1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /*
4 * Local APIC virtualization
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2007 Novell
8 * Copyright (C) 2007 Intel
9 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Dor Laor <[email protected]>
13 * Gregory Haskins <[email protected]>
14 * Yaozu (Eddie) Dong <[email protected]>
15 *
16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/smp.h>
25 #include <linux/hrtimer.h>
26 #include <linux/io.h>
27 #include <linux/export.h>
28 #include <linux/math64.h>
29 #include <linux/slab.h>
30 #include <asm/processor.h>
31 #include <asm/mce.h>
32 #include <asm/msr.h>
33 #include <asm/page.h>
34 #include <asm/current.h>
35 #include <asm/apicdef.h>
36 #include <asm/delay.h>
37 #include <linux/atomic.h>
38 #include <linux/jump_label.h>
39 #include "kvm_cache_regs.h"
40 #include "irq.h"
41 #include "ioapic.h"
42 #include "trace.h"
43 #include "x86.h"
44 #include "xen.h"
45 #include "cpuid.h"
46 #include "hyperv.h"
47 #include "smm.h"
48
49 #ifndef CONFIG_X86_64
50 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
51 #else
52 #define mod_64(x, y) ((x) % (y))
53 #endif
54
55 /* 14 is the version for Xeon and Pentium 8.4.8*/
56 #define APIC_VERSION 0x14UL
57 #define LAPIC_MMIO_LENGTH (1 << 12)
58 /* followed define is not in apicdef.h */
59 #define MAX_APIC_VECTOR 256
60 #define APIC_VECTORS_PER_REG 32
61
62 /*
63 * Enable local APIC timer advancement (tscdeadline mode only) with adaptive
64 * tuning. When enabled, KVM programs the host timer event to fire early, i.e.
65 * before the deadline expires, to account for the delay between taking the
66 * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume
67 * the guest, i.e. so that the interrupt arrives in the guest with minimal
68 * latency relative to the deadline programmed by the guest.
69 */
70 static bool lapic_timer_advance __read_mostly = true;
71 module_param(lapic_timer_advance, bool, 0444);
72
73 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */
74 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */
75 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000
76 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000
77 /* step-by-step approximation to mitigate fluctuation */
78 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
79 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
80 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
81
__kvm_lapic_set_reg(char * regs,int reg_off,u32 val)82 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val)
83 {
84 *((u32 *) (regs + reg_off)) = val;
85 }
86
kvm_lapic_set_reg(struct kvm_lapic * apic,int reg_off,u32 val)87 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
88 {
89 __kvm_lapic_set_reg(apic->regs, reg_off, val);
90 }
91
__kvm_lapic_get_reg64(char * regs,int reg)92 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg)
93 {
94 BUILD_BUG_ON(reg != APIC_ICR);
95 return *((u64 *) (regs + reg));
96 }
97
kvm_lapic_get_reg64(struct kvm_lapic * apic,int reg)98 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
99 {
100 return __kvm_lapic_get_reg64(apic->regs, reg);
101 }
102
__kvm_lapic_set_reg64(char * regs,int reg,u64 val)103 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val)
104 {
105 BUILD_BUG_ON(reg != APIC_ICR);
106 *((u64 *) (regs + reg)) = val;
107 }
108
kvm_lapic_set_reg64(struct kvm_lapic * apic,int reg,u64 val)109 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
110 int reg, u64 val)
111 {
112 __kvm_lapic_set_reg64(apic->regs, reg, val);
113 }
114
apic_test_vector(int vec,void * bitmap)115 static inline int apic_test_vector(int vec, void *bitmap)
116 {
117 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
118 }
119
kvm_apic_pending_eoi(struct kvm_vcpu * vcpu,int vector)120 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
121 {
122 struct kvm_lapic *apic = vcpu->arch.apic;
123
124 return apic_test_vector(vector, apic->regs + APIC_ISR) ||
125 apic_test_vector(vector, apic->regs + APIC_IRR);
126 }
127
__apic_test_and_set_vector(int vec,void * bitmap)128 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
129 {
130 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
131 }
132
__apic_test_and_clear_vector(int vec,void * bitmap)133 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
134 {
135 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
136 }
137
138 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
139 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
140
141 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
142 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
143
apic_enabled(struct kvm_lapic * apic)144 static inline int apic_enabled(struct kvm_lapic *apic)
145 {
146 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic);
147 }
148
149 #define LVT_MASK \
150 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
151
152 #define LINT_MASK \
153 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
154 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
155
kvm_x2apic_id(struct kvm_lapic * apic)156 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
157 {
158 return apic->vcpu->vcpu_id;
159 }
160
kvm_can_post_timer_interrupt(struct kvm_vcpu * vcpu)161 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
162 {
163 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
164 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
165 }
166
kvm_can_use_hv_timer(struct kvm_vcpu * vcpu)167 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
168 {
169 return kvm_x86_ops.set_hv_timer
170 && !(kvm_mwait_in_guest(vcpu->kvm) ||
171 kvm_can_post_timer_interrupt(vcpu));
172 }
173
kvm_use_posted_timer_interrupt(struct kvm_vcpu * vcpu)174 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
175 {
176 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
177 }
178
kvm_apic_calc_x2apic_ldr(u32 id)179 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
180 {
181 return ((id >> 4) << 16) | (1 << (id & 0xf));
182 }
183
kvm_apic_map_get_logical_dest(struct kvm_apic_map * map,u32 dest_id,struct kvm_lapic *** cluster,u16 * mask)184 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
185 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
186 switch (map->logical_mode) {
187 case KVM_APIC_MODE_SW_DISABLED:
188 /* Arbitrarily use the flat map so that @cluster isn't NULL. */
189 *cluster = map->xapic_flat_map;
190 *mask = 0;
191 return true;
192 case KVM_APIC_MODE_X2APIC: {
193 u32 offset = (dest_id >> 16) * 16;
194 u32 max_apic_id = map->max_apic_id;
195
196 if (offset <= max_apic_id) {
197 u8 cluster_size = min(max_apic_id - offset + 1, 16U);
198
199 offset = array_index_nospec(offset, map->max_apic_id + 1);
200 *cluster = &map->phys_map[offset];
201 *mask = dest_id & (0xffff >> (16 - cluster_size));
202 } else {
203 *mask = 0;
204 }
205
206 return true;
207 }
208 case KVM_APIC_MODE_XAPIC_FLAT:
209 *cluster = map->xapic_flat_map;
210 *mask = dest_id & 0xff;
211 return true;
212 case KVM_APIC_MODE_XAPIC_CLUSTER:
213 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
214 *mask = dest_id & 0xf;
215 return true;
216 case KVM_APIC_MODE_MAP_DISABLED:
217 return false;
218 default:
219 WARN_ON_ONCE(1);
220 return false;
221 }
222 }
223
kvm_apic_map_free(struct rcu_head * rcu)224 static void kvm_apic_map_free(struct rcu_head *rcu)
225 {
226 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
227
228 kvfree(map);
229 }
230
kvm_recalculate_phys_map(struct kvm_apic_map * new,struct kvm_vcpu * vcpu,bool * xapic_id_mismatch)231 static int kvm_recalculate_phys_map(struct kvm_apic_map *new,
232 struct kvm_vcpu *vcpu,
233 bool *xapic_id_mismatch)
234 {
235 struct kvm_lapic *apic = vcpu->arch.apic;
236 u32 x2apic_id = kvm_x2apic_id(apic);
237 u32 xapic_id = kvm_xapic_id(apic);
238 u32 physical_id;
239
240 /*
241 * For simplicity, KVM always allocates enough space for all possible
242 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on
243 * without the optimized map.
244 */
245 if (WARN_ON_ONCE(xapic_id > new->max_apic_id))
246 return -EINVAL;
247
248 /*
249 * Bail if a vCPU was added and/or enabled its APIC between allocating
250 * the map and doing the actual calculations for the map. Note, KVM
251 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
252 * the compiler decides to reload x2apic_id after this check.
253 */
254 if (x2apic_id > new->max_apic_id)
255 return -E2BIG;
256
257 /*
258 * Deliberately truncate the vCPU ID when detecting a mismatched APIC
259 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
260 * 32-bit value. Any unwanted aliasing due to truncation results will
261 * be detected below.
262 */
263 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id)
264 *xapic_id_mismatch = true;
265
266 /*
267 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
268 * Allow sending events to vCPUs by their x2APIC ID even if the target
269 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
270 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
271 * and collide).
272 *
273 * Honor the architectural (and KVM's non-optimized) behavior if
274 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed
275 * to process messages independently. If multiple vCPUs have the same
276 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest
277 * manually modified its xAPIC IDs, events targeting that ID are
278 * supposed to be recognized by all vCPUs with said ID.
279 */
280 if (vcpu->kvm->arch.x2apic_format) {
281 /* See also kvm_apic_match_physical_addr(). */
282 if (apic_x2apic_mode(apic) || x2apic_id > 0xff)
283 new->phys_map[x2apic_id] = apic;
284
285 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
286 new->phys_map[xapic_id] = apic;
287 } else {
288 /*
289 * Disable the optimized map if the physical APIC ID is already
290 * mapped, i.e. is aliased to multiple vCPUs. The optimized
291 * map requires a strict 1:1 mapping between IDs and vCPUs.
292 */
293 if (apic_x2apic_mode(apic))
294 physical_id = x2apic_id;
295 else
296 physical_id = xapic_id;
297
298 if (new->phys_map[physical_id])
299 return -EINVAL;
300
301 new->phys_map[physical_id] = apic;
302 }
303
304 return 0;
305 }
306
kvm_recalculate_logical_map(struct kvm_apic_map * new,struct kvm_vcpu * vcpu)307 static void kvm_recalculate_logical_map(struct kvm_apic_map *new,
308 struct kvm_vcpu *vcpu)
309 {
310 struct kvm_lapic *apic = vcpu->arch.apic;
311 enum kvm_apic_logical_mode logical_mode;
312 struct kvm_lapic **cluster;
313 u16 mask;
314 u32 ldr;
315
316 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
317 return;
318
319 if (!kvm_apic_sw_enabled(apic))
320 return;
321
322 ldr = kvm_lapic_get_reg(apic, APIC_LDR);
323 if (!ldr)
324 return;
325
326 if (apic_x2apic_mode(apic)) {
327 logical_mode = KVM_APIC_MODE_X2APIC;
328 } else {
329 ldr = GET_APIC_LOGICAL_ID(ldr);
330 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
331 logical_mode = KVM_APIC_MODE_XAPIC_FLAT;
332 else
333 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER;
334 }
335
336 /*
337 * To optimize logical mode delivery, all software-enabled APICs must
338 * be configured for the same mode.
