 1;
13785 	}
13786 }
13787 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13788 
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13789 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13790 {
13791 	struct kvm_run *run = vcpu->run;
13792 	struct kvm_mmio_fragment *frag;
13793 	unsigned int len;
13794 
13795 	BUG_ON(!vcpu->mmio_needed);
13796 
13797 	/* Complete previous fragment */
13798 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13799 	len = min(8u, frag->len);
13800 	if (!vcpu->mmio_is_write)
13801 		memcpy(frag->data, run->mmio.data, len);
13802 
13803 	if (frag->len <= 8) {
13804 		/* Switch to the next fragment. */
13805 		frag++;
13806 		vcpu->mmio_cur_fragment++;
13807 	} else {
13808 		/* Go forward to the next mmio piece. */
13809 		frag->data += len;
13810 		frag->gpa += len;
13811 		frag->len -= len;
13812 	}
13813 
13814 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13815 		vcpu->mmio_needed = 0;
13816 
13817 		// VMG change, at this point, we're always done
13818 		// RIP has already been advanced
13819 		return 1;
13820 	}
13821 
13822 	// More MMIO is needed
13823 	run->mmio.phys_addr = frag->gpa;
13824 	run->mmio.len = min(8u, frag->len);
13825 	run->mmio.is_write = vcpu->mmio_is_write;
13826 	if (run->mmio.is_write)
13827 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13828 	run->exit_reason = KVM_EXIT_MMIO;
13829 
13830 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13831 
13832 	return 0;
13833 }
13834 
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13835 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13836 			  void *data)
13837 {
13838 	int handled;
13839 	struct kvm_mmio_fragment *frag;
13840 
13841 	if (!data)
13842 		return -EINVAL;
13843 
13844 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13845 	if (handled == bytes)
13846 		return 1;
13847 
13848 	bytes -= handled;
13849 	gpa += handled;
13850 	data += handled;
13851 
13852 	/*TODO: Check if need to increment number of frags */
13853 	frag = vcpu->mmio_fragments;
13854 	vcpu->mmio_nr_fragments = 1;
13855 	frag->len = bytes;
13856 	frag->gpa = gpa;
13857 	frag->data = data;
13858 
13859 	vcpu->mmio_needed = 1;
13860 	vcpu->mmio_cur_fragment = 0;
13861 
13862 	vcpu->run->mmio.phys_addr = gpa;
13863 	vcpu->run->mmio.len = min(8u, frag->len);
13864 	vcpu->run->mmio.is_write = 1;
13865 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13866 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13867 
13868 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13869 
13870 	return 0;
13871 }
13872 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13873 
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13874 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13875 			 void *data)
13876 {
13877 	int handled;
13878 	struct kvm_mmio_fragment *frag;
13879 
13880 	if (!data)
13881 		return -EINVAL;
13882 
13883 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13884 	if (handled == bytes)
13885 		return 1;
13886 
13887 	bytes -= handled;
13888 	gpa += handled;
13889 	data += handled;
13890 
13891 	/*TODO: Check if need to increment number of frags */
13892 	frag = vcpu->mmio_fragments;
13893 	vcpu->mmio_nr_fragments = 1;
13894 	frag->len = bytes;
13895 	frag->gpa = gpa;
13896 	frag->data = data;
13897 
13898 	vcpu->mmio_needed = 1;
13899 	vcpu->mmio_cur_fragment = 0;
13900 
13901 	vcpu->run->mmio.phys_addr = gpa;
13902 	vcpu->run->mmio.len = min(8u, frag->len);
13903 	vcpu->run->mmio.is_write = 0;
13904 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13905 
13906 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13907 
13908 	return 0;
13909 }
13910 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13911 
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13912 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13913 {
13914 	vcpu->arch.sev_pio_count -= count;
13915 	vcpu->arch.sev_pio_data += count * size;
13916 }
13917 
13918 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13919 			   unsigned int port);
13920 
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13921 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13922 {
13923 	int size = vcpu->arch.pio.size;
13924 	int port = vcpu->arch.pio.port;
13925 
13926 	vcpu->arch.pio.count = 0;
13927 	if (vcpu->arch.sev_pio_count)
13928 		return kvm_sev_es_outs(vcpu, size, port);
13929 	return 1;
13930 }
13931 
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13932 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13933 			   unsigned int port)
13934 {
13935 	for (;;) {
13936 		unsigned int count =
13937 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13938 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13939 
13940 		/* memcpy done already by emulator_pio_out.  */
13941 		advance_sev_es_emulated_pio(vcpu, count, size);
13942 		if (!ret)
13943 			break;
13944 
13945 		/* Emulation done by the kernel.  */
13946 		if (!vcpu->arch.sev_pio_count)
13947 			return 1;
13948 	}
13949 
13950 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13951 	return 0;
13952 }
13953 
13954 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13955 			  unsigned int port);
13956 
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13957 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13958 {
13959 	unsigned count = vcpu->arch.pio.count;
13960 	int size = vcpu->arch.pio.size;
13961 	int port = vcpu->arch.pio.port;
13962 
13963 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13964 	advance_sev_es_emulated_pio(vcpu, count, size);
13965 	if (vcpu->arch.sev_pio_count)
13966 		return kvm_sev_es_ins(vcpu, size, port);
13967 	return 1;
13968 }
13969 
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13970 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13971 			  unsigned int port)
13972 {
13973 	for (;;) {
13974 		unsigned int count =
13975 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13976 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13977 			break;
13978 
13979 		/* Emulation done by the kernel.  */
13980 		advance_sev_es_emulated_pio(vcpu, count, size);
13981 		if (!vcpu->arch.sev_pio_count)
13982 			return 1;
13983 	}
13984 
13985 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13986 	return 0;
13987 }
13988 
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)13989 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13990 			 unsigned int port, void *data,  unsigned int count,
13991 			 int in)
13992 {
13993 	vcpu->arch.sev_pio_data = data;
13994 	vcpu->arch.sev_pio_count = count;
13995 	return in ? kvm_sev_es_ins(vcpu, size, port)
13996 		  : kvm_sev_es_outs(vcpu, size, port);
13997 }
13998 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13999 
14000 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
14001 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
14002 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
14003 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
14004 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
14005 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
14006 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
14007 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
14008 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
14009 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
14010 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14011 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14012 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14013 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14014 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14015 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14016 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14017 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14018 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
14019 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14020 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14021 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14022 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14023 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14024 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14025 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14026 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14027 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14028 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14029 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14030 
kvm_x86_init(void)14031 static int __init kvm_x86_init(void)
14032 {
14033 	kvm_init_xstate_sizes();
14034 
14035 	kvm_mmu_x86_module_init();
14036 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14037 	return 0;
14038 }
14039 module_init(kvm_x86_init);
14040 
kvm_x86_exit(void)14041 static void __exit kvm_x86_exit(void)
14042 {
14043 	WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14044 }
14045 module_exit(kvm_x86_exit);
14046