1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <[email protected]>
14 * Yaniv Kamay <[email protected]>
15 * Amit Shah <[email protected]>
16 * Ben-Ami Yassour <[email protected]>
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94
95 /*
96 * Note, kvm_caps fields should *never* have default values, all fields must be
97 * recomputed from scratch during vendor module load, e.g. to account for a
98 * vendor module being reloaded with different module parameters.
99 */
100 struct kvm_caps kvm_caps __read_mostly;
101 EXPORT_SYMBOL_GPL(kvm_caps);
102
103 struct kvm_host_values kvm_host __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_host);
105
106 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
107
108 #define emul_to_vcpu(ctxt) \
109 ((struct kvm_vcpu *)(ctxt)->vcpu)
110
111 /* EFER defaults:
112 * - enable syscall per default because its emulated by KVM
113 * - enable LME and LMA per default on 64 bit KVM
114 */
115 #ifdef CONFIG_X86_64
116 static
117 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
118 #else
119 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
120 #endif
121
122 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
123
124 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
125
126 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
127 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
128
129 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
130 static void process_nmi(struct kvm_vcpu *vcpu);
131 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
132 static void store_regs(struct kvm_vcpu *vcpu);
133 static int sync_regs(struct kvm_vcpu *vcpu);
134 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
135
136 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
137 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
138
139 static DEFINE_MUTEX(vendor_module_lock);
140 struct kvm_x86_ops kvm_x86_ops __read_mostly;
141
142 #define KVM_X86_OP(func) \
143 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
144 *(((struct kvm_x86_ops *)0)->func));
145 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
146 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
147 #include <asm/kvm-x86-ops.h>
148 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
149 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
150
151 static bool __read_mostly ignore_msrs = 0;
152 module_param(ignore_msrs, bool, 0644);
153
154 bool __read_mostly report_ignored_msrs = true;
155 module_param(report_ignored_msrs, bool, 0644);
156 EXPORT_SYMBOL_GPL(report_ignored_msrs);
157
158 unsigned int min_timer_period_us = 200;
159 module_param(min_timer_period_us, uint, 0644);
160
161 static bool __read_mostly kvmclock_periodic_sync = true;
162 module_param(kvmclock_periodic_sync, bool, 0444);
163
164 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
165 static u32 __read_mostly tsc_tolerance_ppm = 250;
166 module_param(tsc_tolerance_ppm, uint, 0644);
167
168 static bool __read_mostly vector_hashing = true;
169 module_param(vector_hashing, bool, 0444);
170
171 bool __read_mostly enable_vmware_backdoor = false;
172 module_param(enable_vmware_backdoor, bool, 0444);
173 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
174
175 /*
176 * Flags to manipulate forced emulation behavior (any non-zero value will
177 * enable forced emulation).
178 */
179 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
180 static int __read_mostly force_emulation_prefix;
181 module_param(force_emulation_prefix, int, 0644);
182
183 int __read_mostly pi_inject_timer = -1;
184 module_param(pi_inject_timer, bint, 0644);
185
186 /* Enable/disable PMU virtualization */
187 bool __read_mostly enable_pmu = true;
188 EXPORT_SYMBOL_GPL(enable_pmu);
189 module_param(enable_pmu, bool, 0444);
190
191 bool __read_mostly eager_page_split = true;
192 module_param(eager_page_split, bool, 0644);
193
194 /* Enable/disable SMT_RSB bug mitigation */
195 static bool __read_mostly mitigate_smt_rsb;
196 module_param(mitigate_smt_rsb, bool, 0444);
197
198 /*
199 * Restoring the host value for MSRs that are only consumed when running in
200 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
201 * returns to userspace, i.e. the kernel can run with the guest's value.
202 */
203 #define KVM_MAX_NR_USER_RETURN_MSRS 16
204
205 struct kvm_user_return_msrs {
206 struct user_return_notifier urn;
207 bool registered;
208 struct kvm_user_return_msr_values {
209 u64 host;
210 u64 curr;
211 } values[KVM_MAX_NR_USER_RETURN_MSRS];
212 };
213
214 u32 __read_mostly kvm_nr_uret_msrs;
215 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
216 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
217 static struct kvm_user_return_msrs __percpu *user_return_msrs;
218
219 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
220 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
221 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
222 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
223
224 bool __read_mostly allow_smaller_maxphyaddr = 0;
225 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
226
227 bool __read_mostly enable_apicv = true;
228 EXPORT_SYMBOL_GPL(enable_apicv);
229
230 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
231 KVM_GENERIC_VM_STATS(),
232 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
233 STATS_DESC_COUNTER(VM, mmu_pte_write),
234 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
235 STATS_DESC_COUNTER(VM, mmu_flooded),
236 STATS_DESC_COUNTER(VM, mmu_recycled),
237 STATS_DESC_COUNTER(VM, mmu_cache_miss),
238 STATS_DESC_ICOUNTER(VM, mmu_unsync),
239 STATS_DESC_ICOUNTER(VM, pages_4k),
240 STATS_DESC_ICOUNTER(VM, pages_2m),
241 STATS_DESC_ICOUNTER(VM, pages_1g),
242 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
243 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
244 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
245 };
246
247 const struct kvm_stats_header kvm_vm_stats_header = {
248 .name_size = KVM_STATS_NAME_SIZE,
249 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
250 .id_offset = sizeof(struct kvm_stats_header),
251 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
252 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
253 sizeof(kvm_vm_stats_desc),
254 };
255
256 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
257 KVM_GENERIC_VCPU_STATS(),
258 STATS_DESC_COUNTER(VCPU, pf_taken),
259 STATS_DESC_COUNTER(VCPU, pf_fixed),
260 STATS_DESC_COUNTER(VCPU, pf_emulate),
261 STATS_DESC_COUNTER(VCPU, pf_spurious),
262 STATS_DESC_COUNTER(VCPU, pf_fast),
263 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
264 STATS_DESC_COUNTER(VCPU, pf_guest),
265 STATS_DESC_COUNTER(VCPU, tlb_flush),
266 STATS_DESC_COUNTER(VCPU, invlpg),
267 STATS_DESC_COUNTER(VCPU, exits),
268 STATS_DESC_COUNTER(VCPU, io_exits),
269 STATS_DESC_COUNTER(VCPU, mmio_exits),
270 STATS_DESC_COUNTER(VCPU, signal_exits),
271 STATS_DESC_COUNTER(VCPU, irq_window_exits),
272 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
273 STATS_DESC_COUNTER(VCPU, l1d_flush),
274 STATS_DESC_COUNTER(VCPU, halt_exits),
275 STATS_DESC_COUNTER(VCPU, request_irq_exits),
276 STATS_DESC_COUNTER(VCPU, irq_exits),
277 STATS_DESC_COUNTER(VCPU, host_state_reload),
278 STATS_DESC_COUNTER(VCPU, fpu_reload),
279 STATS_DESC_COUNTER(VCPU, insn_emulation),
280 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
281 STATS_DESC_COUNTER(VCPU, hypercalls),
282 STATS_DESC_COUNTER(VCPU, irq_injections),
283 STATS_DESC_COUNTER(VCPU, nmi_injections),
284 STATS_DESC_COUNTER(VCPU, req_event),
285 STATS_DESC_COUNTER(VCPU, nested_run),
286 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
287 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
288 STATS_DESC_COUNTER(VCPU, preemption_reported),
289 STATS_DESC_COUNTER(VCPU, preemption_other),
290 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
291 STATS_DESC_COUNTER(VCPU, notify_window_exits),
292 };
293
294 const struct kvm_stats_header kvm_vcpu_stats_header = {
295 .name_size = KVM_STATS_NAME_SIZE,
296 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
297 .id_offset = sizeof(struct kvm_stats_header),
298 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
299 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
300 sizeof(kvm_vcpu_stats_desc),
301 };
302
303 static struct kmem_cache *x86_emulator_cache;
304
305 /*
306 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
307 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
308 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
309 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
310 * MSRs that KVM emulates without strictly requiring host support.
311 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
312 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
313 * msrs_to_save and emulated_msrs.
314 */
315
316 static const u32 msrs_to_save_base[] = {
317 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
318 MSR_STAR,
319 #ifdef CONFIG_X86_64
320 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
321 #endif
322 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
323 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
324 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
325 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
326 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
327 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
328 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
329 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
330 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
331 MSR_IA32_UMWAIT_CONTROL,
332
333 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
334 };
335
336 static const u32 msrs_to_save_pmu[] = {
337 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
338 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
339 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
340 MSR_CORE_PERF_GLOBAL_CTRL,
341 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
342
343 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
344 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
345 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
346 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
347 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
348 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
349 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
350 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
351 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
352
353 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
354 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
355
356 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
357 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
358 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
359 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
360 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
361
362 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
363 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
364 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
365 };
366
367 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
368 ARRAY_SIZE(msrs_to_save_pmu)];
369 static unsigned num_msrs_to_save;
370
371 static const u32 emulated_msrs_all[] = {
372 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
373 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
374
375 #ifdef CONFIG_KVM_HYPERV
376 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
377 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
378 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
379 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
380 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
381 HV_X64_MSR_RESET,
382 HV_X64_MSR_VP_INDEX,
383 HV_X64_MSR_VP_RUNTIME,
384 HV_X64_MSR_SCONTROL,
385 HV_X64_MSR_STIMER0_CONFIG,
386 HV_X64_MSR_VP_ASSIST_PAGE,
387 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
388 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
389 HV_X64_MSR_SYNDBG_OPTIONS,
390 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
391 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
392 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
393 #endif
394
395 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
396 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
397
398 MSR_IA32_TSC_ADJUST,
399 MSR_IA32_TSC_DEADLINE,
400 MSR_IA32_ARCH_CAPABILITIES,
401 MSR_IA32_PERF_CAPABILITIES,
402 MSR_IA32_MISC_ENABLE,
403 MSR_IA32_MCG_STATUS,
404 MSR_IA32_MCG_CTL,
405 MSR_IA32_MCG_EXT_CTL,
406 MSR_IA32_SMBASE,
407 MSR_SMI_COUNT,
408 MSR_PLATFORM_INFO,
409 MSR_MISC_FEATURES_ENABLES,
410 MSR_AMD64_VIRT_SPEC_CTRL,
411 MSR_AMD64_TSC_RATIO,
412 MSR_IA32_POWER_CTL,
413 MSR_IA32_UCODE_REV,
414
415 /*
416 * KVM always supports the "true" VMX control MSRs, even if the host
417 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
418 * doesn't strictly require them to exist in the host (ignoring that
419 * KVM would refuse to load in the first place if the core set of MSRs
420 * aren't supported).
421 */
422 MSR_IA32_VMX_BASIC,
423 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
424 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
425 MSR_IA32_VMX_TRUE_EXIT_CTLS,
426 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
427 MSR_IA32_VMX_MISC,
428 MSR_IA32_VMX_CR0_FIXED0,
429 MSR_IA32_VMX_CR4_FIXED0,
430 MSR_IA32_VMX_VMCS_ENUM,
431 MSR_IA32_VMX_PROCBASED_CTLS2,
432 MSR_IA32_VMX_EPT_VPID_CAP,
433 MSR_IA32_VMX_VMFUNC,
434
435 MSR_K7_HWCR,
436 MSR_KVM_POLL_CONTROL,
437 };
438
439 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
440 static unsigned num_emulated_msrs;
441
442 /*
443 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
444 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
445 * feature MSRs, but are handled separately to allow expedited lookups.
446 */
447 static const u32 msr_based_features_all_except_vmx[] = {
448 MSR_AMD64_DE_CFG,
449 MSR_IA32_UCODE_REV,
450 MSR_IA32_ARCH_CAPABILITIES,
451 MSR_IA32_PERF_CAPABILITIES,
452 MSR_PLATFORM_INFO,
453 };
454
455 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
456 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
457 static unsigned int num_msr_based_features;
458
459 /*
460 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
461 * patch, are immutable once the vCPU model is defined.
462 */
kvm_is_immutable_feature_msr(u32 msr)463 static bool kvm_is_immutable_feature_msr(u32 msr)
464 {
465 int i;
466
467 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
468 return true;
469
470 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
471 if (msr == msr_based_features_all_except_vmx[i])
472 return msr != MSR_IA32_UCODE_REV;
473 }
474
475 return false;
476 }
477
kvm_is_advertised_msr(u32 msr_index)478 static bool kvm_is_advertised_msr(u32 msr_index)
479 {
480 unsigned int i;
481
482 for (i = 0; i < num_msrs_to_save; i++) {
483 if (msrs_to_save[i] == msr_index)
484 return true;
485 }
486
487 for (i = 0; i < num_emulated_msrs; i++) {
488 if (emulated_msrs[i] == msr_index)
489 return true;
490 }
491
492 return false;
493 }
494
495 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
496 bool host_initiated);
497
kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)498 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
499 u64 *data, bool host_initiated,
500 enum kvm_msr_access rw,
501 msr_access_t msr_access_fn)
502 {
503 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
504 int ret;
505
506 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
507
508 /*
509 * Zero the data on read failures to avoid leaking stack data to the
510 * guest and/or userspace, e.g. if the failure is ignored below.
511 */
512 ret = msr_access_fn(vcpu, msr, data, host_initiated);
513 if (ret && rw == MSR_TYPE_R)
514 *data = 0;
515
516 if (ret != KVM_MSR_RET_UNSUPPORTED)
517 return ret;
518
519 /*
520 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
521 * advertises to userspace, even if an MSR isn't fully supported.
522 * Simply check that @data is '0', which covers both the write '0' case
523 * and all reads (in which case @data is zeroed on failure; see above).
524 */
525 if (host_initiated && !*data && kvm_is_advertised_msr(msr))
526 return 0;
527
528 if (!ignore_msrs) {
529 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
530 op, msr, *data);
531 return ret;
532 }
533
534 if (report_ignored_msrs)
535 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
536
537 return 0;
538 }
539
kvm_alloc_emulator_cache(void)540 static struct kmem_cache *kvm_alloc_emulator_cache(void)
541 {
542 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
543 unsigned int size = sizeof(struct x86_emulate_ctxt);
544
545 return kmem_cache_create_usercopy("x86_emulator", size,
546 __alignof__(struct x86_emulate_ctxt),
547 SLAB_ACCOUNT, useroffset,
548 size - useroffset, NULL);
549 }
550
551 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
552
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)553 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
554 {
555 int i;
556 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
557 vcpu->arch.apf.gfns[i] = ~0;
558 }
559
kvm_on_user_return(struct user_return_notifier * urn)560 static void kvm_on_user_return(struct user_return_notifier *urn)
561 {
562 unsigned slot;
563 struct kvm_user_return_msrs *msrs
564 = container_of(urn, struct kvm_user_return_msrs, urn);
565 struct kvm_user_return_msr_values *values;
566 unsigned long flags;
567
568 /*
569 * Disabling irqs at this point since the following code could be
570 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
571 */
572 local_irq_save(flags);
573 if (msrs->registered) {
574 msrs->registered = false;
575 user_return_notifier_unregister(urn);
576 }
577 local_irq_restore(flags);
578 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
579 values = &msrs->values[slot];
580 if (values->host != values->curr) {
581 wrmsrl(kvm_uret_msrs_list[slot], values->host);
582 values->curr = values->host;
583 }
584 }
585 }
586
kvm_probe_user_return_msr(u32 msr)587 static int kvm_probe_user_return_msr(u32 msr)
588 {
589 u64 val;
590 int ret;
591
592 preempt_disable();
593 ret = rdmsrl_safe(msr, &val);
594 if (ret)
595 goto out;
596 ret = wrmsrl_safe(msr, val);
597 out:
598 preempt_enable();
599 return ret;
600 }
601
kvm_add_user_return_msr(u32 msr)602 int kvm_add_user_return_msr(u32 msr)
603 {
604 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
605
606 if (kvm_probe_user_return_msr(msr))
607 return -1;
608
609 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
610 return kvm_nr_uret_msrs++;
611 }
612 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
613
kvm_find_user_return_msr(u32 msr)614 int kvm_find_user_return_msr(u32 msr)
615 {
616 int i;
617
618 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
619 if (kvm_uret_msrs_list[i] == msr)
620 return i;
621 }
622 return -1;
623 }
624 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
625
kvm_user_return_msr_cpu_online(void)626 static void kvm_user_return_msr_cpu_online(void)
627 {
628 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
629 u64 value;
630 int i;
631
632 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
633 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
634 msrs->values[i].host = value;
635 msrs->values[i].curr = value;
636 }
637 }
638
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)639 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
640 {
641 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
642 int err;
643
644 value = (value & mask) | (msrs->values[slot].host & ~mask);
645 if (value == msrs->values[slot].curr)
646 return 0;
647 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
648 if (err)
649 return 1;
650
651 msrs->values[slot].curr = value;
652 if (!msrs->registered) {
653 msrs->urn.on_user_return = kvm_on_user_return;
654 user_return_notifier_register(&msrs->urn);
655 msrs->registered = true;
656 }
657 return 0;
658 }
659 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
660
drop_user_return_notifiers(void)661 static void drop_user_return_notifiers(void)
662 {
663 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
664
665 if (msrs->registered)
666 kvm_on_user_return(&msrs->urn);
667 }
668
669 /*
670 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
671 *
672 * Hardware virtualization extension instructions may fault if a reboot turns
673 * off virtualization while processes are running. Usually after catching the
674 * fault we just panic; during reboot instead the instruction is ignored.
675 */
kvm_spurious_fault(void)676 noinstr void kvm_spurious_fault(void)
677 {
678 /* Fault while not rebooting. We want the trace. */
679 BUG_ON(!kvm_rebooting);
680 }
681 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
682
683 #define EXCPT_BENIGN 0
684 #define EXCPT_CONTRIBUTORY 1
685 #define EXCPT_PF 2
686
exception_class(int vector)687 static int exception_class(int vector)
688 {
689 switch (vector) {
690 case PF_VECTOR:
691 return EXCPT_PF;
692 case DE_VECTOR:
693 case TS_VECTOR:
694 case NP_VECTOR:
695 case SS_VECTOR:
696 case GP_VECTOR:
697 return EXCPT_CONTRIBUTORY;
698 default:
699 break;
700 }
701 return EXCPT_BENIGN;
702 }
703
704 #define EXCPT_FAULT 0
705 #define EXCPT_TRAP 1
706 #define EXCPT_ABORT 2
707 #define EXCPT_INTERRUPT 3
708 #define EXCPT_DB 4
709
exception_type(int vector)710 static int exception_type(int vector)
711 {
712 unsigned int mask;
713
714 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
715 return EXCPT_INTERRUPT;
716
717 mask = 1 << vector;
718
719 /*
720 * #DBs can be trap-like or fault-like, the caller must check other CPU
721 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
722 */
723 if (mask & (1 << DB_VECTOR))
724 return EXCPT_DB;
725
726 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
727 return EXCPT_TRAP;
728
729 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
730 return EXCPT_ABORT;
731
732 /* Reserved exceptions will result in fault */
733 return EXCPT_FAULT;
734 }
735
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)736 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
737 struct kvm_queued_exception *ex)
738 {
739 if (!ex->has_payload)
740 return;
741
742 switch (ex->vector) {
743 case DB_VECTOR:
744 /*
745 * "Certain debug exceptions may clear bit 0-3. The
746 * remaining contents of the DR6 register are never
747 * cleared by the processor".
748 */
749 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
750 /*
751 * In order to reflect the #DB exception payload in guest
752 * dr6, three components need to be considered: active low
753 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
754 * DR6_BS and DR6_BT)
755 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
756 * In the target guest dr6:
757 * FIXED_1 bits should always be set.
758 * Active low bits should be cleared if 1-setting in payload.
759 * Active high bits should be set if 1-setting in payload.
760 *
761 * Note, the payload is compatible with the pending debug
762 * exceptions/exit qualification under VMX, that active_low bits
763 * are active high in payload.
764 * So they need to be flipped for DR6.
765 */
766 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
767 vcpu->arch.dr6 |= ex->payload;
768 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
769
770 /*
771 * The #DB payload is defined as compatible with the 'pending
772 * debug exceptions' field under VMX, not DR6. While bit 12 is
773 * defined in the 'pending debug exceptions' field (enabled
774 * breakpoint), it is reserved and must be zero in DR6.
775 */
776 vcpu->arch.dr6 &= ~BIT(12);
777 break;
778 case PF_VECTOR:
779 vcpu->arch.cr2 = ex->payload;
780 break;
781 }
782
783 ex->has_payload = false;
784 ex->payload = 0;
785 }
786 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
787
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)788 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
789 bool has_error_code, u32 error_code,
790 bool has_payload, unsigned long payload)
791 {
792 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
793
794 ex->vector = vector;
795 ex->injected = false;
796 ex->pending = true;
797 ex->has_error_code = has_error_code;
798 ex->error_code = error_code;
799 ex->has_payload = has_payload;
800 ex->payload = payload;
801 }
802
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)803 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
804 unsigned nr, bool has_error, u32 error_code,
805 bool has_payload, unsigned long payload, bool reinject)
806 {
807 u32 prev_nr;
808 int class1, class2;
809
810 kvm_make_request(KVM_REQ_EVENT, vcpu);
811
812 /*
813 * If the exception is destined for L2 and isn't being reinjected,
814 * morph it to a VM-Exit if L1 wants to intercept the exception. A
815 * previously injected exception is not checked because it was checked
816 * when it was original queued, and re-checking is incorrect if _L1_
817 * injected the exception, in which case it's exempt from interception.
818 */
819 if (!reinject && is_guest_mode(vcpu) &&
820 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
821 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
822 has_payload, payload);
823 return;
824 }
825
826 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
827 queue:
828 if (reinject) {
829 /*
830 * On VM-Entry, an exception can be pending if and only
831 * if event injection was blocked by nested_run_pending.
832 * In that case, however, vcpu_enter_guest() requests an
833 * immediate exit, and the guest shouldn't proceed far
834 * enough to need reinjection.
835 */
836 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
837 vcpu->arch.exception.injected = true;
838 if (WARN_ON_ONCE(has_payload)) {
839 /*
840 * A reinjected event has already
841 * delivered its payload.
842 */
843 has_payload = false;
844 payload = 0;
845 }
846 } else {
847 vcpu->arch.exception.pending = true;
848 vcpu->arch.exception.injected = false;
849 }
850 vcpu->arch.exception.has_error_code = has_error;
851 vcpu->arch.exception.vector = nr;
852 vcpu->arch.exception.error_code = error_code;
853 vcpu->arch.exception.has_payload = has_payload;
854 vcpu->arch.exception.payload = payload;
855 if (!is_guest_mode(vcpu))
856 kvm_deliver_exception_payload(vcpu,
857 &vcpu->arch.exception);
858 return;
859 }
860
861 /* to check exception */
862 prev_nr = vcpu->arch.exception.vector;
863 if (prev_nr == DF_VECTOR) {
864 /* triple fault -> shutdown */
865 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
866 return;
867 }
868 class1 = exception_class(prev_nr);
869 class2 = exception_class(nr);
870 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
871 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
872 /*
873 * Synthesize #DF. Clear the previously injected or pending
874 * exception so as not to incorrectly trigger shutdown.
875 */
876 vcpu->arch.exception.injected = false;
877 vcpu->arch.exception.pending = false;
878
879 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
880 } else {
881 /* replace previous exception with a new one in a hope
882 that instruction re-execution will regenerate lost
883 exception */
884 goto queue;
885 }
886 }
887
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)888 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
889 {
890 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
891 }
892 EXPORT_SYMBOL_GPL(kvm_queue_exception);
893
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)894 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
895 {
896 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
897 }
898 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
899
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)900 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
901 unsigned long payload)
902 {
903 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
904 }
905 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
906
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)907 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
908 u32 error_code, unsigned long payload)
909 {
910 kvm_multiple_exception(vcpu, nr, true, error_code,
911 true, payload, false);
912 }
913
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)914 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
915 {
916 if (err)
917 kvm_inject_gp(vcpu, 0);
918 else
919 return kvm_skip_emulated_instruction(vcpu);
920
921 return 1;
922 }
923 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
924
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)925 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
926 {
927 if (err) {
928 kvm_inject_gp(vcpu, 0);
929 return 1;
930 }
931
932 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
933 EMULTYPE_COMPLETE_USER_EXIT);
934 }
935
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)936 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
937 {
938 ++vcpu->stat.pf_guest;
939
940 /*
941 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
942 * whether or not L1 wants to intercept "regular" #PF.
943 */
944 if (is_guest_mode(vcpu) && fault->async_page_fault)
945 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
946 true, fault->error_code,
947 true, fault->address);
948 else
949 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
950 fault->address);
951 }
952
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)953 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
954 struct x86_exception *fault)
955 {
956 struct kvm_mmu *fault_mmu;
957 WARN_ON_ONCE(fault->vector != PF_VECTOR);
958
959 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
960 vcpu->arch.walk_mmu;
961
962 /*
963 * Invalidate the TLB entry for the faulting address, if it exists,
964 * else the access will fault indefinitely (and to emulate hardware).
965 */
966 if ((fault->error_code & PFERR_PRESENT_MASK) &&
967 !(fault->error_code & PFERR_RSVD_MASK))
968 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
969 KVM_MMU_ROOT_CURRENT);
970
971 fault_mmu->inject_page_fault(vcpu, fault);
972 }
973 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
974
kvm_inject_nmi(struct kvm_vcpu * vcpu)975 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
976 {
977 atomic_inc(&vcpu->arch.nmi_queued);
978 kvm_make_request(KVM_REQ_NMI, vcpu);
979 }
980
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)981 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
982 {
983 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
984 }
985 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
986
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)987 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
988 {
989 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
990 }
991 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
992
993 /*
994 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
995 * a #GP and return false.
996 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)997 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
998 {
999 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1000 return true;
1001 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1002 return false;
1003 }
1004
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1005 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1006 {
1007 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1008 return true;
1009
1010 kvm_queue_exception(vcpu, UD_VECTOR);
1011 return false;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_require_dr);
1014
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1015 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1016 {
1017 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1018 }
1019
1020 /*
1021 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
1022 */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1023 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1024 {
1025 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1026 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1027 gpa_t real_gpa;
1028 int i;
1029 int ret;
1030 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1031
1032 /*
1033 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1034 * to an L1 GPA.
1035 */
1036 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1037 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1038 if (real_gpa == INVALID_GPA)
1039 return 0;
1040
1041 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1042 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1043 cr3 & GENMASK(11, 5), sizeof(pdpte));
1044 if (ret < 0)
1045 return 0;
1046
1047 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1048 if ((pdpte[i] & PT_PRESENT_MASK) &&
1049 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1050 return 0;
1051 }
1052 }
1053
1054 /*
1055 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1056 * Shadow page roots need to be reconstructed instead.
1057 */
1058 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1059 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1060
1061 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1062 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1063 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1064 vcpu->arch.pdptrs_from_userspace = false;
1065
1066 return 1;
1067 }
1068 EXPORT_SYMBOL_GPL(load_pdptrs);
1069
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1070 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1071 {
1072 #ifdef CONFIG_X86_64
1073 if (cr0 & 0xffffffff00000000UL)
1074 return false;
1075 #endif
1076
1077 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1078 return false;
1079
1080 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1081 return false;
1082
1083 return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1084 }
1085
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1086 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1087 {
1088 /*
1089 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1090 * indirect shadow MMUs. If paging is disabled, no updates are needed
1091 * as there are no permission bits to emulate. If TDP is enabled, the
1092 * MMU's metadata needs to be updated, e.g. so that emulating guest
1093 * translations does the right thing, but there's no need to unload the
1094 * root as CR0.WP doesn't affect SPTEs.
1095 */
1096 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1097 if (!(cr0 & X86_CR0_PG))
1098 return;
1099
1100 if (tdp_enabled) {
1101 kvm_init_mmu(vcpu);
1102 return;
1103 }
1104 }
1105
1106 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1107 kvm_clear_async_pf_completion_queue(vcpu);
1108 kvm_async_pf_hash_reset(vcpu);
1109
1110 /*
1111 * Clearing CR0.PG is defined to flush the TLB from the guest's
1112 * perspective.
1113 */
1114 if (!(cr0 & X86_CR0_PG))
1115 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1116 }
1117
1118 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1119 kvm_mmu_reset_context(vcpu);
1120 }
1121 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
1122
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1123 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1124 {
1125 unsigned long old_cr0 = kvm_read_cr0(vcpu);
1126
1127 if (!kvm_is_valid_cr0(vcpu, cr0))
1128 return 1;
1129
1130 cr0 |= X86_CR0_ET;
1131
1132 /* Write to CR0 reserved bits are ignored, even on Intel. */
1133 cr0 &= ~CR0_RESERVED_BITS;
1134
1135 #ifdef CONFIG_X86_64
1136 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1137 (cr0 & X86_CR0_PG)) {
1138 int cs_db, cs_l;
1139
1140 if (!is_pae(vcpu))
1141 return 1;
1142 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1143 if (cs_l)
1144 return 1;
1145 }
1146 #endif
1147 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1148 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1149 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1150 return 1;
1151
1152 if (!(cr0 & X86_CR0_PG) &&
1153 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1154 return 1;
1155
1156 kvm_x86_call(set_cr0)(vcpu, cr0);
1157
1158 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1159
1160 return 0;
1161 }
1162 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1163
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1164 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1165 {
1166 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1167 }
1168 EXPORT_SYMBOL_GPL(kvm_lmsw);
1169
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1170 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1171 {
1172 if (vcpu->arch.guest_state_protected)
1173 return;
1174
1175 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1176
1177 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1178 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1179
1180 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1181 vcpu->arch.ia32_xss != kvm_host.xss)
1182 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1183 }
1184
1185 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1186 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1187 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1188 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1189 wrpkru(vcpu->arch.pkru);
1190 }
1191 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1192
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1193 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1194 {
1195 if (vcpu->arch.guest_state_protected)
1196 return;
1197
1198 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1199 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1200 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1201 vcpu->arch.pkru = rdpkru();
1202 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1203 wrpkru(vcpu->arch.host_pkru);
1204 }
1205
1206 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1207
1208 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1209 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1210
1211 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1212 vcpu->arch.ia32_xss != kvm_host.xss)
1213 wrmsrl(MSR_IA32_XSS, kvm_host.xss);
1214 }
1215
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1218
1219 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1220 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1221 {
1222 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1223 }
1224 #endif
1225
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1226 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1227 {
1228 u64 xcr0 = xcr;
1229 u64 old_xcr0 = vcpu->arch.xcr0;
1230 u64 valid_bits;
1231
1232 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1233 if (index != XCR_XFEATURE_ENABLED_MASK)
1234 return 1;
1235 if (!(xcr0 & XFEATURE_MASK_FP))
1236 return 1;
1237 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1238 return 1;
1239
1240 /*
1241 * Do not allow the guest to set bits that we do not support
1242 * saving. However, xcr0 bit 0 is always set, even if the
1243 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1244 */
1245 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1246 if (xcr0 & ~valid_bits)
1247 return 1;
1248
1249 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1250 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1251 return 1;
1252
1253 if (xcr0 & XFEATURE_MASK_AVX512) {
1254 if (!(xcr0 & XFEATURE_MASK_YMM))
1255 return 1;
1256 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1257 return 1;
1258 }
1259
1260 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1261 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1262 return 1;
1263
1264 vcpu->arch.xcr0 = xcr0;
1265
1266 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1267 kvm_update_cpuid_runtime(vcpu);
1268 return 0;
1269 }
1270
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1271 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1272 {
1273 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1274 if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1275 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1276 kvm_inject_gp(vcpu, 0);
1277 return 1;
1278 }
1279
1280 return kvm_skip_emulated_instruction(vcpu);
1281 }
1282 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1283
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1284 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1285 {
1286 return __kvm_is_valid_cr4(vcpu, cr4) &&
1287 kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1288 }
1289
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1290 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1291 {
1292 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1293 kvm_mmu_reset_context(vcpu);
1294
1295 /*
1296 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1297 * according to the SDM; however, stale prev_roots could be reused
1298 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1299 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1300 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1301 * so fall through.
1302 */
1303 if (!tdp_enabled &&
1304 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1305 kvm_mmu_unload(vcpu);
1306
1307 /*
1308 * The TLB has to be flushed for all PCIDs if any of the following
1309 * (architecturally required) changes happen:
1310 * - CR4.PCIDE is changed from 1 to 0
1311 * - CR4.PGE is toggled
1312 *
1313 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1314 */
1315 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1316 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1317 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1318
1319 /*
1320 * The TLB has to be flushed for the current PCID if any of the
1321 * following (architecturally required) changes happen:
1322 * - CR4.SMEP is changed from 0 to 1
1323 * - CR4.PAE is toggled
1324 */
1325 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1326 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1327 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1328
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1331
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1332 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1333 {
1334 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1335
1336 if (!kvm_is_valid_cr4(vcpu, cr4))
1337 return 1;
1338
1339 if (is_long_mode(vcpu)) {
1340 if (!(cr4 & X86_CR4_PAE))
1341 return 1;
1342 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1343 return 1;
1344 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1345 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1346 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1347 return 1;
1348
1349 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1350 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1351 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1352 return 1;
1353 }
1354
1355 kvm_x86_call(set_cr4)(vcpu, cr4);
1356
1357 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1358
1359 return 0;
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1362
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1363 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1364 {
1365 struct kvm_mmu *mmu = vcpu->arch.mmu;
1366 unsigned long roots_to_free = 0;
1367 int i;
1368
1369 /*
1370 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1371 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1372 * also via the emulator. KVM's TDP page tables are not in the scope of
1373 * the invalidation, but the guest's TLB entries need to be flushed as
1374 * the CPU may have cached entries in its TLB for the target PCID.
1375 */
1376 if (unlikely(tdp_enabled)) {
1377 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1378 return;
1379 }
1380
1381 /*
1382 * If neither the current CR3 nor any of the prev_roots use the given
1383 * PCID, then nothing needs to be done here because a resync will
1384 * happen anyway before switching to any other CR3.
1385 */
1386 if (kvm_get_active_pcid(vcpu) == pcid) {
1387 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1388 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1389 }
1390
1391 /*
1392 * If PCID is disabled, there is no need to free prev_roots even if the
1393 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1394 * with PCIDE=0.
1395 */
1396 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1397 return;
1398
1399 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1400 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1401 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1402
1403 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1404 }
1405
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1406 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1407 {
1408 bool skip_tlb_flush = false;
1409 unsigned long pcid = 0;
1410 #ifdef CONFIG_X86_64
1411 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1412 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1413 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1414 pcid = cr3 & X86_CR3_PCID_MASK;
1415 }
1416 #endif
1417
1418 /* PDPTRs are always reloaded for PAE paging. */
1419 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1420 goto handle_tlb_flush;
1421
1422 /*
1423 * Do not condition the GPA check on long mode, this helper is used to
1424 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1425 * the current vCPU mode is accurate.
1426 */
1427 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1428 return 1;
1429
1430 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1431 return 1;
1432
1433 if (cr3 != kvm_read_cr3(vcpu))
1434 kvm_mmu_new_pgd(vcpu, cr3);
1435
1436 vcpu->arch.cr3 = cr3;
1437 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1438 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1439
1440 handle_tlb_flush:
1441 /*
1442 * A load of CR3 that flushes the TLB flushes only the current PCID,
1443 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1444 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1445 * and it's impossible to use a non-zero PCID when PCID is disabled,
1446 * i.e. only PCID=0 can be relevant.
1447 */
1448 if (!skip_tlb_flush)
1449 kvm_invalidate_pcid(vcpu, pcid);
1450
1451 return 0;
1452 }
1453 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1454
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1455 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1456 {
1457 if (cr8 & CR8_RESERVED_BITS)
1458 return 1;
1459 if (lapic_in_kernel(vcpu))
1460 kvm_lapic_set_tpr(vcpu, cr8);
1461 else
1462 vcpu->arch.cr8 = cr8;
1463 return 0;
1464 }
1465 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1466
kvm_get_cr8(struct kvm_vcpu * vcpu)1467 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1468 {
1469 if (lapic_in_kernel(vcpu))
1470 return kvm_lapic_get_cr8(vcpu);
1471 else
1472 return vcpu->arch.cr8;
1473 }
1474 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1475
kvm_update_dr0123(struct kvm_vcpu * vcpu)1476 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1477 {
1478 int i;
1479
1480 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1481 for (i = 0; i < KVM_NR_DB_REGS; i++)
1482 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1483 }
1484 }
1485
kvm_update_dr7(struct kvm_vcpu * vcpu)1486 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1487 {
1488 unsigned long dr7;
1489
1490 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1491 dr7 = vcpu->arch.guest_debug_dr7;
1492 else
1493 dr7 = vcpu->arch.dr7;
1494 kvm_x86_call(set_dr7)(vcpu, dr7);
1495 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1496 if (dr7 & DR7_BP_EN_MASK)
1497 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1498 }
1499 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1500
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1501 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1502 {
1503 u64 fixed = DR6_FIXED_1;
1504
1505 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM))
1506 fixed |= DR6_RTM;
1507
1508 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1509 fixed |= DR6_BUS_LOCK;
1510 return fixed;
1511 }
1512
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1513 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1514 {
1515 size_t size = ARRAY_SIZE(vcpu->arch.db);
1516
1517 switch (dr) {
1518 case 0 ... 3:
1519 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1520 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1521 vcpu->arch.eff_db[dr] = val;
1522 break;
1523 case 4:
1524 case 6:
1525 if (!kvm_dr6_valid(val))
1526 return 1; /* #GP */
1527 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1528 break;
1529 case 5:
1530 default: /* 7 */
1531 if (!kvm_dr7_valid(val))
1532 return 1; /* #GP */
1533 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1534 kvm_update_dr7(vcpu);
1535 break;
1536 }
1537
1538 return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(kvm_set_dr);
1541
kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1542 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1543 {
1544 size_t size = ARRAY_SIZE(vcpu->arch.db);
1545
1546 switch (dr) {
1547 case 0 ... 3:
1548 return vcpu->arch.db[array_index_nospec(dr, size)];
1549 case 4:
1550 case 6:
1551 return vcpu->arch.dr6;
1552 case 5:
1553 default: /* 7 */
1554 return vcpu->arch.dr7;
1555 }
1556 }
1557 EXPORT_SYMBOL_GPL(kvm_get_dr);
1558
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1559 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1560 {
1561 u32 ecx = kvm_rcx_read(vcpu);
1562 u64 data;
1563
1564 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1565 kvm_inject_gp(vcpu, 0);
1566 return 1;
1567 }
1568
1569 kvm_rax_write(vcpu, (u32)data);
1570 kvm_rdx_write(vcpu, data >> 32);
1571 return kvm_skip_emulated_instruction(vcpu);
1572 }
1573 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1574
1575 /*
1576 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1577 * does not yet virtualize. These include:
1578 * 10 - MISC_PACKAGE_CTRLS
1579 * 11 - ENERGY_FILTERING_CTL
1580 * 12 - DOITM
1581 * 18 - FB_CLEAR_CTRL
1582 * 21 - XAPIC_DISABLE_STATUS
1583 * 23 - OVERCLOCKING_STATUS
1584 */
1585
1586 #define KVM_SUPPORTED_ARCH_CAP \
1587 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1588 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1589 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1590 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1591 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1592 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1593
kvm_get_arch_capabilities(void)1594 static u64 kvm_get_arch_capabilities(void)
1595 {
1596 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1597
1598 /*
1599 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1600 * the nested hypervisor runs with NX huge pages. If it is not,
1601 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1602 * L1 guests, so it need not worry about its own (L2) guests.
1603 */
1604 data |= ARCH_CAP_PSCHANGE_MC_NO;
1605
1606 /*
1607 * If we're doing cache flushes (either "always" or "cond")
1608 * we will do one whenever the guest does a vmlaunch/vmresume.
1609 * If an outer hypervisor is doing the cache flush for us
1610 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1611 * capability to the guest too, and if EPT is disabled we're not
1612 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1613 * require a nested hypervisor to do a flush of its own.
1614 */
1615 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1616 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1617
1618 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1619 data |= ARCH_CAP_RDCL_NO;
1620 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1621 data |= ARCH_CAP_SSB_NO;
1622 if (!boot_cpu_has_bug(X86_BUG_MDS))
1623 data |= ARCH_CAP_MDS_NO;
1624 if (!boot_cpu_has_bug(X86_BUG_RFDS))
1625 data |= ARCH_CAP_RFDS_NO;
1626
1627 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1628 /*
1629 * If RTM=0 because the kernel has disabled TSX, the host might
1630 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1631 * and therefore knows that there cannot be TAA) but keep
1632 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1633 * and we want to allow migrating those guests to tsx=off hosts.
1634 */
1635 data &= ~ARCH_CAP_TAA_NO;
1636 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1637 data |= ARCH_CAP_TAA_NO;
1638 } else {
1639 /*
1640 * Nothing to do here; we emulate TSX_CTRL if present on the
1641 * host so the guest can choose between disabling TSX or
1642 * using VERW to clear CPU buffers.
1643 */
1644 }
1645
1646 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1647 data |= ARCH_CAP_GDS_NO;
1648
1649 return data;
1650 }
1651
kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1652 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1653 bool host_initiated)
1654 {
1655 WARN_ON_ONCE(!host_initiated);
1656
1657 switch (index) {
1658 case MSR_IA32_ARCH_CAPABILITIES:
1659 *data = kvm_get_arch_capabilities();
1660 break;
1661 case MSR_IA32_PERF_CAPABILITIES:
1662 *data = kvm_caps.supported_perf_cap;
1663 break;
1664 case MSR_PLATFORM_INFO:
1665 *data = MSR_PLATFORM_INFO_CPUID_FAULT;
1666 break;
1667 case MSR_IA32_UCODE_REV:
1668 rdmsrl_safe(index, data);
1669 break;
1670 default:
1671 return kvm_x86_call(get_feature_msr)(index, data);
1672 }
1673 return 0;
1674 }
1675
do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1676 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1677 {
1678 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1679 kvm_get_feature_msr);
1680 }
1681
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1682 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1683 {
1684 if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS))
1685 return false;
1686
1687 if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT))
1688 return false;
1689
1690 if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
1691 return false;
1692
1693 if (efer & (EFER_LME | EFER_LMA) &&
1694 !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1695 return false;
1696
1697 if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX))
1698 return false;
1699
1700 return true;
1701
1702 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1703 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1704 {
1705 if (efer & efer_reserved_bits)
1706 return false;
1707
1708 return __kvm_valid_efer(vcpu, efer);
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1711
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1712 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1713 {
1714 u64 old_efer = vcpu->arch.efer;
1715 u64 efer = msr_info->data;
1716 int r;
1717
1718 if (efer & efer_reserved_bits)
1719 return 1;
1720
1721 if (!msr_info->host_initiated) {
1722 if (!__kvm_valid_efer(vcpu, efer))
1723 return 1;
1724
1725 if (is_paging(vcpu) &&
1726 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1727 return 1;
1728 }
1729
1730 efer &= ~EFER_LMA;
1731 efer |= vcpu->arch.efer & EFER_LMA;
1732
1733 r = kvm_x86_call(set_efer)(vcpu, efer);
1734 if (r) {
1735 WARN_ON(r > 0);
1736 return r;
1737 }
1738
1739 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1740 kvm_mmu_reset_context(vcpu);
1741
1742 if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1743 (efer & EFER_SVME))
1744 kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1745
1746 return 0;
1747 }
1748
kvm_enable_efer_bits(u64 mask)1749 void kvm_enable_efer_bits(u64 mask)
1750 {
1751 efer_reserved_bits &= ~mask;
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1754
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1755 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1756 {
1757 struct kvm_x86_msr_filter *msr_filter;
1758 struct msr_bitmap_range *ranges;
1759 struct kvm *kvm = vcpu->kvm;
1760 bool allowed;
1761 int idx;
1762 u32 i;
1763
1764 /* x2APIC MSRs do not support filtering. */
1765 if (index >= 0x800 && index <= 0x8ff)
1766 return true;
1767
1768 idx = srcu_read_lock(&kvm->srcu);
1769
1770 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1771 if (!msr_filter) {
1772 allowed = true;
1773 goto out;
1774 }
1775
1776 allowed = msr_filter->default_allow;
1777 ranges = msr_filter->ranges;
1778
1779 for (i = 0; i < msr_filter->count; i++) {
1780 u32 start = ranges[i].base;
1781 u32 end = start + ranges[i].nmsrs;
1782 u32 flags = ranges[i].flags;
1783 unsigned long *bitmap = ranges[i].bitmap;
1784
1785 if ((index >= start) && (index < end) && (flags & type)) {
1786 allowed = test_bit(index - start, bitmap);
1787 break;
1788 }
1789 }
1790
1791 out:
1792 srcu_read_unlock(&kvm->srcu, idx);
1793
1794 return allowed;
1795 }
1796 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1797
1798 /*
1799 * Write @data into the MSR specified by @index. Select MSR specific fault
1800 * checks are bypassed if @host_initiated is %true.
1801 * Returns 0 on success, non-0 otherwise.
1802 * Assumes vcpu_load() was already called.
1803 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1804 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1805 bool host_initiated)
1806 {
1807 struct msr_data msr;
1808
1809 switch (index) {
1810 case MSR_FS_BASE:
1811 case MSR_GS_BASE:
1812 case MSR_KERNEL_GS_BASE:
1813 case MSR_CSTAR:
1814 case MSR_LSTAR:
1815 if (is_noncanonical_msr_address(data, vcpu))
1816 return 1;
1817 break;
1818 case MSR_IA32_SYSENTER_EIP:
1819 case MSR_IA32_SYSENTER_ESP:
1820 /*
1821 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1822 * non-canonical address is written on Intel but not on
1823 * AMD (which ignores the top 32-bits, because it does
1824 * not implement 64-bit SYSENTER).
1825 *
1826 * 64-bit code should hence be able to write a non-canonical
1827 * value on AMD. Making the address canonical ensures that
1828 * vmentry does not fail on Intel after writing a non-canonical
1829 * value, and that something deterministic happens if the guest
1830 * invokes 64-bit SYSENTER.
1831 */
1832 data = __canonical_address(data, max_host_virt_addr_bits());
1833 break;
1834 case MSR_TSC_AUX:
1835 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1836 return 1;
1837
1838 if (!host_initiated &&
1839 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1840 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1841 return 1;
1842
1843 /*
1844 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1845 * incomplete and conflicting architectural behavior. Current
1846 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1847 * reserved and always read as zeros. Enforce Intel's reserved
1848 * bits check if the guest CPU is Intel compatible, otherwise
1849 * clear the bits. This ensures cross-vendor migration will
1850 * provide consistent behavior for the guest.
1851 */
1852 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1853 return 1;
1854
1855 data = (u32)data;
1856 break;
1857 }
1858
1859 msr.data = data;
1860 msr.index = index;
1861 msr.host_initiated = host_initiated;
1862
1863 return kvm_x86_call(set_msr)(vcpu, &msr);
1864 }
1865
_kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1866 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1867 bool host_initiated)
1868 {
1869 return __kvm_set_msr(vcpu, index, *data, host_initiated);
1870 }
1871
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1872 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1873 u32 index, u64 data, bool host_initiated)
1874 {
1875 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1876 _kvm_set_msr);
1877 }
1878
1879 /*
1880 * Read the MSR specified by @index into @data. Select MSR specific fault
1881 * checks are bypassed if @host_initiated is %true.
1882 * Returns 0 on success, non-0 otherwise.
1883 * Assumes vcpu_load() was already called.