339 */
340 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) {
341 new->logical_mode = logical_mode;
342 } else if (new->logical_mode != logical_mode) {
343 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
344 return;
345 }
346
347 /*
348 * In x2APIC mode, the LDR is read-only and derived directly from the
349 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses
350 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
351 * reversing the LDR calculation to get cluster of APICs, i.e. no
352 * additional work is required.
353 */
354 if (apic_x2apic_mode(apic))
355 return;
356
357 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr,
358 &cluster, &mask))) {
359 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
360 return;
361 }
362
363 if (!mask)
364 return;
365
366 ldr = ffs(mask) - 1;
367 if (!is_power_of_2(mask) || cluster[ldr])
368 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
369 else
370 cluster[ldr] = apic;
371 }
372
373 /*
374 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
375 *
376 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
377 * apic_map_lock_held.
378 */
379 enum {
380 CLEAN,
381 UPDATE_IN_PROGRESS,
382 DIRTY
383 };
384
kvm_recalculate_apic_map(struct kvm * kvm)385 static void kvm_recalculate_apic_map(struct kvm *kvm)
386 {
387 struct kvm_apic_map *new, *old = NULL;
388 struct kvm_vcpu *vcpu;
389 unsigned long i;
390 u32 max_id = 255; /* enough space for any xAPIC ID */
391 bool xapic_id_mismatch;
392 int r;
393
394 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */
395 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
396 return;
397
398 WARN_ONCE(!irqchip_in_kernel(kvm),
399 "Dirty APIC map without an in-kernel local APIC");
400
401 mutex_lock(&kvm->arch.apic_map_lock);
402
403 retry:
404 /*
405 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean)
406 * or the APIC registers (if dirty). Note, on retry the map may have
407 * not yet been marked dirty by whatever task changed a vCPU's x2APIC
408 * ID, i.e. the map may still show up as in-progress. In that case
409 * this task still needs to retry and complete its calculation.
410 */
411 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
412 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
413 /* Someone else has updated the map. */
414 mutex_unlock(&kvm->arch.apic_map_lock);
415 return;
416 }
417
418 /*
419 * Reset the mismatch flag between attempts so that KVM does the right
420 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e.
421 * keep max_id strictly increasing. Disallowing max_id from shrinking
422 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU
423 * with the highest x2APIC ID is toggling its APIC on and off.
424 */
425 xapic_id_mismatch = false;
426
427 kvm_for_each_vcpu(i, vcpu, kvm)
428 if (kvm_apic_present(vcpu))
429 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
430
431 new = kvzalloc(sizeof(struct kvm_apic_map) +
432 sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
433 GFP_KERNEL_ACCOUNT);
434
435 if (!new)
436 goto out;
437
438 new->max_apic_id = max_id;
439 new->logical_mode = KVM_APIC_MODE_SW_DISABLED;
440
441 kvm_for_each_vcpu(i, vcpu, kvm) {
442 if (!kvm_apic_present(vcpu))
443 continue;
444
445 r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch);
446 if (r) {
447 kvfree(new);
448 new = NULL;
449 if (r == -E2BIG) {
450 cond_resched();
451 goto retry;
452 }
453
454 goto out;
455 }
456
457 kvm_recalculate_logical_map(new, vcpu);
458 }
459 out:
460 /*
461 * The optimized map is effectively KVM's internal version of APICv,
462 * and all unwanted aliasing that results in disabling the optimized
463 * map also applies to APICv.
464 */
465 if (!new)
466 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
467 else
468 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
469
470 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
471 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
472 else
473 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
474
475 if (xapic_id_mismatch)
476 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
477 else
478 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
479
480 old = rcu_dereference_protected(kvm->arch.apic_map,
481 lockdep_is_held(&kvm->arch.apic_map_lock));
482 rcu_assign_pointer(kvm->arch.apic_map, new);
483 /*
484 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
485 * If another update has come in, leave it DIRTY.
486 */
487 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
488 UPDATE_IN_PROGRESS, CLEAN);
489 mutex_unlock(&kvm->arch.apic_map_lock);
490
491 if (old)
492 call_rcu(&old->rcu, kvm_apic_map_free);
493
494 kvm_make_scan_ioapic_request(kvm);
495 }
496
apic_set_spiv(struct kvm_lapic * apic,u32 val)497 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
498 {
499 bool enabled = val & APIC_SPIV_APIC_ENABLED;
500
501 kvm_lapic_set_reg(apic, APIC_SPIV, val);
502
503 if (enabled != apic->sw_enabled) {
504 apic->sw_enabled = enabled;
505 if (enabled)
506 static_branch_slow_dec_deferred(&apic_sw_disabled);
507 else
508 static_branch_inc(&apic_sw_disabled.key);
509
510 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
511 }
512
513 /* Check if there are APF page ready requests pending */
514 if (enabled) {
515 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
516 kvm_xen_sw_enable_lapic(apic->vcpu);
517 }
518 }
519
kvm_apic_set_xapic_id(struct kvm_lapic * apic,u8 id)520 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
521 {
522 kvm_lapic_set_reg(apic, APIC_ID, id << 24);
523 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
524 }
525
kvm_apic_set_ldr(struct kvm_lapic * apic,u32 id)526 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
527 {
528 kvm_lapic_set_reg(apic, APIC_LDR, id);
529 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
530 }
531
kvm_apic_set_dfr(struct kvm_lapic * apic,u32 val)532 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
533 {
534 kvm_lapic_set_reg(apic, APIC_DFR, val);
535 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
536 }
537
kvm_apic_set_x2apic_id(struct kvm_lapic * apic,u32 id)538 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
539 {
540 u32 ldr = kvm_apic_calc_x2apic_ldr(id);
541
542 WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
543
544 kvm_lapic_set_reg(apic, APIC_ID, id);
545 kvm_lapic_set_reg(apic, APIC_LDR, ldr);
546 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
547 }
548
apic_lvt_enabled(struct kvm_lapic * apic,int lvt_type)549 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
550 {
551 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
552 }
553
apic_lvtt_oneshot(struct kvm_lapic * apic)554 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
555 {
556 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
557 }
558
apic_lvtt_period(struct kvm_lapic * apic)559 static inline int apic_lvtt_period(struct kvm_lapic *apic)
560 {
561 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
562 }
563
apic_lvtt_tscdeadline(struct kvm_lapic * apic)564 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
565 {
566 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
567 }
568
apic_lvt_nmi_mode(u32 lvt_val)569 static inline int apic_lvt_nmi_mode(u32 lvt_val)
570 {
571 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
572 }
573
kvm_lapic_lvt_supported(struct kvm_lapic * apic,int lvt_index)574 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
575 {
576 return apic->nr_lvt_entries > lvt_index;
577 }
578
kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu * vcpu)579 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
580 {
581 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
582 }
583
kvm_apic_set_version(struct kvm_vcpu * vcpu)584 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
585 {
586 struct kvm_lapic *apic = vcpu->arch.apic;
587 u32 v = 0;
588
589 if (!lapic_in_kernel(vcpu))
590 return;
591
592 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
593
594 /*
595 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
596 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
597 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
598 * version first and level-triggered interrupts never get EOIed in
599 * IOAPIC.
600 */
601 if (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) &&
602 !ioapic_in_kernel(vcpu->kvm))
603 v |= APIC_LVR_DIRECTED_EOI;
604 kvm_lapic_set_reg(apic, APIC_LVR, v);
605 }
606
kvm_apic_after_set_mcg_cap(struct kvm_vcpu * vcpu)607 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
608 {
609 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
610 struct kvm_lapic *apic = vcpu->arch.apic;
611 int i;
612
613 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
614 return;
615
616 /* Initialize/mask any "new" LVT entries. */
617 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
618 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
619
620 apic->nr_lvt_entries = nr_lvt_entries;
621
622 /* The number of LVT entries is reflected in the version register. */
623 kvm_apic_set_version(vcpu);
624 }
625
626 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
627 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */
628 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
629 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
630 [LVT_LINT0] = LINT_MASK,
631 [LVT_LINT1] = LINT_MASK,
632 [LVT_ERROR] = LVT_MASK,
633 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
634 };
635
find_highest_vector(void * bitmap)636 static int find_highest_vector(void *bitmap)
637 {
638 int vec;
639 u32 *reg;
640
641 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
642 vec >= 0; vec -= APIC_VECTORS_PER_REG) {
643 reg = bitmap + REG_POS(vec);
644 if (*reg)
645 return __fls(*reg) + vec;
646 }
647
648 return -1;
649 }
650
count_vectors(void * bitmap)651 static u8 count_vectors(void *bitmap)
652 {
653 int vec;
654 u32 *reg;
655 u8 count = 0;
656
657 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
658 reg = bitmap + REG_POS(vec);
659 count += hweight32(*reg);
660 }
661
662 return count;
663 }
664
__kvm_apic_update_irr(u32 * pir,void * regs,int * max_irr)665 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
666 {
667 u32 i, vec;
668 u32 pir_val, irr_val, prev_irr_val;
669 int max_updated_irr;
670
671 max_updated_irr = -1;
672 *max_irr = -1;
673
674 for (i = vec = 0; i <= 7; i++, vec += 32) {
675 u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10);
676
677 irr_val = *p_irr;
678 pir_val = READ_ONCE(pir[i]);
679
680 if (pir_val) {
681 pir_val = xchg(&pir[i], 0);
682
683 prev_irr_val = irr_val;
684 do {
685 irr_val = prev_irr_val | pir_val;
686 } while (prev_irr_val != irr_val &&
687 !try_cmpxchg(p_irr, &prev_irr_val, irr_val));
688
689 if (prev_irr_val != irr_val)
690 max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec;
691 }
692 if (irr_val)
693 *max_irr = __fls(irr_val) + vec;
694 }
695
696 return ((max_updated_irr != -1) &&
697 (max_updated_irr == *max_irr));
698 }
699 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
700
kvm_apic_update_irr(struct kvm_vcpu * vcpu,u32 * pir,int * max_irr)701 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
702 {
703 struct kvm_lapic *apic = vcpu->arch.apic;
704 bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr);
705
706 if (unlikely(!apic->apicv_active && irr_updated))
707 apic->irr_pending = true;
708 return irr_updated;
709 }
710 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
711
apic_search_irr(struct kvm_lapic * apic)712 static inline int apic_search_irr(struct kvm_lapic *apic)
713 {
714 return find_highest_vector(apic->regs + APIC_IRR);
715 }
716
apic_find_highest_irr(struct kvm_lapic * apic)717 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
718 {
719 int result;
720
721 /*
722 * Note that irr_pending is just a hint. It will be always
723 * true with virtual interrupt delivery enabled.