1884 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1885 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1886 bool host_initiated)
1887 {
1888 struct msr_data msr;
1889 int ret;
1890
1891 switch (index) {
1892 case MSR_TSC_AUX:
1893 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1894 return 1;
1895
1896 if (!host_initiated &&
1897 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1898 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1899 return 1;
1900 break;
1901 }
1902
1903 msr.index = index;
1904 msr.host_initiated = host_initiated;
1905
1906 ret = kvm_x86_call(get_msr)(vcpu, &msr);
1907 if (!ret)
1908 *data = msr.data;
1909 return ret;
1910 }
1911
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1912 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1913 u32 index, u64 *data, bool host_initiated)
1914 {
1915 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
1916 __kvm_get_msr);
1917 }
1918
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1919 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1920 {
1921 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1922 return KVM_MSR_RET_FILTERED;
1923 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1924 }
1925 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter);
1926
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1927 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1928 {
1929 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1930 return KVM_MSR_RET_FILTERED;
1931 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1932 }
1933 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter);
1934
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1935 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1936 {
1937 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1938 }
1939 EXPORT_SYMBOL_GPL(kvm_get_msr);
1940
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1941 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1942 {
1943 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1944 }
1945 EXPORT_SYMBOL_GPL(kvm_set_msr);
1946
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1947 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1948 {
1949 if (!vcpu->run->msr.error) {
1950 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1951 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1952 }
1953 }
1954
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1955 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1956 {
1957 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1958 }
1959
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1960 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1961 {
1962 complete_userspace_rdmsr(vcpu);
1963 return complete_emulated_msr_access(vcpu);
1964 }
1965
complete_fast_msr_access(struct kvm_vcpu * vcpu)1966 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1967 {
1968 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1969 }
1970
complete_fast_rdmsr(struct kvm_vcpu * vcpu)1971 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1972 {
1973 complete_userspace_rdmsr(vcpu);
1974 return complete_fast_msr_access(vcpu);
1975 }
1976
kvm_msr_reason(int r)1977 static u64 kvm_msr_reason(int r)
1978 {
1979 switch (r) {
1980 case KVM_MSR_RET_UNSUPPORTED:
1981 return KVM_MSR_EXIT_REASON_UNKNOWN;
1982 case KVM_MSR_RET_FILTERED:
1983 return KVM_MSR_EXIT_REASON_FILTER;
1984 default:
1985 return KVM_MSR_EXIT_REASON_INVAL;
1986 }
1987 }
1988
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1989 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1990 u32 exit_reason, u64 data,
1991 int (*completion)(struct kvm_vcpu *vcpu),
1992 int r)
1993 {
1994 u64 msr_reason = kvm_msr_reason(r);
1995
1996 /* Check if the user wanted to know about this MSR fault */
1997 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1998 return 0;
1999
2000 vcpu->run->exit_reason = exit_reason;
2001 vcpu->run->msr.error = 0;
2002 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2003 vcpu->run->msr.reason = msr_reason;
2004 vcpu->run->msr.index = index;
2005 vcpu->run->msr.data = data;
2006 vcpu->arch.complete_userspace_io = completion;
2007
2008 return 1;
2009 }
2010
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2011 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2012 {
2013 u32 ecx = kvm_rcx_read(vcpu);
2014 u64 data;
2015 int r;
2016
2017 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2018
2019 if (!r) {
2020 trace_kvm_msr_read(ecx, data);
2021
2022 kvm_rax_write(vcpu, data & -1u);
2023 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2024 } else {
2025 /* MSR read failed? See if we should ask user space */
2026 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2027 complete_fast_rdmsr, r))
2028 return 0;
2029 trace_kvm_msr_read_ex(ecx);
2030 }
2031
2032 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2035
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2036 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2037 {
2038 u32 ecx = kvm_rcx_read(vcpu);
2039 u64 data = kvm_read_edx_eax(vcpu);
2040 int r;
2041
2042 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2043
2044 if (!r) {
2045 trace_kvm_msr_write(ecx, data);
2046 } else {
2047 /* MSR write failed? See if we should ask user space */
2048 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2049 complete_fast_msr_access, r))
2050 return 0;
2051 /* Signal all other negative errors to userspace */
2052 if (r < 0)
2053 return r;
2054 trace_kvm_msr_write_ex(ecx, data);
2055 }
2056
2057 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2058 }
2059 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2060
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2061 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2062 {
2063 return kvm_skip_emulated_instruction(vcpu);
2064 }
2065
kvm_emulate_invd(struct kvm_vcpu * vcpu)2066 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2067 {
2068 /* Treat an INVD instruction as a NOP and just skip it. */
2069 return kvm_emulate_as_nop(vcpu);
2070 }
2071 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2072
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2073 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2074 {
2075 kvm_queue_exception(vcpu, UD_VECTOR);
2076 return 1;
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2079
2080
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2081 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2082 {
2083 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2084 !guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT))
2085 return kvm_handle_invalid_op(vcpu);
2086
2087 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2088 return kvm_emulate_as_nop(vcpu);
2089 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2090 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2091 {
2092 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2093 }
2094 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2095
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2096 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2097 {
2098 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2101
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2102 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2103 {
2104 xfer_to_guest_mode_prepare();
2105
2106 return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2107 kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2108 }
2109
2110 /*
2111 * The fast path for frequent and performance sensitive wrmsr emulation,
2112 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2113 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2114 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2115 * other cases which must be called after interrupts are enabled on the host.
2116 */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2117 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2118 {
2119 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2120 return 1;
2121
2122 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2123 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2124 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2125 ((u32)(data >> 32) != X2APIC_BROADCAST))
2126 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2127
2128 return 1;
2129 }
2130
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2131 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2132 {
2133 if (!kvm_can_use_hv_timer(vcpu))
2134 return 1;
2135
2136 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2137 return 0;
2138 }
2139
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2140 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2141 {
2142 u32 msr = kvm_rcx_read(vcpu);
2143 u64 data;
2144 fastpath_t ret;
2145 bool handled;
2146
2147 kvm_vcpu_srcu_read_lock(vcpu);
2148
2149 switch (msr) {
2150 case APIC_BASE_MSR + (APIC_ICR >> 4):
2151 data = kvm_read_edx_eax(vcpu);
2152 handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
2153 break;
2154 case MSR_IA32_TSC_DEADLINE:
2155 data = kvm_read_edx_eax(vcpu);
2156 handled = !handle_fastpath_set_tscdeadline(vcpu, data);
2157 break;
2158 default:
2159 handled = false;
2160 break;
2161 }
2162
2163 if (handled) {
2164 if (!kvm_skip_emulated_instruction(vcpu))
2165 ret = EXIT_FASTPATH_EXIT_USERSPACE;
2166 else
2167 ret = EXIT_FASTPATH_REENTER_GUEST;
2168 trace_kvm_msr_write(msr, data);
2169 } else {
2170 ret = EXIT_FASTPATH_NONE;
2171 }
2172
2173 kvm_vcpu_srcu_read_unlock(vcpu);
2174
2175 return ret;
2176 }
2177 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2178
2179 /*
2180 * Adapt set_msr() to msr_io()'s calling convention
2181 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2182 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2183 {
2184 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2185 }
2186
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2187 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2188 {
2189 u64 val;
2190
2191 /*
2192 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2193 * not support modifying the guest vCPU model on the fly, e.g. changing
2194 * the nVMX capabilities while L2 is running is nonsensical. Allow
2195 * writes of the same value, e.g. to allow userspace to blindly stuff
2196 * all MSRs when emulating RESET.
2197 */
2198 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2199 (do_get_msr(vcpu, index, &val) || *data != val))
2200 return -EINVAL;
2201
2202 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2203 }
2204
2205 #ifdef CONFIG_X86_64
2206 struct pvclock_clock {
2207 int vclock_mode;
2208 u64 cycle_last;
2209 u64 mask;
2210 u32 mult;
2211 u32 shift;
2212 u64 base_cycles;
2213 u64 offset;
2214 };
2215
2216 struct pvclock_gtod_data {
2217 seqcount_t seq;
2218
2219 struct pvclock_clock clock; /* extract of a clocksource struct */
2220 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2221
2222 ktime_t offs_boot;
2223 u64 wall_time_sec;
2224 };
2225
2226 static struct pvclock_gtod_data pvclock_gtod_data;
2227
update_pvclock_gtod(struct timekeeper * tk)2228 static void update_pvclock_gtod(struct timekeeper *tk)
2229 {
2230 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2231
2232 write_seqcount_begin(&vdata->seq);
2233
2234 /* copy pvclock gtod data */
2235 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2236 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2237 vdata->clock.mask = tk->tkr_mono.mask;
2238 vdata->clock.mult = tk->tkr_mono.mult;
2239 vdata->clock.shift = tk->tkr_mono.shift;
2240 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2241 vdata->clock.offset = tk->tkr_mono.base;
2242
2243 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2244 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2245 vdata->raw_clock.mask = tk->tkr_raw.mask;
2246 vdata->raw_clock.mult = tk->tkr_raw.mult;
2247 vdata->raw_clock.shift = tk->tkr_raw.shift;
2248 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2249 vdata->raw_clock.offset = tk->tkr_raw.base;
2250
2251 vdata->wall_time_sec = tk->xtime_sec;
2252
2253 vdata->offs_boot = tk->offs_boot;
2254
2255 write_seqcount_end(&vdata->seq);
2256 }
2257
get_kvmclock_base_ns(void)2258 static s64 get_kvmclock_base_ns(void)
2259 {
2260 /* Count up from boot time, but with the frequency of the raw clock. */
2261 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2262 }
2263 #else
get_kvmclock_base_ns(void)2264 static s64 get_kvmclock_base_ns(void)
2265 {
2266 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2267 return ktime_get_boottime_ns();
2268 }
2269 #endif
2270
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2271 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2272 {
2273 int version;
2274 int r;
2275 struct pvclock_wall_clock wc;
2276 u32 wc_sec_hi;
2277 u64 wall_nsec;
2278
2279 if (!wall_clock)
2280 return;
2281
2282 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2283 if (r)
2284 return;
2285
2286 if (version & 1)
2287 ++version; /* first time write, random junk */
2288
2289 ++version;
2290
2291 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2292 return;
2293
2294 wall_nsec = kvm_get_wall_clock_epoch(kvm);
2295
2296 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2297 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2298 wc.version = version;
2299
2300 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2301
2302 if (sec_hi_ofs) {
2303 wc_sec_hi = wall_nsec >> 32;
2304 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2305 &wc_sec_hi, sizeof(wc_sec_hi));
2306 }
2307
2308 version++;
2309 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2310 }
2311
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2312 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2313 bool old_msr, bool host_initiated)
2314 {
2315 struct kvm_arch *ka = &vcpu->kvm->arch;
2316
2317 if (vcpu->vcpu_id == 0 && !host_initiated) {
2318 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2319 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2320
2321 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2322 }
2323
2324 vcpu->arch.time = system_time;
2325 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2326
2327 /* we verify if the enable bit is set... */
2328 if (system_time & 1)
2329 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2330 sizeof(struct pvclock_vcpu_time_info));
2331 else
2332 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2333
2334 return;
2335 }
2336
div_frac(uint32_t dividend,uint32_t divisor)2337 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2338 {
2339 do_shl32_div32(dividend, divisor);
2340 return dividend;
2341 }
2342
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2343 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2344 s8 *pshift, u32 *pmultiplier)
2345 {
2346 uint64_t scaled64;
2347 int32_t shift = 0;
2348 uint64_t tps64;
2349 uint32_t tps32;
2350
2351 tps64 = base_hz;
2352 scaled64 = scaled_hz;
2353 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2354 tps64 >>= 1;
2355 shift--;
2356 }
2357
2358 tps32 = (uint32_t)tps64;
2359 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2360 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2361 scaled64 >>= 1;
2362 else
2363 tps32 <<= 1;
2364 shift++;
2365 }
2366
2367 *pshift = shift;
2368 *pmultiplier = div_frac(scaled64, tps32);
2369 }
2370
2371 #ifdef CONFIG_X86_64
2372 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2373 #endif
2374
2375 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2376 static unsigned long max_tsc_khz;
2377
adjust_tsc_khz(u32 khz,s32 ppm)2378 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2379 {
2380 u64 v = (u64)khz * (1000000 + ppm);
2381 do_div(v, 1000000);
2382 return v;
2383 }
2384
2385 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2386
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2387 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2388 {
2389 u64 ratio;
2390
2391 /* Guest TSC same frequency as host TSC? */
2392 if (!scale) {
2393 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2394 return 0;
2395 }
2396
2397 /* TSC scaling supported? */
2398 if (!kvm_caps.has_tsc_control) {
2399 if (user_tsc_khz > tsc_khz) {
2400 vcpu->arch.tsc_catchup = 1;
2401 vcpu->arch.tsc_always_catchup = 1;
2402 return 0;
2403 } else {
2404 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2405 return -1;
2406 }
2407 }
2408
2409 /* TSC scaling required - calculate ratio */
2410 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2411 user_tsc_khz, tsc_khz);
2412
2413 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2414 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2415 user_tsc_khz);
2416 return -1;
2417 }
2418
2419 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2420 return 0;
2421 }
2422
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2423 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2424 {
2425 u32 thresh_lo, thresh_hi;
2426 int use_scaling = 0;
2427
2428 /* tsc_khz can be zero if TSC calibration fails */
2429 if (user_tsc_khz == 0) {
2430 /* set tsc_scaling_ratio to a safe value */
2431 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2432 return -1;
2433 }
2434
2435 /* Compute a scale to convert nanoseconds in TSC cycles */
2436 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2437 &vcpu->arch.virtual_tsc_shift,
2438 &vcpu->arch.virtual_tsc_mult);
2439 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2440
2441 /*
2442 * Compute the variation in TSC rate which is acceptable
2443 * within the range of tolerance and decide if the
2444 * rate being applied is within that bounds of the hardware
2445 * rate. If so, no scaling or compensation need be done.
2446 */
2447 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2448 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2449 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2450 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2451 user_tsc_khz, thresh_lo, thresh_hi);
2452 use_scaling = 1;
2453 }
2454 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2455 }
2456
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2457 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2458 {
2459 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2460 vcpu->arch.virtual_tsc_mult,
2461 vcpu->arch.virtual_tsc_shift);
2462 tsc += vcpu->arch.this_tsc_write;
2463 return tsc;
2464 }
2465
2466 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2467 static inline bool gtod_is_based_on_tsc(int mode)
2468 {
2469 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2470 }
2471 #endif
2472
kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2473 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2474 {
2475 #ifdef CONFIG_X86_64
2476 struct kvm_arch *ka = &vcpu->kvm->arch;
2477 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2478
2479 /*
2480 * To use the masterclock, the host clocksource must be based on TSC
2481 * and all vCPUs must have matching TSCs. Note, the count for matching
2482 * vCPUs doesn't include the reference vCPU, hence "+1".
2483 */
2484 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2485 atomic_read(&vcpu->kvm->online_vcpus)) &&
2486 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2487
2488 /*
2489 * Request a masterclock update if the masterclock needs to be toggled
2490 * on/off, or when starting a new generation and the masterclock is
2491 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2492 * taken _after_ the new generation is created).
2493 */
2494 if ((ka->use_master_clock && new_generation) ||
2495 (ka->use_master_clock != use_master_clock))
2496 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2497
2498 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2499 atomic_read(&vcpu->kvm->online_vcpus),
2500 ka->use_master_clock, gtod->clock.vclock_mode);
2501 #endif
2502 }
2503
2504 /*
2505 * Multiply tsc by a fixed point number represented by ratio.
2506 *
2507 * The most significant 64-N bits (mult) of ratio represent the
2508 * integral part of the fixed point number; the remaining N bits
2509 * (frac) represent the fractional part, ie. ratio represents a fixed
2510 * point number (mult + frac * 2^(-N)).
2511 *
2512 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2513 */
__scale_tsc(u64 ratio,u64 tsc)2514 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2515 {
2516 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2517 }
2518
kvm_scale_tsc(u64 tsc,u64 ratio)2519 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2520 {
2521 u64 _tsc = tsc;
2522
2523 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2524 _tsc = __scale_tsc(ratio, tsc);
2525
2526 return _tsc;
2527 }
2528
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2529 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2530 {
2531 u64 tsc;
2532
2533 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2534
2535 return target_tsc - tsc;
2536 }
2537
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2538 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2539 {
2540 return vcpu->arch.l1_tsc_offset +
2541 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2542 }
2543 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2544
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2545 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2546 {
2547 u64 nested_offset;
2548
2549 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2550 nested_offset = l1_offset;
2551 else
2552 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2553 kvm_caps.tsc_scaling_ratio_frac_bits);
2554
2555 nested_offset += l2_offset;
2556 return nested_offset;
2557 }
2558 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2559
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2560 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2561 {
2562 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2563 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2564 kvm_caps.tsc_scaling_ratio_frac_bits);
2565
2566 return l1_multiplier;
2567 }
2568 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2569
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2570 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2571 {
2572 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2573 vcpu->arch.l1_tsc_offset,
2574 l1_offset);
2575
2576 vcpu->arch.l1_tsc_offset = l1_offset;
2577
2578 /*
2579 * If we are here because L1 chose not to trap WRMSR to TSC then
2580 * according to the spec this should set L1's TSC (as opposed to
2581 * setting L1's offset for L2).
2582 */
2583 if (is_guest_mode(vcpu))
2584 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2585 l1_offset,
2586 kvm_x86_call(get_l2_tsc_offset)(vcpu),
2587 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2588 else
2589 vcpu->arch.tsc_offset = l1_offset;
2590
2591 kvm_x86_call(write_tsc_offset)(vcpu);
2592 }
2593
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2594 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2595 {
2596 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2597
2598 /* Userspace is changing the multiplier while L2 is active */
2599 if (is_guest_mode(vcpu))
2600 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2601 l1_multiplier,
2602 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2603 else
2604 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2605
2606 if (kvm_caps.has_tsc_control)
2607 kvm_x86_call(write_tsc_multiplier)(vcpu);
2608 }
2609
kvm_check_tsc_unstable(void)2610 static inline bool kvm_check_tsc_unstable(void)
2611 {
2612 #ifdef CONFIG_X86_64
2613 /*
2614 * TSC is marked unstable when we're running on Hyper-V,
2615 * 'TSC page' clocksource is good.
2616 */
2617 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2618 return false;
2619 #endif
2620 return check_tsc_unstable();
2621 }
2622
2623 /*
2624 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2625 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2626 * participates in.
2627 */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched)2628 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2629 u64 ns, bool matched)
2630 {
2631 struct kvm *kvm = vcpu->kvm;
2632
2633 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2634
2635 /*
2636 * We also track th most recent recorded KHZ, write and time to
2637 * allow the matching interval to be extended at each write.
2638 */
2639 kvm->arch.last_tsc_nsec = ns;
2640 kvm->arch.last_tsc_write = tsc;
2641 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2642 kvm->arch.last_tsc_offset = offset;
2643
2644 vcpu->arch.last_guest_tsc = tsc;
2645
2646 kvm_vcpu_write_tsc_offset(vcpu, offset);
2647
2648 if (!matched) {
2649 /*
2650 * We split periods of matched TSC writes into generations.
2651 * For each generation, we track the original measured
2652 * nanosecond time, offset, and write, so if TSCs are in
2653 * sync, we can match exact offset, and if not, we can match
2654 * exact software computation in compute_guest_tsc()
2655 *
2656 * These values are tracked in kvm->arch.cur_xxx variables.
2657 */
2658 kvm->arch.cur_tsc_generation++;
2659 kvm->arch.cur_tsc_nsec = ns;
2660 kvm->arch.cur_tsc_write = tsc;
2661 kvm->arch.cur_tsc_offset = offset;
2662 kvm->arch.nr_vcpus_matched_tsc = 0;
2663 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2664 kvm->arch.nr_vcpus_matched_tsc++;
2665 }
2666
2667 /* Keep track of which generation this VCPU has synchronized to */
2668 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2669 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2670 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2671
2672 kvm_track_tsc_matching(vcpu, !matched);
2673 }
2674
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2675 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2676 {
2677 u64 data = user_value ? *user_value : 0;
2678 struct kvm *kvm = vcpu->kvm;
2679 u64 offset, ns, elapsed;
2680 unsigned long flags;
2681 bool matched = false;
2682 bool synchronizing = false;
2683
2684 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2685 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2686 ns = get_kvmclock_base_ns();
2687 elapsed = ns - kvm->arch.last_tsc_nsec;
2688
2689 if (vcpu->arch.virtual_tsc_khz) {
2690 if (data == 0) {
2691 /*
2692 * Force synchronization when creating a vCPU, or when
2693 * userspace explicitly writes a zero value.
2694 */
2695 synchronizing = true;
2696 } else if (kvm->arch.user_set_tsc) {
2697 u64 tsc_exp = kvm->arch.last_tsc_write +
2698 nsec_to_cycles(vcpu, elapsed);
2699 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2700 /*
2701 * Here lies UAPI baggage: when a user-initiated TSC write has
2702 * a small delta (1 second) of virtual cycle time against the
2703 * previously set vCPU, we assume that they were intended to be
2704 * in sync and the delta was only due to the racy nature of the
2705 * legacy API.
2706 *
2707 * This trick falls down when restoring a guest which genuinely
2708 * has been running for less time than the 1 second of imprecision
2709 * which we allow for in the legacy API. In this case, the first
2710 * value written by userspace (on any vCPU) should not be subject
2711 * to this 'correction' to make it sync up with values that only
2712 * come from the kernel's default vCPU creation. Make the 1-second
2713 * slop hack only trigger if the user_set_tsc flag is already set.
2714 */
2715 synchronizing = data < tsc_exp + tsc_hz &&
2716 data + tsc_hz > tsc_exp;
2717 }
2718 }
2719
2720 if (user_value)
2721 kvm->arch.user_set_tsc = true;
2722
2723 /*
2724 * For a reliable TSC, we can match TSC offsets, and for an unstable
2725 * TSC, we add elapsed time in this computation. We could let the
2726 * compensation code attempt to catch up if we fall behind, but
2727 * it's better to try to match offsets from the beginning.
2728 */
2729 if (synchronizing &&
2730 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2731 if (!kvm_check_tsc_unstable()) {
2732 offset = kvm->arch.cur_tsc_offset;
2733 } else {
2734 u64 delta = nsec_to_cycles(vcpu, elapsed);
2735 data += delta;
2736 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2737 }
2738 matched = true;
2739 }
2740
2741 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2742 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2743 }
2744
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2745 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2746 s64 adjustment)
2747 {
2748 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2749 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2750 }
2751
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2752 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2753 {
2754 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2755 WARN_ON(adjustment < 0);
2756 adjustment = kvm_scale_tsc((u64) adjustment,
2757 vcpu->arch.l1_tsc_scaling_ratio);
2758 adjust_tsc_offset_guest(vcpu, adjustment);
2759 }
2760
2761 #ifdef CONFIG_X86_64
2762
read_tsc(void)2763 static u64 read_tsc(void)
2764 {
2765 u64 ret = (u64)rdtsc_ordered();
2766 u64 last = pvclock_gtod_data.clock.cycle_last;
2767
2768 if (likely(ret >= last))
2769 return ret;
2770
2771 /*
2772 * GCC likes to generate cmov here, but this branch is extremely
2773 * predictable (it's just a function of time and the likely is
2774 * very likely) and there's a data dependence, so force GCC
2775 * to generate a branch instead. I don't barrier() because
2776 * we don't actually need a barrier, and if this function
2777 * ever gets inlined it will generate worse code.
2778 */
2779 asm volatile ("");
2780 return last;
2781 }
2782
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2783 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2784 int *mode)
2785 {
2786 u64 tsc_pg_val;
2787 long v;
2788
2789 switch (clock->vclock_mode) {
2790 case VDSO_CLOCKMODE_HVCLOCK:
2791 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2792 tsc_timestamp, &tsc_pg_val)) {
2793 /* TSC page valid */
2794 *mode = VDSO_CLOCKMODE_HVCLOCK;
2795 v = (tsc_pg_val - clock->cycle_last) &
2796 clock->mask;
2797 } else {
2798 /* TSC page invalid */
2799 *mode = VDSO_CLOCKMODE_NONE;
2800 }
2801 break;
2802 case VDSO_CLOCKMODE_TSC:
2803 *mode = VDSO_CLOCKMODE_TSC;
2804 *tsc_timestamp = read_tsc();
2805 v = (*tsc_timestamp - clock->cycle_last) &
2806 clock->mask;
2807 break;
2808 default:
2809 *mode = VDSO_CLOCKMODE_NONE;
2810 }
2811
2812 if (*mode == VDSO_CLOCKMODE_NONE)
2813 *tsc_timestamp = v = 0;
2814
2815 return v * clock->mult;
2816 }
2817
2818 /*
2819 * As with get_kvmclock_base_ns(), this counts from boot time, at the
2820 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2821 */
do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2822 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2823 {
2824 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2825 unsigned long seq;
2826 int mode;
2827 u64 ns;
2828
2829 do {
2830 seq = read_seqcount_begin(>od->seq);
2831 ns = gtod->raw_clock.base_cycles;
2832 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2833 ns >>= gtod->raw_clock.shift;
2834 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2835 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2836 *t = ns;
2837
2838 return mode;
2839 }
2840
2841 /*
2842 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2843 * no boot time offset.
2844 */
do_monotonic(s64 * t,u64 * tsc_timestamp)2845 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2846 {
2847 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2848 unsigned long seq;
2849 int mode;
2850 u64 ns;
2851
2852 do {
2853 seq = read_seqcount_begin(>od->seq);
2854 ns = gtod->clock.base_cycles;
2855 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2856 ns >>= gtod->clock.shift;
2857 ns += ktime_to_ns(gtod->clock.offset);
2858 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2859 *t = ns;
2860
2861 return mode;
2862 }
2863
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2864 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2865 {
2866 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2867 unsigned long seq;
2868 int mode;
2869 u64 ns;
2870
2871 do {
2872 seq = read_seqcount_begin(>od->seq);
2873 ts->tv_sec = gtod->wall_time_sec;
2874 ns = gtod->clock.base_cycles;
2875 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2876 ns >>= gtod->clock.shift;
2877 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2878
2879 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2880 ts->tv_nsec = ns;
2881
2882 return mode;
2883 }
2884
2885 /*
2886 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2887 * reports the TSC value from which it do so. Returns true if host is
2888 * using TSC based clocksource.
2889 */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2890 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2891 {
2892 /* checked again under seqlock below */
2893 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2894 return false;
2895
2896 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2897 tsc_timestamp));
2898 }
2899
2900 /*
2901 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2902 * so. Returns true if host is using TSC based clocksource.
2903 */
kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2904 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2905 {
2906 /* checked again under seqlock below */
2907 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2908 return false;
2909
2910 return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2911 tsc_timestamp));
2912 }
2913
2914 /*
2915 * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2916 * so. Returns true if host is using TSC based clocksource.
2917 *
2918 * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2919 * for that.
2920 */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2921 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2922 u64 *tsc_timestamp)
2923 {
2924 /* checked again under seqlock below */
2925 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2926 return false;
2927
2928 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2929 }
2930 #endif
2931
2932 /*
2933 *
2934 * Assuming a stable TSC across physical CPUS, and a stable TSC
2935 * across virtual CPUs, the following condition is possible.
2936 * Each numbered line represents an event visible to both
2937 * CPUs at the next numbered event.
2938 *
2939 * "timespecX" represents host monotonic time. "tscX" represents
2940 * RDTSC value.
2941 *
2942 * VCPU0 on CPU0 | VCPU1 on CPU1
2943 *
2944 * 1. read timespec0,tsc0
2945 * 2. | timespec1 = timespec0 + N
2946 * | tsc1 = tsc0 + M
2947 * 3. transition to guest | transition to guest
2948 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2949 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2950 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2951 *
2952 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2953 *
2954 * - ret0 < ret1
2955 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2956 * ...
2957 * - 0 < N - M => M < N
2958 *
2959 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2960 * always the case (the difference between two distinct xtime instances
2961 * might be smaller then the difference between corresponding TSC reads,
2962 * when updating guest vcpus pvclock areas).
2963 *
2964 * To avoid that problem, do not allow visibility of distinct
2965 * system_timestamp/tsc_timestamp values simultaneously: use a master
2966 * copy of host monotonic time values. Update that master copy
2967 * in lockstep.
2968 *
2969 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2970 *
2971 */
2972
pvclock_update_vm_gtod_copy(struct kvm * kvm)2973 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2974 {
2975 #ifdef CONFIG_X86_64
2976 struct kvm_arch *ka = &kvm->arch;
2977 int vclock_mode;
2978 bool host_tsc_clocksource, vcpus_matched;
2979
2980 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2981 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2982 atomic_read(&kvm->online_vcpus));
2983
2984 /*
2985 * If the host uses TSC clock, then passthrough TSC as stable
2986 * to the guest.
2987 */
2988 host_tsc_clocksource = kvm_get_time_and_clockread(
2989 &ka->master_kernel_ns,
2990 &ka->master_cycle_now);
2991
2992 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2993 && !ka->backwards_tsc_observed
2994 && !ka->boot_vcpu_runs_old_kvmclock;
2995
2996 if (ka->use_master_clock)
2997 atomic_set(&kvm_guest_has_master_clock, 1);
2998
2999 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3000 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3001 vcpus_matched);
3002 #endif
3003 }
3004
kvm_make_mclock_inprogress_request(struct kvm * kvm)3005 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3006 {
3007 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3008 }
3009
__kvm_start_pvclock_update(struct kvm * kvm)3010 static void __kvm_start_pvclock_update(struct kvm *kvm)
3011 {
3012 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3013 write_seqcount_begin(&kvm->arch.pvclock_sc);
3014 }
3015
kvm_start_pvclock_update(struct kvm * kvm)3016 static void kvm_start_pvclock_update(struct kvm *kvm)
3017 {
3018 kvm_make_mclock_inprogress_request(kvm);
3019
3020 /* no guest entries from this point */
3021 __kvm_start_pvclock_update(kvm);
3022 }
3023
kvm_end_pvclock_update(struct kvm * kvm)3024 static void kvm_end_pvclock_update(struct kvm *kvm)
3025 {
3026 struct kvm_arch *ka = &kvm->arch;
3027 struct kvm_vcpu *vcpu;
3028 unsigned long i;
3029
3030 write_seqcount_end(&ka->pvclock_sc);
3031 raw_spin_unlock_irq(&ka->tsc_write_lock);
3032 kvm_for_each_vcpu(i, vcpu, kvm)
3033 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3034
3035 /* guest entries allowed */
3036 kvm_for_each_vcpu(i, vcpu, kvm)
3037 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3038 }
3039
kvm_update_masterclock(struct kvm * kvm)3040 static void kvm_update_masterclock(struct kvm *kvm)
3041 {
3042 kvm_hv_request_tsc_page_update(kvm);
3043 kvm_start_pvclock_update(kvm);
3044 pvclock_update_vm_gtod_copy(kvm);
3045 kvm_end_pvclock_update(kvm);
3046 }
3047
3048 /*
3049 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3050 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3051 * can change during boot even if the TSC is constant, as it's possible for KVM
3052 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3053 * notification when calibration completes, but practically speaking calibration
3054 * will complete before userspace is alive enough to create VMs.
3055 */
get_cpu_tsc_khz(void)3056 static unsigned long get_cpu_tsc_khz(void)
3057 {
3058 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3059 return tsc_khz;
3060 else
3061 return __this_cpu_read(cpu_tsc_khz);
3062 }
3063
3064 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3065 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3066 {
3067 struct kvm_arch *ka = &kvm->arch;
3068 struct pvclock_vcpu_time_info hv_clock;
3069
3070 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3071 get_cpu();
3072
3073 data->flags = 0;
3074 if (ka->use_master_clock &&
3075 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3076 #ifdef CONFIG_X86_64
3077 struct timespec64 ts;
3078
3079 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3080 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3081 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3082 } else
3083 #endif
3084 data->host_tsc = rdtsc();
3085
3086 data->flags |= KVM_CLOCK_TSC_STABLE;
3087 hv_clock.tsc_timestamp = ka->master_cycle_now;
3088 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3089 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3090 &hv_clock.tsc_shift,
3091 &hv_clock.tsc_to_system_mul);
3092 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3093 } else {
3094 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3095 }
3096
3097 put_cpu();
3098 }
3099
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3100 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3101 {
3102 struct kvm_arch *ka = &kvm->arch;
3103 unsigned seq;
3104
3105 do {
3106 seq = read_seqcount_begin(&ka->pvclock_sc);
3107 __get_kvmclock(kvm, data);
3108 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3109 }
3110
get_kvmclock_ns(struct kvm * kvm)3111 u64 get_kvmclock_ns(struct kvm *kvm)
3112 {
3113 struct kvm_clock_data data;
3114
3115 get_kvmclock(kvm, &data);
3116 return data.clock;
3117 }
3118
kvm_setup_guest_pvclock(struct kvm_vcpu * v,struct gfn_to_pfn_cache * gpc,unsigned int offset,bool force_tsc_unstable)3119 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3120 struct gfn_to_pfn_cache *gpc,
3121 unsigned int offset,
3122 bool force_tsc_unstable)
3123 {
3124 struct kvm_vcpu_arch *vcpu = &v->arch;
3125 struct pvclock_vcpu_time_info *guest_hv_clock;
3126 unsigned long flags;
3127
3128 read_lock_irqsave(&gpc->lock, flags);
3129 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3130 read_unlock_irqrestore(&gpc->lock, flags);
3131
3132 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3133 return;
3134
3135 read_lock_irqsave(&gpc->lock, flags);
3136 }
3137
3138 guest_hv_clock = (void *)(gpc->khva + offset);
3139
3140 /*
3141 * This VCPU is paused, but it's legal for a guest to read another
3142 * VCPU's kvmclock, so we really have to follow the specification where
3143 * it says that version is odd if data is being modified, and even after
3144 * it is consistent.
3145 */
3146
3147 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3148 smp_wmb();
3149
3150 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3151 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3152
3153 if (vcpu->pvclock_set_guest_stopped_request) {
3154 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3155 vcpu->pvclock_set_guest_stopped_request = false;
3156 }
3157
3158 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3159
3160 if (force_tsc_unstable)
3161 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3162
3163 smp_wmb();
3164
3165 guest_hv_clock->version = ++vcpu->hv_clock.version;
3166
3167 kvm_gpc_mark_dirty_in_slot(gpc);
3168 read_unlock_irqrestore(&gpc->lock, flags);
3169
3170 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3171 }
3172
kvm_guest_time_update(struct kvm_vcpu * v)3173 static int kvm_guest_time_update(struct kvm_vcpu *v)
3174 {
3175 unsigned long flags, tgt_tsc_khz;
3176 unsigned seq;
3177 struct kvm_vcpu_arch *vcpu = &v->arch;
3178 struct kvm_arch *ka = &v->kvm->arch;
3179 s64 kernel_ns;
3180 u64 tsc_timestamp, host_tsc;
3181 u8 pvclock_flags;
3182 bool use_master_clock;
3183 #ifdef CONFIG_KVM_XEN
3184 /*
3185 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3186 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3187 * This default behaviour led to bugs in some guest kernels which cause
3188 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3189 */
3190 bool xen_pvclock_tsc_unstable =
3191 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3192 #endif
3193
3194 kernel_ns = 0;
3195 host_tsc = 0;
3196
3197 /*
3198 * If the host uses TSC clock, then passthrough TSC as stable
3199 * to the guest.
3200 */
3201 do {
3202 seq = read_seqcount_begin(&ka->pvclock_sc);
3203 use_master_clock = ka->use_master_clock;
3204 if (use_master_clock) {
3205 host_tsc = ka->master_cycle_now;
3206 kernel_ns = ka->master_kernel_ns;
3207 }
3208 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3209
3210 /* Keep irq disabled to prevent changes to the clock */
3211 local_irq_save(flags);
3212 tgt_tsc_khz = get_cpu_tsc_khz();
3213 if (unlikely(tgt_tsc_khz == 0)) {
3214 local_irq_restore(flags);
3215 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3216 return 1;
3217 }
3218 if (!use_master_clock) {
3219 host_tsc = rdtsc();
3220 kernel_ns = get_kvmclock_base_ns();
3221 }
3222
3223 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3224
3225 /*
3226 * We may have to catch up the TSC to match elapsed wall clock
3227 * time for two reasons, even if kvmclock is used.
3228 * 1) CPU could have been running below the maximum TSC rate
3229 * 2) Broken TSC compensation resets the base at each VCPU
3230 * entry to avoid unknown leaps of TSC even when running
3231 * again on the same CPU. This may cause apparent elapsed
3232 * time to disappear, and the guest to stand still or run
3233 * very slowly.
3234 */
3235 if (vcpu->tsc_catchup) {
3236 u64 tsc = compute_guest_tsc(v, kernel_ns);
3237 if (tsc > tsc_timestamp) {
3238 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3239 tsc_timestamp = tsc;
3240 }
3241 }
3242
3243 local_irq_restore(flags);
3244
3245 /* With all the info we got, fill in the values */
3246
3247 if (kvm_caps.has_tsc_control)
3248 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3249 v->arch.l1_tsc_scaling_ratio);
3250
3251 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3252 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3253 &vcpu->hv_clock.tsc_shift,
3254 &vcpu->hv_clock.tsc_to_system_mul);
3255 vcpu->hw_tsc_khz = tgt_tsc_khz;
3256 kvm_xen_update_tsc_info(v);
3257 }
3258
3259 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3260 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3261 vcpu->last_guest_tsc = tsc_timestamp;
3262
3263 /* If the host uses TSC clocksource, then it is stable */
3264 pvclock_flags = 0;
3265 if (use_master_clock)
3266 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3267
3268 vcpu->hv_clock.flags = pvclock_flags;
3269
3270 if (vcpu->pv_time.active)
3271 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3272 #ifdef CONFIG_KVM_XEN
3273 if (vcpu->xen.vcpu_info_cache.active)
3274 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3275 offsetof(struct compat_vcpu_info, time),
3276 xen_pvclock_tsc_unstable);
3277 if (vcpu->xen.vcpu_time_info_cache.active)
3278 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3279 xen_pvclock_tsc_unstable);
3280 #endif
3281 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3282 return 0;
3283 }
3284
3285 /*
3286 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3287 * which it started (i.e. its epoch, when its kvmclock was zero).
3288 *
3289 * In fact those clocks are subtly different; wall clock frequency is
3290 * adjusted by NTP and has leap seconds, while the kvmclock is a
3291 * simple function of the TSC without any such adjustment.
3292 *
3293 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3294 * that and kvmclock, but even that would be subject to change over
3295 * time.
3296 *
3297 * Attempt to calculate the epoch at a given moment using the *same*
3298 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3299 * wallclock and kvmclock times, and subtracting one from the other.
3300 *
3301 * Fall back to using their values at slightly different moments by
3302 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3303 */
kvm_get_wall_clock_epoch(struct kvm * kvm)3304 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3305 {
3306 #ifdef CONFIG_X86_64
3307 struct pvclock_vcpu_time_info hv_clock;
3308 struct kvm_arch *ka = &kvm->arch;
3309 unsigned long seq, local_tsc_khz;
3310 struct timespec64 ts;
3311 uint64_t host_tsc;
3312
3313 do {
3314 seq = read_seqcount_begin(&ka->pvclock_sc);
3315
3316 local_tsc_khz = 0;
3317 if (!ka->use_master_clock)
3318 break;
3319
3320 /*
3321 * The TSC read and the call to get_cpu_tsc_khz() must happen
3322 * on the same CPU.
3323 */
3324 get_cpu();
3325
3326 local_tsc_khz = get_cpu_tsc_khz();
3327
3328 if (local_tsc_khz &&
3329 !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3330 local_tsc_khz = 0; /* Fall back to old method */
3331
3332 put_cpu();
3333
3334 /*
3335 * These values must be snapshotted within the seqcount loop.
3336 * After that, it's just mathematics which can happen on any
3337 * CPU at any time.
3338 */
3339 hv_clock.tsc_timestamp = ka->master_cycle_now;
3340 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3341
3342 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3343
3344 /*
3345 * If the conditions were right, and obtaining the wallclock+TSC was
3346 * successful, calculate the KVM clock at the corresponding time and
3347 * subtract one from the other to get the guest's epoch in nanoseconds
3348 * since 1970-01-01.
3349 */
3350 if (local_tsc_khz) {
3351 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3352 &hv_clock.tsc_shift,
3353 &hv_clock.tsc_to_system_mul);
3354 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3355 __pvclock_read_cycles(&hv_clock, host_tsc);
3356 }
3357 #endif
3358 return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3359 }
3360
3361 /*
3362 * kvmclock updates which are isolated to a given vcpu, such as
3363 * vcpu->cpu migration, should not allow system_timestamp from
3364 * the rest of the vcpus to remain static. Otherwise ntp frequency
3365 * correction applies to one vcpu's system_timestamp but not
3366 * the others.
3367 *
3368 * So in those cases, request a kvmclock update for all vcpus.
3369 * We need to rate-limit these requests though, as they can
3370 * considerably slow guests that have a large number of vcpus.
3371 * The time for a remote vcpu to update its kvmclock is bound
3372 * by the delay we use to rate-limit the updates.
3373 */
3374
3375 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3376
kvmclock_update_fn(struct work_struct * work)3377 static void kvmclock_update_fn(struct work_struct *work)
3378 {
3379 unsigned long i;
3380 struct delayed_work *dwork = to_delayed_work(work);
3381 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3382 kvmclock_update_work);
3383 struct kvm *kvm = container_of(ka, struct kvm, arch);
3384 struct kvm_vcpu *vcpu;
3385
3386 kvm_for_each_vcpu(i, vcpu, kvm) {
3387 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3388 kvm_vcpu_kick(vcpu);
3389 }
3390 }
3391
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3392 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3393 {
3394 struct kvm *kvm = v->kvm;
3395
3396 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3397 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3398 KVMCLOCK_UPDATE_DELAY);
3399 }
3400
3401 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3402
kvmclock_sync_fn(struct work_struct * work)3403 static void kvmclock_sync_fn(struct work_struct *work)
3404 {
3405 struct delayed_work *dwork = to_delayed_work(work);
3406 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3407 kvmclock_sync_work);
3408 struct kvm *kvm = container_of(ka, struct kvm, arch);
3409
3410 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3411 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3412 KVMCLOCK_SYNC_PERIOD);
3413 }
3414
3415 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3416 static bool is_mci_control_msr(u32 msr)
3417 {
3418 return (msr & 3) == 0;
3419 }
is_mci_status_msr(u32 msr)3420 static bool is_mci_status_msr(u32 msr)
3421 {
3422 return (msr & 3) == 1;
3423 }
3424
3425 /*
3426 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3427 */
can_set_mci_status(struct kvm_vcpu * vcpu)3428 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3429 {
3430 /* McStatusWrEn enabled? */
3431 if (guest_cpuid_is_amd_compatible(vcpu))
3432 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3433
3434 return false;
3435 }
3436
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3437 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3438 {
3439 u64 mcg_cap = vcpu->arch.mcg_cap;
3440 unsigned bank_num = mcg_cap & 0xff;
3441 u32 msr = msr_info->index;
3442 u64 data = msr_info->data;
3443 u32 offset, last_msr;
3444
3445 switch (msr) {
3446 case MSR_IA32_MCG_STATUS:
3447 vcpu->arch.mcg_status = data;
3448 break;
3449 case MSR_IA32_MCG_CTL:
3450 if (!(mcg_cap & MCG_CTL_P) &&
3451 (data || !msr_info->host_initiated))
3452 return 1;
3453 if (data != 0 && data != ~(u64)0)
3454 return 1;
3455 vcpu->arch.mcg_ctl = data;
3456 break;
3457 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3458 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3459 if (msr > last_msr)
3460 return 1;
3461
3462 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3463 return 1;
3464 /* An attempt to write a 1 to a reserved bit raises #GP */
3465 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3466 return 1;
3467 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3468 last_msr + 1 - MSR_IA32_MC0_CTL2);
3469 vcpu->arch.mci_ctl2_banks[offset] = data;
3470 break;
3471 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3472 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3473 if (msr > last_msr)
3474 return 1;
3475
3476 /*
3477 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3478 * values are architecturally undefined. But, some Linux
3479 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3480 * issue on AMD K8s, allow bit 10 to be clear when setting all
3481 * other bits in order to avoid an uncaught #GP in the guest.
3482 *
3483 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3484 * single-bit ECC data errors.
3485 */
3486 if (is_mci_control_msr(msr) &&
3487 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3488 return 1;
3489
3490 /*
3491 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3492 * AMD-based CPUs allow non-zero values, but if and only if
3493 * HWCR[McStatusWrEn] is set.
3494 */
3495 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3496 data != 0 && !can_set_mci_status(vcpu))
3497 return 1;
3498
3499 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3500 last_msr + 1 - MSR_IA32_MC0_CTL);
3501 vcpu->arch.mce_banks[offset] = data;
3502 break;
3503 default:
3504 return 1;
3505 }
3506 return 0;
3507 }
3508
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3509 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3510 {
3511 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3512
3513 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3514 }
3515
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3516 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3517 {
3518 gpa_t gpa = data & ~0x3f;
3519
3520 /* Bits 4:5 are reserved, Should be zero */
3521 if (data & 0x30)
3522 return 1;
3523
3524 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3525 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3526 return 1;
3527
3528 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3529 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3530 return 1;
3531
3532 if (!lapic_in_kernel(vcpu))
3533 return data ? 1 : 0;
3534
3535 vcpu->arch.apf.msr_en_val = data;
3536
3537 if (!kvm_pv_async_pf_enabled(vcpu)) {
3538 kvm_clear_async_pf_completion_queue(vcpu);
3539 kvm_async_pf_hash_reset(vcpu);
3540 return 0;
3541 }
3542
3543 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3544 sizeof(u64)))
3545 return 1;
3546
3547 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3548 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3549
3550 kvm_async_pf_wakeup_all(vcpu);
3551
3552 return 0;
3553 }
3554
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3555 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3556 {
3557 /* Bits 8-63 are reserved */
3558 if (data >> 8)
3559 return 1;
3560
3561 if (!lapic_in_kernel(vcpu))
3562 return 1;
3563
3564 vcpu->arch.apf.msr_int_val = data;
3565
3566 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3567
3568 return 0;
3569 }
3570
kvmclock_reset(struct kvm_vcpu * vcpu)3571 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3572 {
3573 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3574 vcpu->arch.time = 0;
3575 }
3576
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3577 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3578 {
3579 ++vcpu->stat.tlb_flush;
3580 kvm_x86_call(flush_tlb_all)(vcpu);
3581
3582 /* Flushing all ASIDs flushes the current ASID... */
3583 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3584 }
3585
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3586 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3587 {
3588 ++vcpu->stat.tlb_flush;
3589
3590 if (!tdp_enabled) {
3591 /*
3592 * A TLB flush on behalf of the guest is equivalent to
3593 * INVPCID(all), toggling CR4.PGE, etc., which requires
3594 * a forced sync of the shadow page tables. Ensure all the
3595 * roots are synced and the guest TLB in hardware is clean.
3596 */
3597 kvm_mmu_sync_roots(vcpu);
3598 kvm_mmu_sync_prev_roots(vcpu);
3599 }
3600
3601 kvm_x86_call(flush_tlb_guest)(vcpu);
3602
3603 /*
3604 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3605 * grained flushing.
3606 */
3607 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3608 }
3609
3610
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3611 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3612 {
3613 ++vcpu->stat.tlb_flush;
3614 kvm_x86_call(flush_tlb_current)(vcpu);
3615 }
3616
3617 /*
3618 * Service "local" TLB flush requests, which are specific to the current MMU
3619 * context. In addition to the generic event handling in vcpu_enter_guest(),
3620 * TLB flushes that are targeted at an MMU context also need to be serviced
3621 * prior before nested VM-Enter/VM-Exit.
3622 */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3623 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3624 {
3625 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3626 kvm_vcpu_flush_tlb_current(vcpu);
3627
3628 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3629 kvm_vcpu_flush_tlb_guest(vcpu);
3630 }
3631 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3632
record_steal_time(struct kvm_vcpu * vcpu)3633 static void record_steal_time(struct kvm_vcpu *vcpu)
3634 {
3635 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3636 struct kvm_steal_time __user *st;
3637 struct kvm_memslots *slots;
3638 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3639 u64 steal;
3640 u32 version;
3641
3642 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3643 kvm_xen_runstate_set_running(vcpu);
3644 return;
3645 }
3646
3647 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3648 return;
3649
3650 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3651 return;
3652
3653 slots = kvm_memslots(vcpu->kvm);
3654
3655 if (unlikely(slots->generation != ghc->generation ||
3656 gpa != ghc->gpa ||
3657 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3658 /* We rely on the fact that it fits in a single page. */
3659 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3660
3661 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3662 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3663 return;
3664 }
3665
3666 st = (struct kvm_steal_time __user *)ghc->hva;
3667 /*
3668 * Doing a TLB flush here, on the guest's behalf, can avoid
3669 * expensive IPIs.
3670 */
3671 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3672 u8 st_preempted = 0;
3673 int err = -EFAULT;
3674
3675 if (!user_access_begin(st, sizeof(*st)))
3676 return;
3677
3678 asm volatile("1: xchgb %0, %2\n"
3679 "xor %1, %1\n"
3680 "2:\n"
3681 _ASM_EXTABLE_UA(1b, 2b)
3682 : "+q" (st_preempted),
3683 "+&r" (err),
3684 "+m" (st->preempted));
3685 if (err)
3686 goto out;
3687
3688 user_access_end();
3689
3690 vcpu->arch.st.preempted = 0;
3691
3692 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3693 st_preempted & KVM_VCPU_FLUSH_TLB);
3694 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3695 kvm_vcpu_flush_tlb_guest(vcpu);
3696
3697 if (!user_access_begin(st, sizeof(*st)))
3698 goto dirty;
3699 } else {
3700 if (!user_access_begin(st, sizeof(*st)))
3701 return;
3702
3703 unsafe_put_user(0, &st->preempted, out);
3704 vcpu->arch.st.preempted = 0;
3705 }
3706
3707 unsafe_get_user(version, &st->version, out);
3708 if (version & 1)
3709 version += 1; /* first time write, random junk */
3710
3711 version += 1;
3712 unsafe_put_user(version, &st->version, out);
3713
3714 smp_wmb();
3715
3716 unsafe_get_user(steal, &st->steal, out);
3717 steal += current->sched_info.run_delay -
3718 vcpu->arch.st.last_steal;
3719 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3720 unsafe_put_user(steal, &st->steal, out);
3721
3722 version += 1;
3723 unsafe_put_user(version, &st->version, out);
3724
3725 out:
3726 user_access_end();
3727 dirty:
3728 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3729 }
3730
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3731 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3732 {
3733 u32 msr = msr_info->index;
3734 u64 data = msr_info->data;
3735
3736 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3737 return kvm_xen_write_hypercall_page(vcpu, data);
3738
3739 switch (msr) {
3740 case MSR_AMD64_NB_CFG:
3741 case MSR_IA32_UCODE_WRITE:
3742 case MSR_VM_HSAVE_PA:
3743 case MSR_AMD64_PATCH_LOADER:
3744 case MSR_AMD64_BU_CFG2:
3745 case MSR_AMD64_DC_CFG:
3746 case MSR_AMD64_TW_CFG:
3747 case MSR_F15H_EX_CFG:
3748 break;
3749
3750 case MSR_IA32_UCODE_REV:
3751 if (msr_info->host_initiated)
3752 vcpu->arch.microcode_version = data;
3753 break;
3754 case MSR_IA32_ARCH_CAPABILITIES:
3755 if (!msr_info->host_initiated ||
3756 !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3757 return KVM_MSR_RET_UNSUPPORTED;
3758 vcpu->arch.arch_capabilities = data;
3759 break;
3760 case MSR_IA32_PERF_CAPABILITIES:
3761 if (!msr_info->host_initiated ||
3762 !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
3763 return KVM_MSR_RET_UNSUPPORTED;
3764
3765 if (data & ~kvm_caps.supported_perf_cap)
3766 return 1;
3767
3768 /*
3769 * Note, this is not just a performance optimization! KVM
3770 * disallows changing feature MSRs after the vCPU has run; PMU
3771 * refresh will bug the VM if called after the vCPU has run.
3772 */
3773 if (vcpu->arch.perf_capabilities == data)
3774 break;
3775
3776 vcpu->arch.perf_capabilities = data;
3777 kvm_pmu_refresh(vcpu);
3778 break;
3779 case MSR_IA32_PRED_CMD: {
3780 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3781
3782 if (!msr_info->host_initiated) {
3783 if ((!guest_has_pred_cmd_msr(vcpu)))
3784 return 1;
3785
3786 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3787 !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB))
3788 reserved_bits |= PRED_CMD_IBPB;
3789
3790 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB))
3791 reserved_bits |= PRED_CMD_SBPB;
3792 }
3793
3794 if (!boot_cpu_has(X86_FEATURE_IBPB))
3795 reserved_bits |= PRED_CMD_IBPB;
3796
3797 if (!boot_cpu_has(X86_FEATURE_SBPB))
3798 reserved_bits |= PRED_CMD_SBPB;
3799
3800 if (data & reserved_bits)
3801 return 1;
3802
3803 if (!data)
3804 break;
3805
3806 wrmsrl(MSR_IA32_PRED_CMD, data);
3807 break;
3808 }
3809 case MSR_IA32_FLUSH_CMD:
3810 if (!msr_info->host_initiated &&
3811 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D))
3812 return 1;
3813
3814 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3815 return 1;
3816 if (!data)
3817 break;
3818
3819 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3820 break;
3821 case MSR_EFER:
3822 return set_efer(vcpu, msr_info);
3823 case MSR_K7_HWCR:
3824 data &= ~(u64)0x40; /* ignore flush filter disable */
3825 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3826 data &= ~(u64)0x8; /* ignore TLB cache disable */
3827
3828 /*
3829 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3830 * through at least v6.6 whine if TscFreqSel is clear,
3831 * depending on F/M/S.
3832 */
3833 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3834 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3835 return 1;
3836 }
3837 vcpu->arch.msr_hwcr = data;
3838 break;
3839 case MSR_FAM10H_MMIO_CONF_BASE:
3840 if (data != 0) {
3841 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3842 return 1;
3843 }
3844 break;
3845 case MSR_IA32_CR_PAT:
3846 if (!kvm_pat_valid(data))
3847 return 1;
3848
3849 vcpu->arch.pat = data;
3850 break;
3851 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3852 case MSR_MTRRdefType:
3853 return kvm_mtrr_set_msr(vcpu, msr, data);
3854 case MSR_IA32_APICBASE:
3855 return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
3856 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3857 return kvm_x2apic_msr_write(vcpu, msr, data);
3858 case MSR_IA32_TSC_DEADLINE:
3859 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3860 break;
3861 case MSR_IA32_TSC_ADJUST:
3862 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3863 if (!msr_info->host_initiated) {
3864 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3865 adjust_tsc_offset_guest(vcpu, adj);
3866 /* Before back to guest, tsc_timestamp must be adjusted
3867 * as well, otherwise guest's percpu pvclock time could jump.
3868 */
3869 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3870 }
3871 vcpu->arch.ia32_tsc_adjust_msr = data;
3872 }
3873 break;
3874 case MSR_IA32_MISC_ENABLE: {
3875 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3876
3877 if (!msr_info->host_initiated) {
3878 /* RO bits */
3879 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3880 return 1;
3881
3882 /* R bits, i.e. writes are ignored, but don't fault. */
3883 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3884 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3885 }
3886
3887 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3888 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3889 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3))
3890 return 1;
3891 vcpu->arch.ia32_misc_enable_msr = data;
3892 kvm_update_cpuid_runtime(vcpu);
3893 } else {
3894 vcpu->arch.ia32_misc_enable_msr = data;
3895 }
3896 break;
3897 }
3898 case MSR_IA32_SMBASE:
3899 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3900 return 1;
3901 vcpu->arch.smbase = data;
3902 break;
3903 case MSR_IA32_POWER_CTL:
3904 vcpu->arch.msr_ia32_power_ctl = data;
3905 break;
3906 case MSR_IA32_TSC:
3907 if (msr_info->host_initiated) {
3908 kvm_synchronize_tsc(vcpu, &data);
3909 } else {
3910 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3911 adjust_tsc_offset_guest(vcpu, adj);
3912 vcpu->arch.ia32_tsc_adjust_msr += adj;
3913 }
3914 break;
3915 case MSR_IA32_XSS:
3916 if (!msr_info->host_initiated &&
3917 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3918 return 1;
3919 /*
3920 * KVM supports exposing PT to the guest, but does not support
3921 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3922 * XSAVES/XRSTORS to save/restore PT MSRs.
3923 */
3924 if (data & ~kvm_caps.supported_xss)
3925 return 1;
3926 vcpu->arch.ia32_xss = data;
3927 kvm_update_cpuid_runtime(vcpu);
3928 break;
3929 case MSR_SMI_COUNT:
3930 if (!msr_info->host_initiated)
3931 return 1;
3932 vcpu->arch.smi_count = data;
3933 break;
3934 case MSR_KVM_WALL_CLOCK_NEW:
3935 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3936 return 1;
3937
3938 vcpu->kvm->arch.wall_clock = data;
3939 kvm_write_wall_clock(vcpu->kvm, data, 0);
3940 break;
3941 case MSR_KVM_WALL_CLOCK:
3942 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3943 return 1;
3944
3945 vcpu->kvm->arch.wall_clock = data;
3946 kvm_write_wall_clock(vcpu->kvm, data, 0);
3947 break;
3948 case MSR_KVM_SYSTEM_TIME_NEW:
3949 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3950 return 1;
3951
3952 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3953 break;
3954 case MSR_KVM_SYSTEM_TIME:
3955 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3956 return 1;
3957
3958 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3959 break;
3960 case MSR_KVM_ASYNC_PF_EN:
3961 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3962 return 1;
3963
3964 if (kvm_pv_enable_async_pf(vcpu, data))
3965 return 1;
3966 break;
3967 case MSR_KVM_ASYNC_PF_INT:
3968 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3969 return 1;
3970
3971 if (kvm_pv_enable_async_pf_int(vcpu, data))
3972 return 1;
3973 break;
3974 case MSR_KVM_ASYNC_PF_ACK:
3975 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3976 return 1;
3977 if (data & 0x1) {
3978 vcpu->arch.apf.pageready_pending = false;
3979 kvm_check_async_pf_completion(vcpu);
3980 }
3981 break;
3982 case MSR_KVM_STEAL_TIME:
3983 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3984 return 1;
3985
3986 if (unlikely(!sched_info_on()))
3987 return 1;
3988
3989 if (data & KVM_STEAL_RESERVED_MASK)
3990 return 1;
3991
3992 vcpu->arch.st.msr_val = data;
3993
3994 if (!(data & KVM_MSR_ENABLED))
3995 break;
3996
3997 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3998
3999 break;
4000 case MSR_KVM_PV_EOI_EN:
4001 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4002 return 1;
4003
4004 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4005 return 1;
4006 break;
4007
4008 case MSR_KVM_POLL_CONTROL:
4009 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4010 return 1;
4011
4012 /* only enable bit supported */
4013 if (data & (-1ULL << 1))
4014 return 1;
4015
4016 vcpu->arch.msr_kvm_poll_control = data;
4017 break;
4018
4019 case MSR_IA32_MCG_CTL:
4020 case MSR_IA32_MCG_STATUS:
4021 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4022 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4023 return set_msr_mce(vcpu, msr_info);
4024
4025 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4026 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4027 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4028 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4029 if (kvm_pmu_is_valid_msr(vcpu, msr))
4030 return kvm_pmu_set_msr(vcpu, msr_info);
4031
4032 if (data)
4033 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4034 break;
4035 case MSR_K7_CLK_CTL:
4036 /*
4037 * Ignore all writes to this no longer documented MSR.
4038 * Writes are only relevant for old K7 processors,
4039 * all pre-dating SVM, but a recommended workaround from
4040 * AMD for these chips. It is possible to specify the
4041 * affected processor models on the command line, hence
4042 * the need to ignore the workaround.
4043 */
4044 break;
4045 #ifdef CONFIG_KVM_HYPERV
4046 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4047 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4048 case HV_X64_MSR_SYNDBG_OPTIONS:
4049 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4050 case HV_X64_MSR_CRASH_CTL:
4051 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4052 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4053 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4054 case HV_X64_MSR_TSC_EMULATION_STATUS:
4055 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4056 return kvm_hv_set_msr_common(vcpu, msr, data,
4057 msr_info->host_initiated);
4058 #endif
4059 case MSR_IA32_BBL_CR_CTL3:
4060 /* Drop writes to this legacy MSR -- see rdmsr
4061 * counterpart for further detail.
4062 */
4063 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4064 break;
4065 case MSR_AMD64_OSVW_ID_LENGTH:
4066 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4067 return 1;
4068 vcpu->arch.osvw.length = data;
4069 break;
4070 case MSR_AMD64_OSVW_STATUS:
4071 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4072 return 1;
4073 vcpu->arch.osvw.status = data;
4074 break;
4075 case MSR_PLATFORM_INFO:
4076 if (!msr_info->host_initiated)
4077 return 1;
4078 vcpu->arch.msr_platform_info = data;
4079 break;
4080 case MSR_MISC_FEATURES_ENABLES:
4081 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4082 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4083 !supports_cpuid_fault(vcpu)))
4084 return 1;
4085 vcpu->arch.msr_misc_features_enables = data;
4086 break;
4087 #ifdef CONFIG_X86_64
4088 case MSR_IA32_XFD:
4089 if (!msr_info->host_initiated &&
4090 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4091 return 1;
4092
4093 if (data & ~kvm_guest_supported_xfd(vcpu))
4094 return 1;
4095
4096 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4097 break;
4098 case MSR_IA32_XFD_ERR:
4099 if (!msr_info->host_initiated &&
4100 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4101 return 1;
4102
4103 if (data & ~kvm_guest_supported_xfd(vcpu))
4104 return 1;
4105
4106 vcpu->arch.guest_fpu.xfd_err = data;
4107 break;
4108 #endif
4109 default:
4110 if (kvm_pmu_is_valid_msr(vcpu, msr))
4111 return kvm_pmu_set_msr(vcpu, msr_info);
4112
4113 return KVM_MSR_RET_UNSUPPORTED;
4114 }
4115 return 0;
4116 }
4117 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4118
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4119 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4120 {
4121 u64 data;
4122 u64 mcg_cap = vcpu->arch.mcg_cap;
4123 unsigned bank_num = mcg_cap & 0xff;
4124 u32 offset, last_msr;
4125
4126 switch (msr) {
4127 case MSR_IA32_P5_MC_ADDR:
4128 case MSR_IA32_P5_MC_TYPE:
4129 data = 0;
4130 break;
4131 case MSR_IA32_MCG_CAP:
4132 data = vcpu->arch.mcg_cap;
4133 break;
4134 case MSR_IA32_MCG_CTL:
4135 if (!(mcg_cap & MCG_CTL_P) && !host)
4136 return 1;
4137 data = vcpu->arch.mcg_ctl;
4138 break;
4139 case MSR_IA32_MCG_STATUS:
4140 data = vcpu->arch.mcg_status;
4141 break;
4142 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4143 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4144 if (msr > last_msr)
4145 return 1;
4146
4147 if (!(mcg_cap & MCG_CMCI_P) && !host)
4148 return 1;
4149 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4150 last_msr + 1 - MSR_IA32_MC0_CTL2);
4151 data = vcpu->arch.mci_ctl2_banks[offset];
4152 break;
4153 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4154 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4155 if (msr > last_msr)
4156 return 1;
4157
4158 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4159 last_msr + 1 - MSR_IA32_MC0_CTL);
4160 data = vcpu->arch.mce_banks[offset];
4161 break;
4162 default:
4163 return 1;
4164 }
4165 *pdata = data;
4166 return 0;
4167 }
4168
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4169 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4170 {
4171 switch (msr_info->index) {
4172 case MSR_IA32_PLATFORM_ID:
4173 case MSR_IA32_EBL_CR_POWERON:
4174 case MSR_IA32_LASTBRANCHFROMIP:
4175 case MSR_IA32_LASTBRANCHTOIP:
4176 case MSR_IA32_LASTINTFROMIP:
4177 case MSR_IA32_LASTINTTOIP:
4178 case MSR_AMD64_SYSCFG:
4179 case MSR_K8_TSEG_ADDR:
4180 case MSR_K8_TSEG_MASK:
4181 case MSR_VM_HSAVE_PA:
4182 case MSR_K8_INT_PENDING_MSG:
4183 case MSR_AMD64_NB_CFG:
4184 case MSR_FAM10H_MMIO_CONF_BASE:
4185 case MSR_AMD64_BU_CFG2:
4186 case MSR_IA32_PERF_CTL:
4187 case MSR_AMD64_DC_CFG:
4188 case MSR_AMD64_TW_CFG:
4189 case MSR_F15H_EX_CFG:
4190 /*
4191 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4192 * limit) MSRs. Just return 0, as we do not want to expose the host
4193 * data here. Do not conditionalize this on CPUID, as KVM does not do
4194 * so for existing CPU-specific MSRs.
4195 */
4196 case MSR_RAPL_POWER_UNIT:
4197 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4198 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4199 case MSR_PKG_ENERGY_STATUS: /* Total package */
4200 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4201 msr_info->data = 0;
4202 break;
4203 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4204 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4205 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4206 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4207 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4208 return kvm_pmu_get_msr(vcpu, msr_info);
4209 msr_info->data = 0;
4210 break;
4211 case MSR_IA32_UCODE_REV:
4212 msr_info->data = vcpu->arch.microcode_version;
4213 break;
4214 case MSR_IA32_ARCH_CAPABILITIES:
4215 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4216 return KVM_MSR_RET_UNSUPPORTED;
4217 msr_info->data = vcpu->arch.arch_capabilities;
4218 break;
4219 case MSR_IA32_PERF_CAPABILITIES:
4220 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
4221 return KVM_MSR_RET_UNSUPPORTED;
4222 msr_info->data = vcpu->arch.perf_capabilities;
4223 break;
4224 case MSR_IA32_POWER_CTL:
4225 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4226 break;
4227 case MSR_IA32_TSC: {
4228 /*
4229 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4230 * even when not intercepted. AMD manual doesn't explicitly
4231 * state this but appears to behave the same.
4232 *
4233 * On userspace reads and writes, however, we unconditionally
4234 * return L1's TSC value to ensure backwards-compatible
4235 * behavior for migration.
4236 */
4237 u64 offset, ratio;
4238
4239 if (msr_info->host_initiated) {
4240 offset = vcpu->arch.l1_tsc_offset;
4241 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4242 } else {
4243 offset = vcpu->arch.tsc_offset;
4244 ratio = vcpu->arch.tsc_scaling_ratio;
4245 }
4246
4247 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4248 break;
4249 }
4250 case MSR_IA32_CR_PAT:
4251 msr_info->data = vcpu->arch.pat;
4252 break;
4253 case MSR_MTRRcap:
4254 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4255 case MSR_MTRRdefType:
4256 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4257 case 0xcd: /* fsb frequency */
4258 msr_info->data = 3;
4259 break;
4260 /*
4261 * MSR_EBC_FREQUENCY_ID
4262 * Conservative value valid for even the basic CPU models.
4263 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4264 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4265 * and 266MHz for model 3, or 4. Set Core Clock
4266 * Frequency to System Bus Frequency Ratio to 1 (bits
4267 * 31:24) even though these are only valid for CPU
4268 * models > 2, however guests may end up dividing or
4269 * multiplying by zero otherwise.
4270 */
4271 case MSR_EBC_FREQUENCY_ID:
4272 msr_info->data = 1 << 24;
4273 break;
4274 case MSR_IA32_APICBASE:
4275 msr_info->data = vcpu->arch.apic_base;
4276 break;
4277 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4278 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4279 case MSR_IA32_TSC_DEADLINE:
4280 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4281 break;
4282 case MSR_IA32_TSC_ADJUST:
4283 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4284 break;
4285 case MSR_IA32_MISC_ENABLE:
4286 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4287 break;
4288 case MSR_IA32_SMBASE:
4289 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4290 return 1;
4291 msr_info->data = vcpu->arch.smbase;
4292 break;
4293 case MSR_SMI_COUNT:
4294 msr_info->data = vcpu->arch.smi_count;
4295 break;
4296 case MSR_IA32_PERF_STATUS:
4297 /* TSC increment by tick */
4298 msr_info->data = 1000ULL;
4299 /* CPU multiplier */
4300 msr_info->data |= (((uint64_t)4ULL) << 40);
4301 break;
4302 case MSR_EFER:
4303 msr_info->data = vcpu->arch.efer;
4304 break;
4305 case MSR_KVM_WALL_CLOCK:
4306 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4307 return 1;
4308
4309 msr_info->data = vcpu->kvm->arch.wall_clock;
4310 break;
4311 case MSR_KVM_WALL_CLOCK_NEW:
4312 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4313 return 1;
4314
4315 msr_info->data = vcpu->kvm->arch.wall_clock;
4316 break;
4317 case MSR_KVM_SYSTEM_TIME:
4318 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4319 return 1;
4320
4321 msr_info->data = vcpu->arch.time;
4322 break;
4323 case MSR_KVM_SYSTEM_TIME_NEW:
4324 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4325 return 1;
4326
4327 msr_info->data = vcpu->arch.time;
4328 break;
4329 case MSR_KVM_ASYNC_PF_EN:
4330 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4331 return 1;
4332
4333 msr_info->data = vcpu->arch.apf.msr_en_val;
4334 break;
4335 case MSR_KVM_ASYNC_PF_INT:
4336 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4337 return 1;
4338
4339 msr_info->data = vcpu->arch.apf.msr_int_val;
4340 break;
4341 case MSR_KVM_ASYNC_PF_ACK:
4342 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4343 return 1;
4344
4345 msr_info->data = 0;
4346 break;
4347 case MSR_KVM_STEAL_TIME:
4348 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4349 return 1;
4350
4351 msr_info->data = vcpu->arch.st.msr_val;
4352 break;
4353 case MSR_KVM_PV_EOI_EN:
4354 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4355 return 1;
4356
4357 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4358 break;
4359 case MSR_KVM_POLL_CONTROL:
4360 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4361 return 1;
4362
4363 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4364 break;
4365 case MSR_IA32_P5_MC_ADDR:
4366 case MSR_IA32_P5_MC_TYPE:
4367 case MSR_IA32_MCG_CAP:
4368 case MSR_IA32_MCG_CTL:
4369 case MSR_IA32_MCG_STATUS:
4370 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4371 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4372 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4373 msr_info->host_initiated);
4374 case MSR_IA32_XSS:
4375 if (!msr_info->host_initiated &&
4376 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4377 return 1;
4378 msr_info->data = vcpu->arch.ia32_xss;
4379 break;
4380 case MSR_K7_CLK_CTL:
4381 /*
4382 * Provide expected ramp-up count for K7. All other
4383 * are set to zero, indicating minimum divisors for
4384 * every field.
4385 *
4386 * This prevents guest kernels on AMD host with CPU
4387 * type 6, model 8 and higher from exploding due to
4388 * the rdmsr failing.
4389 */
4390 msr_info->data = 0x20000000;
4391 break;
4392 #ifdef CONFIG_KVM_HYPERV
4393 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4394 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4395 case HV_X64_MSR_SYNDBG_OPTIONS:
4396 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4397 case HV_X64_MSR_CRASH_CTL:
4398 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4399 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4400 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4401 case HV_X64_MSR_TSC_EMULATION_STATUS:
4402 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4403 return kvm_hv_get_msr_common(vcpu,
4404 msr_info->index, &msr_info->data,
4405 msr_info->host_initiated);
4406 #endif
4407 case MSR_IA32_BBL_CR_CTL3:
4408 /* This legacy MSR exists but isn't fully documented in current
4409 * silicon. It is however accessed by winxp in very narrow
4410 * scenarios where it sets bit #19, itself documented as
4411 * a "reserved" bit. Best effort attempt to source coherent
4412 * read data here should the balance of the register be
4413 * interpreted by the guest:
4414 *
4415 * L2 cache control register 3: 64GB range, 256KB size,
4416 * enabled, latency 0x1, configured
4417 */
4418 msr_info->data = 0xbe702111;
4419 break;
4420 case MSR_AMD64_OSVW_ID_LENGTH:
4421 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4422 return 1;
4423 msr_info->data = vcpu->arch.osvw.length;
4424 break;
4425 case MSR_AMD64_OSVW_STATUS:
4426 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4427 return 1;
4428 msr_info->data = vcpu->arch.osvw.status;
4429 break;
4430 case MSR_PLATFORM_INFO:
4431 if (!msr_info->host_initiated &&
4432 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4433 return 1;
4434 msr_info->data = vcpu->arch.msr_platform_info;
4435 break;
4436 case MSR_MISC_FEATURES_ENABLES:
4437 msr_info->data = vcpu->arch.msr_misc_features_enables;
4438 break;
4439 case MSR_K7_HWCR:
4440 msr_info->data = vcpu->arch.msr_hwcr;
4441 break;
4442 #ifdef CONFIG_X86_64
4443 case MSR_IA32_XFD:
4444 if (!msr_info->host_initiated &&
4445 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4446 return 1;
4447
4448 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4449 break;
4450 case MSR_IA32_XFD_ERR:
4451 if (!msr_info->host_initiated &&
4452 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4453 return 1;
4454
4455 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4456 break;
4457 #endif
4458 default:
4459 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4460 return kvm_pmu_get_msr(vcpu, msr_info);
4461
4462 return KVM_MSR_RET_UNSUPPORTED;
4463 }
4464 return 0;
4465 }
4466 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4467
4468 /*
4469 * Read or write a bunch of msrs. All parameters are kernel addresses.
4470 *
4471 * @return number of msrs set successfully.
4472 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4473 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4474 struct kvm_msr_entry *entries,
4475 int (*do_msr)(struct kvm_vcpu *vcpu,
4476 unsigned index, u64 *data))
4477 {
4478 int i;
4479
4480 for (i = 0; i < msrs->nmsrs; ++i)
4481 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4482 break;
4483
4484 return i;
4485 }
4486
4487 /*
4488 * Read or write a bunch of msrs. Parameters are user addresses.
4489 *
4490 * @return number of msrs set successfully.
4491 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4492 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4493 int (*do_msr)(struct kvm_vcpu *vcpu,
4494 unsigned index, u64 *data),
4495 int writeback)
4496 {
4497 struct kvm_msrs msrs;
4498 struct kvm_msr_entry *entries;
4499 unsigned size;
4500 int r;
4501
4502 r = -EFAULT;
4503 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4504 goto out;
4505
4506 r = -E2BIG;
4507 if (msrs.nmsrs >= MAX_IO_MSRS)
4508 goto out;
4509
4510 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4511 entries = memdup_user(user_msrs->entries, size);
4512 if (IS_ERR(entries)) {
4513 r = PTR_ERR(entries);
4514 goto out;
4515 }
4516
4517 r = __msr_io(vcpu, &msrs, entries, do_msr);
4518
4519 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4520 r = -EFAULT;
4521
4522 kfree(entries);
4523 out:
4524 return r;
4525 }
4526
kvm_can_mwait_in_guest(void)4527 static inline bool kvm_can_mwait_in_guest(void)
4528 {
4529 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4530 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4531 boot_cpu_has(X86_FEATURE_ARAT);
4532 }
4533
kvm_get_allowed_disable_exits(void)4534 static u64 kvm_get_allowed_disable_exits(void)
4535 {
4536 u64 r = KVM_X86_DISABLE_EXITS_PAUSE;
4537
4538 if (!mitigate_smt_rsb) {
4539 r |= KVM_X86_DISABLE_EXITS_HLT |
4540 KVM_X86_DISABLE_EXITS_CSTATE;
4541
4542 if (kvm_can_mwait_in_guest())
4543 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4544 }
4545 return r;
4546 }
4547
4548 #ifdef CONFIG_KVM_HYPERV
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4549 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4550 struct kvm_cpuid2 __user *cpuid_arg)
4551 {
4552 struct kvm_cpuid2 cpuid;
4553 int r;
4554
4555 r = -EFAULT;
4556 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4557 return r;
4558
4559 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4560 if (r)
4561 return r;
4562
4563 r = -EFAULT;
4564 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4565 return r;
4566
4567 return 0;
4568 }
4569 #endif
4570
kvm_is_vm_type_supported(unsigned long type)4571 static bool kvm_is_vm_type_supported(unsigned long type)
4572 {
4573 return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4574 }
4575
kvm_sync_valid_fields(struct kvm * kvm)4576 static inline u32 kvm_sync_valid_fields(struct kvm *kvm)
4577 {
4578 return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS;
4579 }
4580
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4581 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4582 {
4583 int r = 0;
4584
4585 switch (ext) {
4586 case KVM_CAP_IRQCHIP:
4587 case KVM_CAP_HLT:
4588 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4589 case KVM_CAP_SET_TSS_ADDR:
4590 case KVM_CAP_EXT_CPUID:
4591 case KVM_CAP_EXT_EMUL_CPUID:
4592 case KVM_CAP_CLOCKSOURCE:
4593 case KVM_CAP_PIT:
4594 case KVM_CAP_NOP_IO_DELAY:
4595 case KVM_CAP_MP_STATE:
4596 case KVM_CAP_SYNC_MMU:
4597 case KVM_CAP_USER_NMI:
4598 case KVM_CAP_REINJECT_CONTROL:
4599 case KVM_CAP_IRQ_INJECT_STATUS:
4600 case KVM_CAP_IOEVENTFD:
4601 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4602 case KVM_CAP_PIT2:
4603 case KVM_CAP_PIT_STATE2:
4604 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4605 case KVM_CAP_VCPU_EVENTS:
4606 #ifdef CONFIG_KVM_HYPERV
4607 case KVM_CAP_HYPERV:
4608 case KVM_CAP_HYPERV_VAPIC:
4609 case KVM_CAP_HYPERV_SPIN:
4610 case KVM_CAP_HYPERV_TIME:
4611 case KVM_CAP_HYPERV_SYNIC:
4612 case KVM_CAP_HYPERV_SYNIC2:
4613 case KVM_CAP_HYPERV_VP_INDEX:
4614 case KVM_CAP_HYPERV_EVENTFD:
4615 case KVM_CAP_HYPERV_TLBFLUSH:
4616 case KVM_CAP_HYPERV_SEND_IPI:
4617 case KVM_CAP_HYPERV_CPUID:
4618 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4619 case KVM_CAP_SYS_HYPERV_CPUID:
4620 #endif
4621 case KVM_CAP_PCI_SEGMENT:
4622 case KVM_CAP_DEBUGREGS:
4623 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4624 case KVM_CAP_XSAVE:
4625 case KVM_CAP_ASYNC_PF:
4626 case KVM_CAP_ASYNC_PF_INT:
4627 case KVM_CAP_GET_TSC_KHZ:
4628 case KVM_CAP_KVMCLOCK_CTRL:
4629 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4630 case KVM_CAP_TSC_DEADLINE_TIMER:
4631 case KVM_CAP_DISABLE_QUIRKS:
4632 case KVM_CAP_SET_BOOT_CPU_ID:
4633 case KVM_CAP_SPLIT_IRQCHIP:
4634 case KVM_CAP_IMMEDIATE_EXIT:
4635 case KVM_CAP_PMU_EVENT_FILTER:
4636 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4637 case KVM_CAP_GET_MSR_FEATURES:
4638 case KVM_CAP_MSR_PLATFORM_INFO:
4639 case KVM_CAP_EXCEPTION_PAYLOAD:
4640 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4641 case KVM_CAP_SET_GUEST_DEBUG:
4642 case KVM_CAP_LAST_CPU:
4643 case KVM_CAP_X86_USER_SPACE_MSR:
4644 case KVM_CAP_X86_MSR_FILTER:
4645 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4646 #ifdef CONFIG_X86_SGX_KVM
4647 case KVM_CAP_SGX_ATTRIBUTE:
4648 #endif
4649 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4650 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4651 case KVM_CAP_SREGS2:
4652 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4653 case KVM_CAP_VCPU_ATTRIBUTES:
4654 case KVM_CAP_SYS_ATTRIBUTES:
4655 case KVM_CAP_VAPIC:
4656 case KVM_CAP_ENABLE_CAP:
4657 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4658 case KVM_CAP_IRQFD_RESAMPLE:
4659 case KVM_CAP_MEMORY_FAULT_INFO:
4660 case KVM_CAP_X86_GUEST_MODE:
4661 r = 1;
4662 break;
4663 case KVM_CAP_PRE_FAULT_MEMORY:
4664 r = tdp_enabled;
4665 break;
4666 case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4667 r = APIC_BUS_CYCLE_NS_DEFAULT;
4668 break;
4669 case KVM_CAP_EXIT_HYPERCALL:
4670 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4671 break;
4672 case KVM_CAP_SET_GUEST_DEBUG2:
4673 return KVM_GUESTDBG_VALID_MASK;
4674 #ifdef CONFIG_KVM_XEN
4675 case KVM_CAP_XEN_HVM:
4676 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4677 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4678 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4679 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4680 KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4681 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4682 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4683 if (sched_info_on())
4684 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4685 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4686 break;
4687 #endif
4688 case KVM_CAP_SYNC_REGS:
4689 r = kvm_sync_valid_fields(kvm);
4690 break;
4691 case KVM_CAP_ADJUST_CLOCK:
4692 r = KVM_CLOCK_VALID_FLAGS;
4693 break;
4694 case KVM_CAP_X86_DISABLE_EXITS:
4695 r = kvm_get_allowed_disable_exits();
4696 break;
4697 case KVM_CAP_X86_SMM:
4698 if (!IS_ENABLED(CONFIG_KVM_SMM))
4699 break;
4700
4701 /* SMBASE is usually relocated above 1M on modern chipsets,
4702 * and SMM handlers might indeed rely on 4G segment limits,
4703 * so do not report SMM to be available if real mode is
4704 * emulated via vm86 mode. Still, do not go to great lengths
4705 * to avoid userspace's usage of the feature, because it is a
4706 * fringe case that is not enabled except via specific settings
4707 * of the module parameters.
4708 */
4709 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4710 break;
4711 case KVM_CAP_NR_VCPUS:
4712 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4713 break;
4714 case KVM_CAP_MAX_VCPUS:
4715 r = KVM_MAX_VCPUS;
4716 break;
4717 case KVM_CAP_MAX_VCPU_ID:
4718 r = KVM_MAX_VCPU_IDS;
4719 break;
4720 case KVM_CAP_PV_MMU: /* obsolete */
4721 r = 0;
4722 break;
4723 case KVM_CAP_MCE:
4724 r = KVM_MAX_MCE_BANKS;
4725 break;
4726 case KVM_CAP_XCRS:
4727 r = boot_cpu_has(X86_FEATURE_XSAVE);
4728 break;
4729 case KVM_CAP_TSC_CONTROL:
4730 case KVM_CAP_VM_TSC_CONTROL:
4731 r = kvm_caps.has_tsc_control;
4732 break;
4733 case KVM_CAP_X2APIC_API:
4734 r = KVM_X2APIC_API_VALID_FLAGS;
4735 break;
4736 case KVM_CAP_NESTED_STATE:
4737 r = kvm_x86_ops.nested_ops->get_state ?
4738 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4739 break;
4740 #ifdef CONFIG_KVM_HYPERV
4741 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4742 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4743 break;
4744 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4745 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4746 break;
4747 #endif
4748 case KVM_CAP_SMALLER_MAXPHYADDR:
4749 r = (int) allow_smaller_maxphyaddr;
4750 break;
4751 case KVM_CAP_STEAL_TIME:
4752 r = sched_info_on();
4753 break;
4754 case KVM_CAP_X86_BUS_LOCK_EXIT:
4755 if (kvm_caps.has_bus_lock_exit)
4756 r = KVM_BUS_LOCK_DETECTION_OFF |
4757 KVM_BUS_LOCK_DETECTION_EXIT;
4758 else
4759 r = 0;
4760 break;
4761 case KVM_CAP_XSAVE2: {
4762 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4763 if (r < sizeof(struct kvm_xsave))
4764 r = sizeof(struct kvm_xsave);
4765 break;
4766 }
4767 case KVM_CAP_PMU_CAPABILITY:
4768 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4769 break;
4770 case KVM_CAP_DISABLE_QUIRKS2:
4771 r = KVM_X86_VALID_QUIRKS;
4772 break;
4773 case KVM_CAP_X86_NOTIFY_VMEXIT:
4774 r = kvm_caps.has_notify_vmexit;
4775 break;
4776 case KVM_CAP_VM_TYPES:
4777 r = kvm_caps.supported_vm_types;
4778 break;
4779 case KVM_CAP_READONLY_MEM:
4780 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4781 break;
4782 default:
4783 break;
4784 }
4785 return r;
4786 }
4787
__kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)4788 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4789 {
4790 if (attr->group) {
4791 if (kvm_x86_ops.dev_get_attr)
4792 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4793 return -ENXIO;
4794 }
4795
4796 switch (attr->attr) {
4797 case KVM_X86_XCOMP_GUEST_SUPP:
4798 *val = kvm_caps.supported_xcr0;
4799 return 0;
4800 default:
4801 return -ENXIO;
4802 }
4803 }
4804
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4805 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4806 {
4807 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4808 int r;
4809 u64 val;
4810
4811 r = __kvm_x86_dev_get_attr(attr, &val);
4812 if (r < 0)
4813 return r;
4814
4815 if (put_user(val, uaddr))
4816 return -EFAULT;
4817
4818 return 0;
4819 }
4820
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4821 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4822 {
4823 u64 val;
4824
4825 return __kvm_x86_dev_get_attr(attr, &val);
4826 }
4827
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4828 long kvm_arch_dev_ioctl(struct file *filp,
4829 unsigned int ioctl, unsigned long arg)
4830 {
4831 void __user *argp = (void __user *)arg;
4832 long r;
4833
4834 switch (ioctl) {
4835 case KVM_GET_MSR_INDEX_LIST: {
4836 struct kvm_msr_list __user *user_msr_list = argp;
4837 struct kvm_msr_list msr_list;
4838 unsigned n;
4839
4840 r = -EFAULT;
4841 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4842 goto out;
4843 n = msr_list.nmsrs;
4844 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4845 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4846 goto out;
4847 r = -E2BIG;
4848 if (n < msr_list.nmsrs)
4849 goto out;
4850 r = -EFAULT;
4851 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4852 num_msrs_to_save * sizeof(u32)))
4853 goto out;
4854 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4855 &emulated_msrs,
4856 num_emulated_msrs * sizeof(u32)))
4857 goto out;
4858 r = 0;
4859 break;
4860 }
4861 case KVM_GET_SUPPORTED_CPUID:
4862 case KVM_GET_EMULATED_CPUID: {
4863 struct kvm_cpuid2 __user *cpuid_arg = argp;
4864 struct kvm_cpuid2 cpuid;
4865
4866 r = -EFAULT;
4867 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4868 goto out;
4869
4870 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4871 ioctl);
4872 if (r)
4873 goto out;
4874
4875 r = -EFAULT;
4876 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4877 goto out;
4878 r = 0;
4879 break;
4880 }
4881 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4882 r = -EFAULT;
4883 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4884 sizeof(kvm_caps.supported_mce_cap)))
4885 goto out;
4886 r = 0;
4887 break;
4888 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4889 struct kvm_msr_list __user *user_msr_list = argp;
4890 struct kvm_msr_list msr_list;
4891 unsigned int n;
4892
4893 r = -EFAULT;
4894 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4895 goto out;
4896 n = msr_list.nmsrs;
4897 msr_list.nmsrs = num_msr_based_features;
4898 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4899 goto out;
4900 r = -E2BIG;
4901 if (n < msr_list.nmsrs)
4902 goto out;
4903 r = -EFAULT;
4904 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4905 num_msr_based_features * sizeof(u32)))
4906 goto out;
4907 r = 0;
4908 break;
4909 }
4910 case KVM_GET_MSRS:
4911 r = msr_io(NULL, argp, do_get_feature_msr, 1);
4912 break;
4913 #ifdef CONFIG_KVM_HYPERV
4914 case KVM_GET_SUPPORTED_HV_CPUID:
4915 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4916 break;
4917 #endif
4918 case KVM_GET_DEVICE_ATTR: {
4919 struct kvm_device_attr attr;
4920 r = -EFAULT;
4921 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4922 break;
4923 r = kvm_x86_dev_get_attr(&attr);
4924 break;
4925 }
4926 case KVM_HAS_DEVICE_ATTR: {
4927 struct kvm_device_attr attr;
4928 r = -EFAULT;
4929 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4930 break;
4931 r = kvm_x86_dev_has_attr(&attr);
4932 break;
4933 }
4934 default:
4935 r = -EINVAL;
4936 break;
4937 }
4938 out:
4939 return r;
4940 }
4941
wbinvd_ipi(void * garbage)4942 static void wbinvd_ipi(void *garbage)
4943 {
4944 wbinvd();
4945 }
4946
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4947 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4948 {
4949 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4950 }
4951
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4952 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4953 {
4954 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
4955
4956 vcpu->arch.l1tf_flush_l1d = true;
4957
4958 if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
4959 pmu->need_cleanup = true;
4960 kvm_make_request(KVM_REQ_PMU, vcpu);
4961 }
4962
4963 /* Address WBINVD may be executed by guest */
4964 if (need_emulate_wbinvd(vcpu)) {
4965 if (kvm_x86_call(has_wbinvd_exit)())
4966 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4967 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4968 smp_call_function_single(vcpu->cpu,
4969 wbinvd_ipi, NULL, 1);
4970 }
4971
4972 kvm_x86_call(vcpu_load)(vcpu, cpu);
4973
4974 /* Save host pkru register if supported */
4975 vcpu->arch.host_pkru = read_pkru();
4976
4977 /* Apply any externally detected TSC adjustments (due to suspend) */
4978 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4979 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4980 vcpu->arch.tsc_offset_adjustment = 0;
4981 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4982 }
4983
4984 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4985 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4986 rdtsc() - vcpu->arch.last_host_tsc;
4987 if (tsc_delta < 0)
4988 mark_tsc_unstable("KVM discovered backwards TSC");
4989
4990 if (kvm_check_tsc_unstable()) {
4991 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4992 vcpu->arch.last_guest_tsc);
4993 kvm_vcpu_write_tsc_offset(vcpu, offset);
4994 vcpu->arch.tsc_catchup = 1;
4995 }
4996
4997 if (kvm_lapic_hv_timer_in_use(vcpu))
4998 kvm_lapic_restart_hv_timer(vcpu);
4999
5000 /*
5001 * On a host with synchronized TSC, there is no need to update
5002 * kvmclock on vcpu->cpu migration
5003 */
5004 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5005 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5006 if (vcpu->cpu != cpu)
5007 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5008 vcpu->cpu = cpu;
5009 }
5010
5011 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5012 }
5013
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5014 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5015 {
5016 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5017 struct kvm_steal_time __user *st;
5018 struct kvm_memslots *slots;
5019 static const u8 preempted = KVM_VCPU_PREEMPTED;
5020 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5021
5022 /*
5023 * The vCPU can be marked preempted if and only if the VM-Exit was on
5024 * an instruction boundary and will not trigger guest emulation of any
5025 * kind (see vcpu_run). Vendor specific code controls (conservatively)
5026 * when this is true, for example allowing the vCPU to be marked
5027 * preempted if and only if the VM-Exit was due to a host interrupt.
5028 */
5029 if (!vcpu->arch.at_instruction_boundary) {
5030 vcpu->stat.preemption_other++;
5031 return;
5032 }
5033
5034 vcpu->stat.preemption_reported++;
5035 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5036 return;
5037
5038 if (vcpu->arch.st.preempted)
5039 return;
5040
5041 /* This happens on process exit */
5042 if (unlikely(current->mm != vcpu->kvm->mm))
5043 return;
5044
5045 slots = kvm_memslots(vcpu->kvm);
5046
5047 if (unlikely(slots->generation != ghc->generation ||
5048 gpa != ghc->gpa ||
5049 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5050 return;
5051
5052 st = (struct kvm_steal_time __user *)ghc->hva;
5053 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5054
5055 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5056 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5057
5058 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5059 }
5060
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5061 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5062 {
5063 int idx;
5064
5065 if (vcpu->preempted) {
5066 /*
5067 * Assume protected guests are in-kernel. Inefficient yielding
5068 * due to false positives is preferable to never yielding due
5069 * to false negatives.
5070 */
5071 vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5072 !kvm_x86_call(get_cpl_no_cache)(vcpu);
5073
5074 /*
5075 * Take the srcu lock as memslots will be accessed to check the gfn
5076 * cache generation against the memslots generation.
5077 */
5078 idx = srcu_read_lock(&vcpu->kvm->srcu);
5079 if (kvm_xen_msr_enabled(vcpu->kvm))
5080 kvm_xen_runstate_set_preempted(vcpu);
5081 else
5082 kvm_steal_time_set_preempted(vcpu);
5083 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5084 }
5085
5086 kvm_x86_call(vcpu_put)(vcpu);
5087 vcpu->arch.last_host_tsc = rdtsc();
5088 }
5089
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5090 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5091 struct kvm_lapic_state *s)
5092 {
5093 kvm_x86_call(sync_pir_to_irr)(vcpu);
5094
5095 return kvm_apic_get_state(vcpu, s);
5096 }
5097
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5098 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5099 struct kvm_lapic_state *s)
5100 {
5101 int r;
5102
5103 r = kvm_apic_set_state(vcpu, s);
5104 if (r)
5105 return r;
5106 update_cr8_intercept(vcpu);
5107
5108 return 0;
5109 }
5110
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5111 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5112 {
5113 /*
5114 * We can accept userspace's request for interrupt injection
5115 * as long as we have a place to store the interrupt number.
5116 * The actual injection will happen when the CPU is able to
5117 * deliver the interrupt.
5118 */
5119 if (kvm_cpu_has_extint(vcpu))
5120 return false;
5121
5122 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
5123 return (!lapic_in_kernel(vcpu) ||
5124 kvm_apic_accept_pic_intr(vcpu));
5125 }
5126
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5127 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5128 {
5129 /*
5130 * Do not cause an interrupt window exit if an exception
5131 * is pending or an event needs reinjection; userspace
5132 * might want to inject the interrupt manually using KVM_SET_REGS
5133 * or KVM_SET_SREGS. For that to work, we must be at an
5134 * instruction boundary and with no events half-injected.
5135 */
5136 return (kvm_arch_interrupt_allowed(vcpu) &&
5137 kvm_cpu_accept_dm_intr(vcpu) &&
5138 !kvm_event_needs_reinjection(vcpu) &&
5139 !kvm_is_exception_pending(vcpu));
5140 }
5141
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5142 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5143 struct kvm_interrupt *irq)
5144 {
5145 if (irq->irq >= KVM_NR_INTERRUPTS)
5146 return -EINVAL;
5147
5148 if (!irqchip_in_kernel(vcpu->kvm)) {
5149 kvm_queue_interrupt(vcpu, irq->irq, false);
5150 kvm_make_request(KVM_REQ_EVENT, vcpu);
5151 return 0;
5152 }
5153
5154 /*
5155 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5156 * fail for in-kernel 8259.
5157 */
5158 if (pic_in_kernel(vcpu->kvm))
5159 return -ENXIO;
5160
5161 if (vcpu->arch.pending_external_vector != -1)
5162 return -EEXIST;
5163
5164 vcpu->arch.pending_external_vector = irq->irq;
5165 kvm_make_request(KVM_REQ_EVENT, vcpu);
5166 return 0;
5167 }
5168
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5169 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5170 {
5171 kvm_inject_nmi(vcpu);
5172
5173 return 0;
5174 }
5175
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5176 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5177 struct kvm_tpr_access_ctl *tac)
5178 {
5179 if (tac->flags)
5180 return -EINVAL;
5181 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5182 return 0;
5183 }
5184
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5185 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5186 u64 mcg_cap)
5187 {
5188 int r;
5189 unsigned bank_num = mcg_cap & 0xff, bank;
5190
5191 r = -EINVAL;
5192 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5193 goto out;
5194 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5195 goto out;
5196 r = 0;
5197 vcpu->arch.mcg_cap = mcg_cap;
5198 /* Init IA32_MCG_CTL to all 1s */
5199 if (mcg_cap & MCG_CTL_P)
5200 vcpu->arch.mcg_ctl = ~(u64)0;
5201 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5202 for (bank = 0; bank < bank_num; bank++) {
5203 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5204 if (mcg_cap & MCG_CMCI_P)
5205 vcpu->arch.mci_ctl2_banks[bank] = 0;
5206 }
5207
5208 kvm_apic_after_set_mcg_cap(vcpu);
5209
5210 kvm_x86_call(setup_mce)(vcpu);
5211 out:
5212 return r;
5213 }
5214
5215 /*
5216 * Validate this is an UCNA (uncorrectable no action) error by checking the
5217 * MCG_STATUS and MCi_STATUS registers:
5218 * - none of the bits for Machine Check Exceptions are set
5219 * - both the VAL (valid) and UC (uncorrectable) bits are set
5220 * MCI_STATUS_PCC - Processor Context Corrupted
5221 * MCI_STATUS_S - Signaled as a Machine Check Exception
5222 * MCI_STATUS_AR - Software recoverable Action Required
5223 */
is_ucna(struct kvm_x86_mce * mce)5224 static bool is_ucna(struct kvm_x86_mce *mce)
5225 {
5226 return !mce->mcg_status &&
5227 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5228 (mce->status & MCI_STATUS_VAL) &&
5229 (mce->status & MCI_STATUS_UC);
5230 }
5231
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5232 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5233 {
5234 u64 mcg_cap = vcpu->arch.mcg_cap;
5235
5236 banks[1] = mce->status;
5237 banks[2] = mce->addr;
5238 banks[3] = mce->misc;
5239 vcpu->arch.mcg_status = mce->mcg_status;
5240
5241 if (!(mcg_cap & MCG_CMCI_P) ||
5242 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5243 return 0;
5244
5245 if (lapic_in_kernel(vcpu))
5246 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5247
5248 return 0;
5249 }
5250
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5251 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5252 struct kvm_x86_mce *mce)
5253 {
5254 u64 mcg_cap = vcpu->arch.mcg_cap;
5255 unsigned bank_num = mcg_cap & 0xff;
5256 u64 *banks = vcpu->arch.mce_banks;
5257
5258 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5259 return -EINVAL;
5260
5261 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5262
5263 if (is_ucna(mce))
5264 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5265
5266 /*
5267 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5268 * reporting is disabled
5269 */
5270 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5271 vcpu->arch.mcg_ctl != ~(u64)0)
5272 return 0;
5273 /*
5274 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5275 * reporting is disabled for the bank
5276 */
5277 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5278 return 0;
5279 if (mce->status & MCI_STATUS_UC) {
5280 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5281 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5282 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5283 return 0;
5284 }
5285 if (banks[1] & MCI_STATUS_VAL)
5286 mce->status |= MCI_STATUS_OVER;
5287 banks[2] = mce->addr;
5288 banks[3] = mce->misc;
5289 vcpu->arch.mcg_status = mce->mcg_status;
5290 banks[1] = mce->status;
5291 kvm_queue_exception(vcpu, MC_VECTOR);
5292 } else if (!(banks[1] & MCI_STATUS_VAL)
5293 || !(banks[1] & MCI_STATUS_UC)) {
5294 if (banks[1] & MCI_STATUS_VAL)
5295 mce->status |= MCI_STATUS_OVER;
5296 banks[2] = mce->addr;
5297 banks[3] = mce->misc;
5298 banks[1] = mce->status;
5299 } else
5300 banks[1] |= MCI_STATUS_OVER;
5301 return 0;
5302 }
5303
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5304 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5305 struct kvm_vcpu_events *events)
5306 {
5307 struct kvm_queued_exception *ex;
5308
5309 process_nmi(vcpu);
5310
5311 #ifdef CONFIG_KVM_SMM
5312 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5313 process_smi(vcpu);
5314 #endif
5315
5316 /*
5317 * KVM's ABI only allows for one exception to be migrated. Luckily,
5318 * the only time there can be two queued exceptions is if there's a
5319 * non-exiting _injected_ exception, and a pending exiting exception.