724 */
725 if (!apic->irr_pending)
726 return -1;
727
728 result = apic_search_irr(apic);
729 ASSERT(result == -1 || result >= 16);
730
731 return result;
732 }
733
apic_clear_irr(int vec,struct kvm_lapic * apic)734 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
735 {
736 if (unlikely(apic->apicv_active)) {
737 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
738 } else {
739 apic->irr_pending = false;
740 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
741 if (apic_search_irr(apic) != -1)
742 apic->irr_pending = true;
743 }
744 }
745
kvm_apic_clear_irr(struct kvm_vcpu * vcpu,int vec)746 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
747 {
748 apic_clear_irr(vec, vcpu->arch.apic);
749 }
750 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
751
apic_set_isr(int vec,struct kvm_lapic * apic)752 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
753 {
754 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
755 return;
756
757 /*
758 * With APIC virtualization enabled, all caching is disabled
759 * because the processor can modify ISR under the hood. Instead
760 * just set SVI.
761 */
762 if (unlikely(apic->apicv_active))
763 kvm_x86_call(hwapic_isr_update)(apic->vcpu, vec);
764 else {
765 ++apic->isr_count;
766 BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
767 /*
768 * ISR (in service register) bit is set when injecting an interrupt.
769 * The highest vector is injected. Thus the latest bit set matches
770 * the highest bit in ISR.
771 */
772 apic->highest_isr_cache = vec;
773 }
774 }
775
apic_find_highest_isr(struct kvm_lapic * apic)776 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
777 {
778 int result;
779
780 /*
781 * Note that isr_count is always 1, and highest_isr_cache
782 * is always -1, with APIC virtualization enabled.
783 */
784 if (!apic->isr_count)
785 return -1;
786 if (likely(apic->highest_isr_cache != -1))
787 return apic->highest_isr_cache;
788
789 result = find_highest_vector(apic->regs + APIC_ISR);
790 ASSERT(result == -1 || result >= 16);
791
792 return result;
793 }
794
apic_clear_isr(int vec,struct kvm_lapic * apic)795 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
796 {
797 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
798 return;
799
800 /*
801 * We do get here for APIC virtualization enabled if the guest
802 * uses the Hyper-V APIC enlightenment. In this case we may need
803 * to trigger a new interrupt delivery by writing the SVI field;
804 * on the other hand isr_count and highest_isr_cache are unused
805 * and must be left alone.
806 */
807 if (unlikely(apic->apicv_active))
808 kvm_x86_call(hwapic_isr_update)(apic->vcpu, apic_find_highest_isr(apic));
809 else {
810 --apic->isr_count;
811 BUG_ON(apic->isr_count < 0);
812 apic->highest_isr_cache = -1;
813 }
814 }
815
kvm_apic_update_hwapic_isr(struct kvm_vcpu * vcpu)816 void kvm_apic_update_hwapic_isr(struct kvm_vcpu *vcpu)
817 {
818 struct kvm_lapic *apic = vcpu->arch.apic;
819
820 if (WARN_ON_ONCE(!lapic_in_kernel(vcpu)) || !apic->apicv_active)
821 return;
822
823 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic));
824 }
825 EXPORT_SYMBOL_GPL(kvm_apic_update_hwapic_isr);
826
kvm_lapic_find_highest_irr(struct kvm_vcpu * vcpu)827 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
828 {
829 /* This may race with setting of irr in __apic_accept_irq() and
830 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
831 * will cause vmexit immediately and the value will be recalculated
832 * on the next vmentry.
833 */
834 return apic_find_highest_irr(vcpu->arch.apic);
835 }
836 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
837
838 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
839 int vector, int level, int trig_mode,
840 struct dest_map *dest_map);
841
kvm_apic_set_irq(struct kvm_vcpu * vcpu,struct kvm_lapic_irq * irq,struct dest_map * dest_map)842 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
843 struct dest_map *dest_map)
844 {
845 struct kvm_lapic *apic = vcpu->arch.apic;
846
847 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
848 irq->level, irq->trig_mode, dest_map);
849 }
850
__pv_send_ipi(unsigned long * ipi_bitmap,struct kvm_apic_map * map,struct kvm_lapic_irq * irq,u32 min)851 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
852 struct kvm_lapic_irq *irq, u32 min)
853 {
854 int i, count = 0;
855 struct kvm_vcpu *vcpu;
856
857 if (min > map->max_apic_id)
858 return 0;
859
860 for_each_set_bit(i, ipi_bitmap,
861 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
862 if (map->phys_map[min + i]) {
863 vcpu = map->phys_map[min + i]->vcpu;
864 count += kvm_apic_set_irq(vcpu, irq, NULL);
865 }
866 }
867
868 return count;
869 }
870
kvm_pv_send_ipi(struct kvm * kvm,unsigned long ipi_bitmap_low,unsigned long ipi_bitmap_high,u32 min,unsigned long icr,int op_64_bit)871 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
872 unsigned long ipi_bitmap_high, u32 min,
873 unsigned long icr, int op_64_bit)
874 {
875 struct kvm_apic_map *map;
876 struct kvm_lapic_irq irq = {0};
877 int cluster_size = op_64_bit ? 64 : 32;
878 int count;
879
880 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
881 return -KVM_EINVAL;
882
883 irq.vector = icr & APIC_VECTOR_MASK;
884 irq.delivery_mode = icr & APIC_MODE_MASK;
885 irq.level = (icr & APIC_INT_ASSERT) != 0;
886 irq.trig_mode = icr & APIC_INT_LEVELTRIG;
887
888 rcu_read_lock();
889 map = rcu_dereference(kvm->arch.apic_map);
890
891 count = -EOPNOTSUPP;
892 if (likely(map)) {
893 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
894 min += cluster_size;
895 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
896 }
897
898 rcu_read_unlock();
899 return count;
900 }
901
pv_eoi_put_user(struct kvm_vcpu * vcpu,u8 val)902 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
903 {
904
905 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
906 sizeof(val));
907 }
908
pv_eoi_get_user(struct kvm_vcpu * vcpu,u8 * val)909 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
910 {
911
912 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
913 sizeof(*val));
914 }
915
pv_eoi_enabled(struct kvm_vcpu * vcpu)916 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
917 {
918 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
919 }
920
pv_eoi_set_pending(struct kvm_vcpu * vcpu)921 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
922 {
923 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
924 return;
925
926 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
927 }
928
pv_eoi_test_and_clr_pending(struct kvm_vcpu * vcpu)929 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
930 {
931 u8 val;
932
933 if (pv_eoi_get_user(vcpu, &val) < 0)
934 return false;
935
936 val &= KVM_PV_EOI_ENABLED;
937
938 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
939 return false;
940
941 /*
942 * Clear pending bit in any case: it will be set again on vmentry.
943 * While this might not be ideal from performance point of view,
944 * this makes sure pv eoi is only enabled when we know it's safe.
945 */
946 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
947
948 return val;
949 }
950
apic_has_interrupt_for_ppr(struct kvm_lapic * apic,u32 ppr)951 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
952 {
953 int highest_irr;
954 if (kvm_x86_ops.sync_pir_to_irr)
955 highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu);
956 else
957 highest_irr = apic_find_highest_irr(apic);
958 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
959 return -1;
960 return highest_irr;
961 }
962
__apic_update_ppr(struct kvm_lapic * apic,u32 * new_ppr)963 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
964 {
965 u32 tpr, isrv, ppr, old_ppr;
966 int isr;
967
968 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
969 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
970 isr = apic_find_highest_isr(apic);
971 isrv = (isr != -1) ? isr : 0;
972
973 if ((tpr & 0xf0) >= (isrv & 0xf0))
974 ppr = tpr & 0xff;
975 else
976 ppr = isrv & 0xf0;
977
978 *new_ppr = ppr;
979 if (old_ppr != ppr)
980 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
981
982 return ppr < old_ppr;
983 }
984
apic_update_ppr(struct kvm_lapic * apic)985 static void apic_update_ppr(struct kvm_lapic *apic)
986 {
987 u32 ppr;
988
989 if (__apic_update_ppr(apic, &ppr) &&
990 apic_has_interrupt_for_ppr(apic, ppr) != -1)
991 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
992 }
993
kvm_apic_update_ppr(struct kvm_vcpu * vcpu)994 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
995 {
996 apic_update_ppr(vcpu->arch.apic);
997 }
998 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
999
apic_set_tpr(struct kvm_lapic * apic,u32 tpr)1000 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
1001 {
1002 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
1003 apic_update_ppr(apic);
1004 }
1005
kvm_apic_broadcast(struct kvm_lapic * apic,u32 mda)1006 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
1007 {
1008 return mda == (apic_x2apic_mode(apic) ?
1009 X2APIC_BROADCAST : APIC_BROADCAST);
1010 }
1011
kvm_apic_match_physical_addr(struct kvm_lapic * apic,u32 mda)1012 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
1013 {
1014 if (kvm_apic_broadcast(apic, mda))
1015 return true;
1016
1017 /*
1018 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
1019 * were in x2APIC mode if the target APIC ID can't be encoded as an
1020 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which
1021 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
1022 * mode. Match the x2APIC ID if and only if the target APIC ID can't
1023 * be encoded in xAPIC to avoid spurious matches against a vCPU that
1024 * changed its (addressable) xAPIC ID (which is writable).
1025 */
1026 if (apic_x2apic_mode(apic) || mda > 0xff)
1027 return mda == kvm_x2apic_id(apic);
1028
1029 return mda == kvm_xapic_id(apic);
1030 }
1031
kvm_apic_match_logical_addr(struct kvm_lapic * apic,u32 mda)1032 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
1033 {
1034 u32 logical_id;
1035
1036 if (kvm_apic_broadcast(apic, mda))
1037 return true;
1038
1039 logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
1040
1041 if (apic_x2apic_mode(apic))
1042 return ((logical_id >> 16) == (mda >> 16))
1043 && (logical_id & mda & 0xffff) != 0;
1044
1045 logical_id = GET_APIC_LOGICAL_ID(logical_id);
1046
1047 switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
1048 case APIC_DFR_FLAT:
1049 return (logical_id & mda) != 0;
1050 case APIC_DFR_CLUSTER:
1051 return ((logical_id >> 4) == (mda >> 4))
1052 && (logical_id & mda & 0xf) != 0;
1053 default:
1054 return false;
1055 }
1056 }
1057
1058 /* The KVM local APIC implementation has two quirks:
1059 *
1060 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
1061 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
1062 * KVM doesn't do that aliasing.