5320 * In that case, ignore the VM-Exiting exception as it's an extension
5321 * of the injected exception.
5322 */
5323 if (vcpu->arch.exception_vmexit.pending &&
5324 !vcpu->arch.exception.pending &&
5325 !vcpu->arch.exception.injected)
5326 ex = &vcpu->arch.exception_vmexit;
5327 else
5328 ex = &vcpu->arch.exception;
5329
5330 /*
5331 * In guest mode, payload delivery should be deferred if the exception
5332 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5333 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5334 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5335 * propagate the payload and so it cannot be safely deferred. Deliver
5336 * the payload if the capability hasn't been requested.
5337 */
5338 if (!vcpu->kvm->arch.exception_payload_enabled &&
5339 ex->pending && ex->has_payload)
5340 kvm_deliver_exception_payload(vcpu, ex);
5341
5342 memset(events, 0, sizeof(*events));
5343
5344 /*
5345 * The API doesn't provide the instruction length for software
5346 * exceptions, so don't report them. As long as the guest RIP
5347 * isn't advanced, we should expect to encounter the exception
5348 * again.
5349 */
5350 if (!kvm_exception_is_soft(ex->vector)) {
5351 events->exception.injected = ex->injected;
5352 events->exception.pending = ex->pending;
5353 /*
5354 * For ABI compatibility, deliberately conflate
5355 * pending and injected exceptions when
5356 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5357 */
5358 if (!vcpu->kvm->arch.exception_payload_enabled)
5359 events->exception.injected |= ex->pending;
5360 }
5361 events->exception.nr = ex->vector;
5362 events->exception.has_error_code = ex->has_error_code;
5363 events->exception.error_code = ex->error_code;
5364 events->exception_has_payload = ex->has_payload;
5365 events->exception_payload = ex->payload;
5366
5367 events->interrupt.injected =
5368 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5369 events->interrupt.nr = vcpu->arch.interrupt.nr;
5370 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5371
5372 events->nmi.injected = vcpu->arch.nmi_injected;
5373 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5374 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5375
5376 /* events->sipi_vector is never valid when reporting to user space */
5377
5378 #ifdef CONFIG_KVM_SMM
5379 events->smi.smm = is_smm(vcpu);
5380 events->smi.pending = vcpu->arch.smi_pending;
5381 events->smi.smm_inside_nmi =
5382 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5383 #endif
5384 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5385
5386 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5387 | KVM_VCPUEVENT_VALID_SHADOW
5388 | KVM_VCPUEVENT_VALID_SMM);
5389 if (vcpu->kvm->arch.exception_payload_enabled)
5390 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5391 if (vcpu->kvm->arch.triple_fault_event) {
5392 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5393 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5394 }
5395 }
5396
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5397 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5398 struct kvm_vcpu_events *events)
5399 {
5400 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5401 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5402 | KVM_VCPUEVENT_VALID_SHADOW
5403 | KVM_VCPUEVENT_VALID_SMM
5404 | KVM_VCPUEVENT_VALID_PAYLOAD
5405 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5406 return -EINVAL;
5407
5408 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5409 if (!vcpu->kvm->arch.exception_payload_enabled)
5410 return -EINVAL;
5411 if (events->exception.pending)
5412 events->exception.injected = 0;
5413 else
5414 events->exception_has_payload = 0;
5415 } else {
5416 events->exception.pending = 0;
5417 events->exception_has_payload = 0;
5418 }
5419
5420 if ((events->exception.injected || events->exception.pending) &&
5421 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5422 return -EINVAL;
5423
5424 /* INITs are latched while in SMM */
5425 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5426 (events->smi.smm || events->smi.pending) &&
5427 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5428 return -EINVAL;
5429
5430 process_nmi(vcpu);
5431
5432 /*
5433 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5434 * morph the exception to a VM-Exit if appropriate. Do this only for
5435 * pending exceptions, already-injected exceptions are not subject to
5436 * intercpetion. Note, userspace that conflates pending and injected
5437 * is hosed, and will incorrectly convert an injected exception into a
5438 * pending exception, which in turn may cause a spurious VM-Exit.
5439 */
5440 vcpu->arch.exception_from_userspace = events->exception.pending;
5441
5442 vcpu->arch.exception_vmexit.pending = false;
5443
5444 vcpu->arch.exception.injected = events->exception.injected;
5445 vcpu->arch.exception.pending = events->exception.pending;
5446 vcpu->arch.exception.vector = events->exception.nr;
5447 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5448 vcpu->arch.exception.error_code = events->exception.error_code;
5449 vcpu->arch.exception.has_payload = events->exception_has_payload;
5450 vcpu->arch.exception.payload = events->exception_payload;
5451
5452 vcpu->arch.interrupt.injected = events->interrupt.injected;
5453 vcpu->arch.interrupt.nr = events->interrupt.nr;
5454 vcpu->arch.interrupt.soft = events->interrupt.soft;
5455 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5456 kvm_x86_call(set_interrupt_shadow)(vcpu,
5457 events->interrupt.shadow);
5458
5459 vcpu->arch.nmi_injected = events->nmi.injected;
5460 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5461 vcpu->arch.nmi_pending = 0;
5462 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5463 if (events->nmi.pending)
5464 kvm_make_request(KVM_REQ_NMI, vcpu);
5465 }
5466 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5467
5468 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5469 lapic_in_kernel(vcpu))
5470 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5471
5472 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5473 #ifdef CONFIG_KVM_SMM
5474 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5475 kvm_leave_nested(vcpu);
5476 kvm_smm_changed(vcpu, events->smi.smm);
5477 }
5478
5479 vcpu->arch.smi_pending = events->smi.pending;
5480
5481 if (events->smi.smm) {
5482 if (events->smi.smm_inside_nmi)
5483 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5484 else
5485 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5486 }
5487
5488 #else
5489 if (events->smi.smm || events->smi.pending ||
5490 events->smi.smm_inside_nmi)
5491 return -EINVAL;
5492 #endif
5493
5494 if (lapic_in_kernel(vcpu)) {
5495 if (events->smi.latched_init)
5496 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5497 else
5498 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5499 }
5500 }
5501
5502 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5503 if (!vcpu->kvm->arch.triple_fault_event)
5504 return -EINVAL;
5505 if (events->triple_fault.pending)
5506 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5507 else
5508 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5509 }
5510
5511 kvm_make_request(KVM_REQ_EVENT, vcpu);
5512
5513 return 0;
5514 }
5515
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5516 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5517 struct kvm_debugregs *dbgregs)
5518 {
5519 unsigned int i;
5520
5521 if (vcpu->kvm->arch.has_protected_state &&
5522 vcpu->arch.guest_state_protected)
5523 return -EINVAL;
5524
5525 memset(dbgregs, 0, sizeof(*dbgregs));
5526
5527 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5528 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5529 dbgregs->db[i] = vcpu->arch.db[i];
5530
5531 dbgregs->dr6 = vcpu->arch.dr6;
5532 dbgregs->dr7 = vcpu->arch.dr7;
5533 return 0;
5534 }
5535
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5536 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5537 struct kvm_debugregs *dbgregs)
5538 {
5539 unsigned int i;
5540
5541 if (vcpu->kvm->arch.has_protected_state &&
5542 vcpu->arch.guest_state_protected)
5543 return -EINVAL;
5544
5545 if (dbgregs->flags)
5546 return -EINVAL;
5547
5548 if (!kvm_dr6_valid(dbgregs->dr6))
5549 return -EINVAL;
5550 if (!kvm_dr7_valid(dbgregs->dr7))
5551 return -EINVAL;
5552
5553 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5554 vcpu->arch.db[i] = dbgregs->db[i];
5555
5556 kvm_update_dr0123(vcpu);
5557 vcpu->arch.dr6 = dbgregs->dr6;
5558 vcpu->arch.dr7 = dbgregs->dr7;
5559 kvm_update_dr7(vcpu);
5560
5561 return 0;
5562 }
5563
5564
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5565 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5566 u8 *state, unsigned int size)
5567 {
5568 /*
5569 * Only copy state for features that are enabled for the guest. The
5570 * state itself isn't problematic, but setting bits in the header for
5571 * features that are supported in *this* host but not exposed to the
5572 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5573 * compatible host without the features that are NOT exposed to the
5574 * guest.
5575 *
5576 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5577 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5578 * supported by the host.
5579 */
5580 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5581 XFEATURE_MASK_FPSSE;
5582
5583 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5584 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5585
5586 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5587 supported_xcr0, vcpu->arch.pkru);
5588 return 0;
5589 }
5590
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5591 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5592 struct kvm_xsave *guest_xsave)
5593 {
5594 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5595 sizeof(guest_xsave->region));
5596 }
5597
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5598 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5599 struct kvm_xsave *guest_xsave)
5600 {
5601 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5602 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5603
5604 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5605 guest_xsave->region,
5606 kvm_caps.supported_xcr0,
5607 &vcpu->arch.pkru);
5608 }
5609
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5610 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5611 struct kvm_xcrs *guest_xcrs)
5612 {
5613 if (vcpu->kvm->arch.has_protected_state &&
5614 vcpu->arch.guest_state_protected)
5615 return -EINVAL;
5616
5617 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5618 guest_xcrs->nr_xcrs = 0;
5619 return 0;
5620 }
5621
5622 guest_xcrs->nr_xcrs = 1;
5623 guest_xcrs->flags = 0;
5624 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5625 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5626 return 0;
5627 }
5628
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5629 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5630 struct kvm_xcrs *guest_xcrs)
5631 {
5632 int i, r = 0;
5633
5634 if (vcpu->kvm->arch.has_protected_state &&
5635 vcpu->arch.guest_state_protected)
5636 return -EINVAL;
5637
5638 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5639 return -EINVAL;
5640
5641 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5642 return -EINVAL;
5643
5644 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5645 /* Only support XCR0 currently */
5646 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5647 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5648 guest_xcrs->xcrs[i].value);
5649 break;
5650 }
5651 if (r)
5652 r = -EINVAL;
5653 return r;
5654 }
5655
5656 /*
5657 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5658 * stopped by the hypervisor. This function will be called from the host only.
5659 * EINVAL is returned when the host attempts to set the flag for a guest that
5660 * does not support pv clocks.
5661 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5662 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5663 {
5664 if (!vcpu->arch.pv_time.active)
5665 return -EINVAL;
5666 vcpu->arch.pvclock_set_guest_stopped_request = true;
5667 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5668 return 0;
5669 }
5670
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5671 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5672 struct kvm_device_attr *attr)
5673 {
5674 int r;
5675
5676 switch (attr->attr) {
5677 case KVM_VCPU_TSC_OFFSET:
5678 r = 0;
5679 break;
5680 default:
5681 r = -ENXIO;
5682 }
5683
5684 return r;
5685 }
5686
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5687 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5688 struct kvm_device_attr *attr)
5689 {
5690 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5691 int r;
5692
5693 switch (attr->attr) {
5694 case KVM_VCPU_TSC_OFFSET:
5695 r = -EFAULT;
5696 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5697 break;
5698 r = 0;
5699 break;
5700 default:
5701 r = -ENXIO;
5702 }
5703
5704 return r;
5705 }
5706
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5707 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5708 struct kvm_device_attr *attr)
5709 {
5710 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5711 struct kvm *kvm = vcpu->kvm;
5712 int r;
5713
5714 switch (attr->attr) {
5715 case KVM_VCPU_TSC_OFFSET: {
5716 u64 offset, tsc, ns;
5717 unsigned long flags;
5718 bool matched;
5719
5720 r = -EFAULT;
5721 if (get_user(offset, uaddr))
5722 break;
5723
5724 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5725
5726 matched = (vcpu->arch.virtual_tsc_khz &&
5727 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5728 kvm->arch.last_tsc_offset == offset);
5729
5730 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5731 ns = get_kvmclock_base_ns();
5732
5733 kvm->arch.user_set_tsc = true;
5734 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5735 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5736
5737 r = 0;
5738 break;
5739 }
5740 default:
5741 r = -ENXIO;
5742 }
5743
5744 return r;
5745 }
5746
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5747 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5748 unsigned int ioctl,
5749 void __user *argp)
5750 {
5751 struct kvm_device_attr attr;
5752 int r;
5753
5754 if (copy_from_user(&attr, argp, sizeof(attr)))
5755 return -EFAULT;
5756
5757 if (attr.group != KVM_VCPU_TSC_CTRL)
5758 return -ENXIO;
5759
5760 switch (ioctl) {
5761 case KVM_HAS_DEVICE_ATTR:
5762 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5763 break;
5764 case KVM_GET_DEVICE_ATTR:
5765 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5766 break;
5767 case KVM_SET_DEVICE_ATTR:
5768 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5769 break;
5770 }
5771
5772 return r;
5773 }
5774
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5775 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5776 struct kvm_enable_cap *cap)
5777 {
5778 if (cap->flags)
5779 return -EINVAL;
5780
5781 switch (cap->cap) {
5782 #ifdef CONFIG_KVM_HYPERV
5783 case KVM_CAP_HYPERV_SYNIC2:
5784 if (cap->args[0])
5785 return -EINVAL;
5786 fallthrough;
5787
5788 case KVM_CAP_HYPERV_SYNIC:
5789 if (!irqchip_in_kernel(vcpu->kvm))
5790 return -EINVAL;
5791 return kvm_hv_activate_synic(vcpu, cap->cap ==
5792 KVM_CAP_HYPERV_SYNIC2);
5793 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5794 {
5795 int r;
5796 uint16_t vmcs_version;
5797 void __user *user_ptr;
5798
5799 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5800 return -ENOTTY;
5801 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5802 if (!r) {
5803 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5804 if (copy_to_user(user_ptr, &vmcs_version,
5805 sizeof(vmcs_version)))
5806 r = -EFAULT;
5807 }
5808 return r;
5809 }
5810 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5811 if (!kvm_x86_ops.enable_l2_tlb_flush)
5812 return -ENOTTY;
5813
5814 return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
5815
5816 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5817 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5818 #endif
5819
5820 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5821 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5822 return 0;
5823 default:
5824 return -EINVAL;
5825 }
5826 }
5827
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5828 long kvm_arch_vcpu_ioctl(struct file *filp,
5829 unsigned int ioctl, unsigned long arg)
5830 {
5831 struct kvm_vcpu *vcpu = filp->private_data;
5832 void __user *argp = (void __user *)arg;
5833 int r;
5834 union {
5835 struct kvm_sregs2 *sregs2;
5836 struct kvm_lapic_state *lapic;
5837 struct kvm_xsave *xsave;
5838 struct kvm_xcrs *xcrs;
5839 void *buffer;
5840 } u;
5841
5842 vcpu_load(vcpu);
5843
5844 u.buffer = NULL;
5845 switch (ioctl) {
5846 case KVM_GET_LAPIC: {
5847 r = -EINVAL;
5848 if (!lapic_in_kernel(vcpu))
5849 goto out;
5850 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
5851
5852 r = -ENOMEM;
5853 if (!u.lapic)
5854 goto out;
5855 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5856 if (r)
5857 goto out;
5858 r = -EFAULT;
5859 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5860 goto out;
5861 r = 0;
5862 break;
5863 }
5864 case KVM_SET_LAPIC: {
5865 r = -EINVAL;
5866 if (!lapic_in_kernel(vcpu))
5867 goto out;
5868 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5869 if (IS_ERR(u.lapic)) {
5870 r = PTR_ERR(u.lapic);
5871 goto out_nofree;
5872 }
5873
5874 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5875 break;
5876 }
5877 case KVM_INTERRUPT: {
5878 struct kvm_interrupt irq;
5879
5880 r = -EFAULT;
5881 if (copy_from_user(&irq, argp, sizeof(irq)))
5882 goto out;
5883 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5884 break;
5885 }
5886 case KVM_NMI: {
5887 r = kvm_vcpu_ioctl_nmi(vcpu);
5888 break;
5889 }
5890 case KVM_SMI: {
5891 r = kvm_inject_smi(vcpu);
5892 break;
5893 }
5894 case KVM_SET_CPUID: {
5895 struct kvm_cpuid __user *cpuid_arg = argp;
5896 struct kvm_cpuid cpuid;
5897
5898 r = -EFAULT;
5899 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5900 goto out;
5901 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5902 break;
5903 }
5904 case KVM_SET_CPUID2: {
5905 struct kvm_cpuid2 __user *cpuid_arg = argp;
5906 struct kvm_cpuid2 cpuid;
5907
5908 r = -EFAULT;
5909 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5910 goto out;
5911 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5912 cpuid_arg->entries);
5913 break;
5914 }
5915 case KVM_GET_CPUID2: {
5916 struct kvm_cpuid2 __user *cpuid_arg = argp;
5917 struct kvm_cpuid2 cpuid;
5918
5919 r = -EFAULT;
5920 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5921 goto out;
5922 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5923 cpuid_arg->entries);
5924 if (r)
5925 goto out;
5926 r = -EFAULT;
5927 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5928 goto out;
5929 r = 0;
5930 break;
5931 }
5932 case KVM_GET_MSRS: {
5933 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5934 r = msr_io(vcpu, argp, do_get_msr, 1);
5935 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5936 break;
5937 }
5938 case KVM_SET_MSRS: {
5939 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5940 r = msr_io(vcpu, argp, do_set_msr, 0);
5941 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5942 break;
5943 }
5944 case KVM_TPR_ACCESS_REPORTING: {
5945 struct kvm_tpr_access_ctl tac;
5946
5947 r = -EFAULT;
5948 if (copy_from_user(&tac, argp, sizeof(tac)))
5949 goto out;
5950 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5951 if (r)
5952 goto out;
5953 r = -EFAULT;
5954 if (copy_to_user(argp, &tac, sizeof(tac)))
5955 goto out;
5956 r = 0;
5957 break;
5958 };
5959 case KVM_SET_VAPIC_ADDR: {
5960 struct kvm_vapic_addr va;
5961 int idx;
5962
5963 r = -EINVAL;
5964 if (!lapic_in_kernel(vcpu))
5965 goto out;
5966 r = -EFAULT;
5967 if (copy_from_user(&va, argp, sizeof(va)))
5968 goto out;
5969 idx = srcu_read_lock(&vcpu->kvm->srcu);
5970 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5971 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5972 break;
5973 }
5974 case KVM_X86_SETUP_MCE: {
5975 u64 mcg_cap;
5976
5977 r = -EFAULT;
5978 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5979 goto out;
5980 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5981 break;
5982 }
5983 case KVM_X86_SET_MCE: {
5984 struct kvm_x86_mce mce;
5985
5986 r = -EFAULT;
5987 if (copy_from_user(&mce, argp, sizeof(mce)))
5988 goto out;
5989 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5990 break;
5991 }
5992 case KVM_GET_VCPU_EVENTS: {
5993 struct kvm_vcpu_events events;
5994
5995 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5996
5997 r = -EFAULT;
5998 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5999 break;
6000 r = 0;
6001 break;
6002 }
6003 case KVM_SET_VCPU_EVENTS: {
6004 struct kvm_vcpu_events events;
6005
6006 r = -EFAULT;
6007 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6008 break;
6009
6010 kvm_vcpu_srcu_read_lock(vcpu);
6011 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6012 kvm_vcpu_srcu_read_unlock(vcpu);
6013 break;
6014 }
6015 case KVM_GET_DEBUGREGS: {
6016 struct kvm_debugregs dbgregs;
6017
6018 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6019 if (r < 0)
6020 break;
6021
6022 r = -EFAULT;
6023 if (copy_to_user(argp, &dbgregs,
6024 sizeof(struct kvm_debugregs)))
6025 break;
6026 r = 0;
6027 break;
6028 }
6029 case KVM_SET_DEBUGREGS: {
6030 struct kvm_debugregs dbgregs;
6031
6032 r = -EFAULT;
6033 if (copy_from_user(&dbgregs, argp,
6034 sizeof(struct kvm_debugregs)))
6035 break;
6036
6037 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6038 break;
6039 }
6040 case KVM_GET_XSAVE: {
6041 r = -EINVAL;
6042 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6043 break;
6044
6045 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6046 r = -ENOMEM;
6047 if (!u.xsave)
6048 break;
6049
6050 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6051 if (r < 0)
6052 break;
6053
6054 r = -EFAULT;
6055 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6056 break;
6057 r = 0;
6058 break;
6059 }
6060 case KVM_SET_XSAVE: {
6061 int size = vcpu->arch.guest_fpu.uabi_size;
6062
6063 u.xsave = memdup_user(argp, size);
6064 if (IS_ERR(u.xsave)) {
6065 r = PTR_ERR(u.xsave);
6066 goto out_nofree;
6067 }
6068
6069 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6070 break;
6071 }
6072
6073 case KVM_GET_XSAVE2: {
6074 int size = vcpu->arch.guest_fpu.uabi_size;
6075
6076 u.xsave = kzalloc(size, GFP_KERNEL);
6077 r = -ENOMEM;
6078 if (!u.xsave)
6079 break;
6080
6081 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6082 if (r < 0)
6083 break;
6084
6085 r = -EFAULT;
6086 if (copy_to_user(argp, u.xsave, size))
6087 break;
6088
6089 r = 0;
6090 break;
6091 }
6092
6093 case KVM_GET_XCRS: {
6094 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6095 r = -ENOMEM;
6096 if (!u.xcrs)
6097 break;
6098
6099 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6100 if (r < 0)
6101 break;
6102
6103 r = -EFAULT;
6104 if (copy_to_user(argp, u.xcrs,
6105 sizeof(struct kvm_xcrs)))
6106 break;
6107 r = 0;
6108 break;
6109 }
6110 case KVM_SET_XCRS: {
6111 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6112 if (IS_ERR(u.xcrs)) {
6113 r = PTR_ERR(u.xcrs);
6114 goto out_nofree;
6115 }
6116
6117 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6118 break;
6119 }
6120 case KVM_SET_TSC_KHZ: {
6121 u32 user_tsc_khz;
6122
6123 r = -EINVAL;
6124 user_tsc_khz = (u32)arg;
6125
6126 if (kvm_caps.has_tsc_control &&
6127 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6128 goto out;
6129
6130 if (user_tsc_khz == 0)
6131 user_tsc_khz = tsc_khz;
6132
6133 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6134 r = 0;
6135
6136 goto out;
6137 }
6138 case KVM_GET_TSC_KHZ: {
6139 r = vcpu->arch.virtual_tsc_khz;
6140 goto out;
6141 }
6142 case KVM_KVMCLOCK_CTRL: {
6143 r = kvm_set_guest_paused(vcpu);
6144 goto out;
6145 }
6146 case KVM_ENABLE_CAP: {
6147 struct kvm_enable_cap cap;
6148
6149 r = -EFAULT;
6150 if (copy_from_user(&cap, argp, sizeof(cap)))
6151 goto out;
6152 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6153 break;
6154 }
6155 case KVM_GET_NESTED_STATE: {
6156 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6157 u32 user_data_size;
6158
6159 r = -EINVAL;
6160 if (!kvm_x86_ops.nested_ops->get_state)
6161 break;
6162
6163 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6164 r = -EFAULT;
6165 if (get_user(user_data_size, &user_kvm_nested_state->size))
6166 break;
6167
6168 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6169 user_data_size);
6170 if (r < 0)
6171 break;
6172
6173 if (r > user_data_size) {
6174 if (put_user(r, &user_kvm_nested_state->size))
6175 r = -EFAULT;
6176 else
6177 r = -E2BIG;
6178 break;
6179 }
6180
6181 r = 0;
6182 break;
6183 }
6184 case KVM_SET_NESTED_STATE: {
6185 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6186 struct kvm_nested_state kvm_state;
6187 int idx;
6188
6189 r = -EINVAL;
6190 if (!kvm_x86_ops.nested_ops->set_state)
6191 break;
6192
6193 r = -EFAULT;
6194 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6195 break;
6196
6197 r = -EINVAL;
6198 if (kvm_state.size < sizeof(kvm_state))
6199 break;
6200
6201 if (kvm_state.flags &
6202 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6203 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6204 | KVM_STATE_NESTED_GIF_SET))
6205 break;
6206
6207 /* nested_run_pending implies guest_mode. */
6208 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6209 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6210 break;
6211
6212 idx = srcu_read_lock(&vcpu->kvm->srcu);
6213 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6214 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6215 break;
6216 }
6217 #ifdef CONFIG_KVM_HYPERV
6218 case KVM_GET_SUPPORTED_HV_CPUID:
6219 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6220 break;
6221 #endif
6222 #ifdef CONFIG_KVM_XEN
6223 case KVM_XEN_VCPU_GET_ATTR: {
6224 struct kvm_xen_vcpu_attr xva;
6225
6226 r = -EFAULT;
6227 if (copy_from_user(&xva, argp, sizeof(xva)))
6228 goto out;
6229 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6230 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6231 r = -EFAULT;
6232 break;
6233 }
6234 case KVM_XEN_VCPU_SET_ATTR: {
6235 struct kvm_xen_vcpu_attr xva;
6236
6237 r = -EFAULT;
6238 if (copy_from_user(&xva, argp, sizeof(xva)))
6239 goto out;
6240 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6241 break;
6242 }
6243 #endif
6244 case KVM_GET_SREGS2: {
6245 r = -EINVAL;
6246 if (vcpu->kvm->arch.has_protected_state &&
6247 vcpu->arch.guest_state_protected)
6248 goto out;
6249
6250 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6251 r = -ENOMEM;
6252 if (!u.sregs2)
6253 goto out;
6254 __get_sregs2(vcpu, u.sregs2);
6255 r = -EFAULT;
6256 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6257 goto out;
6258 r = 0;
6259 break;
6260 }
6261 case KVM_SET_SREGS2: {
6262 r = -EINVAL;
6263 if (vcpu->kvm->arch.has_protected_state &&
6264 vcpu->arch.guest_state_protected)
6265 goto out;
6266
6267 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6268 if (IS_ERR(u.sregs2)) {
6269 r = PTR_ERR(u.sregs2);
6270 u.sregs2 = NULL;
6271 goto out;
6272 }
6273 r = __set_sregs2(vcpu, u.sregs2);
6274 break;
6275 }
6276 case KVM_HAS_DEVICE_ATTR:
6277 case KVM_GET_DEVICE_ATTR:
6278 case KVM_SET_DEVICE_ATTR:
6279 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6280 break;
6281 default:
6282 r = -EINVAL;
6283 }
6284 out:
6285 kfree(u.buffer);
6286 out_nofree:
6287 vcpu_put(vcpu);
6288 return r;
6289 }
6290
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6291 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6292 {
6293 return VM_FAULT_SIGBUS;
6294 }
6295
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6296 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6297 {
6298 int ret;
6299
6300 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6301 return -EINVAL;
6302 ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6303 return ret;
6304 }
6305
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6306 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6307 u64 ident_addr)
6308 {
6309 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6310 }
6311
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6312 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6313 unsigned long kvm_nr_mmu_pages)
6314 {
6315 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6316 return -EINVAL;
6317
6318 mutex_lock(&kvm->slots_lock);
6319
6320 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6321 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6322
6323 mutex_unlock(&kvm->slots_lock);
6324 return 0;
6325 }
6326
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6327 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6328 {
6329 struct kvm_pic *pic = kvm->arch.vpic;
6330 int r;
6331
6332 r = 0;
6333 switch (chip->chip_id) {
6334 case KVM_IRQCHIP_PIC_MASTER:
6335 memcpy(&chip->chip.pic, &pic->pics[0],
6336 sizeof(struct kvm_pic_state));
6337 break;
6338 case KVM_IRQCHIP_PIC_SLAVE:
6339 memcpy(&chip->chip.pic, &pic->pics[1],
6340 sizeof(struct kvm_pic_state));
6341 break;
6342 case KVM_IRQCHIP_IOAPIC:
6343 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6344 break;
6345 default:
6346 r = -EINVAL;
6347 break;
6348 }
6349 return r;
6350 }
6351
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6352 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6353 {
6354 struct kvm_pic *pic = kvm->arch.vpic;
6355 int r;
6356
6357 r = 0;
6358 switch (chip->chip_id) {
6359 case KVM_IRQCHIP_PIC_MASTER:
6360 spin_lock(&pic->lock);
6361 memcpy(&pic->pics[0], &chip->chip.pic,
6362 sizeof(struct kvm_pic_state));
6363 spin_unlock(&pic->lock);
6364 break;
6365 case KVM_IRQCHIP_PIC_SLAVE:
6366 spin_lock(&pic->lock);
6367 memcpy(&pic->pics[1], &chip->chip.pic,
6368 sizeof(struct kvm_pic_state));
6369 spin_unlock(&pic->lock);
6370 break;
6371 case KVM_IRQCHIP_IOAPIC:
6372 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6373 break;
6374 default:
6375 r = -EINVAL;
6376 break;
6377 }
6378 kvm_pic_update_irq(pic);
6379 return r;
6380 }
6381
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6382 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6383 {
6384 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6385
6386 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6387
6388 mutex_lock(&kps->lock);
6389 memcpy(ps, &kps->channels, sizeof(*ps));
6390 mutex_unlock(&kps->lock);
6391 return 0;
6392 }
6393
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6394 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6395 {
6396 int i;
6397 struct kvm_pit *pit = kvm->arch.vpit;
6398
6399 mutex_lock(&pit->pit_state.lock);
6400 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6401 for (i = 0; i < 3; i++)
6402 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6403 mutex_unlock(&pit->pit_state.lock);
6404 return 0;
6405 }
6406
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6407 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6408 {
6409 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6410 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6411 sizeof(ps->channels));
6412 ps->flags = kvm->arch.vpit->pit_state.flags;
6413 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6414 memset(&ps->reserved, 0, sizeof(ps->reserved));
6415 return 0;
6416 }
6417
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6418 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6419 {
6420 int start = 0;
6421 int i;
6422 u32 prev_legacy, cur_legacy;
6423 struct kvm_pit *pit = kvm->arch.vpit;
6424
6425 mutex_lock(&pit->pit_state.lock);
6426 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6427 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6428 if (!prev_legacy && cur_legacy)
6429 start = 1;
6430 memcpy(&pit->pit_state.channels, &ps->channels,
6431 sizeof(pit->pit_state.channels));
6432 pit->pit_state.flags = ps->flags;
6433 for (i = 0; i < 3; i++)
6434 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6435 start && i == 0);
6436 mutex_unlock(&pit->pit_state.lock);
6437 return 0;
6438 }
6439
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6440 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6441 struct kvm_reinject_control *control)
6442 {
6443 struct kvm_pit *pit = kvm->arch.vpit;
6444
6445 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6446 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6447 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6448 */
6449 mutex_lock(&pit->pit_state.lock);
6450 kvm_pit_set_reinject(pit, control->pit_reinject);
6451 mutex_unlock(&pit->pit_state.lock);
6452
6453 return 0;
6454 }
6455
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6456 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6457 {
6458
6459 /*
6460 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6461 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6462 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6463 * VM-Exit.
6464 */
6465 struct kvm_vcpu *vcpu;
6466 unsigned long i;
6467
6468 if (!kvm_x86_ops.cpu_dirty_log_size)
6469 return;
6470
6471 kvm_for_each_vcpu(i, vcpu, kvm)
6472 kvm_vcpu_kick(vcpu);
6473 }
6474
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6475 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6476 bool line_status)
6477 {
6478 if (!irqchip_in_kernel(kvm))
6479 return -ENXIO;
6480
6481 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6482 irq_event->irq, irq_event->level,
6483 line_status);
6484 return 0;
6485 }
6486
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6487 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6488 struct kvm_enable_cap *cap)
6489 {
6490 int r;
6491
6492 if (cap->flags)
6493 return -EINVAL;
6494
6495 switch (cap->cap) {
6496 case KVM_CAP_DISABLE_QUIRKS2:
6497 r = -EINVAL;
6498 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6499 break;
6500 fallthrough;
6501 case KVM_CAP_DISABLE_QUIRKS:
6502 kvm->arch.disabled_quirks = cap->args[0];
6503 r = 0;
6504 break;
6505 case KVM_CAP_SPLIT_IRQCHIP: {
6506 mutex_lock(&kvm->lock);
6507 r = -EINVAL;
6508 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6509 goto split_irqchip_unlock;
6510 r = -EEXIST;
6511 if (irqchip_in_kernel(kvm))
6512 goto split_irqchip_unlock;
6513 if (kvm->created_vcpus)
6514 goto split_irqchip_unlock;
6515 /* Pairs with irqchip_in_kernel. */
6516 smp_wmb();
6517 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6518 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6519 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6520 r = 0;
6521 split_irqchip_unlock:
6522 mutex_unlock(&kvm->lock);
6523 break;
6524 }
6525 case KVM_CAP_X2APIC_API:
6526 r = -EINVAL;
6527 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6528 break;
6529
6530 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6531 kvm->arch.x2apic_format = true;
6532 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6533 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6534
6535 r = 0;
6536 break;
6537 case KVM_CAP_X86_DISABLE_EXITS:
6538 r = -EINVAL;
6539 if (cap->args[0] & ~kvm_get_allowed_disable_exits())
6540 break;
6541
6542 mutex_lock(&kvm->lock);
6543 if (kvm->created_vcpus)
6544 goto disable_exits_unlock;
6545
6546 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6547 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6548
6549 if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) &&
6550 cpu_smt_possible() &&
6551 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6552 pr_warn_once(SMT_RSB_MSG);
6553
6554 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6555 kvm->arch.pause_in_guest = true;
6556 if (cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT)
6557 kvm->arch.mwait_in_guest = true;
6558 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6559 kvm->arch.hlt_in_guest = true;
6560 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6561 kvm->arch.cstate_in_guest = true;
6562 r = 0;
6563 disable_exits_unlock:
6564 mutex_unlock(&kvm->lock);
6565 break;
6566 case KVM_CAP_MSR_PLATFORM_INFO:
6567 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6568 r = 0;
6569 break;
6570 case KVM_CAP_EXCEPTION_PAYLOAD:
6571 kvm->arch.exception_payload_enabled = cap->args[0];
6572 r = 0;
6573 break;
6574 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6575 kvm->arch.triple_fault_event = cap->args[0];
6576 r = 0;
6577 break;
6578 case KVM_CAP_X86_USER_SPACE_MSR:
6579 r = -EINVAL;
6580 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6581 break;
6582 kvm->arch.user_space_msr_mask = cap->args[0];
6583 r = 0;
6584 break;
6585 case KVM_CAP_X86_BUS_LOCK_EXIT:
6586 r = -EINVAL;
6587 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6588 break;
6589
6590 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6591 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6592 break;
6593
6594 if (kvm_caps.has_bus_lock_exit &&
6595 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6596 kvm->arch.bus_lock_detection_enabled = true;
6597 r = 0;
6598 break;
6599 #ifdef CONFIG_X86_SGX_KVM
6600 case KVM_CAP_SGX_ATTRIBUTE: {
6601 unsigned long allowed_attributes = 0;
6602
6603 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6604 if (r)
6605 break;
6606
6607 /* KVM only supports the PROVISIONKEY privileged attribute. */
6608 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6609 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6610 kvm->arch.sgx_provisioning_allowed = true;
6611 else
6612 r = -EINVAL;
6613 break;
6614 }
6615 #endif
6616 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6617 r = -EINVAL;
6618 if (!kvm_x86_ops.vm_copy_enc_context_from)
6619 break;
6620
6621 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6622 break;
6623 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6624 r = -EINVAL;
6625 if (!kvm_x86_ops.vm_move_enc_context_from)
6626 break;
6627
6628 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6629 break;
6630 case KVM_CAP_EXIT_HYPERCALL:
6631 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6632 r = -EINVAL;
6633 break;
6634 }
6635 kvm->arch.hypercall_exit_enabled = cap->args[0];
6636 r = 0;
6637 break;
6638 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6639 r = -EINVAL;
6640 if (cap->args[0] & ~1)
6641 break;
6642 kvm->arch.exit_on_emulation_error = cap->args[0];
6643 r = 0;
6644 break;
6645 case KVM_CAP_PMU_CAPABILITY:
6646 r = -EINVAL;
6647 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6648 break;
6649
6650 mutex_lock(&kvm->lock);
6651 if (!kvm->created_vcpus) {
6652 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6653 r = 0;
6654 }
6655 mutex_unlock(&kvm->lock);
6656 break;
6657 case KVM_CAP_MAX_VCPU_ID:
6658 r = -EINVAL;
6659 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6660 break;
6661
6662 mutex_lock(&kvm->lock);
6663 if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6664 ;
6665 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6666 r = 0;
6667 } else if (!kvm->arch.max_vcpu_ids) {
6668 kvm->arch.max_vcpu_ids = cap->args[0];
6669 r = 0;
6670 }
6671 mutex_unlock(&kvm->lock);
6672 break;
6673 case KVM_CAP_X86_NOTIFY_VMEXIT:
6674 r = -EINVAL;
6675 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6676 break;
6677 if (!kvm_caps.has_notify_vmexit)
6678 break;
6679 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6680 break;
6681 mutex_lock(&kvm->lock);
6682 if (!kvm->created_vcpus) {
6683 kvm->arch.notify_window = cap->args[0] >> 32;
6684 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6685 r = 0;
6686 }
6687 mutex_unlock(&kvm->lock);
6688 break;
6689 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6690 r = -EINVAL;
6691
6692 /*
6693 * Since the risk of disabling NX hugepages is a guest crashing
6694 * the system, ensure the userspace process has permission to
6695 * reboot the system.
6696 *
6697 * Note that unlike the reboot() syscall, the process must have
6698 * this capability in the root namespace because exposing
6699 * /dev/kvm into a container does not limit the scope of the
6700 * iTLB multihit bug to that container. In other words,
6701 * this must use capable(), not ns_capable().
6702 */
6703 if (!capable(CAP_SYS_BOOT)) {
6704 r = -EPERM;
6705 break;
6706 }
6707
6708 if (cap->args[0])
6709 break;
6710
6711 mutex_lock(&kvm->lock);
6712 if (!kvm->created_vcpus) {
6713 kvm->arch.disable_nx_huge_pages = true;
6714 r = 0;
6715 }
6716 mutex_unlock(&kvm->lock);
6717 break;
6718 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6719 u64 bus_cycle_ns = cap->args[0];
6720 u64 unused;
6721
6722 /*
6723 * Guard against overflow in tmict_to_ns(). 128 is the highest
6724 * divide value that can be programmed in APIC_TDCR.
6725 */
6726 r = -EINVAL;
6727 if (!bus_cycle_ns ||
6728 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6729 break;
6730
6731 r = 0;
6732 mutex_lock(&kvm->lock);
6733 if (!irqchip_in_kernel(kvm))
6734 r = -ENXIO;
6735 else if (kvm->created_vcpus)
6736 r = -EINVAL;
6737 else
6738 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6739 mutex_unlock(&kvm->lock);
6740 break;
6741 }
6742 default:
6743 r = -EINVAL;
6744 break;
6745 }
6746 return r;
6747 }
6748
kvm_alloc_msr_filter(bool default_allow)6749 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6750 {
6751 struct kvm_x86_msr_filter *msr_filter;
6752
6753 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6754 if (!msr_filter)
6755 return NULL;
6756
6757 msr_filter->default_allow = default_allow;
6758 return msr_filter;
6759 }
6760
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6761 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6762 {
6763 u32 i;
6764
6765 if (!msr_filter)
6766 return;
6767
6768 for (i = 0; i < msr_filter->count; i++)
6769 kfree(msr_filter->ranges[i].bitmap);
6770
6771 kfree(msr_filter);
6772 }
6773
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6774 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6775 struct kvm_msr_filter_range *user_range)
6776 {
6777 unsigned long *bitmap;
6778 size_t bitmap_size;
6779
6780 if (!user_range->nmsrs)
6781 return 0;
6782
6783 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6784 return -EINVAL;
6785
6786 if (!user_range->flags)
6787 return -EINVAL;
6788
6789 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6790 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6791 return -EINVAL;
6792
6793 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6794 if (IS_ERR(bitmap))
6795 return PTR_ERR(bitmap);
6796
6797 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6798 .flags = user_range->flags,
6799 .base = user_range->base,
6800 .nmsrs = user_range->nmsrs,
6801 .bitmap = bitmap,
6802 };
6803
6804 msr_filter->count++;
6805 return 0;
6806 }
6807
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6808 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6809 struct kvm_msr_filter *filter)
6810 {
6811 struct kvm_x86_msr_filter *new_filter, *old_filter;
6812 bool default_allow;
6813 bool empty = true;
6814 int r;
6815 u32 i;
6816
6817 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6818 return -EINVAL;
6819
6820 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6821 empty &= !filter->ranges[i].nmsrs;
6822
6823 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6824 if (empty && !default_allow)
6825 return -EINVAL;
6826
6827 new_filter = kvm_alloc_msr_filter(default_allow);
6828 if (!new_filter)
6829 return -ENOMEM;
6830
6831 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6832 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6833 if (r) {
6834 kvm_free_msr_filter(new_filter);
6835 return r;
6836 }
6837 }
6838
6839 mutex_lock(&kvm->lock);
6840 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6841 mutex_is_locked(&kvm->lock));
6842 mutex_unlock(&kvm->lock);
6843 synchronize_srcu(&kvm->srcu);
6844
6845 kvm_free_msr_filter(old_filter);
6846
6847 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6848
6849 return 0;
6850 }
6851
6852 #ifdef CONFIG_KVM_COMPAT
6853 /* for KVM_X86_SET_MSR_FILTER */
6854 struct kvm_msr_filter_range_compat {
6855 __u32 flags;
6856 __u32 nmsrs;
6857 __u32 base;
6858 __u32 bitmap;
6859 };
6860
6861 struct kvm_msr_filter_compat {
6862 __u32 flags;
6863 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6864 };
6865
6866 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6867
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6868 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6869 unsigned long arg)
6870 {
6871 void __user *argp = (void __user *)arg;
6872 struct kvm *kvm = filp->private_data;
6873 long r = -ENOTTY;
6874
6875 switch (ioctl) {
6876 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6877 struct kvm_msr_filter __user *user_msr_filter = argp;
6878 struct kvm_msr_filter_compat filter_compat;
6879 struct kvm_msr_filter filter;
6880 int i;
6881
6882 if (copy_from_user(&filter_compat, user_msr_filter,
6883 sizeof(filter_compat)))
6884 return -EFAULT;
6885
6886 filter.flags = filter_compat.flags;
6887 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6888 struct kvm_msr_filter_range_compat *cr;
6889
6890 cr = &filter_compat.ranges[i];
6891 filter.ranges[i] = (struct kvm_msr_filter_range) {
6892 .flags = cr->flags,
6893 .nmsrs = cr->nmsrs,
6894 .base = cr->base,
6895 .bitmap = (__u8 *)(ulong)cr->bitmap,
6896 };
6897 }
6898
6899 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6900 break;
6901 }
6902 }
6903
6904 return r;
6905 }
6906 #endif
6907
6908 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6909 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6910 {
6911 struct kvm_vcpu *vcpu;
6912 unsigned long i;
6913 int ret = 0;
6914
6915 mutex_lock(&kvm->lock);
6916 kvm_for_each_vcpu(i, vcpu, kvm) {
6917 if (!vcpu->arch.pv_time.active)
6918 continue;
6919
6920 ret = kvm_set_guest_paused(vcpu);
6921 if (ret) {
6922 kvm_err("Failed to pause guest VCPU%d: %d\n",
6923 vcpu->vcpu_id, ret);
6924 break;
6925 }
6926 }
6927 mutex_unlock(&kvm->lock);
6928
6929 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6930 }
6931
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6932 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6933 {
6934 switch (state) {
6935 case PM_HIBERNATION_PREPARE:
6936 case PM_SUSPEND_PREPARE:
6937 return kvm_arch_suspend_notifier(kvm);
6938 }
6939
6940 return NOTIFY_DONE;
6941 }
6942 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6943
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6944 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6945 {
6946 struct kvm_clock_data data = { 0 };
6947
6948 get_kvmclock(kvm, &data);
6949 if (copy_to_user(argp, &data, sizeof(data)))
6950 return -EFAULT;
6951
6952 return 0;
6953 }
6954
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6955 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6956 {
6957 struct kvm_arch *ka = &kvm->arch;
6958 struct kvm_clock_data data;
6959 u64 now_raw_ns;
6960
6961 if (copy_from_user(&data, argp, sizeof(data)))
6962 return -EFAULT;
6963
6964 /*
6965 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6966 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6967 */
6968 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6969 return -EINVAL;
6970
6971 kvm_hv_request_tsc_page_update(kvm);
6972 kvm_start_pvclock_update(kvm);
6973 pvclock_update_vm_gtod_copy(kvm);
6974
6975 /*
6976 * This pairs with kvm_guest_time_update(): when masterclock is
6977 * in use, we use master_kernel_ns + kvmclock_offset to set
6978 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6979 * is slightly ahead) here we risk going negative on unsigned
6980 * 'system_time' when 'data.clock' is very small.
6981 */
6982 if (data.flags & KVM_CLOCK_REALTIME) {
6983 u64 now_real_ns = ktime_get_real_ns();
6984
6985 /*
6986 * Avoid stepping the kvmclock backwards.
6987 */
6988 if (now_real_ns > data.realtime)
6989 data.clock += now_real_ns - data.realtime;
6990 }
6991
6992 if (ka->use_master_clock)
6993 now_raw_ns = ka->master_kernel_ns;
6994 else
6995 now_raw_ns = get_kvmclock_base_ns();
6996 ka->kvmclock_offset = data.clock - now_raw_ns;
6997 kvm_end_pvclock_update(kvm);
6998 return 0;
6999 }
7000
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7001 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7002 {
7003 struct kvm *kvm = filp->private_data;
7004 void __user *argp = (void __user *)arg;
7005 int r = -ENOTTY;
7006 /*
7007 * This union makes it completely explicit to gcc-3.x
7008 * that these two variables' stack usage should be
7009 * combined, not added together.