1063 *
1064 * - in-kernel IOAPIC messages have to be delivered directly to
1065 * x2APIC, because the kernel does not support interrupt remapping.
1066 * In order to support broadcast without interrupt remapping, x2APIC
1067 * rewrites the destination of non-IPI messages from APIC_BROADCAST
1068 * to X2APIC_BROADCAST.
1069 *
1070 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is
1071 * important when userspace wants to use x2APIC-format MSIs, because
1072 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
1073 */
kvm_apic_mda(struct kvm_vcpu * vcpu,unsigned int dest_id,struct kvm_lapic * source,struct kvm_lapic * target)1074 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
1075 struct kvm_lapic *source, struct kvm_lapic *target)
1076 {
1077 bool ipi = source != NULL;
1078
1079 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
1080 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
1081 return X2APIC_BROADCAST;
1082
1083 return dest_id;
1084 }
1085
kvm_apic_match_dest(struct kvm_vcpu * vcpu,struct kvm_lapic * source,int shorthand,unsigned int dest,int dest_mode)1086 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1087 int shorthand, unsigned int dest, int dest_mode)
1088 {
1089 struct kvm_lapic *target = vcpu->arch.apic;
1090 u32 mda = kvm_apic_mda(vcpu, dest, source, target);
1091
1092 ASSERT(target);
1093 switch (shorthand) {
1094 case APIC_DEST_NOSHORT:
1095 if (dest_mode == APIC_DEST_PHYSICAL)
1096 return kvm_apic_match_physical_addr(target, mda);
1097 else
1098 return kvm_apic_match_logical_addr(target, mda);
1099 case APIC_DEST_SELF:
1100 return target == source;
1101 case APIC_DEST_ALLINC:
1102 return true;
1103 case APIC_DEST_ALLBUT:
1104 return target != source;
1105 default:
1106 return false;
1107 }
1108 }
1109 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
1110
kvm_vector_to_index(u32 vector,u32 dest_vcpus,const unsigned long * bitmap,u32 bitmap_size)1111 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
1112 const unsigned long *bitmap, u32 bitmap_size)
1113 {
1114 u32 mod;
1115 int i, idx = -1;
1116
1117 mod = vector % dest_vcpus;
1118
1119 for (i = 0; i <= mod; i++) {
1120 idx = find_next_bit(bitmap, bitmap_size, idx + 1);
1121 BUG_ON(idx == bitmap_size);
1122 }
1123
1124 return idx;
1125 }
1126
kvm_apic_disabled_lapic_found(struct kvm * kvm)1127 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
1128 {
1129 if (!kvm->arch.disabled_lapic_found) {
1130 kvm->arch.disabled_lapic_found = true;
1131 pr_info("Disabled LAPIC found during irq injection\n");
1132 }
1133 }
1134
kvm_apic_is_broadcast_dest(struct kvm * kvm,struct kvm_lapic ** src,struct kvm_lapic_irq * irq,struct kvm_apic_map * map)1135 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
1136 struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
1137 {
1138 if (kvm->arch.x2apic_broadcast_quirk_disabled) {
1139 if ((irq->dest_id == APIC_BROADCAST &&
1140 map->logical_mode != KVM_APIC_MODE_X2APIC))
1141 return true;
1142 if (irq->dest_id == X2APIC_BROADCAST)
1143 return true;
1144 } else {
1145 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
1146 if (irq->dest_id == (x2apic_ipi ?
1147 X2APIC_BROADCAST : APIC_BROADCAST))
1148 return true;
1149 }
1150
1151 return false;
1152 }
1153
1154 /* Return true if the interrupt can be handled by using *bitmap as index mask
1155 * for valid destinations in *dst array.
1156 * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
1157 * Note: we may have zero kvm_lapic destinations when we return true, which
1158 * means that the interrupt should be dropped. In this case, *bitmap would be
1159 * zero and *dst undefined.
1160 */
kvm_apic_map_get_dest_lapic(struct kvm * kvm,struct kvm_lapic ** src,struct kvm_lapic_irq * irq,struct kvm_apic_map * map,struct kvm_lapic *** dst,unsigned long * bitmap)1161 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
1162 struct kvm_lapic **src, struct kvm_lapic_irq *irq,
1163 struct kvm_apic_map *map, struct kvm_lapic ***dst,
1164 unsigned long *bitmap)
1165 {
1166 int i, lowest;
1167
1168 if (irq->shorthand == APIC_DEST_SELF && src) {
1169 *dst = src;
1170 *bitmap = 1;
1171 return true;
1172 } else if (irq->shorthand)
1173 return false;
1174
1175 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
1176 return false;
1177
1178 if (irq->dest_mode == APIC_DEST_PHYSICAL) {
1179 if (irq->dest_id > map->max_apic_id) {
1180 *bitmap = 0;
1181 } else {
1182 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
1183 *dst = &map->phys_map[dest_id];
1184 *bitmap = 1;
1185 }
1186 return true;
1187 }
1188
1189 *bitmap = 0;
1190 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
1191 (u16 *)bitmap))
1192 return false;
1193
1194 if (!kvm_lowest_prio_delivery(irq))
1195 return true;
1196
1197 if (!kvm_vector_hashing_enabled()) {
1198 lowest = -1;
1199 for_each_set_bit(i, bitmap, 16) {
1200 if (!(*dst)[i])
1201 continue;
1202 if (lowest < 0)
1203 lowest = i;
1204 else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
1205 (*dst)[lowest]->vcpu) < 0)
1206 lowest = i;
1207 }
1208 } else {
1209 if (!*bitmap)
1210 return true;
1211
1212 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1213 bitmap, 16);
1214
1215 if (!(*dst)[lowest]) {
1216 kvm_apic_disabled_lapic_found(kvm);
1217 *bitmap = 0;
1218 return true;
1219 }
1220 }
1221
1222 *bitmap = (lowest >= 0) ? 1 << lowest : 0;
1223
1224 return true;
1225 }
1226
kvm_irq_delivery_to_apic_fast(struct kvm * kvm,struct kvm_lapic * src,struct kvm_lapic_irq * irq,int * r,struct dest_map * dest_map)1227 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1228 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1229 {
1230 struct kvm_apic_map *map;
1231 unsigned long bitmap;
1232 struct kvm_lapic **dst = NULL;
1233 int i;
1234 bool ret;
1235
1236 *r = -1;
1237
1238 if (irq->shorthand == APIC_DEST_SELF) {
1239 if (KVM_BUG_ON(!src, kvm)) {
1240 *r = 0;
1241 return true;
1242 }
1243 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1244 return true;
1245 }
1246
1247 rcu_read_lock();
1248 map = rcu_dereference(kvm->arch.apic_map);
1249
1250 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1251 if (ret) {
1252 *r = 0;
1253 for_each_set_bit(i, &bitmap, 16) {
1254 if (!dst[i])
1255 continue;
1256 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1257 }
1258 }
1259
1260 rcu_read_unlock();
1261 return ret;
1262 }
1263
1264 /*
1265 * This routine tries to handle interrupts in posted mode, here is how
1266 * it deals with different cases:
1267 * - For single-destination interrupts, handle it in posted mode
1268 * - Else if vector hashing is enabled and it is a lowest-priority
1269 * interrupt, handle it in posted mode and use the following mechanism
1270 * to find the destination vCPU.
1271 * 1. For lowest-priority interrupts, store all the possible
1272 * destination vCPUs in an array.
1273 * 2. Use "guest vector % max number of destination vCPUs" to find
1274 * the right destination vCPU in the array for the lowest-priority
1275 * interrupt.
1276 * - Otherwise, use remapped mode to inject the interrupt.
1277 */
kvm_intr_is_single_vcpu_fast(struct kvm * kvm,struct kvm_lapic_irq * irq,struct kvm_vcpu ** dest_vcpu)1278 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1279 struct kvm_vcpu **dest_vcpu)
1280 {
1281 struct kvm_apic_map *map;
1282 unsigned long bitmap;
1283 struct kvm_lapic **dst = NULL;
1284 bool ret = false;
1285
1286 if (irq->shorthand)
1287 return false;
1288
1289 rcu_read_lock();
1290 map = rcu_dereference(kvm->arch.apic_map);
1291
1292 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1293 hweight16(bitmap) == 1) {
1294 unsigned long i = find_first_bit(&bitmap, 16);
1295
1296 if (dst[i]) {
1297 *dest_vcpu = dst[i]->vcpu;
1298 ret = true;
1299 }
1300 }
1301
1302 rcu_read_unlock();
1303 return ret;
1304 }
1305
1306 /*
1307 * Add a pending IRQ into lapic.
1308 * Return 1 if successfully added and 0 if discarded.