7010 */
7011 union {
7012 struct kvm_pit_state ps;
7013 struct kvm_pit_state2 ps2;
7014 struct kvm_pit_config pit_config;
7015 } u;
7016
7017 switch (ioctl) {
7018 case KVM_SET_TSS_ADDR:
7019 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7020 break;
7021 case KVM_SET_IDENTITY_MAP_ADDR: {
7022 u64 ident_addr;
7023
7024 mutex_lock(&kvm->lock);
7025 r = -EINVAL;
7026 if (kvm->created_vcpus)
7027 goto set_identity_unlock;
7028 r = -EFAULT;
7029 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7030 goto set_identity_unlock;
7031 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7032 set_identity_unlock:
7033 mutex_unlock(&kvm->lock);
7034 break;
7035 }
7036 case KVM_SET_NR_MMU_PAGES:
7037 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7038 break;
7039 case KVM_CREATE_IRQCHIP: {
7040 mutex_lock(&kvm->lock);
7041
7042 r = -EEXIST;
7043 if (irqchip_in_kernel(kvm))
7044 goto create_irqchip_unlock;
7045
7046 r = -EINVAL;
7047 if (kvm->created_vcpus)
7048 goto create_irqchip_unlock;
7049
7050 r = kvm_pic_init(kvm);
7051 if (r)
7052 goto create_irqchip_unlock;
7053
7054 r = kvm_ioapic_init(kvm);
7055 if (r) {
7056 kvm_pic_destroy(kvm);
7057 goto create_irqchip_unlock;
7058 }
7059
7060 r = kvm_setup_default_irq_routing(kvm);
7061 if (r) {
7062 kvm_ioapic_destroy(kvm);
7063 kvm_pic_destroy(kvm);
7064 goto create_irqchip_unlock;
7065 }
7066 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7067 smp_wmb();
7068 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7069 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7070 create_irqchip_unlock:
7071 mutex_unlock(&kvm->lock);
7072 break;
7073 }
7074 case KVM_CREATE_PIT:
7075 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7076 goto create_pit;
7077 case KVM_CREATE_PIT2:
7078 r = -EFAULT;
7079 if (copy_from_user(&u.pit_config, argp,
7080 sizeof(struct kvm_pit_config)))
7081 goto out;
7082 create_pit:
7083 mutex_lock(&kvm->lock);
7084 r = -EEXIST;
7085 if (kvm->arch.vpit)
7086 goto create_pit_unlock;
7087 r = -ENOENT;
7088 if (!pic_in_kernel(kvm))
7089 goto create_pit_unlock;
7090 r = -ENOMEM;
7091 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7092 if (kvm->arch.vpit)
7093 r = 0;
7094 create_pit_unlock:
7095 mutex_unlock(&kvm->lock);
7096 break;
7097 case KVM_GET_IRQCHIP: {
7098 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7099 struct kvm_irqchip *chip;
7100
7101 chip = memdup_user(argp, sizeof(*chip));
7102 if (IS_ERR(chip)) {
7103 r = PTR_ERR(chip);
7104 goto out;
7105 }
7106
7107 r = -ENXIO;
7108 if (!irqchip_kernel(kvm))
7109 goto get_irqchip_out;
7110 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7111 if (r)
7112 goto get_irqchip_out;
7113 r = -EFAULT;
7114 if (copy_to_user(argp, chip, sizeof(*chip)))
7115 goto get_irqchip_out;
7116 r = 0;
7117 get_irqchip_out:
7118 kfree(chip);
7119 break;
7120 }
7121 case KVM_SET_IRQCHIP: {
7122 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7123 struct kvm_irqchip *chip;
7124
7125 chip = memdup_user(argp, sizeof(*chip));
7126 if (IS_ERR(chip)) {
7127 r = PTR_ERR(chip);
7128 goto out;
7129 }
7130
7131 r = -ENXIO;
7132 if (!irqchip_kernel(kvm))
7133 goto set_irqchip_out;
7134 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7135 set_irqchip_out:
7136 kfree(chip);
7137 break;
7138 }
7139 case KVM_GET_PIT: {
7140 r = -EFAULT;
7141 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7142 goto out;
7143 r = -ENXIO;
7144 if (!kvm->arch.vpit)
7145 goto out;
7146 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7147 if (r)
7148 goto out;
7149 r = -EFAULT;
7150 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7151 goto out;
7152 r = 0;
7153 break;
7154 }
7155 case KVM_SET_PIT: {
7156 r = -EFAULT;
7157 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7158 goto out;
7159 mutex_lock(&kvm->lock);
7160 r = -ENXIO;
7161 if (!kvm->arch.vpit)
7162 goto set_pit_out;
7163 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7164 set_pit_out:
7165 mutex_unlock(&kvm->lock);
7166 break;
7167 }
7168 case KVM_GET_PIT2: {
7169 r = -ENXIO;
7170 if (!kvm->arch.vpit)
7171 goto out;
7172 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7173 if (r)
7174 goto out;
7175 r = -EFAULT;
7176 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7177 goto out;
7178 r = 0;
7179 break;
7180 }
7181 case KVM_SET_PIT2: {
7182 r = -EFAULT;
7183 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7184 goto out;
7185 mutex_lock(&kvm->lock);
7186 r = -ENXIO;
7187 if (!kvm->arch.vpit)
7188 goto set_pit2_out;
7189 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7190 set_pit2_out:
7191 mutex_unlock(&kvm->lock);
7192 break;
7193 }
7194 case KVM_REINJECT_CONTROL: {
7195 struct kvm_reinject_control control;
7196 r = -EFAULT;
7197 if (copy_from_user(&control, argp, sizeof(control)))
7198 goto out;
7199 r = -ENXIO;
7200 if (!kvm->arch.vpit)
7201 goto out;
7202 r = kvm_vm_ioctl_reinject(kvm, &control);
7203 break;
7204 }
7205 case KVM_SET_BOOT_CPU_ID:
7206 r = 0;
7207 mutex_lock(&kvm->lock);
7208 if (kvm->created_vcpus)
7209 r = -EBUSY;
7210 else if (arg > KVM_MAX_VCPU_IDS ||
7211 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7212 r = -EINVAL;
7213 else
7214 kvm->arch.bsp_vcpu_id = arg;
7215 mutex_unlock(&kvm->lock);
7216 break;
7217 #ifdef CONFIG_KVM_XEN
7218 case KVM_XEN_HVM_CONFIG: {
7219 struct kvm_xen_hvm_config xhc;
7220 r = -EFAULT;
7221 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7222 goto out;
7223 r = kvm_xen_hvm_config(kvm, &xhc);
7224 break;
7225 }
7226 case KVM_XEN_HVM_GET_ATTR: {
7227 struct kvm_xen_hvm_attr xha;
7228
7229 r = -EFAULT;
7230 if (copy_from_user(&xha, argp, sizeof(xha)))
7231 goto out;
7232 r = kvm_xen_hvm_get_attr(kvm, &xha);
7233 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7234 r = -EFAULT;
7235 break;
7236 }
7237 case KVM_XEN_HVM_SET_ATTR: {
7238 struct kvm_xen_hvm_attr xha;
7239
7240 r = -EFAULT;
7241 if (copy_from_user(&xha, argp, sizeof(xha)))
7242 goto out;
7243 r = kvm_xen_hvm_set_attr(kvm, &xha);
7244 break;
7245 }
7246 case KVM_XEN_HVM_EVTCHN_SEND: {
7247 struct kvm_irq_routing_xen_evtchn uxe;
7248
7249 r = -EFAULT;
7250 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7251 goto out;
7252 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7253 break;
7254 }
7255 #endif
7256 case KVM_SET_CLOCK:
7257 r = kvm_vm_ioctl_set_clock(kvm, argp);
7258 break;
7259 case KVM_GET_CLOCK:
7260 r = kvm_vm_ioctl_get_clock(kvm, argp);
7261 break;
7262 case KVM_SET_TSC_KHZ: {
7263 u32 user_tsc_khz;
7264
7265 r = -EINVAL;
7266 user_tsc_khz = (u32)arg;
7267
7268 if (kvm_caps.has_tsc_control &&
7269 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7270 goto out;
7271
7272 if (user_tsc_khz == 0)
7273 user_tsc_khz = tsc_khz;
7274
7275 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7276 r = 0;
7277
7278 goto out;
7279 }
7280 case KVM_GET_TSC_KHZ: {
7281 r = READ_ONCE(kvm->arch.default_tsc_khz);
7282 goto out;
7283 }
7284 case KVM_MEMORY_ENCRYPT_OP: {
7285 r = -ENOTTY;
7286 if (!kvm_x86_ops.mem_enc_ioctl)
7287 goto out;
7288
7289 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7290 break;
7291 }
7292 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7293 struct kvm_enc_region region;
7294
7295 r = -EFAULT;
7296 if (copy_from_user(®ion, argp, sizeof(region)))
7297 goto out;
7298
7299 r = -ENOTTY;
7300 if (!kvm_x86_ops.mem_enc_register_region)
7301 goto out;
7302
7303 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion);
7304 break;
7305 }
7306 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7307 struct kvm_enc_region region;
7308
7309 r = -EFAULT;
7310 if (copy_from_user(®ion, argp, sizeof(region)))
7311 goto out;
7312
7313 r = -ENOTTY;
7314 if (!kvm_x86_ops.mem_enc_unregister_region)
7315 goto out;
7316
7317 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion);
7318 break;
7319 }
7320 #ifdef CONFIG_KVM_HYPERV
7321 case KVM_HYPERV_EVENTFD: {
7322 struct kvm_hyperv_eventfd hvevfd;
7323
7324 r = -EFAULT;
7325 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7326 goto out;
7327 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7328 break;
7329 }
7330 #endif
7331 case KVM_SET_PMU_EVENT_FILTER:
7332 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7333 break;
7334 case KVM_X86_SET_MSR_FILTER: {
7335 struct kvm_msr_filter __user *user_msr_filter = argp;
7336 struct kvm_msr_filter filter;
7337
7338 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7339 return -EFAULT;
7340
7341 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7342 break;
7343 }
7344 default:
7345 r = -ENOTTY;
7346 }
7347 out:
7348 return r;
7349 }
7350
kvm_probe_feature_msr(u32 msr_index)7351 static void kvm_probe_feature_msr(u32 msr_index)
7352 {
7353 u64 data;
7354
7355 if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7356 return;
7357
7358 msr_based_features[num_msr_based_features++] = msr_index;
7359 }
7360
kvm_probe_msr_to_save(u32 msr_index)7361 static void kvm_probe_msr_to_save(u32 msr_index)
7362 {
7363 u32 dummy[2];
7364
7365 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7366 return;
7367
7368 /*
7369 * Even MSRs that are valid in the host may not be exposed to guests in
7370 * some cases.
7371 */
7372 switch (msr_index) {
7373 case MSR_IA32_BNDCFGS:
7374 if (!kvm_mpx_supported())
7375 return;
7376 break;
7377 case MSR_TSC_AUX:
7378 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7379 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7380 return;
7381 break;
7382 case MSR_IA32_UMWAIT_CONTROL:
7383 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7384 return;
7385 break;
7386 case MSR_IA32_RTIT_CTL:
7387 case MSR_IA32_RTIT_STATUS:
7388 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7389 return;
7390 break;
7391 case MSR_IA32_RTIT_CR3_MATCH:
7392 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7393 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7394 return;
7395 break;
7396 case MSR_IA32_RTIT_OUTPUT_BASE:
7397 case MSR_IA32_RTIT_OUTPUT_MASK:
7398 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7399 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7400 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7401 return;
7402 break;
7403 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7404 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7405 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7406 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7407 return;
7408 break;
7409 case MSR_ARCH_PERFMON_PERFCTR0 ...
7410 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7411 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7412 kvm_pmu_cap.num_counters_gp)
7413 return;
7414 break;
7415 case MSR_ARCH_PERFMON_EVENTSEL0 ...
7416 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7417 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7418 kvm_pmu_cap.num_counters_gp)
7419 return;
7420 break;
7421 case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7422 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7423 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7424 kvm_pmu_cap.num_counters_fixed)
7425 return;
7426 break;
7427 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7428 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7429 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7430 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7431 return;
7432 break;
7433 case MSR_IA32_XFD:
7434 case MSR_IA32_XFD_ERR:
7435 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7436 return;
7437 break;
7438 case MSR_IA32_TSX_CTRL:
7439 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7440 return;
7441 break;
7442 default:
7443 break;
7444 }
7445
7446 msrs_to_save[num_msrs_to_save++] = msr_index;
7447 }
7448
kvm_init_msr_lists(void)7449 static void kvm_init_msr_lists(void)
7450 {
7451 unsigned i;
7452
7453 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7454 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7455
7456 num_msrs_to_save = 0;
7457 num_emulated_msrs = 0;
7458 num_msr_based_features = 0;
7459
7460 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7461 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7462
7463 if (enable_pmu) {
7464 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7465 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7466 }
7467
7468 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7469 if (!kvm_x86_call(has_emulated_msr)(NULL,
7470 emulated_msrs_all[i]))
7471 continue;
7472
7473 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7474 }
7475
7476 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7477 kvm_probe_feature_msr(i);
7478
7479 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7480 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7481 }
7482
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7483 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7484 const void *v)
7485 {
7486 int handled = 0;
7487 int n;
7488
7489 do {
7490 n = min(len, 8);
7491 if (!(lapic_in_kernel(vcpu) &&
7492 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7493 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7494 break;
7495 handled += n;
7496 addr += n;
7497 len -= n;
7498 v += n;
7499 } while (len);
7500
7501 return handled;
7502 }
7503
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7504 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7505 {
7506 int handled = 0;
7507 int n;
7508
7509 do {
7510 n = min(len, 8);
7511 if (!(lapic_in_kernel(vcpu) &&
7512 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7513 addr, n, v))
7514 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7515 break;
7516 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7517 handled += n;
7518 addr += n;
7519 len -= n;
7520 v += n;
7521 } while (len);
7522
7523 return handled;
7524 }
7525
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7526 void kvm_set_segment(struct kvm_vcpu *vcpu,
7527 struct kvm_segment *var, int seg)
7528 {
7529 kvm_x86_call(set_segment)(vcpu, var, seg);
7530 }
7531
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7532 void kvm_get_segment(struct kvm_vcpu *vcpu,
7533 struct kvm_segment *var, int seg)
7534 {
7535 kvm_x86_call(get_segment)(vcpu, var, seg);
7536 }
7537
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7538 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7539 struct x86_exception *exception)
7540 {
7541 struct kvm_mmu *mmu = vcpu->arch.mmu;
7542 gpa_t t_gpa;
7543
7544 BUG_ON(!mmu_is_nested(vcpu));
7545
7546 /* NPT walks are always user-walks */
7547 access |= PFERR_USER_MASK;
7548 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7549
7550 return t_gpa;
7551 }
7552
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7553 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7554 struct x86_exception *exception)
7555 {
7556 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7557
7558 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7559 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7560 }
7561 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7562
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7563 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7564 struct x86_exception *exception)
7565 {
7566 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7567
7568 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7569 access |= PFERR_WRITE_MASK;
7570 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7571 }
7572 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7573
7574 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7575 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7576 struct x86_exception *exception)
7577 {
7578 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7579
7580 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7581 }
7582
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7583 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7584 struct kvm_vcpu *vcpu, u64 access,
7585 struct x86_exception *exception)
7586 {
7587 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7588 void *data = val;
7589 int r = X86EMUL_CONTINUE;
7590
7591 while (bytes) {
7592 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7593 unsigned offset = addr & (PAGE_SIZE-1);
7594 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7595 int ret;
7596
7597 if (gpa == INVALID_GPA)
7598 return X86EMUL_PROPAGATE_FAULT;
7599 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7600 offset, toread);
7601 if (ret < 0) {
7602 r = X86EMUL_IO_NEEDED;
7603 goto out;
7604 }
7605
7606 bytes -= toread;
7607 data += toread;
7608 addr += toread;
7609 }
7610 out:
7611 return r;
7612 }
7613
7614 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7615 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7616 gva_t addr, void *val, unsigned int bytes,
7617 struct x86_exception *exception)
7618 {
7619 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7620 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7621 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7622 unsigned offset;
7623 int ret;
7624
7625 /* Inline kvm_read_guest_virt_helper for speed. */
7626 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7627 exception);
7628 if (unlikely(gpa == INVALID_GPA))
7629 return X86EMUL_PROPAGATE_FAULT;
7630
7631 offset = addr & (PAGE_SIZE-1);
7632 if (WARN_ON(offset + bytes > PAGE_SIZE))
7633 bytes = (unsigned)PAGE_SIZE - offset;
7634 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7635 offset, bytes);
7636 if (unlikely(ret < 0))
7637 return X86EMUL_IO_NEEDED;
7638
7639 return X86EMUL_CONTINUE;
7640 }
7641
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7642 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7643 gva_t addr, void *val, unsigned int bytes,
7644 struct x86_exception *exception)
7645 {
7646 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7647
7648 /*
7649 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7650 * is returned, but our callers are not ready for that and they blindly
7651 * call kvm_inject_page_fault. Ensure that they at least do not leak
7652 * uninitialized kernel stack memory into cr2 and error code.
7653 */
7654 memset(exception, 0, sizeof(*exception));
7655 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7656 exception);
7657 }
7658 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7659
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7660 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7661 gva_t addr, void *val, unsigned int bytes,
7662 struct x86_exception *exception, bool system)
7663 {
7664 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7665 u64 access = 0;
7666
7667 if (system)
7668 access |= PFERR_IMPLICIT_ACCESS;
7669 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7670 access |= PFERR_USER_MASK;
7671
7672 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7673 }
7674
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7675 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7676 struct kvm_vcpu *vcpu, u64 access,
7677 struct x86_exception *exception)
7678 {
7679 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7680 void *data = val;
7681 int r = X86EMUL_CONTINUE;
7682
7683 while (bytes) {
7684 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7685 unsigned offset = addr & (PAGE_SIZE-1);
7686 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7687 int ret;
7688
7689 if (gpa == INVALID_GPA)
7690 return X86EMUL_PROPAGATE_FAULT;
7691 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7692 if (ret < 0) {
7693 r = X86EMUL_IO_NEEDED;
7694 goto out;
7695 }
7696
7697 bytes -= towrite;
7698 data += towrite;
7699 addr += towrite;
7700 }
7701 out:
7702 return r;
7703 }
7704
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7705 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7706 unsigned int bytes, struct x86_exception *exception,
7707 bool system)
7708 {
7709 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7710 u64 access = PFERR_WRITE_MASK;
7711
7712 if (system)
7713 access |= PFERR_IMPLICIT_ACCESS;
7714 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7715 access |= PFERR_USER_MASK;
7716
7717 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7718 access, exception);
7719 }
7720
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7721 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7722 unsigned int bytes, struct x86_exception *exception)
7723 {
7724 /* kvm_write_guest_virt_system can pull in tons of pages. */
7725 vcpu->arch.l1tf_flush_l1d = true;
7726
7727 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7728 PFERR_WRITE_MASK, exception);
7729 }
7730 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7731
kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7732 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7733 void *insn, int insn_len)
7734 {
7735 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7736 insn, insn_len);
7737 }
7738
handle_ud(struct kvm_vcpu * vcpu)7739 int handle_ud(struct kvm_vcpu *vcpu)
7740 {
7741 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7742 int fep_flags = READ_ONCE(force_emulation_prefix);
7743 int emul_type = EMULTYPE_TRAP_UD;
7744 char sig[5]; /* ud2; .ascii "kvm" */
7745 struct x86_exception e;
7746 int r;
7747
7748 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7749 if (r != X86EMUL_CONTINUE)
7750 return 1;
7751
7752 if (fep_flags &&
7753 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7754 sig, sizeof(sig), &e) == 0 &&
7755 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7756 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7757 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7758 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7759 emul_type = EMULTYPE_TRAP_UD_FORCED;
7760 }
7761
7762 return kvm_emulate_instruction(vcpu, emul_type);
7763 }
7764 EXPORT_SYMBOL_GPL(handle_ud);
7765
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7766 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7767 gpa_t gpa, bool write)
7768 {
7769 /* For APIC access vmexit */
7770 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7771 return 1;
7772
7773 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7774 trace_vcpu_match_mmio(gva, gpa, write, true);
7775 return 1;
7776 }
7777
7778 return 0;
7779 }
7780
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7781 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7782 gpa_t *gpa, struct x86_exception *exception,
7783 bool write)
7784 {
7785 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7786 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7787 | (write ? PFERR_WRITE_MASK : 0);
7788
7789 /*
7790 * currently PKRU is only applied to ept enabled guest so
7791 * there is no pkey in EPT page table for L1 guest or EPT
7792 * shadow page table for L2 guest.
7793 */
7794 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7795 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7796 vcpu->arch.mmio_access, 0, access))) {
7797 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7798 (gva & (PAGE_SIZE - 1));
7799 trace_vcpu_match_mmio(gva, *gpa, write, false);
7800 return 1;
7801 }
7802
7803 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7804
7805 if (*gpa == INVALID_GPA)
7806 return -1;
7807
7808 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7809 }
7810
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7811 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7812 const void *val, int bytes)
7813 {
7814 int ret;
7815
7816 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7817 if (ret < 0)
7818 return 0;
7819 kvm_page_track_write(vcpu, gpa, val, bytes);
7820 return 1;
7821 }
7822
7823 struct read_write_emulator_ops {
7824 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7825 int bytes);
7826 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7827 void *val, int bytes);
7828 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7829 int bytes, void *val);
7830 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7831 void *val, int bytes);
7832 bool write;
7833 };
7834
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7835 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7836 {
7837 if (vcpu->mmio_read_completed) {
7838 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7839 vcpu->mmio_fragments[0].gpa, val);
7840 vcpu->mmio_read_completed = 0;
7841 return 1;
7842 }
7843
7844 return 0;
7845 }
7846
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7847 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7848 void *val, int bytes)
7849 {
7850 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7851 }
7852
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7853 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7854 void *val, int bytes)
7855 {
7856 return emulator_write_phys(vcpu, gpa, val, bytes);
7857 }
7858
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7859 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7860 {
7861 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7862 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7863 }
7864
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7865 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7866 void *val, int bytes)
7867 {
7868 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7869 return X86EMUL_IO_NEEDED;
7870 }
7871
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7872 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7873 void *val, int bytes)
7874 {
7875 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7876
7877 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7878 return X86EMUL_CONTINUE;
7879 }
7880
7881 static const struct read_write_emulator_ops read_emultor = {
7882 .read_write_prepare = read_prepare,
7883 .read_write_emulate = read_emulate,
7884 .read_write_mmio = vcpu_mmio_read,
7885 .read_write_exit_mmio = read_exit_mmio,
7886 };
7887
7888 static const struct read_write_emulator_ops write_emultor = {
7889 .read_write_emulate = write_emulate,
7890 .read_write_mmio = write_mmio,
7891 .read_write_exit_mmio = write_exit_mmio,
7892 .write = true,
7893 };
7894
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7895 static int emulator_read_write_onepage(unsigned long addr, void *val,
7896 unsigned int bytes,
7897 struct x86_exception *exception,
7898 struct kvm_vcpu *vcpu,
7899 const struct read_write_emulator_ops *ops)
7900 {
7901 gpa_t gpa;
7902 int handled, ret;
7903 bool write = ops->write;
7904 struct kvm_mmio_fragment *frag;
7905 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7906
7907 /*
7908 * If the exit was due to a NPF we may already have a GPA.
7909 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7910 * Note, this cannot be used on string operations since string
7911 * operation using rep will only have the initial GPA from the NPF
7912 * occurred.
7913 */
7914 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7915 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7916 gpa = ctxt->gpa_val;
7917 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7918 } else {
7919 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7920 if (ret < 0)
7921 return X86EMUL_PROPAGATE_FAULT;
7922 }
7923
7924 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7925 return X86EMUL_CONTINUE;
7926
7927 /*
7928 * Is this MMIO handled locally?
7929 */
7930 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7931 if (handled == bytes)
7932 return X86EMUL_CONTINUE;
7933
7934 gpa += handled;
7935 bytes -= handled;
7936 val += handled;
7937
7938 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7939 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7940 frag->gpa = gpa;
7941 frag->data = val;
7942 frag->len = bytes;
7943 return X86EMUL_CONTINUE;
7944 }
7945
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7946 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7947 unsigned long addr,
7948 void *val, unsigned int bytes,
7949 struct x86_exception *exception,
7950 const struct read_write_emulator_ops *ops)
7951 {
7952 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7953 gpa_t gpa;
7954 int rc;
7955
7956 if (ops->read_write_prepare &&
7957 ops->read_write_prepare(vcpu, val, bytes))
7958 return X86EMUL_CONTINUE;
7959
7960 vcpu->mmio_nr_fragments = 0;
7961
7962 /* Crossing a page boundary? */
7963 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7964 int now;
7965
7966 now = -addr & ~PAGE_MASK;
7967 rc = emulator_read_write_onepage(addr, val, now, exception,
7968 vcpu, ops);
7969
7970 if (rc != X86EMUL_CONTINUE)
7971 return rc;
7972 addr += now;
7973 if (ctxt->mode != X86EMUL_MODE_PROT64)
7974 addr = (u32)addr;
7975 val += now;
7976 bytes -= now;
7977 }
7978
7979 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7980 vcpu, ops);
7981 if (rc != X86EMUL_CONTINUE)
7982 return rc;
7983
7984 if (!vcpu->mmio_nr_fragments)
7985 return rc;
7986
7987 gpa = vcpu->mmio_fragments[0].gpa;
7988
7989 vcpu->mmio_needed = 1;
7990 vcpu->mmio_cur_fragment = 0;
7991
7992 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7993 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7994 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7995 vcpu->run->mmio.phys_addr = gpa;
7996
7997 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7998 }
7999
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)8000 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8001 unsigned long addr,
8002 void *val,
8003 unsigned int bytes,
8004 struct x86_exception *exception)
8005 {
8006 return emulator_read_write(ctxt, addr, val, bytes,
8007 exception, &read_emultor);
8008 }
8009
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8010 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8011 unsigned long addr,
8012 const void *val,
8013 unsigned int bytes,
8014 struct x86_exception *exception)
8015 {
8016 return emulator_read_write(ctxt, addr, (void *)val, bytes,
8017 exception, &write_emultor);
8018 }
8019
8020 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8021 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8022
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8023 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8024 unsigned long addr,
8025 const void *old,
8026 const void *new,
8027 unsigned int bytes,
8028 struct x86_exception *exception)
8029 {
8030 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8031 u64 page_line_mask;
8032 unsigned long hva;
8033 gpa_t gpa;
8034 int r;
8035
8036 /* guests cmpxchg8b have to be emulated atomically */
8037 if (bytes > 8 || (bytes & (bytes - 1)))
8038 goto emul_write;
8039
8040 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8041
8042 if (gpa == INVALID_GPA ||
8043 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8044 goto emul_write;
8045
8046 /*
8047 * Emulate the atomic as a straight write to avoid #AC if SLD is
8048 * enabled in the host and the access splits a cache line.
8049 */
8050 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8051 page_line_mask = ~(cache_line_size() - 1);
8052 else
8053 page_line_mask = PAGE_MASK;
8054
8055 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8056 goto emul_write;
8057
8058 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8059 if (kvm_is_error_hva(hva))
8060 goto emul_write;
8061
8062 hva += offset_in_page(gpa);
8063
8064 switch (bytes) {
8065 case 1:
8066 r = emulator_try_cmpxchg_user(u8, hva, old, new);
8067 break;
8068 case 2:
8069 r = emulator_try_cmpxchg_user(u16, hva, old, new);
8070 break;
8071 case 4:
8072 r = emulator_try_cmpxchg_user(u32, hva, old, new);
8073 break;
8074 case 8:
8075 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8076 break;
8077 default:
8078 BUG();
8079 }
8080
8081 if (r < 0)
8082 return X86EMUL_UNHANDLEABLE;
8083
8084 /*
8085 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8086 * successful, as the old value is written back on failure. Note, for
8087 * live migration, this is unnecessarily conservative as CMPXCHG writes
8088 * back the original value and the access is atomic, but KVM's ABI is
8089 * that all writes are dirty logged, regardless of the value written.
8090 */
8091 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8092
8093 if (r)
8094 return X86EMUL_CMPXCHG_FAILED;
8095
8096 kvm_page_track_write(vcpu, gpa, new, bytes);
8097
8098 return X86EMUL_CONTINUE;
8099
8100 emul_write:
8101 pr_warn_once("emulating exchange as write\n");
8102
8103 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8104 }
8105
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8106 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8107 unsigned short port, void *data,
8108 unsigned int count, bool in)
8109 {
8110 unsigned i;
8111 int r;
8112
8113 WARN_ON_ONCE(vcpu->arch.pio.count);
8114 for (i = 0; i < count; i++) {
8115 if (in)
8116 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8117 else
8118 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8119
8120 if (r) {
8121 if (i == 0)
8122 goto userspace_io;
8123
8124 /*
8125 * Userspace must have unregistered the device while PIO
8126 * was running. Drop writes / read as 0.
8127 */
8128 if (in)
8129 memset(data, 0, size * (count - i));
8130 break;
8131 }
8132
8133 data += size;
8134 }
8135 return 1;
8136
8137 userspace_io:
8138 vcpu->arch.pio.port = port;
8139 vcpu->arch.pio.in = in;
8140 vcpu->arch.pio.count = count;
8141 vcpu->arch.pio.size = size;
8142
8143 if (in)
8144 memset(vcpu->arch.pio_data, 0, size * count);
8145 else
8146 memcpy(vcpu->arch.pio_data, data, size * count);
8147
8148 vcpu->run->exit_reason = KVM_EXIT_IO;
8149 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8150 vcpu->run->io.size = size;
8151 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8152 vcpu->run->io.count = count;
8153 vcpu->run->io.port = port;
8154 return 0;
8155 }
8156
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8157 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8158 unsigned short port, void *val, unsigned int count)
8159 {
8160 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8161 if (r)
8162 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8163
8164 return r;
8165 }
8166
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8167 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8168 {
8169 int size = vcpu->arch.pio.size;
8170 unsigned int count = vcpu->arch.pio.count;
8171 memcpy(val, vcpu->arch.pio_data, size * count);
8172 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8173 vcpu->arch.pio.count = 0;
8174 }
8175
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8176 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8177 int size, unsigned short port, void *val,
8178 unsigned int count)
8179 {
8180 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8181 if (vcpu->arch.pio.count) {
8182 /*
8183 * Complete a previous iteration that required userspace I/O.
8184 * Note, @count isn't guaranteed to match pio.count as userspace
8185 * can modify ECX before rerunning the vCPU. Ignore any such
8186 * shenanigans as KVM doesn't support modifying the rep count,
8187 * and the emulator ensures @count doesn't overflow the buffer.
8188 */
8189 complete_emulator_pio_in(vcpu, val);
8190 return 1;
8191 }
8192
8193 return emulator_pio_in(vcpu, size, port, val, count);
8194 }
8195
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8196 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8197 unsigned short port, const void *val,
8198 unsigned int count)
8199 {
8200 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8201 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8202 }
8203
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8204 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8205 int size, unsigned short port,
8206 const void *val, unsigned int count)
8207 {
8208 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8209 }
8210
get_segment_base(struct kvm_vcpu * vcpu,int seg)8211 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8212 {
8213 return kvm_x86_call(get_segment_base)(vcpu, seg);
8214 }
8215
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8216 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8217 {
8218 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8219 }
8220
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8221 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8222 {
8223 if (!need_emulate_wbinvd(vcpu))
8224 return X86EMUL_CONTINUE;
8225
8226 if (kvm_x86_call(has_wbinvd_exit)()) {
8227 int cpu = get_cpu();
8228
8229 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8230 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8231 wbinvd_ipi, NULL, 1);
8232 put_cpu();
8233 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8234 } else
8235 wbinvd();
8236 return X86EMUL_CONTINUE;
8237 }
8238
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8239 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8240 {
8241 kvm_emulate_wbinvd_noskip(vcpu);
8242 return kvm_skip_emulated_instruction(vcpu);
8243 }
8244 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8245
8246
8247
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8248 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8249 {
8250 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8251 }
8252
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8253 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8254 {
8255 return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8256 }
8257
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8258 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8259 unsigned long value)
8260 {
8261
8262 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8263 }
8264
mk_cr_64(u64 curr_cr,u32 new_val)8265 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8266 {
8267 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8268 }
8269
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8270 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8271 {
8272 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8273 unsigned long value;
8274
8275 switch (cr) {
8276 case 0:
8277 value = kvm_read_cr0(vcpu);
8278 break;
8279 case 2:
8280 value = vcpu->arch.cr2;
8281 break;
8282 case 3:
8283 value = kvm_read_cr3(vcpu);
8284 break;
8285 case 4:
8286 value = kvm_read_cr4(vcpu);
8287 break;
8288 case 8:
8289 value = kvm_get_cr8(vcpu);
8290 break;
8291 default:
8292 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8293 return 0;
8294 }
8295
8296 return value;
8297 }
8298
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8299 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8300 {
8301 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8302 int res = 0;
8303
8304 switch (cr) {
8305 case 0:
8306 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8307 break;
8308 case 2:
8309 vcpu->arch.cr2 = val;
8310 break;
8311 case 3:
8312 res = kvm_set_cr3(vcpu, val);
8313 break;
8314 case 4:
8315 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8316 break;
8317 case 8:
8318 res = kvm_set_cr8(vcpu, val);
8319 break;
8320 default:
8321 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8322 res = -1;
8323 }
8324
8325 return res;
8326 }
8327
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8328 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8329 {
8330 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8331 }
8332
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8333 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8334 {
8335 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8336 }
8337
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8338 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8339 {
8340 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8341 }
8342
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8343 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8344 {
8345 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8346 }
8347
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8348 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8349 {
8350 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8351 }
8352
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8353 static unsigned long emulator_get_cached_segment_base(
8354 struct x86_emulate_ctxt *ctxt, int seg)
8355 {
8356 return get_segment_base(emul_to_vcpu(ctxt), seg);
8357 }
8358
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8359 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8360 struct desc_struct *desc, u32 *base3,
8361 int seg)
8362 {
8363 struct kvm_segment var;
8364
8365 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8366 *selector = var.selector;
8367
8368 if (var.unusable) {
8369 memset(desc, 0, sizeof(*desc));
8370 if (base3)
8371 *base3 = 0;
8372 return false;
8373 }
8374
8375 if (var.g)
8376 var.limit >>= 12;
8377 set_desc_limit(desc, var.limit);
8378 set_desc_base(desc, (unsigned long)var.base);
8379 #ifdef CONFIG_X86_64
8380 if (base3)
8381 *base3 = var.base >> 32;
8382 #endif
8383 desc->type = var.type;
8384 desc->s = var.s;
8385 desc->dpl = var.dpl;
8386 desc->p = var.present;
8387 desc->avl = var.avl;
8388 desc->l = var.l;
8389 desc->d = var.db;
8390 desc->g = var.g;
8391
8392 return true;
8393 }
8394
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8395 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8396 struct desc_struct *desc, u32 base3,
8397 int seg)
8398 {
8399 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8400 struct kvm_segment var;
8401
8402 var.selector = selector;
8403 var.base = get_desc_base(desc);
8404 #ifdef CONFIG_X86_64
8405 var.base |= ((u64)base3) << 32;
8406 #endif
8407 var.limit = get_desc_limit(desc);
8408 if (desc->g)
8409 var.limit = (var.limit << 12) | 0xfff;
8410 var.type = desc->type;
8411 var.dpl = desc->dpl;
8412 var.db = desc->d;
8413 var.s = desc->s;
8414 var.l = desc->l;
8415 var.g = desc->g;
8416 var.avl = desc->avl;
8417 var.present = desc->p;
8418 var.unusable = !var.present;
8419 var.padding = 0;
8420
8421 kvm_set_segment(vcpu, &var, seg);
8422 return;
8423 }
8424
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8425 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8426 u32 msr_index, u64 *pdata)
8427 {
8428 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8429 int r;
8430
8431 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8432 if (r < 0)
8433 return X86EMUL_UNHANDLEABLE;
8434
8435 if (r) {
8436 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8437 complete_emulated_rdmsr, r))
8438 return X86EMUL_IO_NEEDED;
8439
8440 trace_kvm_msr_read_ex(msr_index);
8441 return X86EMUL_PROPAGATE_FAULT;
8442 }
8443
8444 trace_kvm_msr_read(msr_index, *pdata);
8445 return X86EMUL_CONTINUE;
8446 }
8447
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8448 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8449 u32 msr_index, u64 data)
8450 {
8451 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8452 int r;
8453
8454 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8455 if (r < 0)
8456 return X86EMUL_UNHANDLEABLE;
8457
8458 if (r) {
8459 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8460 complete_emulated_msr_access, r))
8461 return X86EMUL_IO_NEEDED;
8462
8463 trace_kvm_msr_write_ex(msr_index, data);
8464 return X86EMUL_PROPAGATE_FAULT;
8465 }
8466
8467 trace_kvm_msr_write(msr_index, data);
8468 return X86EMUL_CONTINUE;
8469 }
8470
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8471 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8472 u32 msr_index, u64 *pdata)
8473 {
8474 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8475 }
8476
emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8477 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8478 {
8479 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8480 }
8481
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8482 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8483 u32 pmc, u64 *pdata)
8484 {
8485 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8486 }
8487
emulator_halt(struct x86_emulate_ctxt * ctxt)8488 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8489 {
8490 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8491 }
8492
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8493 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8494 struct x86_instruction_info *info,
8495 enum x86_intercept_stage stage)
8496 {
8497 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8498 &ctxt->exception);
8499 }
8500
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8501 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8502 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8503 bool exact_only)
8504 {
8505 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8506 }
8507
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8508 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8509 {
8510 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8511 }
8512
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8513 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8514 {
8515 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8516 }
8517
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8518 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8519 {
8520 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8521 }
8522
emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8523 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8524 {
8525 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8526 }
8527
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8528 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8529 {
8530 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8531 }
8532
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8533 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8534 {
8535 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8536 }
8537
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8538 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8539 {
8540 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8541 }
8542
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8543 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8544 {
8545 return is_smm(emul_to_vcpu(ctxt));
8546 }
8547
emulator_is_guest_mode(struct x86_emulate_ctxt * ctxt)8548 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8549 {
8550 return is_guest_mode(emul_to_vcpu(ctxt));
8551 }
8552
8553 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8554 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8555 {
8556 WARN_ON_ONCE(1);
8557 return X86EMUL_UNHANDLEABLE;
8558 }
8559 #endif
8560
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8561 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8562 {
8563 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8564 }
8565
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8566 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8567 {
8568 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8569 }
8570
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8571 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8572 {
8573 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8574
8575 if (!kvm->vm_bugged)
8576 kvm_vm_bugged(kvm);
8577 }
8578
emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8579 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8580 gva_t addr, unsigned int flags)
8581 {
8582 if (!kvm_x86_ops.get_untagged_addr)
8583 return addr;
8584
8585 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8586 addr, flags);
8587 }
8588
emulator_is_canonical_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8589 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8590 gva_t addr, unsigned int flags)
8591 {
8592 return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8593 }
8594
8595 static const struct x86_emulate_ops emulate_ops = {
8596 .vm_bugged = emulator_vm_bugged,
8597 .read_gpr = emulator_read_gpr,
8598 .write_gpr = emulator_write_gpr,
8599 .read_std = emulator_read_std,
8600 .write_std = emulator_write_std,
8601 .fetch = kvm_fetch_guest_virt,
8602 .read_emulated = emulator_read_emulated,
8603 .write_emulated = emulator_write_emulated,
8604 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8605 .invlpg = emulator_invlpg,
8606 .pio_in_emulated = emulator_pio_in_emulated,
8607 .pio_out_emulated = emulator_pio_out_emulated,
8608 .get_segment = emulator_get_segment,
8609 .set_segment = emulator_set_segment,
8610 .get_cached_segment_base = emulator_get_cached_segment_base,
8611 .get_gdt = emulator_get_gdt,
8612 .get_idt = emulator_get_idt,
8613 .set_gdt = emulator_set_gdt,
8614 .set_idt = emulator_set_idt,
8615 .get_cr = emulator_get_cr,
8616 .set_cr = emulator_set_cr,
8617 .cpl = emulator_get_cpl,
8618 .get_dr = emulator_get_dr,
8619 .set_dr = emulator_set_dr,
8620 .set_msr_with_filter = emulator_set_msr_with_filter,
8621 .get_msr_with_filter = emulator_get_msr_with_filter,
8622 .get_msr = emulator_get_msr,
8623 .check_rdpmc_early = emulator_check_rdpmc_early,
8624 .read_pmc = emulator_read_pmc,
8625 .halt = emulator_halt,
8626 .wbinvd = emulator_wbinvd,
8627 .fix_hypercall = emulator_fix_hypercall,
8628 .intercept = emulator_intercept,
8629 .get_cpuid = emulator_get_cpuid,
8630 .guest_has_movbe = emulator_guest_has_movbe,
8631 .guest_has_fxsr = emulator_guest_has_fxsr,
8632 .guest_has_rdpid = emulator_guest_has_rdpid,
8633 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8634 .set_nmi_mask = emulator_set_nmi_mask,
8635 .is_smm = emulator_is_smm,
8636 .is_guest_mode = emulator_is_guest_mode,
8637 .leave_smm = emulator_leave_smm,
8638 .triple_fault = emulator_triple_fault,
8639 .set_xcr = emulator_set_xcr,
8640 .get_untagged_addr = emulator_get_untagged_addr,
8641 .is_canonical_addr = emulator_is_canonical_addr,
8642 };
8643
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8644 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8645 {
8646 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8647 /*
8648 * an sti; sti; sequence only disable interrupts for the first
8649 * instruction. So, if the last instruction, be it emulated or
8650 * not, left the system with the INT_STI flag enabled, it
8651 * means that the last instruction is an sti. We should not
8652 * leave the flag on in this case. The same goes for mov ss
8653 */
8654 if (int_shadow & mask)
8655 mask = 0;
8656 if (unlikely(int_shadow || mask)) {
8657 kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8658 if (!mask)
8659 kvm_make_request(KVM_REQ_EVENT, vcpu);
8660 }
8661 }
8662
inject_emulated_exception(struct kvm_vcpu * vcpu)8663 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8664 {
8665 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8666
8667 if (ctxt->exception.vector == PF_VECTOR)
8668 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8669 else if (ctxt->exception.error_code_valid)
8670 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8671 ctxt->exception.error_code);
8672 else
8673 kvm_queue_exception(vcpu, ctxt->exception.vector);
8674 }
8675
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8676 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8677 {
8678 struct x86_emulate_ctxt *ctxt;
8679
8680 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8681 if (!ctxt) {
8682 pr_err("failed to allocate vcpu's emulator\n");
8683 return NULL;
8684 }
8685
8686 ctxt->vcpu = vcpu;
8687 ctxt->ops = &emulate_ops;
8688 vcpu->arch.emulate_ctxt = ctxt;
8689
8690 return ctxt;
8691 }
8692
init_emulate_ctxt(struct kvm_vcpu * vcpu)8693 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8694 {
8695 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8696 int cs_db, cs_l;
8697
8698 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8699
8700 ctxt->gpa_available = false;
8701 ctxt->eflags = kvm_get_rflags(vcpu);
8702 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8703
8704 ctxt->eip = kvm_rip_read(vcpu);
8705 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8706 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8707 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8708 cs_db ? X86EMUL_MODE_PROT32 :
8709 X86EMUL_MODE_PROT16;
8710 ctxt->interruptibility = 0;
8711 ctxt->have_exception = false;
8712 ctxt->exception.vector = -1;
8713 ctxt->perm_ok = false;
8714
8715 init_decode_cache(ctxt);
8716 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8717 }
8718
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8719 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8720 {
8721 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8722 int ret;
8723
8724 init_emulate_ctxt(vcpu);
8725
8726 ctxt->op_bytes = 2;
8727 ctxt->ad_bytes = 2;
8728 ctxt->_eip = ctxt->eip + inc_eip;
8729 ret = emulate_int_real(ctxt, irq);
8730
8731 if (ret != X86EMUL_CONTINUE) {
8732 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8733 } else {
8734 ctxt->eip = ctxt->_eip;
8735 kvm_rip_write(vcpu, ctxt->eip);
8736 kvm_set_rflags(vcpu, ctxt->eflags);
8737 }
8738 }
8739 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8740
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8741 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8742 u8 ndata, u8 *insn_bytes, u8 insn_size)
8743 {
8744 struct kvm_run *run = vcpu->run;
8745 u64 info[5];
8746 u8 info_start;
8747
8748 /*
8749 * Zero the whole array used to retrieve the exit info, as casting to
8750 * u32 for select entries will leave some chunks uninitialized.
8751 */
8752 memset(&info, 0, sizeof(info));
8753
8754 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
8755 (u32 *)&info[3], (u32 *)&info[4]);
8756
8757 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8758 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8759
8760 /*
8761 * There's currently space for 13 entries, but 5 are used for the exit
8762 * reason and info. Restrict to 4 to reduce the maintenance burden
8763 * when expanding kvm_run.emulation_failure in the future.
8764 */
8765 if (WARN_ON_ONCE(ndata > 4))
8766 ndata = 4;
8767
8768 /* Always include the flags as a 'data' entry. */
8769 info_start = 1;
8770 run->emulation_failure.flags = 0;
8771
8772 if (insn_size) {
8773 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8774 sizeof(run->emulation_failure.insn_bytes) != 16));
8775 info_start += 2;
8776 run->emulation_failure.flags |=
8777 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8778 run->emulation_failure.insn_size = insn_size;
8779 memset(run->emulation_failure.insn_bytes, 0x90,
8780 sizeof(run->emulation_failure.insn_bytes));
8781 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8782 }
8783
8784 memcpy(&run->internal.data[info_start], info, sizeof(info));
8785 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8786 ndata * sizeof(data[0]));
8787
8788 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8789 }
8790
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8791 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8792 {
8793 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8794
8795 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8796 ctxt->fetch.end - ctxt->fetch.data);
8797 }
8798
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8799 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8800 u8 ndata)
8801 {
8802 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8803 }
8804 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8805
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8806 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8807 {
8808 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8809 }
8810 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8811
kvm_prepare_event_vectoring_exit(struct kvm_vcpu * vcpu,gpa_t gpa)8812 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa)
8813 {
8814 u32 reason, intr_info, error_code;
8815 struct kvm_run *run = vcpu->run;
8816 u64 info1, info2;
8817 int ndata = 0;
8818
8819 kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2,
8820 &intr_info, &error_code);
8821
8822 run->internal.data[ndata++] = info2;
8823 run->internal.data[ndata++] = reason;
8824 run->internal.data[ndata++] = info1;
8825 run->internal.data[ndata++] = gpa;
8826 run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
8827
8828 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8829 run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8830 run->internal.ndata = ndata;
8831 }
8832 EXPORT_SYMBOL_GPL(kvm_prepare_event_vectoring_exit);
8833
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8834 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8835 {
8836 struct kvm *kvm = vcpu->kvm;
8837
8838 ++vcpu->stat.insn_emulation_fail;
8839 trace_kvm_emulate_insn_failed(vcpu);
8840
8841 if (emulation_type & EMULTYPE_VMWARE_GP) {
8842 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8843 return 1;
8844 }
8845
8846 if (kvm->arch.exit_on_emulation_error ||
8847 (emulation_type & EMULTYPE_SKIP)) {
8848 prepare_emulation_ctxt_failure_exit(vcpu);
8849 return 0;
8850 }
8851
8852 kvm_queue_exception(vcpu, UD_VECTOR);
8853
8854 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
8855 prepare_emulation_ctxt_failure_exit(vcpu);
8856 return 0;
8857 }
8858
8859 return 1;
8860 }
8861
kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8862 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
8863 gpa_t cr2_or_gpa,
8864 int emulation_type)
8865 {
8866 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8867 return false;
8868
8869 /*
8870 * If the failed instruction faulted on an access to page tables that
8871 * are used to translate any part of the instruction, KVM can't resolve
8872 * the issue by unprotecting the gfn, as zapping the shadow page will
8873 * result in the instruction taking a !PRESENT page fault and thus put
8874 * the vCPU into an infinite loop of page faults. E.g. KVM will create
8875 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8876 * then zap the SPTE to unprotect the gfn, and then do it all over
8877 * again. Report the error to userspace.
8878 */
8879 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
8880 return false;
8881
8882 /*
8883 * If emulation may have been triggered by a write to a shadowed page
8884 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8885 * guest to let the CPU re-execute the instruction in the hope that the
8886 * CPU can cleanly execute the instruction that KVM failed to emulate.
8887 */
8888 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
8889
8890 /*
8891 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
8892 * all SPTEs were already zapped by a different task. The alternative
8893 * is to report the error to userspace and likely terminate the guest,
8894 * and the last_retry_{eip,addr} checks will prevent retrying the page
8895 * fault indefinitely, i.e. there's nothing to lose by retrying.
8896 */
8897 return true;
8898 }
8899
8900 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8901 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8902
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8903 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8904 unsigned long *db)
8905 {
8906 u32 dr6 = 0;
8907 int i;
8908 u32 enable, rwlen;
8909
8910 enable = dr7;
8911 rwlen = dr7 >> 16;
8912 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8913 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8914 dr6 |= (1 << i);
8915 return dr6;
8916 }
8917
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8918 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8919 {
8920 struct kvm_run *kvm_run = vcpu->run;
8921
8922 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8923 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8924 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8925 kvm_run->debug.arch.exception = DB_VECTOR;
8926 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8927 return 0;
8928 }
8929 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8930 return 1;
8931 }
8932
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8933 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8934 {
8935 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
8936 int r;
8937
8938 r = kvm_x86_call(skip_emulated_instruction)(vcpu);
8939 if (unlikely(!r))
8940 return 0;
8941
8942 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8943
8944 /*
8945 * rflags is the old, "raw" value of the flags. The new value has
8946 * not been saved yet.
8947 *
8948 * This is correct even for TF set by the guest, because "the
8949 * processor will not generate this exception after the instruction
8950 * that sets the TF flag".
8951 */
8952 if (unlikely(rflags & X86_EFLAGS_TF))
8953 r = kvm_vcpu_do_singlestep(vcpu);
8954 return r;
8955 }
8956 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8957
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)8958 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8959 {
8960 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8961 return true;
8962
8963 /*
8964 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
8965 * active, but AMD compatible CPUs do not.
8966 */
8967 if (!guest_cpuid_is_intel_compatible(vcpu))
8968 return false;
8969
8970 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
8971 }
8972
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)8973 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8974 int emulation_type, int *r)
8975 {
8976 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8977
8978 /*
8979 * Do not check for code breakpoints if hardware has already done the
8980 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8981 * the instruction has passed all exception checks, and all intercepted
8982 * exceptions that trigger emulation have lower priority than code
8983 * breakpoints, i.e. the fact that the intercepted exception occurred
8984 * means any code breakpoints have already been serviced.