1309 */
__apic_accept_irq(struct kvm_lapic * apic,int delivery_mode,int vector,int level,int trig_mode,struct dest_map * dest_map)1310 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1311 int vector, int level, int trig_mode,
1312 struct dest_map *dest_map)
1313 {
1314 int result = 0;
1315 struct kvm_vcpu *vcpu = apic->vcpu;
1316
1317 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1318 trig_mode, vector);
1319 switch (delivery_mode) {
1320 case APIC_DM_LOWEST:
1321 vcpu->arch.apic_arb_prio++;
1322 fallthrough;
1323 case APIC_DM_FIXED:
1324 if (unlikely(trig_mode && !level))
1325 break;
1326
1327 /* FIXME add logic for vcpu on reset */
1328 if (unlikely(!apic_enabled(apic)))
1329 break;
1330
1331 result = 1;
1332
1333 if (dest_map) {
1334 __set_bit(vcpu->vcpu_id, dest_map->map);
1335 dest_map->vectors[vcpu->vcpu_id] = vector;
1336 }
1337
1338 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1339 if (trig_mode)
1340 kvm_lapic_set_vector(vector,
1341 apic->regs + APIC_TMR);
1342 else
1343 kvm_lapic_clear_vector(vector,
1344 apic->regs + APIC_TMR);
1345 }
1346
1347 kvm_x86_call(deliver_interrupt)(apic, delivery_mode,
1348 trig_mode, vector);
1349 break;
1350
1351 case APIC_DM_REMRD:
1352 result = 1;
1353 vcpu->arch.pv.pv_unhalted = 1;
1354 kvm_make_request(KVM_REQ_EVENT, vcpu);
1355 kvm_vcpu_kick(vcpu);
1356 break;
1357
1358 case APIC_DM_SMI:
1359 if (!kvm_inject_smi(vcpu)) {
1360 kvm_vcpu_kick(vcpu);
1361 result = 1;
1362 }
1363 break;
1364
1365 case APIC_DM_NMI:
1366 result = 1;
1367 kvm_inject_nmi(vcpu);
1368 kvm_vcpu_kick(vcpu);
1369 break;
1370
1371 case APIC_DM_INIT:
1372 if (!trig_mode || level) {
1373 result = 1;
1374 /* assumes that there are only KVM_APIC_INIT/SIPI */
1375 apic->pending_events = (1UL << KVM_APIC_INIT);
1376 kvm_make_request(KVM_REQ_EVENT, vcpu);
1377 kvm_vcpu_kick(vcpu);
1378 }
1379 break;
1380
1381 case APIC_DM_STARTUP:
1382 result = 1;
1383 apic->sipi_vector = vector;
1384 /* make sure sipi_vector is visible for the receiver */
1385 smp_wmb();
1386 set_bit(KVM_APIC_SIPI, &apic->pending_events);
1387 kvm_make_request(KVM_REQ_EVENT, vcpu);
1388 kvm_vcpu_kick(vcpu);
1389 break;
1390
1391 case APIC_DM_EXTINT:
1392 /*
1393 * Should only be called by kvm_apic_local_deliver() with LVT0,
1394 * before NMI watchdog was enabled. Already handled by
1395 * kvm_apic_accept_pic_intr().
1396 */
1397 break;
1398
1399 default:
1400 printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1401 delivery_mode);
1402 break;
1403 }
1404 return result;
1405 }
1406
1407 /*
1408 * This routine identifies the destination vcpus mask meant to receive the
1409 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1410 * out the destination vcpus array and set the bitmap or it traverses to
1411 * each available vcpu to identify the same.
1412 */
kvm_bitmap_or_dest_vcpus(struct kvm * kvm,struct kvm_lapic_irq * irq,unsigned long * vcpu_bitmap)1413 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1414 unsigned long *vcpu_bitmap)
1415 {
1416 struct kvm_lapic **dest_vcpu = NULL;
1417 struct kvm_lapic *src = NULL;
1418 struct kvm_apic_map *map;
1419 struct kvm_vcpu *vcpu;
1420 unsigned long bitmap, i;
1421 int vcpu_idx;
1422 bool ret;
1423
1424 rcu_read_lock();
1425 map = rcu_dereference(kvm->arch.apic_map);
1426
1427 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1428 &bitmap);
1429 if (ret) {
1430 for_each_set_bit(i, &bitmap, 16) {
1431 if (!dest_vcpu[i])
1432 continue;
1433 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1434 __set_bit(vcpu_idx, vcpu_bitmap);
1435 }
1436 } else {
1437 kvm_for_each_vcpu(i, vcpu, kvm) {
1438 if (!kvm_apic_present(vcpu))
1439 continue;
1440 if (!kvm_apic_match_dest(vcpu, NULL,
1441 irq->shorthand,
1442 irq->dest_id,
1443 irq->dest_mode))
1444 continue;
1445 __set_bit(i, vcpu_bitmap);
1446 }
1447 }
1448 rcu_read_unlock();
1449 }
1450
kvm_apic_compare_prio(struct kvm_vcpu * vcpu1,struct kvm_vcpu * vcpu2)1451 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1452 {
1453 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1454 }
1455
kvm_ioapic_handles_vector(struct kvm_lapic * apic,int vector)1456 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1457 {
1458 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1459 }
1460
kvm_ioapic_send_eoi(struct kvm_lapic * apic,int vector)1461 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1462 {
1463 int trigger_mode;
1464
1465 /* Eoi the ioapic only if the ioapic doesn't own the vector. */
1466 if (!kvm_ioapic_handles_vector(apic, vector))
1467 return;
1468
1469 /* Request a KVM exit to inform the userspace IOAPIC. */
1470 if (irqchip_split(apic->vcpu->kvm)) {
1471 apic->vcpu->arch.pending_ioapic_eoi = vector;
1472 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1473 return;
1474 }
1475
1476 if (apic_test_vector(vector, apic->regs + APIC_TMR))
1477 trigger_mode = IOAPIC_LEVEL_TRIG;
1478 else
1479 trigger_mode = IOAPIC_EDGE_TRIG;
1480
1481 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1482 }
1483
apic_set_eoi(struct kvm_lapic * apic)1484 static int apic_set_eoi(struct kvm_lapic *apic)
1485 {
1486 int vector = apic_find_highest_isr(apic);
1487
1488 trace_kvm_eoi(apic, vector);
1489
1490 /*
1491 * Not every write EOI will has corresponding ISR,
1492 * one example is when Kernel check timer on setup_IO_APIC
1493 */
1494 if (vector == -1)
1495 return vector;
1496
1497 apic_clear_isr(vector, apic);
1498 apic_update_ppr(apic);
1499
1500 if (kvm_hv_synic_has_vector(apic->vcpu, vector))
1501 kvm_hv_synic_send_eoi(apic->vcpu, vector);
1502
1503 kvm_ioapic_send_eoi(apic, vector);
1504 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1505 return vector;
1506 }
1507
1508 /*
1509 * this interface assumes a trap-like exit, which has already finished
1510 * desired side effect including vISR and vPPR update.
1511 */
kvm_apic_set_eoi_accelerated(struct kvm_vcpu * vcpu,int vector)1512 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1513 {
1514 struct kvm_lapic *apic = vcpu->arch.apic;
1515
1516 trace_kvm_eoi(apic, vector);
1517
1518 kvm_ioapic_send_eoi(apic, vector);
1519 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1520 }
1521 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1522
kvm_apic_send_ipi(struct kvm_lapic * apic,u32 icr_low,u32 icr_high)1523 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1524 {
1525 struct kvm_lapic_irq irq;
1526
1527 /* KVM has no delay and should always clear the BUSY/PENDING flag. */
1528 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1529
1530 irq.vector = icr_low & APIC_VECTOR_MASK;
1531 irq.delivery_mode = icr_low & APIC_MODE_MASK;
1532 irq.dest_mode = icr_low & APIC_DEST_MASK;
1533 irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1534 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1535 irq.shorthand = icr_low & APIC_SHORT_MASK;
1536 irq.msi_redir_hint = false;
1537 if (apic_x2apic_mode(apic))
1538 irq.dest_id = icr_high;
1539 else
1540 irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
1541
1542 trace_kvm_apic_ipi(icr_low, irq.dest_id);
1543
1544 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1545 }
1546 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1547
apic_get_tmcct(struct kvm_lapic * apic)1548 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1549 {
1550 ktime_t remaining, now;
1551 s64 ns;
1552
1553 ASSERT(apic != NULL);
1554
1555 /* if initial count is 0, current count should also be 0 */
1556 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1557 apic->lapic_timer.period == 0)
1558 return 0;
1559
1560 now = ktime_get();
1561 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1562 if (ktime_to_ns(remaining) < 0)
1563 remaining = 0;
1564
1565 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1566 return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns *
1567 apic->divide_count));
1568 }
1569
__report_tpr_access(struct kvm_lapic * apic,bool write)1570 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1571 {
1572 struct kvm_vcpu *vcpu = apic->vcpu;
1573 struct kvm_run *run = vcpu->run;
1574
1575 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1576 run->tpr_access.rip = kvm_rip_read(vcpu);
1577 run->tpr_access.is_write = write;
1578 }
1579
report_tpr_access(struct kvm_lapic * apic,bool write)1580 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1581 {
1582 if (apic->vcpu->arch.tpr_access_reporting)
1583 __report_tpr_access(apic, write);
1584 }
1585
__apic_read(struct kvm_lapic * apic,unsigned int offset)1586 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1587 {
1588 u32 val = 0;
1589
1590 if (offset >= LAPIC_MMIO_LENGTH)
1591 return 0;
1592
1593 switch (offset) {
1594 case APIC_ARBPRI:
1595 break;
1596
1597 case APIC_TMCCT: /* Timer CCR */
1598 if (apic_lvtt_tscdeadline(apic))
1599 return 0;
1600
1601 val = apic_get_tmcct(apic);
1602 break;
1603 case APIC_PROCPRI:
1604 apic_update_ppr(apic);
1605 val = kvm_lapic_get_reg(apic, offset);
1606 break;
1607 case APIC_TASKPRI:
1608 report_tpr_access(apic, false);
1609 fallthrough;
1610 default:
1611 val = kvm_lapic_get_reg(apic, offset);
1612 break;
1613 }
1614
1615 return val;
1616 }
1617
to_lapic(struct kvm_io_device * dev)1618 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1619 {
1620 return container_of(dev, struct kvm_lapic, dev);
1621 }
1622
1623 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4))
1624 #define APIC_REGS_MASK(first, count) \
1625 (APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1626
kvm_lapic_readable_reg_mask(struct kvm_lapic * apic)1627 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic)
1628 {
1629 /* Leave bits '0' for reserved and write-only registers. */
1630 u64 valid_reg_mask =
1631 APIC_REG_MASK(APIC_ID) |
1632 APIC_REG_MASK(APIC_LVR) |
1633 APIC_REG_MASK(APIC_TASKPRI) |
1634 APIC_REG_MASK(APIC_PROCPRI) |
1635 APIC_REG_MASK(APIC_LDR) |
1636 APIC_REG_MASK(APIC_SPIV) |
1637 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1638 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1639 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1640 APIC_REG_MASK(APIC_ESR) |
1641 APIC_REG_MASK(APIC_ICR) |
1642 APIC_REG_MASK(APIC_LVTT) |
1643 APIC_REG_MASK(APIC_LVTTHMR) |
1644 APIC_REG_MASK(APIC_LVTPC) |
1645 APIC_REG_MASK(APIC_LVT0) |
1646 APIC_REG_MASK(APIC_LVT1) |
1647 APIC_REG_MASK(APIC_LVTERR) |
1648 APIC_REG_MASK(APIC_TMICT) |
1649 APIC_REG_MASK(APIC_TMCCT) |
1650 APIC_REG_MASK(APIC_TDCR);
1651
1652 if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
1653 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
1654
1655 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
1656 if (!apic_x2apic_mode(apic))
1657 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1658 APIC_REG_MASK(APIC_DFR) |
1659 APIC_REG_MASK(APIC_ICR2);
1660
1661 return valid_reg_mask;
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask);
1664
kvm_lapic_reg_read(struct kvm_lapic * apic,u32 offset,int len,void * data)1665 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1666 void *data)
1667 {
1668 unsigned char alignment = offset & 0xf;
1669 u32 result;
1670
1671 /*
1672 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
1673 * x2APIC and needs to be manually handled by the caller.