8985 *
8986 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8987 * hardware has checked the RIP of the magic prefix, but not the RIP of
8988 * the instruction being emulated. The intent of forced emulation is
8989 * to behave as if KVM intercepted the instruction without an exception
8990 * and without a prefix.
8991 */
8992 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8993 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8994 return false;
8995
8996 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8997 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8998 struct kvm_run *kvm_run = vcpu->run;
8999 unsigned long eip = kvm_get_linear_rip(vcpu);
9000 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9001 vcpu->arch.guest_debug_dr7,
9002 vcpu->arch.eff_db);
9003
9004 if (dr6 != 0) {
9005 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9006 kvm_run->debug.arch.pc = eip;
9007 kvm_run->debug.arch.exception = DB_VECTOR;
9008 kvm_run->exit_reason = KVM_EXIT_DEBUG;
9009 *r = 0;
9010 return true;
9011 }
9012 }
9013
9014 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9015 !kvm_is_code_breakpoint_inhibited(vcpu)) {
9016 unsigned long eip = kvm_get_linear_rip(vcpu);
9017 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9018 vcpu->arch.dr7,
9019 vcpu->arch.db);
9020
9021 if (dr6 != 0) {
9022 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9023 *r = 1;
9024 return true;
9025 }
9026 }
9027
9028 return false;
9029 }
9030
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9031 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9032 {
9033 switch (ctxt->opcode_len) {
9034 case 1:
9035 switch (ctxt->b) {
9036 case 0xe4: /* IN */
9037 case 0xe5:
9038 case 0xec:
9039 case 0xed:
9040 case 0xe6: /* OUT */
9041 case 0xe7:
9042 case 0xee:
9043 case 0xef:
9044 case 0x6c: /* INS */
9045 case 0x6d:
9046 case 0x6e: /* OUTS */
9047 case 0x6f:
9048 return true;
9049 }
9050 break;
9051 case 2:
9052 switch (ctxt->b) {
9053 case 0x33: /* RDPMC */
9054 return true;
9055 }
9056 break;
9057 }
9058
9059 return false;
9060 }
9061
9062 /*
9063 * Decode an instruction for emulation. The caller is responsible for handling
9064 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
9065 * (and wrong) when emulating on an intercepted fault-like exception[*], as
9066 * code breakpoints have higher priority and thus have already been done by
9067 * hardware.
9068 *
9069 * [*] Except #MC, which is higher priority, but KVM should never emulate in
9070 * response to a machine check.
9071 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9072 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9073 void *insn, int insn_len)
9074 {
9075 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9076 int r;
9077
9078 init_emulate_ctxt(vcpu);
9079
9080 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9081
9082 trace_kvm_emulate_insn_start(vcpu);
9083 ++vcpu->stat.insn_emulation;
9084
9085 return r;
9086 }
9087 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9088
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9089 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9090 int emulation_type, void *insn, int insn_len)
9091 {
9092 int r;
9093 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9094 bool writeback = true;
9095
9096 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9097 (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9098 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9099 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9100
9101 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9102 if (r != X86EMUL_CONTINUE) {
9103 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9104 return 1;
9105
9106 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9107 emulation_type))
9108 return 1;
9109
9110 if (r == X86EMUL_UNHANDLEABLE_VECTORING) {
9111 kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa);
9112 return 0;
9113 }
9114
9115 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9116 return handle_emulation_failure(vcpu, emulation_type);
9117 }
9118
9119 vcpu->arch.l1tf_flush_l1d = true;
9120
9121 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9122 kvm_clear_exception_queue(vcpu);
9123
9124 /*
9125 * Return immediately if RIP hits a code breakpoint, such #DBs
9126 * are fault-like and are higher priority than any faults on
9127 * the code fetch itself.
9128 */
9129 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9130 return r;
9131
9132 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9133 insn, insn_len);
9134 if (r != EMULATION_OK) {
9135 if ((emulation_type & EMULTYPE_TRAP_UD) ||
9136 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9137 kvm_queue_exception(vcpu, UD_VECTOR);
9138 return 1;
9139 }
9140 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9141 emulation_type))
9142 return 1;
9143
9144 if (ctxt->have_exception &&
9145 !(emulation_type & EMULTYPE_SKIP)) {
9146 /*
9147 * #UD should result in just EMULATION_FAILED, and trap-like
9148 * exception should not be encountered during decode.
9149 */
9150 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9151 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9152 inject_emulated_exception(vcpu);
9153 return 1;
9154 }
9155 return handle_emulation_failure(vcpu, emulation_type);
9156 }
9157 }
9158
9159 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9160 !is_vmware_backdoor_opcode(ctxt)) {
9161 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9162 return 1;
9163 }
9164
9165 /*
9166 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9167 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9168 * The caller is responsible for updating interruptibility state and
9169 * injecting single-step #DBs.
9170 */
9171 if (emulation_type & EMULTYPE_SKIP) {
9172 if (ctxt->mode != X86EMUL_MODE_PROT64)
9173 ctxt->eip = (u32)ctxt->_eip;
9174 else
9175 ctxt->eip = ctxt->_eip;
9176
9177 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9178 r = 1;
9179 goto writeback;
9180 }
9181
9182 kvm_rip_write(vcpu, ctxt->eip);
9183 if (ctxt->eflags & X86_EFLAGS_RF)
9184 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9185 return 1;
9186 }
9187
9188 /*
9189 * If emulation was caused by a write-protection #PF on a non-page_table
9190 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9191 * and retry the instruction, as the vCPU is likely no longer using the
9192 * gfn as a page table.
9193 */
9194 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9195 !x86_page_table_writing_insn(ctxt) &&
9196 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9197 return 1;
9198
9199 /* this is needed for vmware backdoor interface to work since it
9200 changes registers values during IO operation */
9201 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9202 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9203 emulator_invalidate_register_cache(ctxt);
9204 }
9205
9206 restart:
9207 if (emulation_type & EMULTYPE_PF) {
9208 /* Save the faulting GPA (cr2) in the address field */
9209 ctxt->exception.address = cr2_or_gpa;
9210
9211 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9212 if (vcpu->arch.mmu->root_role.direct) {
9213 ctxt->gpa_available = true;
9214 ctxt->gpa_val = cr2_or_gpa;
9215 }
9216 } else {
9217 /* Sanitize the address out of an abundance of paranoia. */
9218 ctxt->exception.address = 0;
9219 }
9220
9221 r = x86_emulate_insn(ctxt);
9222
9223 if (r == EMULATION_INTERCEPTED)
9224 return 1;
9225
9226 if (r == EMULATION_FAILED) {
9227 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9228 emulation_type))
9229 return 1;
9230
9231 return handle_emulation_failure(vcpu, emulation_type);
9232 }
9233
9234 if (ctxt->have_exception) {
9235 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9236 vcpu->mmio_needed = false;
9237 r = 1;
9238 inject_emulated_exception(vcpu);
9239 } else if (vcpu->arch.pio.count) {
9240 if (!vcpu->arch.pio.in) {
9241 /* FIXME: return into emulator if single-stepping. */
9242 vcpu->arch.pio.count = 0;
9243 } else {
9244 writeback = false;
9245 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9246 }
9247 r = 0;
9248 } else if (vcpu->mmio_needed) {
9249 ++vcpu->stat.mmio_exits;
9250
9251 if (!vcpu->mmio_is_write)
9252 writeback = false;
9253 r = 0;
9254 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9255 } else if (vcpu->arch.complete_userspace_io) {
9256 writeback = false;
9257 r = 0;
9258 } else if (r == EMULATION_RESTART)
9259 goto restart;
9260 else
9261 r = 1;
9262
9263 writeback:
9264 if (writeback) {
9265 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9266 toggle_interruptibility(vcpu, ctxt->interruptibility);
9267 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9268
9269 /*
9270 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9271 * only supports code breakpoints and general detect #DB, both
9272 * of which are fault-like.
9273 */
9274 if (!ctxt->have_exception ||
9275 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9276 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9277 if (ctxt->is_branch)
9278 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9279 kvm_rip_write(vcpu, ctxt->eip);
9280 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9281 r = kvm_vcpu_do_singlestep(vcpu);
9282 kvm_x86_call(update_emulated_instruction)(vcpu);
9283 __kvm_set_rflags(vcpu, ctxt->eflags);
9284 }
9285
9286 /*
9287 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9288 * do nothing, and it will be requested again as soon as
9289 * the shadow expires. But we still need to check here,
9290 * because POPF has no interrupt shadow.
9291 */
9292 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9293 kvm_make_request(KVM_REQ_EVENT, vcpu);
9294 } else
9295 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9296
9297 return r;
9298 }
9299
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9300 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9301 {
9302 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9303 }
9304 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9305
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9306 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9307 void *insn, int insn_len)
9308 {
9309 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9310 }
9311 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9312
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9313 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9314 {
9315 vcpu->arch.pio.count = 0;
9316 return 1;
9317 }
9318
complete_fast_pio_out(struct kvm_vcpu * vcpu)9319 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9320 {
9321 vcpu->arch.pio.count = 0;
9322
9323 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9324 return 1;
9325
9326 return kvm_skip_emulated_instruction(vcpu);
9327 }
9328
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9329 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9330 unsigned short port)
9331 {
9332 unsigned long val = kvm_rax_read(vcpu);
9333 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9334
9335 if (ret)
9336 return ret;
9337
9338 /*
9339 * Workaround userspace that relies on old KVM behavior of %rip being
9340 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9341 */
9342 if (port == 0x7e &&
9343 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9344 vcpu->arch.complete_userspace_io =
9345 complete_fast_pio_out_port_0x7e;
9346 kvm_skip_emulated_instruction(vcpu);
9347 } else {
9348 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9349 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9350 }
9351 return 0;
9352 }
9353
complete_fast_pio_in(struct kvm_vcpu * vcpu)9354 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9355 {
9356 unsigned long val;
9357
9358 /* We should only ever be called with arch.pio.count equal to 1 */
9359 BUG_ON(vcpu->arch.pio.count != 1);
9360
9361 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9362 vcpu->arch.pio.count = 0;
9363 return 1;
9364 }
9365
9366 /* For size less than 4 we merge, else we zero extend */
9367 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9368
9369 complete_emulator_pio_in(vcpu, &val);
9370 kvm_rax_write(vcpu, val);
9371
9372 return kvm_skip_emulated_instruction(vcpu);
9373 }
9374
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9375 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9376 unsigned short port)
9377 {
9378 unsigned long val;
9379 int ret;
9380
9381 /* For size less than 4 we merge, else we zero extend */
9382 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9383
9384 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9385 if (ret) {
9386 kvm_rax_write(vcpu, val);
9387 return ret;
9388 }
9389
9390 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9391 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9392
9393 return 0;
9394 }
9395
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9396 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9397 {
9398 int ret;
9399
9400 if (in)
9401 ret = kvm_fast_pio_in(vcpu, size, port);
9402 else
9403 ret = kvm_fast_pio_out(vcpu, size, port);
9404 return ret && kvm_skip_emulated_instruction(vcpu);
9405 }
9406 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9407
kvmclock_cpu_down_prep(unsigned int cpu)9408 static int kvmclock_cpu_down_prep(unsigned int cpu)
9409 {
9410 __this_cpu_write(cpu_tsc_khz, 0);
9411 return 0;
9412 }
9413
tsc_khz_changed(void * data)9414 static void tsc_khz_changed(void *data)
9415 {
9416 struct cpufreq_freqs *freq = data;
9417 unsigned long khz;
9418
9419 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9420
9421 if (data)
9422 khz = freq->new;
9423 else
9424 khz = cpufreq_quick_get(raw_smp_processor_id());
9425 if (!khz)
9426 khz = tsc_khz;
9427 __this_cpu_write(cpu_tsc_khz, khz);
9428 }
9429
9430 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9431 static void kvm_hyperv_tsc_notifier(void)
9432 {
9433 struct kvm *kvm;
9434 int cpu;
9435
9436 mutex_lock(&kvm_lock);
9437 list_for_each_entry(kvm, &vm_list, vm_list)
9438 kvm_make_mclock_inprogress_request(kvm);
9439
9440 /* no guest entries from this point */
9441 hyperv_stop_tsc_emulation();
9442
9443 /* TSC frequency always matches when on Hyper-V */
9444 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9445 for_each_present_cpu(cpu)
9446 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9447 }
9448 kvm_caps.max_guest_tsc_khz = tsc_khz;
9449
9450 list_for_each_entry(kvm, &vm_list, vm_list) {
9451 __kvm_start_pvclock_update(kvm);
9452 pvclock_update_vm_gtod_copy(kvm);
9453 kvm_end_pvclock_update(kvm);
9454 }
9455
9456 mutex_unlock(&kvm_lock);
9457 }
9458 #endif
9459
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9460 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9461 {
9462 struct kvm *kvm;
9463 struct kvm_vcpu *vcpu;
9464 int send_ipi = 0;
9465 unsigned long i;
9466
9467 /*
9468 * We allow guests to temporarily run on slowing clocks,
9469 * provided we notify them after, or to run on accelerating
9470 * clocks, provided we notify them before. Thus time never
9471 * goes backwards.
9472 *
9473 * However, we have a problem. We can't atomically update
9474 * the frequency of a given CPU from this function; it is
9475 * merely a notifier, which can be called from any CPU.
9476 * Changing the TSC frequency at arbitrary points in time
9477 * requires a recomputation of local variables related to
9478 * the TSC for each VCPU. We must flag these local variables
9479 * to be updated and be sure the update takes place with the
9480 * new frequency before any guests proceed.
9481 *
9482 * Unfortunately, the combination of hotplug CPU and frequency
9483 * change creates an intractable locking scenario; the order
9484 * of when these callouts happen is undefined with respect to
9485 * CPU hotplug, and they can race with each other. As such,
9486 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9487 * undefined; you can actually have a CPU frequency change take
9488 * place in between the computation of X and the setting of the
9489 * variable. To protect against this problem, all updates of
9490 * the per_cpu tsc_khz variable are done in an interrupt
9491 * protected IPI, and all callers wishing to update the value
9492 * must wait for a synchronous IPI to complete (which is trivial
9493 * if the caller is on the CPU already). This establishes the
9494 * necessary total order on variable updates.
9495 *
9496 * Note that because a guest time update may take place
9497 * anytime after the setting of the VCPU's request bit, the
9498 * correct TSC value must be set before the request. However,
9499 * to ensure the update actually makes it to any guest which
9500 * starts running in hardware virtualization between the set
9501 * and the acquisition of the spinlock, we must also ping the
9502 * CPU after setting the request bit.
9503 *
9504 */
9505
9506 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9507
9508 mutex_lock(&kvm_lock);
9509 list_for_each_entry(kvm, &vm_list, vm_list) {
9510 kvm_for_each_vcpu(i, vcpu, kvm) {
9511 if (vcpu->cpu != cpu)
9512 continue;
9513 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9514 if (vcpu->cpu != raw_smp_processor_id())
9515 send_ipi = 1;
9516 }
9517 }
9518 mutex_unlock(&kvm_lock);
9519
9520 if (freq->old < freq->new && send_ipi) {
9521 /*
9522 * We upscale the frequency. Must make the guest
9523 * doesn't see old kvmclock values while running with
9524 * the new frequency, otherwise we risk the guest sees
9525 * time go backwards.
9526 *
9527 * In case we update the frequency for another cpu
9528 * (which might be in guest context) send an interrupt
9529 * to kick the cpu out of guest context. Next time
9530 * guest context is entered kvmclock will be updated,
9531 * so the guest will not see stale values.
9532 */
9533 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9534 }
9535 }
9536
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9537 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9538 void *data)
9539 {
9540 struct cpufreq_freqs *freq = data;
9541 int cpu;
9542
9543 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9544 return 0;
9545 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9546 return 0;
9547
9548 for_each_cpu(cpu, freq->policy->cpus)
9549 __kvmclock_cpufreq_notifier(freq, cpu);
9550
9551 return 0;
9552 }
9553
9554 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9555 .notifier_call = kvmclock_cpufreq_notifier
9556 };
9557
kvmclock_cpu_online(unsigned int cpu)9558 static int kvmclock_cpu_online(unsigned int cpu)
9559 {
9560 tsc_khz_changed(NULL);
9561 return 0;
9562 }
9563
kvm_timer_init(void)9564 static void kvm_timer_init(void)
9565 {
9566 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9567 max_tsc_khz = tsc_khz;
9568
9569 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9570 struct cpufreq_policy *policy;
9571 int cpu;
9572
9573 cpu = get_cpu();
9574 policy = cpufreq_cpu_get(cpu);
9575 if (policy) {
9576 if (policy->cpuinfo.max_freq)
9577 max_tsc_khz = policy->cpuinfo.max_freq;
9578 cpufreq_cpu_put(policy);
9579 }
9580 put_cpu();
9581 }
9582 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9583 CPUFREQ_TRANSITION_NOTIFIER);
9584
9585 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9586 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9587 }
9588 }
9589
9590 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9591 static void pvclock_gtod_update_fn(struct work_struct *work)
9592 {
9593 struct kvm *kvm;
9594 struct kvm_vcpu *vcpu;
9595 unsigned long i;
9596
9597 mutex_lock(&kvm_lock);
9598 list_for_each_entry(kvm, &vm_list, vm_list)
9599 kvm_for_each_vcpu(i, vcpu, kvm)
9600 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9601 atomic_set(&kvm_guest_has_master_clock, 0);
9602 mutex_unlock(&kvm_lock);
9603 }
9604
9605 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9606
9607 /*
9608 * Indirection to move queue_work() out of the tk_core.seq write held
9609 * region to prevent possible deadlocks against time accessors which
9610 * are invoked with work related locks held.
9611 */
pvclock_irq_work_fn(struct irq_work * w)9612 static void pvclock_irq_work_fn(struct irq_work *w)
9613 {
9614 queue_work(system_long_wq, &pvclock_gtod_work);
9615 }
9616
9617 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9618
9619 /*
9620 * Notification about pvclock gtod data update.
9621 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9622 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9623 void *priv)
9624 {
9625 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9626 struct timekeeper *tk = priv;
9627
9628 update_pvclock_gtod(tk);
9629
9630 /*
9631 * Disable master clock if host does not trust, or does not use,
9632 * TSC based clocksource. Delegate queue_work() to irq_work as
9633 * this is invoked with tk_core.seq write held.
9634 */
9635 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9636 atomic_read(&kvm_guest_has_master_clock) != 0)
9637 irq_work_queue(&pvclock_irq_work);
9638 return 0;
9639 }
9640
9641 static struct notifier_block pvclock_gtod_notifier = {
9642 .notifier_call = pvclock_gtod_notify,
9643 };
9644 #endif
9645
kvm_ops_update(struct kvm_x86_init_ops * ops)9646 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9647 {
9648 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9649
9650 #define __KVM_X86_OP(func) \
9651 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9652 #define KVM_X86_OP(func) \
9653 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9654 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9655 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9656 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9657 (void *)__static_call_return0);
9658 #include <asm/kvm-x86-ops.h>
9659 #undef __KVM_X86_OP
9660
9661 kvm_pmu_ops_update(ops->pmu_ops);
9662 }
9663
kvm_x86_check_processor_compatibility(void)9664 static int kvm_x86_check_processor_compatibility(void)
9665 {
9666 int cpu = smp_processor_id();
9667 struct cpuinfo_x86 *c = &cpu_data(cpu);
9668
9669 /*
9670 * Compatibility checks are done when loading KVM and when enabling
9671 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9672 * compatible, i.e. KVM should never perform a compatibility check on
9673 * an offline CPU.
9674 */
9675 WARN_ON(!cpu_online(cpu));
9676
9677 if (__cr4_reserved_bits(cpu_has, c) !=
9678 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9679 return -EIO;
9680
9681 return kvm_x86_call(check_processor_compatibility)();
9682 }
9683
kvm_x86_check_cpu_compat(void * ret)9684 static void kvm_x86_check_cpu_compat(void *ret)
9685 {
9686 *(int *)ret = kvm_x86_check_processor_compatibility();
9687 }
9688
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9689 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9690 {
9691 u64 host_pat;
9692 int r, cpu;
9693
9694 guard(mutex)(&vendor_module_lock);
9695
9696 if (kvm_x86_ops.enable_virtualization_cpu) {
9697 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9698 return -EEXIST;
9699 }
9700
9701 /*
9702 * KVM explicitly assumes that the guest has an FPU and
9703 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9704 * vCPU's FPU state as a fxregs_state struct.
9705 */
9706 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9707 pr_err("inadequate fpu\n");
9708 return -EOPNOTSUPP;
9709 }
9710
9711 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9712 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9713 return -EOPNOTSUPP;
9714 }
9715
9716 /*
9717 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9718 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9719 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9720 * with an exception. PAT[0] is set to WB on RESET and also by the
9721 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9722 */
9723 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9724 (host_pat & GENMASK(2, 0)) != 6) {
9725 pr_err("host PAT[0] is not WB\n");
9726 return -EIO;
9727 }
9728
9729 memset(&kvm_caps, 0, sizeof(kvm_caps));
9730
9731 x86_emulator_cache = kvm_alloc_emulator_cache();
9732 if (!x86_emulator_cache) {
9733 pr_err("failed to allocate cache for x86 emulator\n");
9734 return -ENOMEM;
9735 }
9736
9737 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9738 if (!user_return_msrs) {
9739 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9740 r = -ENOMEM;
9741 goto out_free_x86_emulator_cache;
9742 }
9743 kvm_nr_uret_msrs = 0;
9744
9745 r = kvm_mmu_vendor_module_init();
9746 if (r)
9747 goto out_free_percpu;
9748
9749 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9750 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9751
9752 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9753 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9754 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
9755 }
9756
9757 rdmsrl_safe(MSR_EFER, &kvm_host.efer);
9758
9759 if (boot_cpu_has(X86_FEATURE_XSAVES))
9760 rdmsrl(MSR_IA32_XSS, kvm_host.xss);
9761
9762 kvm_init_pmu_capability(ops->pmu_ops);
9763
9764 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9765 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
9766
9767 r = ops->hardware_setup();
9768 if (r != 0)
9769 goto out_mmu_exit;
9770
9771 kvm_ops_update(ops);
9772
9773 for_each_online_cpu(cpu) {
9774 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9775 if (r < 0)
9776 goto out_unwind_ops;
9777 }
9778
9779 /*
9780 * Point of no return! DO NOT add error paths below this point unless
9781 * absolutely necessary, as most operations from this point forward
9782 * require unwinding.
9783 */
9784 kvm_timer_init();
9785
9786 if (pi_inject_timer == -1)
9787 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9788 #ifdef CONFIG_X86_64
9789 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9790
9791 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9792 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9793 #endif
9794
9795 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9796
9797 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9798 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9799
9800 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9801 kvm_caps.supported_xss = 0;
9802
9803 if (kvm_caps.has_tsc_control) {
9804 /*
9805 * Make sure the user can only configure tsc_khz values that
9806 * fit into a signed integer.
9807 * A min value is not calculated because it will always
9808 * be 1 on all machines.
9809 */
9810 u64 max = min(0x7fffffffULL,
9811 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9812 kvm_caps.max_guest_tsc_khz = max;
9813 }
9814 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9815 kvm_init_msr_lists();
9816 return 0;
9817
9818 out_unwind_ops:
9819 kvm_x86_ops.enable_virtualization_cpu = NULL;
9820 kvm_x86_call(hardware_unsetup)();
9821 out_mmu_exit:
9822 kvm_mmu_vendor_module_exit();
9823 out_free_percpu:
9824 free_percpu(user_return_msrs);
9825 out_free_x86_emulator_cache:
9826 kmem_cache_destroy(x86_emulator_cache);
9827 return r;
9828 }
9829 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9830
kvm_x86_vendor_exit(void)9831 void kvm_x86_vendor_exit(void)
9832 {
9833 kvm_unregister_perf_callbacks();
9834
9835 #ifdef CONFIG_X86_64
9836 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9837 clear_hv_tscchange_cb();
9838 #endif
9839 kvm_lapic_exit();
9840
9841 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9842 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9843 CPUFREQ_TRANSITION_NOTIFIER);
9844 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9845 }
9846 #ifdef CONFIG_X86_64
9847 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9848 irq_work_sync(&pvclock_irq_work);
9849 cancel_work_sync(&pvclock_gtod_work);
9850 #endif
9851 kvm_x86_call(hardware_unsetup)();
9852 kvm_mmu_vendor_module_exit();
9853 free_percpu(user_return_msrs);
9854 kmem_cache_destroy(x86_emulator_cache);
9855 #ifdef CONFIG_KVM_XEN
9856 static_key_deferred_flush(&kvm_xen_enabled);
9857 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9858 #endif
9859 mutex_lock(&vendor_module_lock);
9860 kvm_x86_ops.enable_virtualization_cpu = NULL;
9861 mutex_unlock(&vendor_module_lock);
9862 }
9863 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9864
9865 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9866 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9867 unsigned long clock_type)
9868 {
9869 struct kvm_clock_pairing clock_pairing;
9870 struct timespec64 ts;
9871 u64 cycle;
9872 int ret;
9873
9874 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9875 return -KVM_EOPNOTSUPP;
9876
9877 /*
9878 * When tsc is in permanent catchup mode guests won't be able to use
9879 * pvclock_read_retry loop to get consistent view of pvclock
9880 */
9881 if (vcpu->arch.tsc_always_catchup)
9882 return -KVM_EOPNOTSUPP;
9883
9884 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9885 return -KVM_EOPNOTSUPP;
9886
9887 clock_pairing.sec = ts.tv_sec;
9888 clock_pairing.nsec = ts.tv_nsec;
9889 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9890 clock_pairing.flags = 0;
9891 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9892
9893 ret = 0;
9894 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9895 sizeof(struct kvm_clock_pairing)))
9896 ret = -KVM_EFAULT;
9897
9898 return ret;
9899 }
9900 #endif
9901
9902 /*
9903 * kvm_pv_kick_cpu_op: Kick a vcpu.
9904 *
9905 * @apicid - apicid of vcpu to be kicked.
9906 */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9907 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9908 {
9909 /*
9910 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9911 * common code, e.g. for tracing. Defer initialization to the compiler.
9912 */
9913 struct kvm_lapic_irq lapic_irq = {
9914 .delivery_mode = APIC_DM_REMRD,
9915 .dest_mode = APIC_DEST_PHYSICAL,
9916 .shorthand = APIC_DEST_NOSHORT,
9917 .dest_id = apicid,
9918 };
9919
9920 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9921 }
9922
kvm_apicv_activated(struct kvm * kvm)9923 bool kvm_apicv_activated(struct kvm *kvm)
9924 {
9925 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9926 }
9927 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9928
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9929 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9930 {
9931 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9932 ulong vcpu_reasons =
9933 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
9934
9935 return (vm_reasons | vcpu_reasons) == 0;
9936 }
9937 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9938
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9939 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9940 enum kvm_apicv_inhibit reason, bool set)
9941 {
9942 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
9943
9944 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
9945
9946 if (set)
9947 __set_bit(reason, inhibits);
9948 else
9949 __clear_bit(reason, inhibits);
9950
9951 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9952 }
9953
kvm_apicv_init(struct kvm * kvm)9954 static void kvm_apicv_init(struct kvm *kvm)
9955 {
9956 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
9957 APICV_INHIBIT_REASON_DISABLED;
9958
9959 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
9960
9961 init_rwsem(&kvm->arch.apicv_update_lock);
9962 }
9963
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9964 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9965 {
9966 struct kvm_vcpu *target = NULL;
9967 struct kvm_apic_map *map;
9968
9969 vcpu->stat.directed_yield_attempted++;
9970
9971 if (single_task_running())
9972 goto no_yield;
9973
9974 rcu_read_lock();
9975 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9976
9977 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9978 target = map->phys_map[dest_id]->vcpu;
9979
9980 rcu_read_unlock();
9981
9982 if (!target || !READ_ONCE(target->ready))
9983 goto no_yield;
9984
9985 /* Ignore requests to yield to self */
9986 if (vcpu == target)
9987 goto no_yield;
9988
9989 if (kvm_vcpu_yield_to(target) <= 0)
9990 goto no_yield;
9991
9992 vcpu->stat.directed_yield_successful++;
9993
9994 no_yield:
9995 return;
9996 }
9997
complete_hypercall_exit(struct kvm_vcpu * vcpu)9998 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9999 {
10000 u64 ret = vcpu->run->hypercall.ret;
10001
10002 if (!is_64_bit_hypercall(vcpu))
10003 ret = (u32)ret;
10004 kvm_rax_write(vcpu, ret);
10005 return kvm_skip_emulated_instruction(vcpu);
10006 }
10007
____kvm_emulate_hypercall(struct kvm_vcpu * vcpu,unsigned long nr,unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,int op_64_bit,int cpl,int (* complete_hypercall)(struct kvm_vcpu *))10008 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
10009 unsigned long a0, unsigned long a1,
10010 unsigned long a2, unsigned long a3,
10011 int op_64_bit, int cpl,
10012 int (*complete_hypercall)(struct kvm_vcpu *))
10013 {
10014 unsigned long ret;
10015
10016 ++vcpu->stat.hypercalls;
10017
10018 trace_kvm_hypercall(nr, a0, a1, a2, a3);
10019
10020 if (!op_64_bit) {
10021 nr &= 0xFFFFFFFF;
10022 a0 &= 0xFFFFFFFF;
10023 a1 &= 0xFFFFFFFF;
10024 a2 &= 0xFFFFFFFF;
10025 a3 &= 0xFFFFFFFF;
10026 }
10027
10028 if (cpl) {
10029 ret = -KVM_EPERM;
10030 goto out;
10031 }
10032
10033 ret = -KVM_ENOSYS;
10034
10035 switch (nr) {
10036 case KVM_HC_VAPIC_POLL_IRQ:
10037 ret = 0;
10038 break;
10039 case KVM_HC_KICK_CPU:
10040 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10041 break;
10042
10043 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10044 kvm_sched_yield(vcpu, a1);
10045 ret = 0;
10046 break;
10047 #ifdef CONFIG_X86_64
10048 case KVM_HC_CLOCK_PAIRING:
10049 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10050 break;
10051 #endif
10052 case KVM_HC_SEND_IPI:
10053 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10054 break;
10055
10056 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10057 break;
10058 case KVM_HC_SCHED_YIELD:
10059 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10060 break;
10061
10062 kvm_sched_yield(vcpu, a0);
10063 ret = 0;
10064 break;
10065 case KVM_HC_MAP_GPA_RANGE: {
10066 u64 gpa = a0, npages = a1, attrs = a2;
10067
10068 ret = -KVM_ENOSYS;
10069 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE))
10070 break;
10071
10072 if (!PAGE_ALIGNED(gpa) || !npages ||
10073 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10074 ret = -KVM_EINVAL;
10075 break;
10076 }
10077
10078 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10079 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10080 /*
10081 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
10082 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
10083 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
10084 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
10085 */
10086 vcpu->run->hypercall.ret = 0;
10087 vcpu->run->hypercall.args[0] = gpa;
10088 vcpu->run->hypercall.args[1] = npages;
10089 vcpu->run->hypercall.args[2] = attrs;
10090 vcpu->run->hypercall.flags = 0;
10091 if (op_64_bit)
10092 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10093
10094 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10095 vcpu->arch.complete_userspace_io = complete_hypercall;
10096 return 0;
10097 }
10098 default:
10099 ret = -KVM_ENOSYS;
10100 break;
10101 }
10102
10103 out:
10104 vcpu->run->hypercall.ret = ret;
10105 return 1;
10106 }
10107 EXPORT_SYMBOL_GPL(____kvm_emulate_hypercall);
10108
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10109 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10110 {
10111 if (kvm_xen_hypercall_enabled(vcpu->kvm))
10112 return kvm_xen_hypercall(vcpu);
10113
10114 if (kvm_hv_hypercall_enabled(vcpu))
10115 return kvm_hv_hypercall(vcpu);
10116
10117 return __kvm_emulate_hypercall(vcpu, rax, rbx, rcx, rdx, rsi,
10118 is_64_bit_hypercall(vcpu),
10119 kvm_x86_call(get_cpl)(vcpu),
10120 complete_hypercall_exit);
10121 }
10122 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10123
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10124 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10125 {
10126 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10127 char instruction[3];
10128 unsigned long rip = kvm_rip_read(vcpu);
10129
10130 /*
10131 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10132 * the pieces.
10133 */
10134 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10135 ctxt->exception.error_code_valid = false;
10136 ctxt->exception.vector = UD_VECTOR;
10137 ctxt->have_exception = true;
10138 return X86EMUL_PROPAGATE_FAULT;
10139 }
10140
10141 kvm_x86_call(patch_hypercall)(vcpu, instruction);
10142
10143 return emulator_write_emulated(ctxt, rip, instruction, 3,
10144 &ctxt->exception);
10145 }
10146
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10147 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10148 {
10149 return vcpu->run->request_interrupt_window &&
10150 likely(!pic_in_kernel(vcpu->kvm));
10151 }
10152
10153 /* Called within kvm->srcu read side. */
post_kvm_run_save(struct kvm_vcpu * vcpu)10154 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10155 {
10156 struct kvm_run *kvm_run = vcpu->run;
10157
10158 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10159 kvm_run->cr8 = kvm_get_cr8(vcpu);
10160 kvm_run->apic_base = vcpu->arch.apic_base;
10161
10162 kvm_run->ready_for_interrupt_injection =
10163 pic_in_kernel(vcpu->kvm) ||
10164 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10165
10166 if (is_smm(vcpu))
10167 kvm_run->flags |= KVM_RUN_X86_SMM;
10168 if (is_guest_mode(vcpu))
10169 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10170 }
10171
update_cr8_intercept(struct kvm_vcpu * vcpu)10172 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10173 {
10174 int max_irr, tpr;
10175
10176 if (!kvm_x86_ops.update_cr8_intercept)
10177 return;
10178
10179 if (!lapic_in_kernel(vcpu))
10180 return;
10181
10182 if (vcpu->arch.apic->apicv_active)
10183 return;
10184
10185 if (!vcpu->arch.apic->vapic_addr)
10186 max_irr = kvm_lapic_find_highest_irr(vcpu);
10187 else
10188 max_irr = -1;
10189
10190 if (max_irr != -1)
10191 max_irr >>= 4;
10192
10193 tpr = kvm_lapic_get_cr8(vcpu);
10194
10195 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10196 }
10197
10198
kvm_check_nested_events(struct kvm_vcpu * vcpu)10199 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10200 {
10201 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10202 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10203 return 1;
10204 }
10205
10206 return kvm_x86_ops.nested_ops->check_events(vcpu);
10207 }
10208
kvm_inject_exception(struct kvm_vcpu * vcpu)10209 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10210 {
10211 /*
10212 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10213 * exceptions don't report error codes. The presence of an error code
10214 * is carried with the exception and only stripped when the exception
10215 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10216 * report an error code despite the CPU being in Real Mode.
10217 */
10218 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10219
10220 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10221 vcpu->arch.exception.has_error_code,
10222 vcpu->arch.exception.error_code,
10223 vcpu->arch.exception.injected);
10224
10225 kvm_x86_call(inject_exception)(vcpu);
10226 }
10227
10228 /*
10229 * Check for any event (interrupt or exception) that is ready to be injected,
10230 * and if there is at least one event, inject the event with the highest
10231 * priority. This handles both "pending" events, i.e. events that have never
10232 * been injected into the guest, and "injected" events, i.e. events that were
10233 * injected as part of a previous VM-Enter, but weren't successfully delivered
10234 * and need to be re-injected.
10235 *
10236 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10237 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10238 * be able to inject exceptions in the "middle" of an instruction, and so must
10239 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10240 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10241 * boundaries is necessary and correct.
10242 *
10243 * For simplicity, KVM uses a single path to inject all events (except events
10244 * that are injected directly from L1 to L2) and doesn't explicitly track
10245 * instruction boundaries for asynchronous events. However, because VM-Exits
10246 * that can occur during instruction execution typically result in KVM skipping
10247 * the instruction or injecting an exception, e.g. instruction and exception
10248 * intercepts, and because pending exceptions have higher priority than pending
10249 * interrupts, KVM still honors instruction boundaries in most scenarios.
10250 *
10251 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10252 * the instruction or inject an exception, then KVM can incorrecty inject a new
10253 * asynchronous event if the event became pending after the CPU fetched the
10254 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10255 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10256 * injected on the restarted instruction instead of being deferred until the
10257 * instruction completes.
10258 *
10259 * In practice, this virtualization hole is unlikely to be observed by the
10260 * guest, and even less likely to cause functional problems. To detect the
10261 * hole, the guest would have to trigger an event on a side effect of an early
10262 * phase of instruction execution, e.g. on the instruction fetch from memory.
10263 * And for it to be a functional problem, the guest would need to depend on the
10264 * ordering between that side effect, the instruction completing, _and_ the
10265 * delivery of the asynchronous event.
10266 */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10267 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10268 bool *req_immediate_exit)
10269 {
10270 bool can_inject;
10271 int r;
10272
10273 /*
10274 * Process nested events first, as nested VM-Exit supersedes event
10275 * re-injection. If there's an event queued for re-injection, it will
10276 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10277 */
10278 if (is_guest_mode(vcpu))
10279 r = kvm_check_nested_events(vcpu);
10280 else
10281 r = 0;
10282
10283 /*
10284 * Re-inject exceptions and events *especially* if immediate entry+exit
10285 * to/from L2 is needed, as any event that has already been injected
10286 * into L2 needs to complete its lifecycle before injecting a new event.
10287 *
10288 * Don't re-inject an NMI or interrupt if there is a pending exception.
10289 * This collision arises if an exception occurred while vectoring the
10290 * injected event, KVM intercepted said exception, and KVM ultimately
10291 * determined the fault belongs to the guest and queues the exception
10292 * for injection back into the guest.
10293 *
10294 * "Injected" interrupts can also collide with pending exceptions if
10295 * userspace ignores the "ready for injection" flag and blindly queues
10296 * an interrupt. In that case, prioritizing the exception is correct,
10297 * as the exception "occurred" before the exit to userspace. Trap-like
10298 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10299 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10300 * priority, they're only generated (pended) during instruction
10301 * execution, and interrupts are recognized at instruction boundaries.
10302 * Thus a pending fault-like exception means the fault occurred on the
10303 * *previous* instruction and must be serviced prior to recognizing any
10304 * new events in order to fully complete the previous instruction.
10305 */
10306 if (vcpu->arch.exception.injected)
10307 kvm_inject_exception(vcpu);
10308 else if (kvm_is_exception_pending(vcpu))
10309 ; /* see above */
10310 else if (vcpu->arch.nmi_injected)
10311 kvm_x86_call(inject_nmi)(vcpu);
10312 else if (vcpu->arch.interrupt.injected)
10313 kvm_x86_call(inject_irq)(vcpu, true);
10314
10315 /*
10316 * Exceptions that morph to VM-Exits are handled above, and pending
10317 * exceptions on top of injected exceptions that do not VM-Exit should
10318 * either morph to #DF or, sadly, override the injected exception.
10319 */
10320 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10321 vcpu->arch.exception.pending);
10322
10323 /*
10324 * Bail if immediate entry+exit to/from the guest is needed to complete
10325 * nested VM-Enter or event re-injection so that a different pending
10326 * event can be serviced (or if KVM needs to exit to userspace).
10327 *
10328 * Otherwise, continue processing events even if VM-Exit occurred. The
10329 * VM-Exit will have cleared exceptions that were meant for L2, but
10330 * there may now be events that can be injected into L1.
10331 */
10332 if (r < 0)
10333 goto out;
10334
10335 /*
10336 * A pending exception VM-Exit should either result in nested VM-Exit
10337 * or force an immediate re-entry and exit to/from L2, and exception
10338 * VM-Exits cannot be injected (flag should _never_ be set).
10339 */
10340 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10341 vcpu->arch.exception_vmexit.pending);
10342
10343 /*
10344 * New events, other than exceptions, cannot be injected if KVM needs
10345 * to re-inject a previous event. See above comments on re-injecting
10346 * for why pending exceptions get priority.
10347 */
10348 can_inject = !kvm_event_needs_reinjection(vcpu);
10349
10350 if (vcpu->arch.exception.pending) {
10351 /*
10352 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10353 * value pushed on the stack. Trap-like exception and all #DBs
10354 * leave RF as-is (KVM follows Intel's behavior in this regard;
10355 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10356 *
10357 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10358 * describe the behavior of General Detect #DBs, which are
10359 * fault-like. They do _not_ set RF, a la code breakpoints.
10360 */
10361 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10362 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10363 X86_EFLAGS_RF);
10364
10365 if (vcpu->arch.exception.vector == DB_VECTOR) {
10366 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10367 if (vcpu->arch.dr7 & DR7_GD) {
10368 vcpu->arch.dr7 &= ~DR7_GD;
10369 kvm_update_dr7(vcpu);
10370 }
10371 }
10372
10373 kvm_inject_exception(vcpu);
10374
10375 vcpu->arch.exception.pending = false;
10376 vcpu->arch.exception.injected = true;
10377
10378 can_inject = false;
10379 }
10380
10381 /* Don't inject interrupts if the user asked to avoid doing so */
10382 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10383 return 0;
10384
10385 /*
10386 * Finally, inject interrupt events. If an event cannot be injected
10387 * due to architectural conditions (e.g. IF=0) a window-open exit
10388 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10389 * and can architecturally be injected, but we cannot do it right now:
10390 * an interrupt could have arrived just now and we have to inject it
10391 * as a vmexit, or there could already an event in the queue, which is
10392 * indicated by can_inject. In that case we request an immediate exit
10393 * in order to make progress and get back here for another iteration.
10394 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10395 */
10396 #ifdef CONFIG_KVM_SMM
10397 if (vcpu->arch.smi_pending) {
10398 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10399 -EBUSY;
10400 if (r < 0)
10401 goto out;
10402 if (r) {
10403 vcpu->arch.smi_pending = false;
10404 ++vcpu->arch.smi_count;
10405 enter_smm(vcpu);
10406 can_inject = false;
10407 } else
10408 kvm_x86_call(enable_smi_window)(vcpu);
10409 }
10410 #endif
10411
10412 if (vcpu->arch.nmi_pending) {
10413 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10414 -EBUSY;
10415 if (r < 0)
10416 goto out;
10417 if (r) {
10418 --vcpu->arch.nmi_pending;
10419 vcpu->arch.nmi_injected = true;
10420 kvm_x86_call(inject_nmi)(vcpu);
10421 can_inject = false;
10422 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10423 }
10424 if (vcpu->arch.nmi_pending)
10425 kvm_x86_call(enable_nmi_window)(vcpu);
10426 }
10427
10428 if (kvm_cpu_has_injectable_intr(vcpu)) {
10429 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10430 -EBUSY;
10431 if (r < 0)
10432 goto out;
10433 if (r) {
10434 int irq = kvm_cpu_get_interrupt(vcpu);
10435
10436 if (!WARN_ON_ONCE(irq == -1)) {
10437 kvm_queue_interrupt(vcpu, irq, false);
10438 kvm_x86_call(inject_irq)(vcpu, false);
10439 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10440 }
10441 }
10442 if (kvm_cpu_has_injectable_intr(vcpu))
10443 kvm_x86_call(enable_irq_window)(vcpu);
10444 }
10445
10446 if (is_guest_mode(vcpu) &&
10447 kvm_x86_ops.nested_ops->has_events &&
10448 kvm_x86_ops.nested_ops->has_events(vcpu, true))
10449 *req_immediate_exit = true;
10450
10451 /*
10452 * KVM must never queue a new exception while injecting an event; KVM
10453 * is done emulating and should only propagate the to-be-injected event
10454 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10455 * infinite loop as KVM will bail from VM-Enter to inject the pending
10456 * exception and start the cycle all over.
10457 *
10458 * Exempt triple faults as they have special handling and won't put the
10459 * vCPU into an infinite loop. Triple fault can be queued when running
10460 * VMX without unrestricted guest, as that requires KVM to emulate Real
10461 * Mode events (see kvm_inject_realmode_interrupt()).
10462 */
10463 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10464 vcpu->arch.exception_vmexit.pending);
10465 return 0;
10466
10467 out:
10468 if (r == -EBUSY) {
10469 *req_immediate_exit = true;
10470 r = 0;
10471 }
10472 return r;
10473 }
10474
process_nmi(struct kvm_vcpu * vcpu)10475 static void process_nmi(struct kvm_vcpu *vcpu)
10476 {
10477 unsigned int limit;
10478
10479 /*
10480 * x86 is limited to one NMI pending, but because KVM can't react to
10481 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10482 * scheduled out, KVM needs to play nice with two queued NMIs showing
10483 * up at the same time. To handle this scenario, allow two NMIs to be
10484 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10485 * waiting for a previous NMI injection to complete (which effectively
10486 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10487 * will request an NMI window to handle the second NMI.
10488 */
10489 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10490 limit = 1;
10491 else
10492 limit = 2;
10493
10494 /*
10495 * Adjust the limit to account for pending virtual NMIs, which aren't
10496 * tracked in vcpu->arch.nmi_pending.
10497 */
10498 if (kvm_x86_call(is_vnmi_pending)(vcpu))
10499 limit--;
10500
10501 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10502 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10503
10504 if (vcpu->arch.nmi_pending &&
10505 (kvm_x86_call(set_vnmi_pending)(vcpu)))
10506 vcpu->arch.nmi_pending--;
10507
10508 if (vcpu->arch.nmi_pending)
10509 kvm_make_request(KVM_REQ_EVENT, vcpu);
10510 }
10511
10512 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10513 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10514 {
10515 return vcpu->arch.nmi_pending +
10516 kvm_x86_call(is_vnmi_pending)(vcpu);
10517 }
10518
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10519 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10520 unsigned long *vcpu_bitmap)
10521 {
10522 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10523 }
10524
kvm_make_scan_ioapic_request(struct kvm * kvm)10525 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10526 {
10527 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10528 }
10529
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10530 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10531 {
10532 struct kvm_lapic *apic = vcpu->arch.apic;
10533 bool activate;
10534
10535 if (!lapic_in_kernel(vcpu))
10536 return;
10537
10538 down_read(&vcpu->kvm->arch.apicv_update_lock);
10539 preempt_disable();
10540
10541 /* Do not activate APICV when APIC is disabled */
10542 activate = kvm_vcpu_apicv_activated(vcpu) &&
10543 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10544
10545 if (apic->apicv_active == activate)
10546 goto out;
10547
10548 apic->apicv_active = activate;
10549 kvm_apic_update_apicv(vcpu);
10550 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10551
10552 /*
10553 * When APICv gets disabled, we may still have injected interrupts
10554 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10555 * still active when the interrupt got accepted. Make sure
10556 * kvm_check_and_inject_events() is called to check for that.
10557 */
10558 if (!apic->apicv_active)
10559 kvm_make_request(KVM_REQ_EVENT, vcpu);
10560
10561 out:
10562 preempt_enable();
10563 up_read(&vcpu->kvm->arch.apicv_update_lock);
10564 }
10565 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10566
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10567 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10568 {
10569 if (!lapic_in_kernel(vcpu))
10570 return;
10571
10572 /*
10573 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10574 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10575 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10576 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10577 * this case so that KVM can use the AVIC doorbell to inject interrupts
10578 * to running vCPUs, but KVM must not create SPTEs for the APIC base as
10579 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10580 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10581 * access page is sticky.
10582 */
10583 if (apic_x2apic_mode(vcpu->arch.apic) &&
10584 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10585 kvm_inhibit_apic_access_page(vcpu);
10586
10587 __kvm_vcpu_update_apicv(vcpu);
10588 }
10589
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10590 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10591 enum kvm_apicv_inhibit reason, bool set)
10592 {
10593 unsigned long old, new;
10594
10595 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10596
10597 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10598 return;
10599
10600 old = new = kvm->arch.apicv_inhibit_reasons;
10601
10602 set_or_clear_apicv_inhibit(&new, reason, set);
10603
10604 if (!!old != !!new) {
10605 /*
10606 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10607 * false positives in the sanity check WARN in vcpu_enter_guest().
10608 * This task will wait for all vCPUs to ack the kick IRQ before
10609 * updating apicv_inhibit_reasons, and all other vCPUs will
10610 * block on acquiring apicv_update_lock so that vCPUs can't
10611 * redo vcpu_enter_guest() without seeing the new inhibit state.
10612 *
10613 * Note, holding apicv_update_lock and taking it in the read
10614 * side (handling the request) also prevents other vCPUs from
10615 * servicing the request with a stale apicv_inhibit_reasons.
10616 */
10617 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10618 kvm->arch.apicv_inhibit_reasons = new;
10619 if (new) {
10620 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10621 int idx = srcu_read_lock(&kvm->srcu);
10622
10623 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10624 srcu_read_unlock(&kvm->srcu, idx);
10625 }
10626 } else {
10627 kvm->arch.apicv_inhibit_reasons = new;
10628 }
10629 }
10630
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10631 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10632 enum kvm_apicv_inhibit reason, bool set)
10633 {
10634 if (!enable_apicv)
10635 return;
10636
10637 down_write(&kvm->arch.apicv_update_lock);
10638 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10639 up_write(&kvm->arch.apicv_update_lock);
10640 }
10641 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10642
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10643 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10644 {
10645 if (!kvm_apic_present(vcpu))
10646 return;
10647
10648 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10649
10650 kvm_x86_call(sync_pir_to_irr)(vcpu);
10651
10652 if (irqchip_split(vcpu->kvm))
10653 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10654 else if (ioapic_in_kernel(vcpu->kvm))
10655 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10656
10657 if (is_guest_mode(vcpu))
10658 vcpu->arch.load_eoi_exitmap_pending = true;
10659 else
10660 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10661 }
10662
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10663 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10664 {
10665 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10666 return;
10667
10668 #ifdef CONFIG_KVM_HYPERV
10669 if (to_hv_vcpu(vcpu)) {
10670 u64 eoi_exit_bitmap[4];
10671
10672 bitmap_or((ulong *)eoi_exit_bitmap,
10673 vcpu->arch.ioapic_handled_vectors,
10674 to_hv_synic(vcpu)->vec_bitmap, 256);
10675 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10676 return;
10677 }
10678 #endif
10679 kvm_x86_call(load_eoi_exitmap)(
10680 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10681 }
10682
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10683 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10684 {
10685 kvm_x86_call(guest_memory_reclaimed)(kvm);
10686 }
10687
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10688 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10689 {
10690 if (!lapic_in_kernel(vcpu))
10691 return;
10692
10693 kvm_x86_call(set_apic_access_page_addr)(vcpu);
10694 }
10695
10696 /*
10697 * Called within kvm->srcu read side.
10698 * Returns 1 to let vcpu_run() continue the guest execution loop without
10699 * exiting to the userspace. Otherwise, the value will be returned to the
10700 * userspace.
10701 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10702 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10703 {
10704 int r;
10705 bool req_int_win =
10706 dm_request_for_irq_injection(vcpu) &&
10707 kvm_cpu_accept_dm_intr(vcpu);
10708 fastpath_t exit_fastpath;
10709
10710 bool req_immediate_exit = false;
10711
10712 if (kvm_request_pending(vcpu)) {
10713 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10714 r = -EIO;
10715 goto out;
10716 }
10717
10718 if (kvm_dirty_ring_check_request(vcpu)) {
10719 r = 0;
10720 goto out;
10721 }
10722
10723 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10724 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10725 r = 0;
10726 goto out;
10727 }
10728 }
10729 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10730 kvm_mmu_free_obsolete_roots(vcpu);
10731 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10732 __kvm_migrate_timers(vcpu);
10733 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10734 kvm_update_masterclock(vcpu->kvm);
10735 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10736 kvm_gen_kvmclock_update(vcpu);
10737 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10738 r = kvm_guest_time_update(vcpu);
10739 if (unlikely(r))
10740 goto out;
10741 }
10742 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10743 kvm_mmu_sync_roots(vcpu);
10744 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10745 kvm_mmu_load_pgd(vcpu);
10746
10747 /*
10748 * Note, the order matters here, as flushing "all" TLB entries
10749 * also flushes the "current" TLB entries, i.e. servicing the
10750 * flush "all" will clear any request to flush "current".
10751 */
10752 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10753 kvm_vcpu_flush_tlb_all(vcpu);
10754
10755 kvm_service_local_tlb_flush_requests(vcpu);
10756
10757 /*
10758 * Fall back to a "full" guest flush if Hyper-V's precise
10759 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10760 * the flushes are considered "remote" and not "local" because
10761 * the requests can be initiated from other vCPUs.
10762 */
10763 #ifdef CONFIG_KVM_HYPERV
10764 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10765 kvm_hv_vcpu_flush_tlb(vcpu))
10766 kvm_vcpu_flush_tlb_guest(vcpu);
10767 #endif
10768
10769 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10770 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10771 r = 0;
10772 goto out;
10773 }
10774 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10775 if (is_guest_mode(vcpu))
10776 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10777
10778 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10779 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10780 vcpu->mmio_needed = 0;
10781 r = 0;
10782 goto out;
10783 }
10784 }
10785 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10786 /* Page is swapped out. Do synthetic halt */
10787 vcpu->arch.apf.halted = true;
10788 r = 1;
10789 goto out;
10790 }
10791 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10792 record_steal_time(vcpu);
10793 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10794 kvm_pmu_handle_event(vcpu);
10795 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10796 kvm_pmu_deliver_pmi(vcpu);
10797 #ifdef CONFIG_KVM_SMM
10798 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10799 process_smi(vcpu);
10800 #endif
10801 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10802 process_nmi(vcpu);
10803 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10804 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10805 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10806 vcpu->arch.ioapic_handled_vectors)) {
10807 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10808 vcpu->run->eoi.vector =
10809 vcpu->arch.pending_ioapic_eoi;
10810 r = 0;
10811 goto out;
10812 }
10813 }
10814 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10815 vcpu_scan_ioapic(vcpu);
10816 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10817 vcpu_load_eoi_exitmap(vcpu);
10818 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10819 kvm_vcpu_reload_apic_access_page(vcpu);
10820 #ifdef CONFIG_KVM_HYPERV
10821 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10822 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10823 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10824 vcpu->run->system_event.ndata = 0;
10825 r = 0;
10826 goto out;
10827 }
10828 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10829 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10830 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10831 vcpu->run->system_event.ndata = 0;
10832 r = 0;
10833 goto out;
10834 }
10835 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10836 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10837
10838 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10839 vcpu->run->hyperv = hv_vcpu->exit;
10840 r = 0;
10841 goto out;
10842 }
10843
10844 /*
10845 * KVM_REQ_HV_STIMER has to be processed after
10846 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10847 * depend on the guest clock being up-to-date
10848 */
10849 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10850 kvm_hv_process_stimers(vcpu);
10851 #endif
10852 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10853 kvm_vcpu_update_apicv(vcpu);
10854 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10855 kvm_check_async_pf_completion(vcpu);
10856 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10857 kvm_x86_call(msr_filter_changed)(vcpu);
10858
10859 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10860 kvm_x86_call(update_cpu_dirty_logging)(vcpu);
10861
10862 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
10863 kvm_vcpu_reset(vcpu, true);
10864 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
10865 r = 1;
10866 goto out;
10867 }
10868 }
10869 }
10870
10871 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10872 kvm_xen_has_interrupt(vcpu)) {
10873 ++vcpu->stat.req_event;
10874 r = kvm_apic_accept_events(vcpu);
10875 if (r < 0) {
10876 r = 0;
10877 goto out;
10878 }
10879 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10880 r = 1;
10881 goto out;
10882 }
10883
10884 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10885 if (r < 0) {
10886 r = 0;
10887 goto out;
10888 }
10889 if (req_int_win)
10890 kvm_x86_call(enable_irq_window)(vcpu);
10891
10892 if (kvm_lapic_enabled(vcpu)) {
10893 update_cr8_intercept(vcpu);
10894 kvm_lapic_sync_to_vapic(vcpu);
10895 }
10896 }
10897
10898 r = kvm_mmu_reload(vcpu);
10899 if (unlikely(r)) {
10900 goto cancel_injection;
10901 }
10902
10903 preempt_disable();
10904
10905 kvm_x86_call(prepare_switch_to_guest)(vcpu);
10906
10907 /*
10908 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10909 * IPI are then delayed after guest entry, which ensures that they
10910 * result in virtual interrupt delivery.
10911 */
10912 local_irq_disable();
10913
10914 /* Store vcpu->apicv_active before vcpu->mode. */
10915 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10916
10917 kvm_vcpu_srcu_read_unlock(vcpu);
10918
10919 /*
10920 * 1) We should set ->mode before checking ->requests. Please see
10921 * the comment in kvm_vcpu_exiting_guest_mode().
10922 *
10923 * 2) For APICv, we should set ->mode before checking PID.ON. This
10924 * pairs with the memory barrier implicit in pi_test_and_set_on
10925 * (see vmx_deliver_posted_interrupt).
10926 *
10927 * 3) This also orders the write to mode from any reads to the page
10928 * tables done while the VCPU is running. Please see the comment
10929 * in kvm_flush_remote_tlbs.
10930 */
10931 smp_mb__after_srcu_read_unlock();
10932
10933 /*
10934 * Process pending posted interrupts to handle the case where the
10935 * notification IRQ arrived in the host, or was never sent (because the
10936 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10937 * status, KVM doesn't update assigned devices when APICv is inhibited,
10938 * i.e. they can post interrupts even if APICv is temporarily disabled.
10939 */
10940 if (kvm_lapic_enabled(vcpu))
10941 kvm_x86_call(sync_pir_to_irr)(vcpu);
10942
10943 if (kvm_vcpu_exit_request(vcpu)) {
10944 vcpu->mode = OUTSIDE_GUEST_MODE;
10945 smp_wmb();
10946 local_irq_enable();
10947 preempt_enable();
10948 kvm_vcpu_srcu_read_lock(vcpu);
10949 r = 1;
10950 goto cancel_injection;
10951 }
10952
10953 if (req_immediate_exit)
10954 kvm_make_request(KVM_REQ_EVENT, vcpu);
10955
10956 fpregs_assert_state_consistent();
10957 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10958 switch_fpu_return();
10959
10960 if (vcpu->arch.guest_fpu.xfd_err)
10961 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10962
10963 if (unlikely(vcpu->arch.switch_db_regs)) {
10964 set_debugreg(0, 7);
10965 set_debugreg(vcpu->arch.eff_db[0], 0);
10966 set_debugreg(vcpu->arch.eff_db[1], 1);
10967 set_debugreg(vcpu->arch.eff_db[2], 2);
10968 set_debugreg(vcpu->arch.eff_db[3], 3);
10969 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
10970 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
10971 kvm_x86_call(set_dr6)(vcpu, vcpu->arch.dr6);
10972 } else if (unlikely(hw_breakpoint_active())) {
10973 set_debugreg(0, 7);
10974 }
10975
10976 vcpu->arch.host_debugctl = get_debugctlmsr();
10977
10978 guest_timing_enter_irqoff();
10979
10980 for (;;) {
10981 /*
10982 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10983 * update must kick and wait for all vCPUs before toggling the
10984 * per-VM state, and responding vCPUs must wait for the update
10985 * to complete before servicing KVM_REQ_APICV_UPDATE.
10986 */
10987 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10988 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10989
10990 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu,
10991 req_immediate_exit);
10992 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10993 break;
10994
10995 if (kvm_lapic_enabled(vcpu))
10996 kvm_x86_call(sync_pir_to_irr)(vcpu);
10997
10998 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10999 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11000 break;
11001 }
11002
11003 /* Note, VM-Exits that go down the "slow" path are accounted below. */
11004 ++vcpu->stat.exits;
11005 }
11006
11007 /*
11008 * Do this here before restoring debug registers on the host. And
11009 * since we do this before handling the vmexit, a DR access vmexit
11010 * can (a) read the correct value of the debug registers, (b) set
11011 * KVM_DEBUGREG_WONT_EXIT again.
11012 */
11013 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11014 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11015 kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11016 kvm_update_dr0123(vcpu);
11017 kvm_update_dr7(vcpu);
11018 }
11019
11020 /*
11021 * If the guest has used debug registers, at least dr7
11022 * will be disabled while returning to the host.
11023 * If we don't have active breakpoints in the host, we don't
11024 * care about the messed up debug address registers. But if
11025 * we have some of them active, restore the old state.
11026 */
11027 if (hw_breakpoint_active())
11028 hw_breakpoint_restore();
11029
11030 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11031 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11032
11033 vcpu->mode = OUTSIDE_GUEST_MODE;
11034 smp_wmb();
11035
11036 /*
11037 * Sync xfd before calling handle_exit_irqoff() which may
11038 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11039 * in #NM irqoff handler).
11040 */
11041 if (vcpu->arch.xfd_no_write_intercept)
11042 fpu_sync_guest_vmexit_xfd_state();
11043
11044 kvm_x86_call(handle_exit_irqoff)(vcpu);
11045
11046 if (vcpu->arch.guest_fpu.xfd_err)
11047 wrmsrl(MSR_IA32_XFD_ERR, 0);
11048
11049 /*
11050 * Consume any pending interrupts, including the possible source of
11051 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11052 * An instruction is required after local_irq_enable() to fully unblock
11053 * interrupts on processors that implement an interrupt shadow, the
11054 * stat.exits increment will do nicely.
11055 */
11056 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11057 local_irq_enable();
11058 ++vcpu->stat.exits;
11059 local_irq_disable();
11060 kvm_after_interrupt(vcpu);
11061
11062 /*
11063 * Wait until after servicing IRQs to account guest time so that any
11064 * ticks that occurred while running the guest are properly accounted
11065 * to the guest. Waiting until IRQs are enabled degrades the accuracy
11066 * of accounting via context tracking, but the loss of accuracy is
11067 * acceptable for all known use cases.
11068 */
11069 guest_timing_exit_irqoff();
11070
11071 local_irq_enable();
11072 preempt_enable();
11073
11074 kvm_vcpu_srcu_read_lock(vcpu);
11075
11076 /*
11077 * Call this to ensure WC buffers in guest are evicted after each VM
11078 * Exit, so that the evicted WC writes can be snooped across all cpus
11079 */
11080 smp_mb__after_srcu_read_lock();
11081
11082 /*
11083 * Profile KVM exit RIPs:
11084 */
11085 if (unlikely(prof_on == KVM_PROFILING)) {
11086 unsigned long rip = kvm_rip_read(vcpu);
11087 profile_hit(KVM_PROFILING, (void *)rip);
11088 }
11089
11090 if (unlikely(vcpu->arch.tsc_always_catchup))
11091 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11092
11093 if (vcpu->arch.apic_attention)
11094 kvm_lapic_sync_from_vapic(vcpu);
11095
11096 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11097 return 0;
11098
11099 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11100 return r;
11101
11102 cancel_injection:
11103 if (req_immediate_exit)
11104 kvm_make_request(KVM_REQ_EVENT, vcpu);
11105 kvm_x86_call(cancel_injection)(vcpu);
11106 if (unlikely(vcpu->arch.apic_attention))
11107 kvm_lapic_sync_from_vapic(vcpu);
11108 out:
11109 return r;
11110 }
11111
kvm_vcpu_running(struct kvm_vcpu * vcpu)11112 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11113 {
11114 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11115 !vcpu->arch.apf.halted);
11116 }
11117
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11118 static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11119 {
11120 if (!list_empty_careful(&vcpu->async_pf.done))
11121 return true;
11122
11123 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11124 kvm_apic_init_sipi_allowed(vcpu))
11125 return true;
11126
11127 if (vcpu->arch.pv.pv_unhalted)
11128 return true;
11129
11130 if (kvm_is_exception_pending(vcpu))
11131 return true;
11132
11133 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11134 (vcpu->arch.nmi_pending &&
11135 kvm_x86_call(nmi_allowed)(vcpu, false)))
11136 return true;
11137
11138 #ifdef CONFIG_KVM_SMM
11139 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11140 (vcpu->arch.smi_pending &&
11141 kvm_x86_call(smi_allowed)(vcpu, false)))
11142 return true;
11143 #endif
11144
11145 if (kvm_test_request(KVM_REQ_PMI, vcpu))
11146 return true;
11147
11148 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11149 return true;
11150
11151 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11152 return true;
11153
11154 if (kvm_hv_has_stimer_pending(vcpu))
11155 return true;
11156
11157 if (is_guest_mode(vcpu) &&
11158 kvm_x86_ops.nested_ops->has_events &&
11159 kvm_x86_ops.nested_ops->has_events(vcpu, false))
11160 return true;
11161
11162 if (kvm_xen_has_pending_events(vcpu))
11163 return true;
11164
11165 return false;
11166 }
11167
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11168 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11169 {
11170 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11171 }
11172
11173 /* Called within kvm->srcu read side. */
vcpu_block(struct kvm_vcpu * vcpu)11174 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11175 {
11176 bool hv_timer;
11177
11178 if (!kvm_arch_vcpu_runnable(vcpu)) {
11179 /*
11180 * Switch to the software timer before halt-polling/blocking as
11181 * the guest's timer may be a break event for the vCPU, and the
11182 * hypervisor timer runs only when the CPU is in guest mode.
11183 * Switch before halt-polling so that KVM recognizes an expired
11184 * timer before blocking.
11185 */
11186 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11187 if (hv_timer)
11188 kvm_lapic_switch_to_sw_timer(vcpu);
11189
11190 kvm_vcpu_srcu_read_unlock(vcpu);
11191 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11192 kvm_vcpu_halt(vcpu);
11193 else
11194 kvm_vcpu_block(vcpu);
11195 kvm_vcpu_srcu_read_lock(vcpu);
11196
11197 if (hv_timer)
11198 kvm_lapic_switch_to_hv_timer(vcpu);
11199
11200 /*
11201 * If the vCPU is not runnable, a signal or another host event
11202 * of some kind is pending; service it without changing the
11203 * vCPU's activity state.
11204 */
11205 if (!kvm_arch_vcpu_runnable(vcpu))
11206 return 1;
11207 }
11208
11209 /*
11210 * Evaluate nested events before exiting the halted state. This allows
11211 * the halt state to be recorded properly in the VMCS12's activity
11212 * state field (AMD does not have a similar field and a VM-Exit always
11213 * causes a spurious wakeup from HLT).
11214 */
11215 if (is_guest_mode(vcpu)) {
11216 int r = kvm_check_nested_events(vcpu);
11217
11218 WARN_ON_ONCE(r == -EBUSY);
11219 if (r < 0)
11220 return 0;
11221 }
11222
11223 if (kvm_apic_accept_events(vcpu) < 0)
11224 return 0;
11225 switch(vcpu->arch.mp_state) {
11226 case KVM_MP_STATE_HALTED:
11227 case KVM_MP_STATE_AP_RESET_HOLD:
11228 vcpu->arch.pv.pv_unhalted = false;
11229 vcpu->arch.mp_state =
11230 KVM_MP_STATE_RUNNABLE;
11231 fallthrough;
11232 case KVM_MP_STATE_RUNNABLE:
11233 vcpu->arch.apf.halted = false;
11234 break;
11235 case KVM_MP_STATE_INIT_RECEIVED:
11236 break;
11237 default:
11238 WARN_ON_ONCE(1);
11239 break;
11240 }
11241 return 1;
11242 }
11243
11244 /* Called within kvm->srcu read side. */
vcpu_run(struct kvm_vcpu * vcpu)11245 static int vcpu_run(struct kvm_vcpu *vcpu)
11246 {
11247 int r;
11248
11249 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11250
11251 for (;;) {
11252 /*
11253 * If another guest vCPU requests a PV TLB flush in the middle
11254 * of instruction emulation, the rest of the emulation could
11255 * use a stale page translation. Assume that any code after
11256 * this point can start executing an instruction.
11257 */
11258 vcpu->arch.at_instruction_boundary = false;
11259 if (kvm_vcpu_running(vcpu)) {
11260 r = vcpu_enter_guest(vcpu);
11261 } else {
11262 r = vcpu_block(vcpu);
11263 }
11264
11265 if (r <= 0)
11266 break;
11267
11268 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11269 if (kvm_xen_has_pending_events(vcpu))
11270 kvm_xen_inject_pending_events(vcpu);
11271
11272 if (kvm_cpu_has_pending_timer(vcpu))
11273 kvm_inject_pending_timer_irqs(vcpu);
11274
11275 if (dm_request_for_irq_injection(vcpu) &&
11276 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11277 r = 0;
11278 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11279 ++vcpu->stat.request_irq_exits;
11280 break;
11281 }
11282
11283 if (__xfer_to_guest_mode_work_pending()) {
11284 kvm_vcpu_srcu_read_unlock(vcpu);
11285 r = xfer_to_guest_mode_handle_work(vcpu);
11286 kvm_vcpu_srcu_read_lock(vcpu);
11287 if (r)
11288 return r;
11289 }
11290 }
11291
11292 return r;
11293 }
11294
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11295 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11296 {
11297 /*
11298 * The vCPU has halted, e.g. executed HLT. Update the run state if the
11299 * local APIC is in-kernel, the run loop will detect the non-runnable
11300 * state and halt the vCPU. Exit to userspace if the local APIC is
11301 * managed by userspace, in which case userspace is responsible for
11302 * handling wake events.
11303 */
11304 ++vcpu->stat.halt_exits;
11305 if (lapic_in_kernel(vcpu)) {
11306 if (kvm_vcpu_has_events(vcpu))
11307 vcpu->arch.pv.pv_unhalted = false;
11308 else
11309 vcpu->arch.mp_state = state;
11310 return 1;
11311 } else {
11312 vcpu->run->exit_reason = reason;
11313 return 0;
11314 }
11315 }
11316
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11317 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11318 {
11319 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11320 }
11321 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
11322
kvm_emulate_halt(struct kvm_vcpu * vcpu)11323 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11324 {
11325 int ret = kvm_skip_emulated_instruction(vcpu);
11326 /*
11327 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11328 * KVM_EXIT_DEBUG here.
11329 */
11330 return kvm_emulate_halt_noskip(vcpu) && ret;
11331 }
11332 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
11333
handle_fastpath_hlt(struct kvm_vcpu * vcpu)11334 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11335 {
11336 int ret;
11337
11338 kvm_vcpu_srcu_read_lock(vcpu);
11339 ret = kvm_emulate_halt(vcpu);
11340 kvm_vcpu_srcu_read_unlock(vcpu);
11341
11342 if (!ret)
11343 return EXIT_FASTPATH_EXIT_USERSPACE;
11344
11345 if (kvm_vcpu_running(vcpu))
11346 return EXIT_FASTPATH_REENTER_GUEST;
11347
11348 return EXIT_FASTPATH_EXIT_HANDLED;
11349 }
11350 EXPORT_SYMBOL_GPL(handle_fastpath_hlt);
11351
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11352 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11353 {
11354 int ret = kvm_skip_emulated_instruction(vcpu);
11355
11356 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11357 KVM_EXIT_AP_RESET_HOLD) && ret;
11358 }
11359 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
11360
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11361 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11362 {
11363 return kvm_vcpu_apicv_active(vcpu) &&
11364 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11365 }
11366
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11367 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11368 {
11369 return vcpu->arch.preempted_in_kernel;
11370 }
11371
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11372 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11373 {
11374 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11375 return true;
11376
11377 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11378 #ifdef CONFIG_KVM_SMM
11379 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11380 #endif
11381 kvm_test_request(KVM_REQ_EVENT, vcpu))
11382 return true;
11383
11384 return kvm_arch_dy_has_pending_interrupt(vcpu);
11385 }
11386
complete_emulated_io(struct kvm_vcpu * vcpu)11387 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11388 {
11389 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11390 }
11391
complete_emulated_pio(struct kvm_vcpu * vcpu)11392 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11393 {
11394 BUG_ON(!vcpu->arch.pio.count);
11395
11396 return complete_emulated_io(vcpu);
11397 }
11398
11399 /*
11400 * Implements the following, as a state machine:
11401 *
11402 * read:
11403 * for each fragment
11404 * for each mmio piece in the fragment
11405 * write gpa, len
11406 * exit
11407 * copy data
11408 * execute insn
11409 *
11410 * write:
11411 * for each fragment
11412 * for each mmio piece in the fragment
11413 * write gpa, len
11414 * copy data
11415 * exit
11416 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11417 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11418 {
11419 struct kvm_run *run = vcpu->run;
11420 struct kvm_mmio_fragment *frag;
11421 unsigned len;
11422
11423 BUG_ON(!vcpu->mmio_needed);
11424
11425 /* Complete previous fragment */
11426 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11427 len = min(8u, frag->len);
11428 if (!vcpu->mmio_is_write)
11429 memcpy(frag->data, run->mmio.data, len);
11430
11431 if (frag->len <= 8) {
11432 /* Switch to the next fragment. */
11433 frag++;
11434 vcpu->mmio_cur_fragment++;
11435 } else {
11436 /* Go forward to the next mmio piece. */
11437 frag->data += len;
11438 frag->gpa += len;
11439 frag->len -= len;
11440 }
11441
11442 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11443 vcpu->mmio_needed = 0;
11444
11445 /* FIXME: return into emulator if single-stepping. */
11446 if (vcpu->mmio_is_write)
11447 return 1;
11448 vcpu->mmio_read_completed = 1;
11449 return complete_emulated_io(vcpu);
11450 }
11451
11452 run->exit_reason = KVM_EXIT_MMIO;
11453 run->mmio.phys_addr = frag->gpa;
11454 if (vcpu->mmio_is_write)
11455 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11456 run->mmio.len = min(8u, frag->len);
11457 run->mmio.is_write = vcpu->mmio_is_write;
11458 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11459 return 0;
11460 }
11461
11462 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11463 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11464 {
11465 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11466 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11467 trace_kvm_fpu(1);
11468 }
11469
11470 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11471 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11472 {
11473 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11474 ++vcpu->stat.fpu_reload;
11475 trace_kvm_fpu(0);
11476 }
11477
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11478 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11479 {
11480 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11481 struct kvm_run *kvm_run = vcpu->run;
11482 u32 sync_valid_fields;
11483 int r;
11484
11485 r = kvm_mmu_post_init_vm(vcpu->kvm);
11486 if (r)
11487 return r;
11488
11489 vcpu_load(vcpu);
11490 kvm_sigset_activate(vcpu);
11491 kvm_run->flags = 0;
11492 kvm_load_guest_fpu(vcpu);
11493
11494 kvm_vcpu_srcu_read_lock(vcpu);
11495 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11496 if (!vcpu->wants_to_run) {
11497 r = -EINTR;
11498 goto out;
11499 }
11500
11501 /*
11502 * Don't bother switching APIC timer emulation from the
11503 * hypervisor timer to the software timer, the only way for the
11504 * APIC timer to be active is if userspace stuffed vCPU state,
11505 * i.e. put the vCPU into a nonsensical state. Only an INIT
11506 * will transition the vCPU out of UNINITIALIZED (without more
11507 * state stuffing from userspace), which will reset the local
11508 * APIC and thus cancel the timer or drop the IRQ (if the timer
11509 * already expired).
11510 */
11511 kvm_vcpu_srcu_read_unlock(vcpu);
11512 kvm_vcpu_block(vcpu);
11513 kvm_vcpu_srcu_read_lock(vcpu);
11514
11515 if (kvm_apic_accept_events(vcpu) < 0) {
11516 r = 0;
11517 goto out;
11518 }
11519 r = -EAGAIN;
11520 if (signal_pending(current)) {
11521 r = -EINTR;
11522 kvm_run->exit_reason = KVM_EXIT_INTR;
11523 ++vcpu->stat.signal_exits;
11524 }
11525 goto out;
11526 }
11527
11528 sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm);
11529 if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) ||
11530 (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) {
11531 r = -EINVAL;
11532 goto out;
11533 }
11534
11535 if (kvm_run->kvm_dirty_regs) {
11536 r = sync_regs(vcpu);
11537 if (r != 0)
11538 goto out;
11539 }
11540
11541 /* re-sync apic's tpr */
11542 if (!lapic_in_kernel(vcpu)) {
11543 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11544 r = -EINVAL;
11545 goto out;
11546 }
11547 }
11548
11549 /*
11550 * If userspace set a pending exception and L2 is active, convert it to
11551 * a pending VM-Exit if L1 wants to intercept the exception.
11552 */
11553 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11554 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11555 ex->error_code)) {
11556 kvm_queue_exception_vmexit(vcpu, ex->vector,
11557 ex->has_error_code, ex->error_code,
11558 ex->has_payload, ex->payload);
11559 ex->injected = false;
11560 ex->pending = false;
11561 }
11562 vcpu->arch.exception_from_userspace = false;
11563
11564 if (unlikely(vcpu->arch.complete_userspace_io)) {
11565 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11566 vcpu->arch.complete_userspace_io = NULL;
11567 r = cui(vcpu);
11568 if (r <= 0)
11569 goto out;
11570 } else {
11571 WARN_ON_ONCE(vcpu->arch.pio.count);
11572 WARN_ON_ONCE(vcpu->mmio_needed);
11573 }
11574
11575 if (!vcpu->wants_to_run) {
11576 r = -EINTR;
11577 goto out;
11578 }
11579
11580 r = kvm_x86_call(vcpu_pre_run)(vcpu);
11581 if (r <= 0)
11582 goto out;
11583
11584 r = vcpu_run(vcpu);
11585
11586 out:
11587 kvm_put_guest_fpu(vcpu);
11588 if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected))
11589 store_regs(vcpu);
11590 post_kvm_run_save(vcpu);
11591 kvm_vcpu_srcu_read_unlock(vcpu);
11592
11593 kvm_sigset_deactivate(vcpu);
11594 vcpu_put(vcpu);
11595 return r;
11596 }
11597
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11598 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11599 {
11600 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11601 /*
11602 * We are here if userspace calls get_regs() in the middle of
11603 * instruction emulation. Registers state needs to be copied
11604 * back from emulation context to vcpu. Userspace shouldn't do
11605 * that usually, but some bad designed PV devices (vmware
11606 * backdoor interface) need this to work
11607 */
11608 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11609 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11610 }
11611 regs->rax = kvm_rax_read(vcpu);
11612 regs->rbx = kvm_rbx_read(vcpu);
11613 regs->rcx = kvm_rcx_read(vcpu);
11614 regs->rdx = kvm_rdx_read(vcpu);
11615 regs->rsi = kvm_rsi_read(vcpu);
11616 regs->rdi = kvm_rdi_read(vcpu);
11617 regs->rsp = kvm_rsp_read(vcpu);
11618 regs->rbp = kvm_rbp_read(vcpu);
11619 #ifdef CONFIG_X86_64
11620 regs->r8 = kvm_r8_read(vcpu);
11621 regs->r9 = kvm_r9_read(vcpu);
11622 regs->r10 = kvm_r10_read(vcpu);
11623 regs->r11 = kvm_r11_read(vcpu);
11624 regs->r12 = kvm_r12_read(vcpu);
11625 regs->r13 = kvm_r13_read(vcpu);
11626 regs->r14 = kvm_r14_read(vcpu);
11627 regs->r15 = kvm_r15_read(vcpu);
11628 #endif
11629
11630 regs->rip = kvm_rip_read(vcpu);
11631 regs->rflags = kvm_get_rflags(vcpu);
11632 }
11633
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11634 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11635 {
11636 if (vcpu->kvm->arch.has_protected_state &&
11637 vcpu->arch.guest_state_protected)
11638 return -EINVAL;
11639
11640 vcpu_load(vcpu);
11641 __get_regs(vcpu, regs);
11642 vcpu_put(vcpu);
11643 return 0;
11644 }
11645
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11646 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11647 {
11648 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11649 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11650
11651 kvm_rax_write(vcpu, regs->rax);
11652 kvm_rbx_write(vcpu, regs->rbx);
11653 kvm_rcx_write(vcpu, regs->rcx);
11654 kvm_rdx_write(vcpu, regs->rdx);
11655 kvm_rsi_write(vcpu, regs->rsi);
11656 kvm_rdi_write(vcpu, regs->rdi);
11657 kvm_rsp_write(vcpu, regs->rsp);
11658 kvm_rbp_write(vcpu, regs->rbp);
11659 #ifdef CONFIG_X86_64
11660 kvm_r8_write(vcpu, regs->r8);
11661 kvm_r9_write(vcpu, regs->r9);
11662 kvm_r10_write(vcpu, regs->r10);
11663 kvm_r11_write(vcpu, regs->r11);
11664 kvm_r12_write(vcpu, regs->r12);
11665 kvm_r13_write(vcpu, regs->r13);
11666 kvm_r14_write(vcpu, regs->r14);
11667 kvm_r15_write(vcpu, regs->r15);
11668 #endif
11669
11670 kvm_rip_write(vcpu, regs->rip);
11671 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11672
11673 vcpu->arch.exception.pending = false;
11674 vcpu->arch.exception_vmexit.pending = false;
11675
11676 kvm_make_request(KVM_REQ_EVENT, vcpu);
11677 }
11678
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11679 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11680 {
11681 if (vcpu->kvm->arch.has_protected_state &&
11682 vcpu->arch.guest_state_protected)
11683 return -EINVAL;
11684
11685 vcpu_load(vcpu);
11686 __set_regs(vcpu, regs);
11687 vcpu_put(vcpu);
11688 return 0;
11689 }
11690
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11691 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11692 {
11693 struct desc_ptr dt;
11694
11695 if (vcpu->arch.guest_state_protected)
11696 goto skip_protected_regs;
11697
11698 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11699 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11700 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11701 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11702 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11703 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11704
11705 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11706 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11707
11708 kvm_x86_call(get_idt)(vcpu, &dt);
11709 sregs->idt.limit = dt.size;
11710 sregs->idt.base = dt.address;
11711 kvm_x86_call(get_gdt)(vcpu, &dt);
11712 sregs->gdt.limit = dt.size;
11713 sregs->gdt.base = dt.address;
11714
11715 sregs->cr2 = vcpu->arch.cr2;
11716 sregs->cr3 = kvm_read_cr3(vcpu);
11717
11718 skip_protected_regs:
11719 sregs->cr0 = kvm_read_cr0(vcpu);
11720 sregs->cr4 = kvm_read_cr4(vcpu);
11721 sregs->cr8 = kvm_get_cr8(vcpu);
11722 sregs->efer = vcpu->arch.efer;
11723 sregs->apic_base = vcpu->arch.apic_base;
11724 }
11725
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11726 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11727 {
11728 __get_sregs_common(vcpu, sregs);
11729
11730 if (vcpu->arch.guest_state_protected)
11731 return;
11732
11733 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11734 set_bit(vcpu->arch.interrupt.nr,
11735 (unsigned long *)sregs->interrupt_bitmap);
11736 }
11737
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11738 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11739 {
11740 int i;
11741
11742 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11743
11744 if (vcpu->arch.guest_state_protected)
11745 return;
11746
11747 if (is_pae_paging(vcpu)) {
11748 for (i = 0 ; i < 4 ; i++)
11749 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11750 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11751 }
11752 }
11753
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11754 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11755 struct kvm_sregs *sregs)
11756 {
11757 if (vcpu->kvm->arch.has_protected_state &&
11758 vcpu->arch.guest_state_protected)
11759 return -EINVAL;
11760
11761 vcpu_load(vcpu);
11762 __get_sregs(vcpu, sregs);
11763 vcpu_put(vcpu);
11764 return 0;
11765 }
11766
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11767 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11768 struct kvm_mp_state *mp_state)
11769 {
11770 int r;
11771
11772 vcpu_load(vcpu);
11773 if (kvm_mpx_supported())
11774 kvm_load_guest_fpu(vcpu);
11775
11776 kvm_vcpu_srcu_read_lock(vcpu);
11777
11778 r = kvm_apic_accept_events(vcpu);
11779 if (r < 0)
11780 goto out;
11781 r = 0;
11782
11783 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11784 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11785 vcpu->arch.pv.pv_unhalted)
11786 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11787 else
11788 mp_state->mp_state = vcpu->arch.mp_state;
11789
11790 out:
11791 kvm_vcpu_srcu_read_unlock(vcpu);
11792
11793 if (kvm_mpx_supported())
11794 kvm_put_guest_fpu(vcpu);
11795 vcpu_put(vcpu);
11796 return r;
11797 }
11798
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11799 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11800 struct kvm_mp_state *mp_state)
11801 {
11802 int ret = -EINVAL;
11803
11804 vcpu_load(vcpu);
11805
11806 switch (mp_state->mp_state) {
11807 case KVM_MP_STATE_UNINITIALIZED:
11808 case KVM_MP_STATE_HALTED:
11809 case KVM_MP_STATE_AP_RESET_HOLD:
11810 case KVM_MP_STATE_INIT_RECEIVED:
11811 case KVM_MP_STATE_SIPI_RECEIVED:
11812 if (!lapic_in_kernel(vcpu))
11813 goto out;
11814 break;
11815
11816 case KVM_MP_STATE_RUNNABLE:
11817 break;
11818
11819 default:
11820 goto out;
11821 }
11822
11823 /*
11824 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11825 * forcing the guest into INIT/SIPI if those events are supposed to be
11826 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11827 * if an SMI is pending as well.
11828 */
11829 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11830 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11831 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11832 goto out;
11833
11834 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11835 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11836 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11837 } else
11838 vcpu->arch.mp_state = mp_state->mp_state;
11839 kvm_make_request(KVM_REQ_EVENT, vcpu);
11840
11841 ret = 0;
11842 out:
11843 vcpu_put(vcpu);
11844 return ret;
11845 }
11846
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11847 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11848 int reason, bool has_error_code, u32 error_code)
11849 {
11850 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11851 int ret;
11852
11853 init_emulate_ctxt(vcpu);
11854
11855 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11856 has_error_code, error_code);
11857
11858 /*
11859 * Report an error userspace if MMIO is needed, as KVM doesn't support
11860 * MMIO during a task switch (or any other complex operation).
11861 */
11862 if (ret || vcpu->mmio_needed) {
11863 vcpu->mmio_needed = false;
11864 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11865 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11866 vcpu->run->internal.ndata = 0;
11867 return 0;
11868 }
11869
11870 kvm_rip_write(vcpu, ctxt->eip);
11871 kvm_set_rflags(vcpu, ctxt->eflags);
11872 return 1;
11873 }
11874 EXPORT_SYMBOL_GPL(kvm_task_switch);
11875
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11876 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11877 {
11878 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11879 /*
11880 * When EFER.LME and CR0.PG are set, the processor is in
11881 * 64-bit mode (though maybe in a 32-bit code segment).
11882 * CR4.PAE and EFER.LMA must be set.
11883 */
11884 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11885 return false;
11886 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11887 return false;
11888 } else {
11889 /*
11890 * Not in 64-bit mode: EFER.LMA is clear and the code
11891 * segment cannot be 64-bit.
11892 */
11893 if (sregs->efer & EFER_LMA || sregs->cs.l)
11894 return false;
11895 }
11896
11897 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11898 kvm_is_valid_cr0(vcpu, sregs->cr0);
11899 }
11900
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11901 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11902 int *mmu_reset_needed, bool update_pdptrs)
11903 {
11904 int idx;
11905 struct desc_ptr dt;
11906
11907 if (!kvm_is_valid_sregs(vcpu, sregs))
11908 return -EINVAL;
11909
11910 if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
11911 return -EINVAL;
11912
11913 if (vcpu->arch.guest_state_protected)
11914 return 0;
11915
11916 dt.size = sregs->idt.limit;
11917 dt.address = sregs->idt.base;
11918 kvm_x86_call(set_idt)(vcpu, &dt);
11919 dt.size = sregs->gdt.limit;
11920 dt.address = sregs->gdt.base;
11921 kvm_x86_call(set_gdt)(vcpu, &dt);
11922
11923 vcpu->arch.cr2 = sregs->cr2;
11924 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11925 vcpu->arch.cr3 = sregs->cr3;
11926 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11927 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
11928
11929 kvm_set_cr8(vcpu, sregs->cr8);
11930
11931 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11932 kvm_x86_call(set_efer)(vcpu, sregs->efer);
11933
11934 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11935 kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
11936
11937 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11938 kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
11939
11940 if (update_pdptrs) {
11941 idx = srcu_read_lock(&vcpu->kvm->srcu);
11942 if (is_pae_paging(vcpu)) {
11943 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11944 *mmu_reset_needed = 1;
11945 }
11946 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11947 }
11948
11949 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11950 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11951 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11952 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11953 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11954 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11955
11956 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11957 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11958
11959 update_cr8_intercept(vcpu);
11960
11961 /* Older userspace won't unhalt the vcpu on reset. */
11962 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11963 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11964 !is_protmode(vcpu))
11965 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11966
11967 return 0;
11968 }
11969
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11970 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11971 {
11972 int pending_vec, max_bits;
11973 int mmu_reset_needed = 0;
11974 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11975
11976 if (ret)
11977 return ret;
11978
11979 if (mmu_reset_needed) {
11980 kvm_mmu_reset_context(vcpu);
11981 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11982 }
11983
11984 max_bits = KVM_NR_INTERRUPTS;
11985 pending_vec = find_first_bit(
11986 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11987
11988 if (pending_vec < max_bits) {
11989 kvm_queue_interrupt(vcpu, pending_vec, false);
11990 pr_debug("Set back pending irq %d\n", pending_vec);
11991 kvm_make_request(KVM_REQ_EVENT, vcpu);
11992 }
11993 return 0;
11994 }
11995
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11996 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11997 {
11998 int mmu_reset_needed = 0;
11999 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
12000 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
12001 !(sregs2->efer & EFER_LMA);
12002 int i, ret;
12003
12004 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
12005 return -EINVAL;
12006
12007 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
12008 return -EINVAL;
12009
12010 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12011 &mmu_reset_needed, !valid_pdptrs);
12012 if (ret)
12013 return ret;
12014
12015 if (valid_pdptrs) {
12016 for (i = 0; i < 4 ; i++)
12017 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12018
12019 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12020 mmu_reset_needed = 1;
12021 vcpu->arch.pdptrs_from_userspace = true;
12022 }
12023 if (mmu_reset_needed) {
12024 kvm_mmu_reset_context(vcpu);
12025 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12026 }
12027 return 0;
12028 }
12029
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12030 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12031 struct kvm_sregs *sregs)
12032 {
12033 int ret;
12034
12035 if (vcpu->kvm->arch.has_protected_state &&
12036 vcpu->arch.guest_state_protected)
12037 return -EINVAL;
12038
12039 vcpu_load(vcpu);
12040 ret = __set_sregs(vcpu, sregs);
12041 vcpu_put(vcpu);
12042 return ret;
12043 }
12044
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12045 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12046 {
12047 bool set = false;
12048 struct kvm_vcpu *vcpu;
12049 unsigned long i;
12050
12051 if (!enable_apicv)
12052 return;
12053
12054 down_write(&kvm->arch.apicv_update_lock);
12055
12056 kvm_for_each_vcpu(i, vcpu, kvm) {
12057 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12058 set = true;
12059 break;
12060 }
12061 }
12062 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12063 up_write(&kvm->arch.apicv_update_lock);
12064 }
12065
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12066 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12067 struct kvm_guest_debug *dbg)
12068 {
12069 unsigned long rflags;
12070 int i, r;
12071
12072 if (vcpu->arch.guest_state_protected)
12073 return -EINVAL;
12074
12075 vcpu_load(vcpu);
12076
12077 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12078 r = -EBUSY;
12079 if (kvm_is_exception_pending(vcpu))
12080 goto out;
12081 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12082 kvm_queue_exception(vcpu, DB_VECTOR);
12083 else
12084 kvm_queue_exception(vcpu, BP_VECTOR);
12085 }
12086
12087 /*
12088 * Read rflags as long as potentially injected trace flags are still
12089 * filtered out.
12090 */
12091 rflags = kvm_get_rflags(vcpu);
12092
12093 vcpu->guest_debug = dbg->control;
12094 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12095 vcpu->guest_debug = 0;
12096
12097 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12098 for (i = 0; i < KVM_NR_DB_REGS; ++i)
12099 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12100 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12101 } else {
12102 for (i = 0; i < KVM_NR_DB_REGS; i++)
12103 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12104 }
12105 kvm_update_dr7(vcpu);
12106
12107 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12108 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12109
12110 /*
12111 * Trigger an rflags update that will inject or remove the trace
12112 * flags.
12113 */
12114 kvm_set_rflags(vcpu, rflags);
12115
12116 kvm_x86_call(update_exception_bitmap)(vcpu);
12117
12118 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12119
12120 r = 0;
12121
12122 out:
12123 vcpu_put(vcpu);
12124 return r;
12125 }
12126
12127 /*
12128 * Translate a guest virtual address to a guest physical address.
12129 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12130 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12131 struct kvm_translation *tr)
12132 {
12133 unsigned long vaddr = tr->linear_address;
12134 gpa_t gpa;
12135 int idx;
12136
12137 vcpu_load(vcpu);
12138
12139 idx = srcu_read_lock(&vcpu->kvm->srcu);
12140 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12141 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12142 tr->physical_address = gpa;
12143 tr->valid = gpa != INVALID_GPA;
12144 tr->writeable = 1;
12145 tr->usermode = 0;
12146
12147 vcpu_put(vcpu);
12148 return 0;
12149 }
12150
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12151 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12152 {
12153 struct fxregs_state *fxsave;
12154
12155 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12156 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12157
12158 vcpu_load(vcpu);
12159
12160 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12161 memcpy(fpu->fpr, fxsave->st_space, 128);
12162 fpu->fcw = fxsave->cwd;
12163 fpu->fsw = fxsave->swd;
12164 fpu->ftwx = fxsave->twd;
12165 fpu->last_opcode = fxsave->fop;
12166 fpu->last_ip = fxsave->rip;
12167 fpu->last_dp = fxsave->rdp;
12168 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12169
12170 vcpu_put(vcpu);
12171 return 0;
12172 }
12173
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12174 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12175 {
12176 struct fxregs_state *fxsave;
12177
12178 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12179 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12180
12181 vcpu_load(vcpu);
12182
12183 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12184
12185 memcpy(fxsave->st_space, fpu->fpr, 128);
12186 fxsave->cwd = fpu->fcw;
12187 fxsave->swd = fpu->fsw;
12188 fxsave->twd = fpu->ftwx;
12189 fxsave->fop = fpu->last_opcode;
12190 fxsave->rip = fpu->last_ip;
12191 fxsave->rdp = fpu->last_dp;
12192 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12193
12194 vcpu_put(vcpu);
12195 return 0;
12196 }
12197
store_regs(struct kvm_vcpu * vcpu)12198 static void store_regs(struct kvm_vcpu *vcpu)
12199 {
12200 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12201
12202 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12203 __get_regs(vcpu, &vcpu->run->s.regs.regs);
12204
12205 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12206 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12207
12208 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12209 kvm_vcpu_ioctl_x86_get_vcpu_events(
12210 vcpu, &vcpu->run->s.regs.events);
12211 }
12212
sync_regs(struct kvm_vcpu * vcpu)12213 static int sync_regs(struct kvm_vcpu *vcpu)
12214 {
12215 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12216 __set_regs(vcpu, &vcpu->run->s.regs.regs);
12217 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12218 }
12219
12220 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12221 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12222
12223 if (__set_sregs(vcpu, &sregs))
12224 return -EINVAL;
12225
12226 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12227 }
12228
12229 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12230 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12231
12232 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12233 return -EINVAL;
12234
12235 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12236 }
12237
12238 return 0;
12239 }
12240
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12241 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12242 {
12243 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12244 pr_warn_once("SMP vm created on host with unstable TSC; "
12245 "guest TSC will not be reliable\n");
12246
12247 if (!kvm->arch.max_vcpu_ids)
12248 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12249
12250 if (id >= kvm->arch.max_vcpu_ids)
12251 return -EINVAL;
12252
12253 return kvm_x86_call(vcpu_precreate)(kvm);
12254 }
12255
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12256 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12257 {
12258 struct page *page;
12259 int r;
12260
12261 vcpu->arch.last_vmentry_cpu = -1;
12262 vcpu->arch.regs_avail = ~0;
12263 vcpu->arch.regs_dirty = ~0;
12264
12265 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12266
12267 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12268 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12269 else
12270 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12271
12272 r = kvm_mmu_create(vcpu);
12273 if (r < 0)
12274 return r;
12275
12276 r = kvm_create_lapic(vcpu);
12277 if (r < 0)
12278 goto fail_mmu_destroy;
12279
12280 r = -ENOMEM;
12281
12282 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12283 if (!page)
12284 goto fail_free_lapic;
12285 vcpu->arch.pio_data = page_address(page);
12286
12287 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12288 GFP_KERNEL_ACCOUNT);
12289 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12290 GFP_KERNEL_ACCOUNT);
12291 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12292 goto fail_free_mce_banks;
12293 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12294
12295 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12296 GFP_KERNEL_ACCOUNT))
12297 goto fail_free_mce_banks;
12298
12299 if (!alloc_emulate_ctxt(vcpu))
12300 goto free_wbinvd_dirty_mask;
12301
12302 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12303 pr_err("failed to allocate vcpu's fpu\n");
12304 goto free_emulate_ctxt;
12305 }
12306
12307 kvm_async_pf_hash_reset(vcpu);
12308
12309 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12310 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12311 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12312 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12313 }
12314 kvm_pmu_init(vcpu);
12315
12316 vcpu->arch.pending_external_vector = -1;
12317 vcpu->arch.preempted_in_kernel = false;
12318
12319 #if IS_ENABLED(CONFIG_HYPERV)
12320 vcpu->arch.hv_root_tdp = INVALID_PAGE;
12321 #endif
12322
12323 r = kvm_x86_call(vcpu_create)(vcpu);
12324 if (r)
12325 goto free_guest_fpu;
12326
12327 kvm_xen_init_vcpu(vcpu);
12328 vcpu_load(vcpu);
12329 kvm_vcpu_after_set_cpuid(vcpu);
12330 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12331 kvm_vcpu_reset(vcpu, false);
12332 kvm_init_mmu(vcpu);
12333 vcpu_put(vcpu);
12334 return 0;
12335
12336 free_guest_fpu:
12337 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12338 free_emulate_ctxt:
12339 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12340 free_wbinvd_dirty_mask:
12341 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12342 fail_free_mce_banks:
12343 kfree(vcpu->arch.mce_banks);
12344 kfree(vcpu->arch.mci_ctl2_banks);
12345 free_page((unsigned long)vcpu->arch.pio_data);
12346 fail_free_lapic:
12347 kvm_free_lapic(vcpu);
12348 fail_mmu_destroy:
12349 kvm_mmu_destroy(vcpu);
12350 return r;
12351 }
12352
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12353 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12354 {
12355 struct kvm *kvm = vcpu->kvm;
12356
12357 if (mutex_lock_killable(&vcpu->mutex))
12358 return;
12359 vcpu_load(vcpu);
12360 kvm_synchronize_tsc(vcpu, NULL);
12361 vcpu_put(vcpu);
12362
12363 /* poll control enabled by default */
12364 vcpu->arch.msr_kvm_poll_control = 1;
12365
12366 mutex_unlock(&vcpu->mutex);
12367
12368 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12369 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12370 KVMCLOCK_SYNC_PERIOD);
12371 }
12372
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12373 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12374 {
12375 int idx;
12376
12377 kvmclock_reset(vcpu);
12378
12379 kvm_x86_call(vcpu_free)(vcpu);
12380
12381 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12382 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12383 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12384
12385 kvm_xen_destroy_vcpu(vcpu);
12386 kvm_hv_vcpu_uninit(vcpu);
12387 kvm_pmu_destroy(vcpu);
12388 kfree(vcpu->arch.mce_banks);
12389 kfree(vcpu->arch.mci_ctl2_banks);
12390 kvm_free_lapic(vcpu);
12391 idx = srcu_read_lock(&vcpu->kvm->srcu);
12392 kvm_mmu_destroy(vcpu);
12393 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12394 free_page((unsigned long)vcpu->arch.pio_data);
12395 kvfree(vcpu->arch.cpuid_entries);
12396 }
12397
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12398 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12399 {
12400 struct kvm_cpuid_entry2 *cpuid_0x1;
12401 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12402 unsigned long new_cr0;
12403
12404 /*
12405 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12406 * to handle side effects. RESET emulation hits those flows and relies
12407 * on emulated/virtualized registers, including those that are loaded
12408 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12409 * to detect improper or missing initialization.