1674 */
1675 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR);
1676
1677 if (alignment + len > 4)
1678 return 1;
1679
1680 if (offset > 0x3f0 ||
1681 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset)))
1682 return 1;
1683
1684 result = __apic_read(apic, offset & ~0xf);
1685
1686 trace_kvm_apic_read(offset, result);
1687
1688 switch (len) {
1689 case 1:
1690 case 2:
1691 case 4:
1692 memcpy(data, (char *)&result + alignment, len);
1693 break;
1694 default:
1695 printk(KERN_ERR "Local APIC read with len = %x, "
1696 "should be 1,2, or 4 instead\n", len);
1697 break;
1698 }
1699 return 0;
1700 }
1701
apic_mmio_in_range(struct kvm_lapic * apic,gpa_t addr)1702 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1703 {
1704 return addr >= apic->base_address &&
1705 addr < apic->base_address + LAPIC_MMIO_LENGTH;
1706 }
1707
apic_mmio_read(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t address,int len,void * data)1708 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1709 gpa_t address, int len, void *data)
1710 {
1711 struct kvm_lapic *apic = to_lapic(this);
1712 u32 offset = address - apic->base_address;
1713
1714 if (!apic_mmio_in_range(apic, address))
1715 return -EOPNOTSUPP;
1716
1717 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1718 if (!kvm_check_has_quirk(vcpu->kvm,
1719 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1720 return -EOPNOTSUPP;
1721
1722 memset(data, 0xff, len);
1723 return 0;
1724 }
1725
1726 kvm_lapic_reg_read(apic, offset, len, data);
1727
1728 return 0;
1729 }
1730
update_divide_count(struct kvm_lapic * apic)1731 static void update_divide_count(struct kvm_lapic *apic)
1732 {
1733 u32 tmp1, tmp2, tdcr;
1734
1735 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1736 tmp1 = tdcr & 0xf;
1737 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1738 apic->divide_count = 0x1 << (tmp2 & 0x7);
1739 }
1740
limit_periodic_timer_frequency(struct kvm_lapic * apic)1741 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1742 {
1743 /*
1744 * Do not allow the guest to program periodic timers with small
1745 * interval, since the hrtimers are not throttled by the host
1746 * scheduler.
1747 */
1748 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1749 s64 min_period = min_timer_period_us * 1000LL;
1750
1751 if (apic->lapic_timer.period < min_period) {
1752 pr_info_once(
1753 "vcpu %i: requested %lld ns "
1754 "lapic timer period limited to %lld ns\n",
1755 apic->vcpu->vcpu_id,
1756 apic->lapic_timer.period, min_period);
1757 apic->lapic_timer.period = min_period;
1758 }
1759 }
1760 }
1761
1762 static void cancel_hv_timer(struct kvm_lapic *apic);
1763
cancel_apic_timer(struct kvm_lapic * apic)1764 static void cancel_apic_timer(struct kvm_lapic *apic)
1765 {
1766 hrtimer_cancel(&apic->lapic_timer.timer);
1767 preempt_disable();
1768 if (apic->lapic_timer.hv_timer_in_use)
1769 cancel_hv_timer(apic);
1770 preempt_enable();
1771 atomic_set(&apic->lapic_timer.pending, 0);
1772 }
1773
apic_update_lvtt(struct kvm_lapic * apic)1774 static void apic_update_lvtt(struct kvm_lapic *apic)
1775 {
1776 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1777 apic->lapic_timer.timer_mode_mask;
1778
1779 if (apic->lapic_timer.timer_mode != timer_mode) {
1780 if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1781 APIC_LVT_TIMER_TSCDEADLINE)) {
1782 cancel_apic_timer(apic);
1783 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1784 apic->lapic_timer.period = 0;
1785 apic->lapic_timer.tscdeadline = 0;
1786 }
1787 apic->lapic_timer.timer_mode = timer_mode;
1788 limit_periodic_timer_frequency(apic);
1789 }
1790 }
1791
1792 /*
1793 * On APICv, this test will cause a busy wait
1794 * during a higher-priority task.
1795 */
1796
lapic_timer_int_injected(struct kvm_vcpu * vcpu)1797 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1798 {
1799 struct kvm_lapic *apic = vcpu->arch.apic;
1800 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1801
1802 if (kvm_apic_hw_enabled(apic)) {
1803 int vec = reg & APIC_VECTOR_MASK;
1804 void *bitmap = apic->regs + APIC_ISR;
1805
1806 if (apic->apicv_active)
1807 bitmap = apic->regs + APIC_IRR;
1808
1809 if (apic_test_vector(vec, bitmap))
1810 return true;
1811 }
1812 return false;
1813 }
1814
__wait_lapic_expire(struct kvm_vcpu * vcpu,u64 guest_cycles)1815 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1816 {
1817 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1818
1819 /*
1820 * If the guest TSC is running at a different ratio than the host, then
1821 * convert the delay to nanoseconds to achieve an accurate delay. Note
1822 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1823 * always for VMX enabled hardware.
1824 */
1825 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
1826 __delay(min(guest_cycles,
1827 nsec_to_cycles(vcpu, timer_advance_ns)));
1828 } else {
1829 u64 delay_ns = guest_cycles * 1000000ULL;
1830 do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1831 ndelay(min_t(u32, delay_ns, timer_advance_ns));
1832 }
1833 }
1834
adjust_lapic_timer_advance(struct kvm_vcpu * vcpu,s64 advance_expire_delta)1835 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1836 s64 advance_expire_delta)
1837 {
1838 struct kvm_lapic *apic = vcpu->arch.apic;
1839 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1840 u64 ns;
1841
1842 /* Do not adjust for tiny fluctuations or large random spikes. */
1843 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1844 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1845 return;
1846
1847 /* too early */
1848 if (advance_expire_delta < 0) {
1849 ns = -advance_expire_delta * 1000000ULL;
1850 do_div(ns, vcpu->arch.virtual_tsc_khz);
1851 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1852 } else {
1853 /* too late */
1854 ns = advance_expire_delta * 1000000ULL;
1855 do_div(ns, vcpu->arch.virtual_tsc_khz);
1856 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1857 }
1858
1859 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1860 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1861 apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1862 }
1863
__kvm_wait_lapic_expire(struct kvm_vcpu * vcpu)1864 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1865 {
1866 struct kvm_lapic *apic = vcpu->arch.apic;
1867 u64 guest_tsc, tsc_deadline;
1868
1869 tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1870 apic->lapic_timer.expired_tscdeadline = 0;
1871 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1872 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1873
1874 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1875
1876 /*
1877 * If the timer fired early, reread the TSC to account for the overhead
1878 * of the above adjustment to avoid waiting longer than is necessary.
1879 */
1880 if (guest_tsc < tsc_deadline)
1881 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1882
1883 if (guest_tsc < tsc_deadline)
1884 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1885 }
1886
kvm_wait_lapic_expire(struct kvm_vcpu * vcpu)1887 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1888 {
1889 if (lapic_in_kernel(vcpu) &&
1890 vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1891 vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1892 lapic_timer_int_injected(vcpu))
1893 __kvm_wait_lapic_expire(vcpu);
1894 }
1895 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1896
kvm_apic_inject_pending_timer_irqs(struct kvm_lapic * apic)1897 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1898 {
1899 struct kvm_timer *ktimer = &apic->lapic_timer;
1900
1901 kvm_apic_local_deliver(apic, APIC_LVTT);
1902 if (apic_lvtt_tscdeadline(apic)) {
1903 ktimer->tscdeadline = 0;
1904 } else if (apic_lvtt_oneshot(apic)) {
1905 ktimer->tscdeadline = 0;
1906 ktimer->target_expiration = 0;
1907 }
1908 }
1909
apic_timer_expired(struct kvm_lapic * apic,bool from_timer_fn)1910 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1911 {
1912 struct kvm_vcpu *vcpu = apic->vcpu;
1913 struct kvm_timer *ktimer = &apic->lapic_timer;
1914
1915 if (atomic_read(&apic->lapic_timer.pending))
1916 return;
1917
1918 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1919 ktimer->expired_tscdeadline = ktimer->tscdeadline;
1920
1921 if (!from_timer_fn && apic->apicv_active) {
1922 WARN_ON(kvm_get_running_vcpu() != vcpu);
1923 kvm_apic_inject_pending_timer_irqs(apic);
1924 return;
1925 }
1926
1927 if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1928 /*
1929 * Ensure the guest's timer has truly expired before posting an
1930 * interrupt. Open code the relevant checks to avoid querying
1931 * lapic_timer_int_injected(), which will be false since the
1932 * interrupt isn't yet injected. Waiting until after injecting
1933 * is not an option since that won't help a posted interrupt.