12410 */
12411 WARN_ON_ONCE(!init_event &&
12412 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12413
12414 /*
12415 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12416 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12417 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12418 * bits), i.e. virtualization is disabled.
12419 */
12420 if (is_guest_mode(vcpu))
12421 kvm_leave_nested(vcpu);
12422
12423 kvm_lapic_reset(vcpu, init_event);
12424
12425 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12426 vcpu->arch.hflags = 0;
12427
12428 vcpu->arch.smi_pending = 0;
12429 vcpu->arch.smi_count = 0;
12430 atomic_set(&vcpu->arch.nmi_queued, 0);
12431 vcpu->arch.nmi_pending = 0;
12432 vcpu->arch.nmi_injected = false;
12433 kvm_clear_interrupt_queue(vcpu);
12434 kvm_clear_exception_queue(vcpu);
12435
12436 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12437 kvm_update_dr0123(vcpu);
12438 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12439 vcpu->arch.dr7 = DR7_FIXED_1;
12440 kvm_update_dr7(vcpu);
12441
12442 vcpu->arch.cr2 = 0;
12443
12444 kvm_make_request(KVM_REQ_EVENT, vcpu);
12445 vcpu->arch.apf.msr_en_val = 0;
12446 vcpu->arch.apf.msr_int_val = 0;
12447 vcpu->arch.st.msr_val = 0;
12448
12449 kvmclock_reset(vcpu);
12450
12451 kvm_clear_async_pf_completion_queue(vcpu);
12452 kvm_async_pf_hash_reset(vcpu);
12453 vcpu->arch.apf.halted = false;
12454
12455 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12456 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12457
12458 /*
12459 * All paths that lead to INIT are required to load the guest's
12460 * FPU state (because most paths are buried in KVM_RUN).
12461 */
12462 if (init_event)
12463 kvm_put_guest_fpu(vcpu);
12464
12465 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12466 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12467
12468 if (init_event)
12469 kvm_load_guest_fpu(vcpu);
12470 }
12471
12472 if (!init_event) {
12473 vcpu->arch.smbase = 0x30000;
12474
12475 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12476
12477 vcpu->arch.msr_misc_features_enables = 0;
12478 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12479 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12480
12481 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12482 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12483 }
12484
12485 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12486 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12487 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12488
12489 /*
12490 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12491 * if no CPUID match is found. Note, it's impossible to get a match at
12492 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12493 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12494 * on RESET. But, go through the motions in case that's ever remedied.
12495 */
12496 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12497 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12498
12499 kvm_x86_call(vcpu_reset)(vcpu, init_event);
12500
12501 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12502 kvm_rip_write(vcpu, 0xfff0);
12503
12504 vcpu->arch.cr3 = 0;
12505 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12506
12507 /*
12508 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12509 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12510 * (or qualify) that with a footnote stating that CD/NW are preserved.
12511 */
12512 new_cr0 = X86_CR0_ET;
12513 if (init_event)
12514 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12515 else
12516 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12517
12518 kvm_x86_call(set_cr0)(vcpu, new_cr0);
12519 kvm_x86_call(set_cr4)(vcpu, 0);
12520 kvm_x86_call(set_efer)(vcpu, 0);
12521 kvm_x86_call(update_exception_bitmap)(vcpu);
12522
12523 /*
12524 * On the standard CR0/CR4/EFER modification paths, there are several
12525 * complex conditions determining whether the MMU has to be reset and/or
12526 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12527 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12528 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12529 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12530 */
12531 if (old_cr0 & X86_CR0_PG) {
12532 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12533 kvm_mmu_reset_context(vcpu);
12534 }
12535
12536 /*
12537 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12538 * APM states the TLBs are untouched by INIT, but it also states that
12539 * the TLBs are flushed on "External initialization of the processor."
12540 * Flush the guest TLB regardless of vendor, there is no meaningful
12541 * benefit in relying on the guest to flush the TLB immediately after
12542 * INIT. A spurious TLB flush is benign and likely negligible from a
12543 * performance perspective.
12544 */
12545 if (init_event)
12546 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12547 }
12548 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12549
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12550 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12551 {
12552 struct kvm_segment cs;
12553
12554 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12555 cs.selector = vector << 8;
12556 cs.base = vector << 12;
12557 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12558 kvm_rip_write(vcpu, 0);
12559 }
12560 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12561
kvm_arch_enable_virtualization(void)12562 void kvm_arch_enable_virtualization(void)
12563 {
12564 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12565 }
12566
kvm_arch_disable_virtualization(void)12567 void kvm_arch_disable_virtualization(void)
12568 {
12569 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12570 }
12571
kvm_arch_enable_virtualization_cpu(void)12572 int kvm_arch_enable_virtualization_cpu(void)
12573 {
12574 struct kvm *kvm;
12575 struct kvm_vcpu *vcpu;
12576 unsigned long i;
12577 int ret;
12578 u64 local_tsc;
12579 u64 max_tsc = 0;
12580 bool stable, backwards_tsc = false;
12581
12582 kvm_user_return_msr_cpu_online();
12583
12584 ret = kvm_x86_check_processor_compatibility();
12585 if (ret)
12586 return ret;
12587
12588 ret = kvm_x86_call(enable_virtualization_cpu)();
12589 if (ret != 0)
12590 return ret;
12591
12592 local_tsc = rdtsc();
12593 stable = !kvm_check_tsc_unstable();
12594 list_for_each_entry(kvm, &vm_list, vm_list) {
12595 kvm_for_each_vcpu(i, vcpu, kvm) {
12596 if (!stable && vcpu->cpu == smp_processor_id())
12597 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12598 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12599 backwards_tsc = true;
12600 if (vcpu->arch.last_host_tsc > max_tsc)
12601 max_tsc = vcpu->arch.last_host_tsc;
12602 }
12603 }
12604 }
12605
12606 /*
12607 * Sometimes, even reliable TSCs go backwards. This happens on
12608 * platforms that reset TSC during suspend or hibernate actions, but
12609 * maintain synchronization. We must compensate. Fortunately, we can
12610 * detect that condition here, which happens early in CPU bringup,
12611 * before any KVM threads can be running. Unfortunately, we can't
12612 * bring the TSCs fully up to date with real time, as we aren't yet far
12613 * enough into CPU bringup that we know how much real time has actually
12614 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12615 * variables that haven't been updated yet.
12616 *
12617 * So we simply find the maximum observed TSC above, then record the
12618 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12619 * the adjustment will be applied. Note that we accumulate
12620 * adjustments, in case multiple suspend cycles happen before some VCPU
12621 * gets a chance to run again. In the event that no KVM threads get a
12622 * chance to run, we will miss the entire elapsed period, as we'll have
12623 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12624 * loose cycle time. This isn't too big a deal, since the loss will be
12625 * uniform across all VCPUs (not to mention the scenario is extremely
12626 * unlikely). It is possible that a second hibernate recovery happens
12627 * much faster than a first, causing the observed TSC here to be
12628 * smaller; this would require additional padding adjustment, which is
12629 * why we set last_host_tsc to the local tsc observed here.
12630 *
12631 * N.B. - this code below runs only on platforms with reliable TSC,
12632 * as that is the only way backwards_tsc is set above. Also note
12633 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12634 * have the same delta_cyc adjustment applied if backwards_tsc
12635 * is detected. Note further, this adjustment is only done once,
12636 * as we reset last_host_tsc on all VCPUs to stop this from being
12637 * called multiple times (one for each physical CPU bringup).
12638 *
12639 * Platforms with unreliable TSCs don't have to deal with this, they
12640 * will be compensated by the logic in vcpu_load, which sets the TSC to
12641 * catchup mode. This will catchup all VCPUs to real time, but cannot
12642 * guarantee that they stay in perfect synchronization.
12643 */
12644 if (backwards_tsc) {
12645 u64 delta_cyc = max_tsc - local_tsc;
12646 list_for_each_entry(kvm, &vm_list, vm_list) {
12647 kvm->arch.backwards_tsc_observed = true;
12648 kvm_for_each_vcpu(i, vcpu, kvm) {
12649 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12650 vcpu->arch.last_host_tsc = local_tsc;
12651 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12652 }
12653
12654 /*
12655 * We have to disable TSC offset matching.. if you were
12656 * booting a VM while issuing an S4 host suspend....
12657 * you may have some problem. Solving this issue is
12658 * left as an exercise to the reader.
12659 */
12660 kvm->arch.last_tsc_nsec = 0;
12661 kvm->arch.last_tsc_write = 0;
12662 }
12663
12664 }
12665 return 0;
12666 }
12667
kvm_arch_disable_virtualization_cpu(void)12668 void kvm_arch_disable_virtualization_cpu(void)
12669 {
12670 kvm_x86_call(disable_virtualization_cpu)();
12671 drop_user_return_notifiers();
12672 }
12673
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12674 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12675 {
12676 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12677 }
12678
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12679 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12680 {
12681 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12682 }
12683
kvm_arch_free_vm(struct kvm * kvm)12684 void kvm_arch_free_vm(struct kvm *kvm)
12685 {
12686 #if IS_ENABLED(CONFIG_HYPERV)
12687 kfree(kvm->arch.hv_pa_pg);
12688 #endif
12689 __kvm_arch_free_vm(kvm);
12690 }
12691
12692
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12693 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12694 {
12695 int ret;
12696 unsigned long flags;
12697
12698 if (!kvm_is_vm_type_supported(type))
12699 return -EINVAL;
12700
12701 kvm->arch.vm_type = type;
12702 kvm->arch.has_private_mem =
12703 (type == KVM_X86_SW_PROTECTED_VM);
12704 /* Decided by the vendor code for other VM types. */
12705 kvm->arch.pre_fault_allowed =
12706 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
12707
12708 ret = kvm_page_track_init(kvm);
12709 if (ret)
12710 goto out;
12711
12712 kvm_mmu_init_vm(kvm);
12713
12714 ret = kvm_x86_call(vm_init)(kvm);
12715 if (ret)
12716 goto out_uninit_mmu;
12717
12718 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12719 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12720
12721 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12722 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12723 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12724 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12725 &kvm->arch.irq_sources_bitmap);
12726
12727 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12728 mutex_init(&kvm->arch.apic_map_lock);
12729 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12730 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12731
12732 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12733 pvclock_update_vm_gtod_copy(kvm);
12734 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12735
12736 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12737 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
12738 kvm->arch.guest_can_read_msr_platform_info = true;
12739 kvm->arch.enable_pmu = enable_pmu;
12740
12741 #if IS_ENABLED(CONFIG_HYPERV)
12742 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12743 kvm->arch.hv_root_tdp = INVALID_PAGE;
12744 #endif
12745
12746 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12747 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12748
12749 kvm_apicv_init(kvm);
12750 kvm_hv_init_vm(kvm);
12751 kvm_xen_init_vm(kvm);
12752
12753 if (ignore_msrs && !report_ignored_msrs) {
12754 pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
12755 "a supported configuration. Lying to the guest about the existence of MSRs\n"
12756 "may cause the guest operating system to hang or produce errors. If a guest\n"
12757 "does not run without ignore_msrs=1, please report it to [email protected].\n");
12758 }
12759
12760 once_init(&kvm->arch.nx_once);
12761 return 0;
12762
12763 out_uninit_mmu:
12764 kvm_mmu_uninit_vm(kvm);
12765 kvm_page_track_cleanup(kvm);
12766 out:
12767 return ret;
12768 }
12769
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)12770 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12771 {
12772 vcpu_load(vcpu);
12773 kvm_mmu_unload(vcpu);
12774 vcpu_put(vcpu);
12775 }
12776
kvm_unload_vcpu_mmus(struct kvm * kvm)12777 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12778 {
12779 unsigned long i;
12780 struct kvm_vcpu *vcpu;
12781
12782 kvm_for_each_vcpu(i, vcpu, kvm) {
12783 kvm_clear_async_pf_completion_queue(vcpu);
12784 kvm_unload_vcpu_mmu(vcpu);
12785 }
12786 }
12787
kvm_arch_sync_events(struct kvm * kvm)12788 void kvm_arch_sync_events(struct kvm *kvm)
12789 {
12790 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12791 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12792 kvm_free_pit(kvm);
12793 }
12794
12795 /**
12796 * __x86_set_memory_region: Setup KVM internal memory slot
12797 *
12798 * @kvm: the kvm pointer to the VM.
12799 * @id: the slot ID to setup.
12800 * @gpa: the GPA to install the slot (unused when @size == 0).
12801 * @size: the size of the slot. Set to zero to uninstall a slot.
12802 *
12803 * This function helps to setup a KVM internal memory slot. Specify
12804 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12805 * slot. The return code can be one of the following:
12806 *
12807 * HVA: on success (uninstall will return a bogus HVA)
12808 * -errno: on error
12809 *
12810 * The caller should always use IS_ERR() to check the return value
12811 * before use. Note, the KVM internal memory slots are guaranteed to
12812 * remain valid and unchanged until the VM is destroyed, i.e., the
12813 * GPA->HVA translation will not change. However, the HVA is a user
12814 * address, i.e. its accessibility is not guaranteed, and must be
12815 * accessed via __copy_{to,from}_user().
12816 */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12817 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12818 u32 size)
12819 {
12820 int i, r;
12821 unsigned long hva, old_npages;
12822 struct kvm_memslots *slots = kvm_memslots(kvm);
12823 struct kvm_memory_slot *slot;
12824
12825 lockdep_assert_held(&kvm->slots_lock);
12826
12827 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12828 return ERR_PTR_USR(-EINVAL);
12829
12830 slot = id_to_memslot(slots, id);
12831 if (size) {
12832 if (slot && slot->npages)
12833 return ERR_PTR_USR(-EEXIST);
12834
12835 /*
12836 * MAP_SHARED to prevent internal slot pages from being moved
12837 * by fork()/COW.
12838 */
12839 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12840 MAP_SHARED | MAP_ANONYMOUS, 0);
12841 if (IS_ERR_VALUE(hva))
12842 return (void __user *)hva;
12843 } else {
12844 if (!slot || !slot->npages)
12845 return NULL;
12846
12847 old_npages = slot->npages;
12848 hva = slot->userspace_addr;
12849 }
12850
12851 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12852 struct kvm_userspace_memory_region2 m;
12853
12854 m.slot = id | (i << 16);
12855 m.flags = 0;
12856 m.guest_phys_addr = gpa;
12857 m.userspace_addr = hva;
12858 m.memory_size = size;
12859 r = kvm_set_internal_memslot(kvm, &m);
12860 if (r < 0)
12861 return ERR_PTR_USR(r);
12862 }
12863
12864 if (!size)
12865 vm_munmap(hva, old_npages * PAGE_SIZE);
12866
12867 return (void __user *)hva;
12868 }
12869 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12870
kvm_arch_pre_destroy_vm(struct kvm * kvm)12871 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12872 {
12873 kvm_mmu_pre_destroy_vm(kvm);
12874 }
12875
kvm_arch_destroy_vm(struct kvm * kvm)12876 void kvm_arch_destroy_vm(struct kvm *kvm)
12877 {
12878 if (current->mm == kvm->mm) {
12879 /*
12880 * Free memory regions allocated on behalf of userspace,
12881 * unless the memory map has changed due to process exit
12882 * or fd copying.
12883 */
12884 mutex_lock(&kvm->slots_lock);
12885 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12886 0, 0);
12887 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12888 0, 0);
12889 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12890 mutex_unlock(&kvm->slots_lock);
12891 }
12892 kvm_unload_vcpu_mmus(kvm);
12893 kvm_destroy_vcpus(kvm);
12894 kvm_x86_call(vm_destroy)(kvm);
12895 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12896 kvm_pic_destroy(kvm);
12897 kvm_ioapic_destroy(kvm);
12898 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12899 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12900 kvm_mmu_uninit_vm(kvm);
12901 kvm_page_track_cleanup(kvm);
12902 kvm_xen_destroy_vm(kvm);
12903 kvm_hv_destroy_vm(kvm);
12904 }
12905
memslot_rmap_free(struct kvm_memory_slot * slot)12906 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12907 {
12908 int i;
12909
12910 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12911 vfree(slot->arch.rmap[i]);
12912 slot->arch.rmap[i] = NULL;
12913 }
12914 }
12915
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12916 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12917 {
12918 int i;
12919
12920 memslot_rmap_free(slot);
12921
12922 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12923 vfree(slot->arch.lpage_info[i - 1]);
12924 slot->arch.lpage_info[i - 1] = NULL;
12925 }
12926
12927 kvm_page_track_free_memslot(slot);
12928 }
12929
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12930 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12931 {
12932 const int sz = sizeof(*slot->arch.rmap[0]);
12933 int i;
12934
12935 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12936 int level = i + 1;
12937 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12938
12939 if (slot->arch.rmap[i])
12940 continue;
12941
12942 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12943 if (!slot->arch.rmap[i]) {
12944 memslot_rmap_free(slot);
12945 return -ENOMEM;
12946 }
12947 }
12948
12949 return 0;
12950 }
12951
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12952 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12953 struct kvm_memory_slot *slot)
12954 {
12955 unsigned long npages = slot->npages;
12956 int i, r;
12957
12958 /*
12959 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12960 * old arrays will be freed by kvm_set_memory_region() if installing
12961 * the new memslot is successful.
12962 */
12963 memset(&slot->arch, 0, sizeof(slot->arch));
12964
12965 if (kvm_memslots_have_rmaps(kvm)) {
12966 r = memslot_rmap_alloc(slot, npages);
12967 if (r)
12968 return r;
12969 }
12970
12971 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12972 struct kvm_lpage_info *linfo;
12973 unsigned long ugfn;
12974 int lpages;
12975 int level = i + 1;
12976
12977 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12978
12979 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12980 if (!linfo)
12981 goto out_free;
12982
12983 slot->arch.lpage_info[i - 1] = linfo;
12984
12985 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12986 linfo[0].disallow_lpage = 1;
12987 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12988 linfo[lpages - 1].disallow_lpage = 1;
12989 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12990 /*
12991 * If the gfn and userspace address are not aligned wrt each
12992 * other, disable large page support for this slot.
12993 */
12994 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12995 unsigned long j;
12996
12997 for (j = 0; j < lpages; ++j)
12998 linfo[j].disallow_lpage = 1;
12999 }
13000 }
13001
13002 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
13003 kvm_mmu_init_memslot_memory_attributes(kvm, slot);
13004 #endif
13005
13006 if (kvm_page_track_create_memslot(kvm, slot, npages))
13007 goto out_free;
13008
13009 return 0;
13010
13011 out_free:
13012 memslot_rmap_free(slot);
13013
13014 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13015 vfree(slot->arch.lpage_info[i - 1]);
13016 slot->arch.lpage_info[i - 1] = NULL;
13017 }
13018 return -ENOMEM;
13019 }
13020
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)13021 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13022 {
13023 struct kvm_vcpu *vcpu;
13024 unsigned long i;
13025
13026 /*
13027 * memslots->generation has been incremented.
13028 * mmio generation may have reached its maximum value.
13029 */
13030 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13031
13032 /* Force re-initialization of steal_time cache */
13033 kvm_for_each_vcpu(i, vcpu, kvm)
13034 kvm_vcpu_kick(vcpu);
13035 }
13036
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13037 int kvm_arch_prepare_memory_region(struct kvm *kvm,
13038 const struct kvm_memory_slot *old,
13039 struct kvm_memory_slot *new,
13040 enum kvm_mr_change change)
13041 {
13042 /*
13043 * KVM doesn't support moving memslots when there are external page
13044 * trackers attached to the VM, i.e. if KVMGT is in use.
13045 */
13046 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13047 return -EINVAL;
13048
13049 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13050 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13051 return -EINVAL;
13052
13053 if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1))
13054 return -EINVAL;
13055
13056 return kvm_alloc_memslot_metadata(kvm, new);
13057 }
13058
13059 if (change == KVM_MR_FLAGS_ONLY)
13060 memcpy(&new->arch, &old->arch, sizeof(old->arch));
13061 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13062 return -EIO;
13063
13064 return 0;
13065 }
13066
13067
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13068 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13069 {
13070 int nr_slots;
13071
13072 if (!kvm_x86_ops.cpu_dirty_log_size)
13073 return;
13074
13075 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13076 if ((enable && nr_slots == 1) || !nr_slots)
13077 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13078 }
13079
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13080 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13081 struct kvm_memory_slot *old,
13082 const struct kvm_memory_slot *new,
13083 enum kvm_mr_change change)
13084 {
13085 u32 old_flags = old ? old->flags : 0;
13086 u32 new_flags = new ? new->flags : 0;
13087 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13088
13089 /*
13090 * Update CPU dirty logging if dirty logging is being toggled. This
13091 * applies to all operations.
13092 */
13093 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13094 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13095
13096 /*
13097 * Nothing more to do for RO slots (which can't be dirtied and can't be
13098 * made writable) or CREATE/MOVE/DELETE of a slot.
13099 *
13100 * For a memslot with dirty logging disabled:
13101 * CREATE: No dirty mappings will already exist.
13102 * MOVE/DELETE: The old mappings will already have been cleaned up by
13103 * kvm_arch_flush_shadow_memslot()
13104 *
13105 * For a memslot with dirty logging enabled:
13106 * CREATE: No shadow pages exist, thus nothing to write-protect
13107 * and no dirty bits to clear.
13108 * MOVE/DELETE: The old mappings will already have been cleaned up by
13109 * kvm_arch_flush_shadow_memslot().
13110 */
13111 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13112 return;
13113
13114 /*
13115 * READONLY and non-flags changes were filtered out above, and the only
13116 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13117 * logging isn't being toggled on or off.
13118 */
13119 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13120 return;
13121
13122 if (!log_dirty_pages) {
13123 /*
13124 * Recover huge page mappings in the slot now that dirty logging
13125 * is disabled, i.e. now that KVM does not have to track guest
13126 * writes at 4KiB granularity.
13127 *
13128 * Dirty logging might be disabled by userspace if an ongoing VM
13129 * live migration is cancelled and the VM must continue running
13130 * on the source.
13131 */
13132 kvm_mmu_recover_huge_pages(kvm, new);
13133 } else {
13134 /*
13135 * Initially-all-set does not require write protecting any page,
13136 * because they're all assumed to be dirty.
13137 */
13138 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13139 return;
13140
13141 if (READ_ONCE(eager_page_split))
13142 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13143
13144 if (kvm_x86_ops.cpu_dirty_log_size) {
13145 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13146 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13147 } else {
13148 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13149 }
13150
13151 /*
13152 * Unconditionally flush the TLBs after enabling dirty logging.
13153 * A flush is almost always going to be necessary (see below),
13154 * and unconditionally flushing allows the helpers to omit
13155 * the subtly complex checks when removing write access.
13156 *
13157 * Do the flush outside of mmu_lock to reduce the amount of
13158 * time mmu_lock is held. Flushing after dropping mmu_lock is
13159 * safe as KVM only needs to guarantee the slot is fully
13160 * write-protected before returning to userspace, i.e. before
13161 * userspace can consume the dirty status.
13162 *
13163 * Flushing outside of mmu_lock requires KVM to be careful when
13164 * making decisions based on writable status of an SPTE, e.g. a
13165 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13166 *
13167 * Specifically, KVM also write-protects guest page tables to
13168 * monitor changes when using shadow paging, and must guarantee
13169 * no CPUs can write to those page before mmu_lock is dropped.
13170 * Because CPUs may have stale TLB entries at this point, a
13171 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13172 *
13173 * KVM also allows making SPTES writable outside of mmu_lock,
13174 * e.g. to allow dirty logging without taking mmu_lock.
13175 *
13176 * To handle these scenarios, KVM uses a separate software-only
13177 * bit (MMU-writable) to track if a SPTE is !writable due to
13178 * a guest page table being write-protected (KVM clears the
13179 * MMU-writable flag when write-protecting for shadow paging).
13180 *
13181 * The use of MMU-writable is also the primary motivation for
13182 * the unconditional flush. Because KVM must guarantee that a
13183 * CPU doesn't contain stale, writable TLB entries for a
13184 * !MMU-writable SPTE, KVM must flush if it encounters any
13185 * MMU-writable SPTE regardless of whether the actual hardware
13186 * writable bit was set. I.e. KVM is almost guaranteed to need
13187 * to flush, while unconditionally flushing allows the "remove
13188 * write access" helpers to ignore MMU-writable entirely.
13189 *
13190 * See is_writable_pte() for more details (the case involving
13191 * access-tracked SPTEs is particularly relevant).
13192 */
13193 kvm_flush_remote_tlbs_memslot(kvm, new);
13194 }
13195 }
13196
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13197 void kvm_arch_commit_memory_region(struct kvm *kvm,
13198 struct kvm_memory_slot *old,
13199 const struct kvm_memory_slot *new,
13200 enum kvm_mr_change change)
13201 {
13202 if (change == KVM_MR_DELETE)
13203 kvm_page_track_delete_slot(kvm, old);
13204
13205 if (!kvm->arch.n_requested_mmu_pages &&
13206 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13207 unsigned long nr_mmu_pages;
13208
13209 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13210 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13211 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13212 }
13213
13214 kvm_mmu_slot_apply_flags(kvm, old, new, change);
13215
13216 /* Free the arrays associated with the old memslot. */
13217 if (change == KVM_MR_MOVE)
13218 kvm_arch_free_memslot(kvm, old);
13219 }
13220
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13221 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13222 {
13223 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13224
13225 if (vcpu->arch.guest_state_protected)
13226 return true;
13227
13228 return kvm_x86_call(get_cpl)(vcpu) == 0;
13229 }
13230
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13231 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13232 {
13233 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13234
13235 if (vcpu->arch.guest_state_protected)
13236 return 0;
13237
13238 return kvm_rip_read(vcpu);
13239 }
13240
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13241 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13242 {
13243 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13244 }
13245
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13246 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13247 {
13248 return kvm_x86_call(interrupt_allowed)(vcpu, false);
13249 }
13250
kvm_get_linear_rip(struct kvm_vcpu * vcpu)13251 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13252 {
13253 /* Can't read the RIP when guest state is protected, just return 0 */
13254 if (vcpu->arch.guest_state_protected)
13255 return 0;
13256
13257 if (is_64_bit_mode(vcpu))
13258 return kvm_rip_read(vcpu);
13259 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13260 kvm_rip_read(vcpu));
13261 }
13262 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13263
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13264 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13265 {
13266 return kvm_get_linear_rip(vcpu) == linear_rip;
13267 }
13268 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13269
kvm_get_rflags(struct kvm_vcpu * vcpu)13270 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13271 {
13272 unsigned long rflags;
13273
13274 rflags = kvm_x86_call(get_rflags)(vcpu);
13275 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13276 rflags &= ~X86_EFLAGS_TF;
13277 return rflags;
13278 }
13279 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13280
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13281 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13282 {
13283 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13284 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13285 rflags |= X86_EFLAGS_TF;
13286 kvm_x86_call(set_rflags)(vcpu, rflags);
13287 }
13288
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13289 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13290 {
13291 __kvm_set_rflags(vcpu, rflags);
13292 kvm_make_request(KVM_REQ_EVENT, vcpu);
13293 }
13294 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13295
kvm_async_pf_hash_fn(gfn_t gfn)13296 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13297 {
13298 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13299
13300 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13301 }
13302
kvm_async_pf_next_probe(u32 key)13303 static inline u32 kvm_async_pf_next_probe(u32 key)
13304 {
13305 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13306 }
13307
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13308 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13309 {
13310 u32 key = kvm_async_pf_hash_fn(gfn);
13311
13312 while (vcpu->arch.apf.gfns[key] != ~0)
13313 key = kvm_async_pf_next_probe(key);
13314
13315 vcpu->arch.apf.gfns[key] = gfn;
13316 }
13317
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13318 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13319 {
13320 int i;
13321 u32 key = kvm_async_pf_hash_fn(gfn);
13322
13323 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13324 (vcpu->arch.apf.gfns[key] != gfn &&
13325 vcpu->arch.apf.gfns[key] != ~0); i++)
13326 key = kvm_async_pf_next_probe(key);
13327
13328 return key;
13329 }
13330
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13331 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13332 {
13333 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13334 }
13335
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13336 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13337 {
13338 u32 i, j, k;
13339
13340 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13341
13342 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13343 return;
13344
13345 while (true) {
13346 vcpu->arch.apf.gfns[i] = ~0;
13347 do {
13348 j = kvm_async_pf_next_probe(j);
13349 if (vcpu->arch.apf.gfns[j] == ~0)
13350 return;
13351 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13352 /*
13353 * k lies cyclically in ]i,j]
13354 * | i.k.j |
13355 * |....j i.k.| or |.k..j i...|
13356 */
13357 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13358 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13359 i = j;
13360 }
13361 }
13362
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13363 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13364 {
13365 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13366
13367 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13368 sizeof(reason));
13369 }
13370
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13371 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13372 {
13373 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13374
13375 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13376 &token, offset, sizeof(token));
13377 }
13378
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13379 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13380 {
13381 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13382 u32 val;
13383
13384 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13385 &val, offset, sizeof(val)))
13386 return false;
13387
13388 return !val;
13389 }
13390
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13391 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13392 {
13393
13394 if (!kvm_pv_async_pf_enabled(vcpu))
13395 return false;
13396
13397 if (vcpu->arch.apf.send_user_only &&
13398 kvm_x86_call(get_cpl)(vcpu) == 0)
13399 return false;
13400
13401 if (is_guest_mode(vcpu)) {
13402 /*
13403 * L1 needs to opt into the special #PF vmexits that are
13404 * used to deliver async page faults.
13405 */
13406 return vcpu->arch.apf.delivery_as_pf_vmexit;
13407 } else {
13408 /*
13409 * Play it safe in case the guest temporarily disables paging.
13410 * The real mode IDT in particular is unlikely to have a #PF
13411 * exception setup.
13412 */
13413 return is_paging(vcpu);
13414 }
13415 }
13416
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13417 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13418 {
13419 if (unlikely(!lapic_in_kernel(vcpu) ||
13420 kvm_event_needs_reinjection(vcpu) ||
13421 kvm_is_exception_pending(vcpu)))
13422 return false;
13423
13424 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13425 return false;
13426
13427 /*
13428 * If interrupts are off we cannot even use an artificial
13429 * halt state.
13430 */
13431 return kvm_arch_interrupt_allowed(vcpu);
13432 }
13433
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13434 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13435 struct kvm_async_pf *work)
13436 {
13437 struct x86_exception fault;
13438
13439 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13440 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13441
13442 if (kvm_can_deliver_async_pf(vcpu) &&
13443 !apf_put_user_notpresent(vcpu)) {
13444 fault.vector = PF_VECTOR;
13445 fault.error_code_valid = true;
13446 fault.error_code = 0;
13447 fault.nested_page_fault = false;
13448 fault.address = work->arch.token;
13449 fault.async_page_fault = true;
13450 kvm_inject_page_fault(vcpu, &fault);
13451 return true;
13452 } else {
13453 /*
13454 * It is not possible to deliver a paravirtualized asynchronous
13455 * page fault, but putting the guest in an artificial halt state
13456 * can be beneficial nevertheless: if an interrupt arrives, we
13457 * can deliver it timely and perhaps the guest will schedule
13458 * another process. When the instruction that triggered a page
13459 * fault is retried, hopefully the page will be ready in the host.
13460 */
13461 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13462 return false;
13463 }
13464 }
13465
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13466 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13467 struct kvm_async_pf *work)
13468 {
13469 struct kvm_lapic_irq irq = {
13470 .delivery_mode = APIC_DM_FIXED,
13471 .vector = vcpu->arch.apf.vec
13472 };
13473
13474 if (work->wakeup_all)
13475 work->arch.token = ~0; /* broadcast wakeup */
13476 else
13477 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13478 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13479
13480 if ((work->wakeup_all || work->notpresent_injected) &&
13481 kvm_pv_async_pf_enabled(vcpu) &&
13482 !apf_put_user_ready(vcpu, work->arch.token)) {
13483 vcpu->arch.apf.pageready_pending = true;
13484 kvm_apic_set_irq(vcpu, &irq, NULL);
13485 }
13486
13487 vcpu->arch.apf.halted = false;
13488 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13489 }
13490
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13491 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13492 {
13493 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13494 if (!vcpu->arch.apf.pageready_pending)
13495 kvm_vcpu_kick(vcpu);
13496 }
13497
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13498 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13499 {
13500 if (!kvm_pv_async_pf_enabled(vcpu))
13501 return true;
13502 else
13503 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13504 }
13505
kvm_arch_start_assignment(struct kvm * kvm)13506 void kvm_arch_start_assignment(struct kvm *kvm)
13507 {
13508 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13509 kvm_x86_call(pi_start_assignment)(kvm);
13510 }
13511 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13512
kvm_arch_end_assignment(struct kvm * kvm)13513 void kvm_arch_end_assignment(struct kvm *kvm)
13514 {
13515 atomic_dec(&kvm->arch.assigned_device_count);
13516 }
13517 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13518
kvm_arch_has_assigned_device(struct kvm * kvm)13519 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13520 {
13521 return raw_atomic_read(&kvm->arch.assigned_device_count);
13522 }
13523 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13524
kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13525 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13526 {
13527 /*
13528 * Non-coherent DMA assignment and de-assignment may affect whether or
13529 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13530 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first
13531 * (or last) non-coherent device is (un)registered to so that new SPTEs
13532 * with the correct "ignore guest PAT" setting are created.
13533 */
13534 if (kvm_mmu_may_ignore_guest_pat())
13535 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13536 }
13537
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13538 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13539 {
13540 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13541 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13542 }
13543 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13544
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13545 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13546 {
13547 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13548 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13549 }
13550 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13551
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13552 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13553 {
13554 return atomic_read(&kvm->arch.noncoherent_dma_count);
13555 }
13556 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13557
kvm_arch_has_irq_bypass(void)13558 bool kvm_arch_has_irq_bypass(void)
13559 {
13560 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13561 }
13562
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13563 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13564 struct irq_bypass_producer *prod)
13565 {
13566 struct kvm_kernel_irqfd *irqfd =
13567 container_of(cons, struct kvm_kernel_irqfd, consumer);
13568 int ret;
13569
13570 irqfd->producer = prod;
13571 kvm_arch_start_assignment(irqfd->kvm);
13572 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13573 prod->irq, irqfd->gsi, 1);
13574 if (ret)
13575 kvm_arch_end_assignment(irqfd->kvm);
13576
13577 return ret;
13578 }
13579
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13580 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13581 struct irq_bypass_producer *prod)
13582 {
13583 int ret;
13584 struct kvm_kernel_irqfd *irqfd =
13585 container_of(cons, struct kvm_kernel_irqfd, consumer);
13586
13587 WARN_ON(irqfd->producer != prod);
13588 irqfd->producer = NULL;
13589
13590 /*
13591 * When producer of consumer is unregistered, we change back to
13592 * remapped mode, so we can re-use the current implementation
13593 * when the irq is masked/disabled or the consumer side (KVM
13594 * int this case doesn't want to receive the interrupts.
13595 */
13596 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13597 prod->irq, irqfd->gsi, 0);
13598 if (ret)
13599 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13600 " fails: %d\n", irqfd->consumer.token, ret);
13601
13602 kvm_arch_end_assignment(irqfd->kvm);
13603 }
13604
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13605 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13606 uint32_t guest_irq, bool set)
13607 {
13608 return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set);
13609 }
13610
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13611 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13612 struct kvm_kernel_irq_routing_entry *new)
13613 {
13614 if (new->type != KVM_IRQ_ROUTING_MSI)
13615 return true;
13616
13617 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13618 }
13619
kvm_vector_hashing_enabled(void)13620 bool kvm_vector_hashing_enabled(void)
13621 {
13622 return vector_hashing;
13623 }
13624
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13625 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13626 {
13627 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13628 }
13629 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13630
13631 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)13632 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13633 {
13634 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13635 }
13636 #endif
13637
13638 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)13639 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13640 {
13641 kvm_x86_call(gmem_invalidate)(start, end);
13642 }
13643 #endif
13644
kvm_spec_ctrl_test_value(u64 value)13645 int kvm_spec_ctrl_test_value(u64 value)
13646 {
13647 /*
13648 * test that setting IA32_SPEC_CTRL to given value
13649 * is allowed by the host processor
13650 */
13651
13652 u64 saved_value;
13653 unsigned long flags;
13654 int ret = 0;
13655
13656 local_irq_save(flags);
13657
13658 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13659 ret = 1;
13660 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13661 ret = 1;
13662 else
13663 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13664
13665 local_irq_restore(flags);
13666
13667 return ret;
13668 }
13669 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13670
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13671 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13672 {
13673 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13674 struct x86_exception fault;
13675 u64 access = error_code &
13676 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13677
13678 if (!(error_code & PFERR_PRESENT_MASK) ||
13679 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13680 /*
13681 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13682 * tables probably do not match the TLB. Just proceed
13683 * with the error code that the processor gave.
13684 */
13685 fault.vector = PF_VECTOR;
13686 fault.error_code_valid = true;
13687 fault.error_code = error_code;
13688 fault.nested_page_fault = false;
13689 fault.address = gva;
13690 fault.async_page_fault = false;
13691 }
13692 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13693 }
13694 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13695
13696 /*
13697 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13698 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13699 * indicates whether exit to userspace is needed.
13700 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13701 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13702 struct x86_exception *e)
13703 {
13704 if (r == X86EMUL_PROPAGATE_FAULT) {
13705 if (KVM_BUG_ON(!e, vcpu->kvm))
13706 return -EIO;
13707
13708 kvm_inject_emulated_page_fault(vcpu, e);
13709 return 1;
13710 }
13711
13712 /*
13713 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13714 * while handling a VMX instruction KVM could've handled the request
13715 * correctly by exiting to userspace and performing I/O but there
13716 * doesn't seem to be a real use-case behind such requests, just return
13717 * KVM_EXIT_INTERNAL_ERROR for now.
13718 */
13719 kvm_prepare_emulation_failure_exit(vcpu);
13720
13721 return 0;
13722 }
13723 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13724
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13725 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13726 {
13727 bool pcid_enabled;
13728 struct x86_exception e;
13729 struct {
13730 u64 pcid;
13731 u64 gla;
13732 } operand;
13733 int r;
13734
13735 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13736 if (r != X86EMUL_CONTINUE)
13737 return kvm_handle_memory_failure(vcpu, r, &e);
13738
13739 if (operand.pcid >> 12 != 0) {
13740 kvm_inject_gp(vcpu, 0);
13741 return 1;
13742 }
13743
13744 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13745
13746 switch (type) {
13747 case INVPCID_TYPE_INDIV_ADDR:
13748 /*
13749 * LAM doesn't apply to addresses that are inputs to TLB
13750 * invalidation.
13751 */
13752 if ((!pcid_enabled && (operand.pcid != 0)) ||
13753 is_noncanonical_invlpg_address(operand.gla, vcpu)) {
13754 kvm_inject_gp(vcpu, 0);
13755 return 1;
13756 }
13757 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13758 return kvm_skip_emulated_instruction(vcpu);
13759
13760 case INVPCID_TYPE_SINGLE_CTXT:
13761 if (!pcid_enabled && (operand.pcid != 0)) {
13762 kvm_inject_gp(vcpu, 0);
13763 return 1;
13764 }
13765
13766 kvm_invalidate_pcid(vcpu, operand.pcid);
13767 return kvm_skip_emulated_instruction(vcpu);
13768
13769 case INVPCID_TYPE_ALL_NON_GLOBAL:
13770 /*
13771 * Currently, KVM doesn't mark global entries in the shadow
13772 * page tables, so a non-global flush just degenerates to a
13773 * global flush. If needed, we could optimize this later by
13774 * keeping track of global entries in shadow page tables.
13775 */
13776
13777 fallthrough;
13778 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13779 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13780 return kvm_skip_emulated_instruction(vcpu);
13781
13782 default:
13783 kvm_inject_gp(vcpu, 0);
13784 return 1;
13785 }
13786 }
13787 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13788
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13789 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13790 {
13791 struct kvm_run *run = vcpu->run;
13792 struct kvm_mmio_fragment *frag;
13793 unsigned int len;
13794
13795 BUG_ON(!vcpu->mmio_needed);
13796
13797 /* Complete previous fragment */
13798 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13799 len = min(8u, frag->len);
13800 if (!vcpu->mmio_is_write)
13801 memcpy(frag->data, run->mmio.data, len);
13802
13803 if (frag->len <= 8) {
13804 /* Switch to the next fragment. */
13805 frag++;
13806 vcpu->mmio_cur_fragment++;
13807 } else {
13808 /* Go forward to the next mmio piece. */
13809 frag->data += len;
13810 frag->gpa += len;
13811 frag->len -= len;
13812 }
13813
13814 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13815 vcpu->mmio_needed = 0;
13816
13817 // VMG change, at this point, we're always done
13818 // RIP has already been advanced
13819 return 1;
13820 }
13821
13822 // More MMIO is needed
13823 run->mmio.phys_addr = frag->gpa;
13824 run->mmio.len = min(8u, frag->len);
13825 run->mmio.is_write = vcpu->mmio_is_write;
13826 if (run->mmio.is_write)
13827 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13828 run->exit_reason = KVM_EXIT_MMIO;
13829
13830 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13831
13832 return 0;
13833 }
13834
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13835 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13836 void *data)
13837 {
13838 int handled;
13839 struct kvm_mmio_fragment *frag;
13840
13841 if (!data)
13842 return -EINVAL;
13843
13844 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13845 if (handled == bytes)
13846 return 1;
13847
13848 bytes -= handled;
13849 gpa += handled;
13850 data += handled;
13851
13852 /*TODO: Check if need to increment number of frags */
13853 frag = vcpu->mmio_fragments;
13854 vcpu->mmio_nr_fragments = 1;
13855 frag->len = bytes;
13856 frag->gpa = gpa;
13857 frag->data = data;
13858
13859 vcpu->mmio_needed = 1;
13860 vcpu->mmio_cur_fragment = 0;
13861
13862 vcpu->run->mmio.phys_addr = gpa;
13863 vcpu->run->mmio.len = min(8u, frag->len);
13864 vcpu->run->mmio.is_write = 1;
13865 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13866 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13867
13868 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13869
13870 return 0;
13871 }
13872 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13873
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13874 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13875 void *data)
13876 {
13877 int handled;
13878 struct kvm_mmio_fragment *frag;
13879
13880 if (!data)
13881 return -EINVAL;
13882
13883 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13884 if (handled == bytes)
13885 return 1;
13886
13887 bytes -= handled;
13888 gpa += handled;
13889 data += handled;
13890
13891 /*TODO: Check if need to increment number of frags */
13892 frag = vcpu->mmio_fragments;
13893 vcpu->mmio_nr_fragments = 1;
13894 frag->len = bytes;
13895 frag->gpa = gpa;
13896 frag->data = data;
13897
13898 vcpu->mmio_needed = 1;
13899 vcpu->mmio_cur_fragment = 0;
13900
13901 vcpu->run->mmio.phys_addr = gpa;
13902 vcpu->run->mmio.len = min(8u, frag->len);
13903 vcpu->run->mmio.is_write = 0;
13904 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13905
13906 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13907
13908 return 0;
13909 }
13910 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13911
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13912 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13913 {
13914 vcpu->arch.sev_pio_count -= count;
13915 vcpu->arch.sev_pio_data += count * size;
13916 }
13917
13918 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13919 unsigned int port);
13920
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13921 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13922 {
13923 int size = vcpu->arch.pio.size;
13924 int port = vcpu->arch.pio.port;
13925
13926 vcpu->arch.pio.count = 0;
13927 if (vcpu->arch.sev_pio_count)
13928 return kvm_sev_es_outs(vcpu, size, port);
13929 return 1;
13930 }
13931
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13932 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13933 unsigned int port)
13934 {
13935 for (;;) {
13936 unsigned int count =
13937 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13938 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13939
13940 /* memcpy done already by emulator_pio_out. */
13941 advance_sev_es_emulated_pio(vcpu, count, size);
13942 if (!ret)
13943 break;
13944
13945 /* Emulation done by the kernel. */
13946 if (!vcpu->arch.sev_pio_count)
13947 return 1;
13948 }
13949
13950 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13951 return 0;
13952 }
13953
13954 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13955 unsigned int port);
13956
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13957 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13958 {
13959 unsigned count = vcpu->arch.pio.count;
13960 int size = vcpu->arch.pio.size;
13961 int port = vcpu->arch.pio.port;
13962
13963 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13964 advance_sev_es_emulated_pio(vcpu, count, size);
13965 if (vcpu->arch.sev_pio_count)
13966 return kvm_sev_es_ins(vcpu, size, port);
13967 return 1;
13968 }
13969
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13970 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13971 unsigned int port)
13972 {
13973 for (;;) {
13974 unsigned int count =
13975 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13976 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13977 break;
13978
13979 /* Emulation done by the kernel. */
13980 advance_sev_es_emulated_pio(vcpu, count, size);
13981 if (!vcpu->arch.sev_pio_count)
13982 return 1;
13983 }
13984
13985 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13986 return 0;
13987 }
13988
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)13989 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13990 unsigned int port, void *data, unsigned int count,
13991 int in)
13992 {
13993 vcpu->arch.sev_pio_data = data;
13994 vcpu->arch.sev_pio_count = count;
13995 return in ? kvm_sev_es_ins(vcpu, size, port)
13996 : kvm_sev_es_outs(vcpu, size, port);
13997 }
13998 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13999
14000 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
14001 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
14002 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
14003 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
14004 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
14005 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
14006 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
14007 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
14008 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
14009 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
14010 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14011 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14012 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14013 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14014 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14015 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14016 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14017 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14018 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
14019 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14020 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14021 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14022 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14023 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14024 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14025 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14026 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14027 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14028 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14029 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14030
kvm_x86_init(void)14031 static int __init kvm_x86_init(void)
14032 {
14033 kvm_init_xstate_sizes();
14034
14035 kvm_mmu_x86_module_init();
14036 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14037 return 0;
14038 }
14039 module_init(kvm_x86_init);
14040
kvm_x86_exit(void)14041 static void __exit kvm_x86_exit(void)
14042 {
14043 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14044 }
14045 module_exit(kvm_x86_exit);
14046