1934 */
1935 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1936 vcpu->arch.apic->lapic_timer.timer_advance_ns)
1937 __kvm_wait_lapic_expire(vcpu);
1938 kvm_apic_inject_pending_timer_irqs(apic);
1939 return;
1940 }
1941
1942 atomic_inc(&apic->lapic_timer.pending);
1943 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1944 if (from_timer_fn)
1945 kvm_vcpu_kick(vcpu);
1946 }
1947
start_sw_tscdeadline(struct kvm_lapic * apic)1948 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1949 {
1950 struct kvm_timer *ktimer = &apic->lapic_timer;
1951 u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1952 u64 ns = 0;
1953 ktime_t expire;
1954 struct kvm_vcpu *vcpu = apic->vcpu;
1955 u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1956 unsigned long flags;
1957 ktime_t now;
1958
1959 if (unlikely(!tscdeadline || !this_tsc_khz))
1960 return;
1961
1962 local_irq_save(flags);
1963
1964 now = ktime_get();
1965 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1966
1967 ns = (tscdeadline - guest_tsc) * 1000000ULL;
1968 do_div(ns, this_tsc_khz);
1969
1970 if (likely(tscdeadline > guest_tsc) &&
1971 likely(ns > apic->lapic_timer.timer_advance_ns)) {
1972 expire = ktime_add_ns(now, ns);
1973 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1974 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1975 } else
1976 apic_timer_expired(apic, false);
1977
1978 local_irq_restore(flags);
1979 }
1980
tmict_to_ns(struct kvm_lapic * apic,u32 tmict)1981 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1982 {
1983 return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns *
1984 (u64)apic->divide_count;
1985 }
1986
update_target_expiration(struct kvm_lapic * apic,uint32_t old_divisor)1987 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1988 {
1989 ktime_t now, remaining;
1990 u64 ns_remaining_old, ns_remaining_new;
1991
1992 apic->lapic_timer.period =
1993 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1994 limit_periodic_timer_frequency(apic);
1995
1996 now = ktime_get();
1997 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1998 if (ktime_to_ns(remaining) < 0)
1999 remaining = 0;
2000
2001 ns_remaining_old = ktime_to_ns(remaining);
2002 ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
2003 apic->divide_count, old_divisor);
2004
2005 apic->lapic_timer.tscdeadline +=
2006 nsec_to_cycles(apic->vcpu, ns_remaining_new) -
2007 nsec_to_cycles(apic->vcpu, ns_remaining_old);
2008 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
2009 }
2010
set_target_expiration(struct kvm_lapic * apic,u32 count_reg)2011 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
2012 {
2013 ktime_t now;
2014 u64 tscl = rdtsc();
2015 s64 deadline;
2016
2017 now = ktime_get();
2018 apic->lapic_timer.period =
2019 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
2020
2021 if (!apic->lapic_timer.period) {
2022 apic->lapic_timer.tscdeadline = 0;
2023 return false;
2024 }
2025
2026 limit_periodic_timer_frequency(apic);
2027 deadline = apic->lapic_timer.period;
2028
2029 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
2030 if (unlikely(count_reg != APIC_TMICT)) {
2031 deadline = tmict_to_ns(apic,
2032 kvm_lapic_get_reg(apic, count_reg));
2033 if (unlikely(deadline <= 0)) {
2034 if (apic_lvtt_period(apic))
2035 deadline = apic->lapic_timer.period;
2036 else
2037 deadline = 0;
2038 }
2039 else if (unlikely(deadline > apic->lapic_timer.period)) {
2040 pr_info_ratelimited(
2041 "vcpu %i: requested lapic timer restore with "
2042 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
2043 "Using initial count to start timer.\n",
2044 apic->vcpu->vcpu_id,
2045 count_reg,
2046 kvm_lapic_get_reg(apic, count_reg),
2047 deadline, apic->lapic_timer.period);
2048 kvm_lapic_set_reg(apic, count_reg, 0);
2049 deadline = apic->lapic_timer.period;
2050 }
2051 }
2052 }
2053
2054 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2055 nsec_to_cycles(apic->vcpu, deadline);
2056 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
2057
2058 return true;
2059 }
2060
advance_periodic_target_expiration(struct kvm_lapic * apic)2061 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
2062 {
2063 ktime_t now = ktime_get();
2064 u64 tscl = rdtsc();
2065 ktime_t delta;
2066
2067 /*
2068 * Synchronize both deadlines to the same time source or
2069 * differences in the periods (caused by differences in the
2070 * underlying clocks or numerical approximation errors) will
2071 * cause the two to drift apart over time as the errors
2072 * accumulate.
2073 */
2074 apic->lapic_timer.target_expiration =
2075 ktime_add_ns(apic->lapic_timer.target_expiration,
2076 apic->lapic_timer.period);
2077 delta = ktime_sub(apic->lapic_timer.target_expiration, now);
2078 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2079 nsec_to_cycles(apic->vcpu, delta);
2080 }
2081
start_sw_period(struct kvm_lapic * apic)2082 static void start_sw_period(struct kvm_lapic *apic)
2083 {
2084 if (!apic->lapic_timer.period)
2085 return;
2086
2087 if (ktime_after(ktime_get(),
2088 apic->lapic_timer.target_expiration)) {
2089 apic_timer_expired(apic, false);
2090
2091 if (apic_lvtt_oneshot(apic))
2092 return;
2093
2094 advance_periodic_target_expiration(apic);
2095 }
2096
2097 hrtimer_start(&apic->lapic_timer.timer,
2098 apic->lapic_timer.target_expiration,
2099 HRTIMER_MODE_ABS_HARD);
2100 }
2101
kvm_lapic_hv_timer_in_use(struct kvm_vcpu * vcpu)2102 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
2103 {
2104 if (!lapic_in_kernel(vcpu))
2105 return false;
2106
2107 return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
2108 }
2109
cancel_hv_timer(struct kvm_lapic * apic)2110 static void cancel_hv_timer(struct kvm_lapic *apic)
2111 {
2112 WARN_ON(preemptible());
2113 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2114 kvm_x86_call(cancel_hv_timer)(apic->vcpu);
2115 apic->lapic_timer.hv_timer_in_use = false;
2116 }
2117
start_hv_timer(struct kvm_lapic * apic)2118 static bool start_hv_timer(struct kvm_lapic *apic)
2119 {
2120 struct kvm_timer *ktimer = &apic->lapic_timer;
2121 struct kvm_vcpu *vcpu = apic->vcpu;
2122 bool expired;
2123
2124 WARN_ON(preemptible());
2125 if (!kvm_can_use_hv_timer(vcpu))
2126 return false;
2127
2128 if (!ktimer->tscdeadline)
2129 return false;
2130
2131 if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
2132 return false;
2133
2134 ktimer->hv_timer_in_use = true;
2135 hrtimer_cancel(&ktimer->timer);
2136
2137 /*
2138 * To simplify handling the periodic timer, leave the hv timer running
2139 * even if the deadline timer has expired, i.e. rely on the resulting
2140 * VM-Exit to recompute the periodic timer's target expiration.
2141 */
2142 if (!apic_lvtt_period(apic)) {
2143 /*
2144 * Cancel the hv timer if the sw timer fired while the hv timer
2145 * was being programmed, or if the hv timer itself expired.
2146 */
2147 if (atomic_read(&ktimer->pending)) {
2148 cancel_hv_timer(apic);
2149 } else if (expired) {
2150 apic_timer_expired(apic, false);
2151 cancel_hv_timer(apic);
2152 }
2153 }
2154
2155 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
2156
2157 return true;
2158 }
2159
start_sw_timer(struct kvm_lapic * apic)2160 static void start_sw_timer(struct kvm_lapic *apic)
2161 {
2162 struct kvm_timer *ktimer = &apic->lapic_timer;
2163
2164 WARN_ON(preemptible());
2165 if (apic->lapic_timer.hv_timer_in_use)
2166 cancel_hv_timer(apic);
2167 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
2168 return;
2169
2170 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2171 start_sw_period(apic);
2172 else if (apic_lvtt_tscdeadline(apic))
2173 start_sw_tscdeadline(apic);
2174 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
2175 }
2176
restart_apic_timer(struct kvm_lapic * apic)2177 static void restart_apic_timer(struct kvm_lapic *apic)
2178 {
2179 preempt_disable();
2180
2181 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
2182 goto out;
2183
2184 if (!start_hv_timer(apic))
2185 start_sw_timer(apic);
2186 out:
2187 preempt_enable();
2188 }
2189
kvm_lapic_expired_hv_timer(struct kvm_vcpu * vcpu)2190 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
2191 {
2192 struct kvm_lapic *apic = vcpu->arch.apic;
2193
2194 preempt_disable();
2195 /* If the preempt notifier has already run, it also called apic_timer_expired */
2196 if (!apic->lapic_timer.hv_timer_in_use)
2197 goto out;
2198 WARN_ON(kvm_vcpu_is_blocking(vcpu));
2199 apic_timer_expired(apic, false);
2200 cancel_hv_timer(apic);
2201
2202 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
2203 advance_periodic_target_expiration(apic);
2204 restart_apic_timer(apic);
2205 }
2206 out:
2207 preempt_enable();
2208 }
2209 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
2210
kvm_lapic_switch_to_hv_timer(struct kvm_vcpu * vcpu)2211 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
2212 {
2213 restart_apic_timer(vcpu->arch.apic);
2214 }
2215
kvm_lapic_switch_to_sw_timer(struct kvm_vcpu * vcpu)2216 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
2217 {
2218 struct kvm_lapic *apic = vcpu->arch.apic;
2219
2220 preempt_disable();
2221 /* Possibly the TSC deadline timer is not enabled yet */
2222 if (apic->lapic_timer.hv_timer_in_use)
2223 start_sw_timer(apic);
2224 preempt_enable();
2225 }
2226
kvm_lapic_restart_hv_timer(struct kvm_vcpu * vcpu)2227 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2228 {
2229 struct kvm_lapic *apic = vcpu->arch.apic;
2230
2231 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2232 restart_apic_timer(apic);
2233 }
2234
__start_apic_timer(struct kvm_lapic * apic,u32 count_reg)2235 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2236 {
2237 atomic_set(&apic->lapic_timer.pending, 0);
2238
2239 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2240 && !set_target_expiration(apic, count_reg))
2241 return;
2242
2243 restart_apic_timer(apic);
2244 }
2245
start_apic_timer(struct kvm_lapic * apic)2246 static void start_apic_timer(struct kvm_lapic *apic)
2247 {
2248 __start_apic_timer(apic, APIC_TMICT);
2249 }
2250
apic_manage_nmi_watchdog(struct kvm_lapic * apic,u32 lvt0_val)2251 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2252 {
2253 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2254
2255 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2256 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2257 if (lvt0_in_nmi_mode) {
2258 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2259 } else
2260 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2261 }
2262 }
2263
get_lvt_index(u32 reg)2264 static int get_lvt_index(u32 reg)
2265 {
2266 if (reg == APIC_LVTCMCI)
2267 return LVT_CMCI;
2268 if (reg < APIC_LVTT || reg > APIC_LVTERR)
2269 return -1;
2270 return array_index_nospec(
2271 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
2272 }
2273
kvm_lapic_reg_write(struct kvm_lapic * apic,u32 reg,u32 val)2274 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2275 {
2276 int ret = 0;
2277
2278 trace_kvm_apic_write(reg, val);
2279
2280 switch (reg) {
2281 case APIC_ID: /* Local APIC ID */
2282 if (!apic_x2apic_mode(apic)) {
2283 kvm_apic_set_xapic_id(apic, val >> 24);
2284 } else {
2285 ret = 1;
2286 }
2287 break;
2288
2289 case APIC_TASKPRI:
2290 report_tpr_access(apic, true);
2291 apic_set_tpr(apic, val & 0xff);
2292 break;
2293
2294 case APIC_EOI:
2295 apic_set_eoi(apic);
2296 break;
2297
2298 case APIC_LDR:
2299 if (!apic_x2apic_mode(apic))
2300 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2301 else
2302 ret = 1;
2303 break;
2304
2305 case APIC_DFR:
2306 if (!apic_x2apic_mode(apic))
2307 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2308 else
2309 ret = 1;
2310 break;
2311
2312 case APIC_SPIV: {
2313 u32 mask = 0x3ff;
2314 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2315 mask |= APIC_SPIV_DIRECTED_EOI;
2316 apic_set_spiv(apic, val & mask);
2317 if (!(val & APIC_SPIV_APIC_ENABLED)) {
2318 int i;
2319
2320 for (i = 0; i < apic->nr_lvt_entries; i++) {
2321 kvm_lapic_set_reg(apic, APIC_LVTx(i),
2322 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
2323 }
2324 apic_update_lvtt(apic);
2325 atomic_set(&apic->lapic_timer.pending, 0);
2326
2327 }
2328 break;
2329 }
2330 case APIC_ICR:
2331 WARN_ON_ONCE(apic_x2apic_mode(apic));
2332
2333 /* No delay here, so we always clear the pending bit */
2334 val &= ~APIC_ICR_BUSY;
2335 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2336 kvm_lapic_set_reg(apic, APIC_ICR, val);
2337 break;
2338 case APIC_ICR2:
2339 if (apic_x2apic_mode(apic))
2340 ret = 1;
2341 else
2342 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2343 break;
2344
2345 case APIC_LVT0:
2346 apic_manage_nmi_watchdog(apic, val);
2347 fallthrough;
2348 case APIC_LVTTHMR:
2349 case APIC_LVTPC:
2350 case APIC_LVT1:
2351 case APIC_LVTERR:
2352 case APIC_LVTCMCI: {
2353 u32 index = get_lvt_index(reg);
2354 if (!kvm_lapic_lvt_supported(apic, index)) {
2355 ret = 1;
2356 break;
2357 }
2358 if (!kvm_apic_sw_enabled(apic))
2359 val |= APIC_LVT_MASKED;
2360 val &= apic_lvt_mask[index];
2361 kvm_lapic_set_reg(apic, reg, val);
2362 break;
2363 }
2364
2365 case APIC_LVTT:
2366 if (!kvm_apic_sw_enabled(apic))
2367 val |= APIC_LVT_MASKED;
2368 val &= (apic_lvt_mask[LVT_TIMER] | apic->lapic_timer.timer_mode_mask);
2369 kvm_lapic_set_reg(apic, APIC_LVTT, val);
2370 apic_update_lvtt(apic);
2371 break;
2372
2373 case APIC_TMICT:
2374 if (apic_lvtt_tscdeadline(apic))
2375 break;
2376
2377 cancel_apic_timer(apic);
2378 kvm_lapic_set_reg(apic, APIC_TMICT, val);
2379 start_apic_timer(apic);
2380 break;
2381
2382 case APIC_TDCR: {
2383 uint32_t old_divisor = apic->divide_count;
2384
2385 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2386 update_divide_count(apic);
2387 if (apic->divide_count != old_divisor &&
2388 apic->lapic_timer.period) {
2389 hrtimer_cancel(&apic->lapic_timer.timer);
2390 update_target_expiration(apic, old_divisor);
2391 restart_apic_timer(apic);
2392 }
2393 break;
2394 }
2395 case APIC_ESR:
2396 if (apic_x2apic_mode(apic) && val != 0)
2397 ret = 1;
2398 break;
2399
2400 case APIC_SELF_IPI:
2401 /*
2402 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold
2403 * the vector, everything else is reserved.
2404 */
2405 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK))
2406 ret = 1;
2407 else
2408 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0);
2409 break;
2410 default:
2411 ret = 1;
2412 break;
2413 }
2414
2415 /*
2416 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2417 * was toggled, the APIC ID changed, etc... The maps are marked dirty
2418 * on relevant changes, i.e. this is a nop for most writes.
2419 */
2420 kvm_recalculate_apic_map(apic->vcpu->kvm);
2421
2422 return ret;
2423 }
2424
apic_mmio_write(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t address,int len,const void * data)2425 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2426 gpa_t address, int len, const void *data)
2427 {
2428 struct kvm_lapic *apic = to_lapic(this);
2429 unsigned int offset = address - apic->base_address;
2430 u32 val;
2431
2432 if (!apic_mmio_in_range(apic, address))
2433 return -EOPNOTSUPP;
2434
2435 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2436 if (!kvm_check_has_quirk(vcpu->kvm,
2437 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2438 return -EOPNOTSUPP;
2439
2440 return 0;
2441 }
2442
2443 /*
2444 * APIC register must be aligned on 128-bits boundary.
2445 * 32/64/128 bits registers must be accessed thru 32 bits.
2446 * Refer SDM 8.4.1
2447 */
2448 if (len != 4 || (offset & 0xf))
2449 return 0;
2450
2451 val = *(u32*)data;
2452
2453 kvm_lapic_reg_write(apic, offset & 0xff0, val);
2454
2455 return 0;
2456 }
2457
kvm_lapic_set_eoi(struct kvm_vcpu * vcpu)2458 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2459 {
2460 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2461 }
2462 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2463
2464 #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13))
2465
kvm_x2apic_icr_write(struct kvm_lapic * apic,u64 data)2466 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
2467 {
2468 if (data & X2APIC_ICR_RESERVED_BITS)
2469 return 1;
2470
2471 /*
2472 * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but
2473 * only AMD requires it to be zero, Intel essentially just ignores the
2474 * bit. And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled,
2475 * the CPU performs the reserved bits checks, i.e. the underlying CPU
2476 * behavior will "win". Arbitrarily clear the BUSY bit, as there is no
2477 * sane way to provide consistent behavior with respect to hardware.
2478 */
2479 data &= ~APIC_ICR_BUSY;
2480
2481 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
2482 if (kvm_x86_ops.x2apic_icr_is_split) {
2483 kvm_lapic_set_reg(apic, APIC_ICR, data);
2484 kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32);
2485 } else {
2486 kvm_lapic_set_reg64(apic, APIC_ICR, data);
2487 }
2488 trace_kvm_apic_write(APIC_ICR, data);
2489 return 0;
2490 }
2491
kvm_x2apic_icr_read(struct kvm_lapic * apic)2492 static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic)
2493 {
2494 if (kvm_x86_ops.x2apic_icr_is_split)
2495 return (u64)kvm_lapic_get_reg(apic, APIC_ICR) |
2496 (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32;
2497
2498 return kvm_lapic_get_reg64(apic, APIC_ICR);
2499 }
2500
2501 /* emulate APIC access in a trap manner */
kvm_apic_write_nodecode(struct kvm_vcpu * vcpu,u32 offset)2502 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2503 {
2504 struct kvm_lapic *apic = vcpu->arch.apic;
2505
2506 /*
2507 * ICR is a single 64-bit register when x2APIC is enabled, all others
2508 * registers hold 32-bit values. For legacy xAPIC, ICR writes need to
2509 * go down the common path to get the upper half from ICR2.
2510 *
2511 * Note, using the write helpers may incur an unnecessary write to the
2512 * virtual APIC state, but KVM needs to conditionally modify the value
2513 * in certain cases, e.g. to clear the ICR busy bit. The cost of extra
2514 * conditional branches is likely a wash relative to the cost of the
2515 * maybe-unecessary write, and both are in the noise anyways.
2516 */
2517 if (apic_x2apic_mode(apic) && offset == APIC_ICR)
2518 WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic)));
2519 else
2520 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
2521 }
2522 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2523
kvm_free_lapic(struct kvm_vcpu * vcpu)2524 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2525 {
2526 struct kvm_lapic *apic = vcpu->arch.apic;
2527
2528 if (!vcpu->arch.apic) {
2529 static_branch_dec(&kvm_has_noapic_vcpu);
2530 return;
2531 }
2532
2533 hrtimer_cancel(&apic->lapic_timer.timer);
2534
2535 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2536 static_branch_slow_dec_deferred(&apic_hw_disabled);
2537
2538 if (!apic->sw_enabled)
2539 static_branch_slow_dec_deferred(&apic_sw_disabled);
2540
2541 if (apic->regs)
2542 free_page((unsigned long)apic->regs);
2543
2544 kfree(apic);
2545 }
2546
2547 /*
2548 *----------------------------------------------------------------------
2549 * LAPIC interface
2550 *----------------------------------------------------------------------
2551 */
kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu * vcpu)2552 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2553 {
2554 struct kvm_lapic *apic = vcpu->arch.apic;
2555
2556 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2557 return 0;
2558
2559 return apic->lapic_timer.tscdeadline;
2560 }
2561
kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu * vcpu,u64 data)2562 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2563 {
2564 struct kvm_lapic *apic = vcpu->arch.apic;
2565
2566 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2567 return;
2568
2569 hrtimer_cancel(&apic->lapic_timer.timer);
2570 apic->lapic_timer.tscdeadline = data;
2571 start_apic_timer(apic);
2572 }
2573
kvm_lapic_set_tpr(struct kvm_vcpu * vcpu,unsigned long cr8)2574 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2575 {
2576 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2577 }
2578
kvm_lapic_get_cr8(struct kvm_vcpu * vcpu)2579 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2580 {
2581 u64 tpr;
2582
2583 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2584
2585 return (tpr & 0xf0) >> 4;
2586 }
2587
__kvm_apic_set_base(struct kvm_vcpu * vcpu,u64 value)2588 static void __kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value)
2589 {
2590 u64 old_value = vcpu->arch.apic_base;
2591 struct kvm_lapic *apic = vcpu->arch.apic;
2592
2593 vcpu->arch.apic_base = value;
2594
2595 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2596 kvm_update_cpuid_runtime(vcpu);
2597
2598 if (!apic)
2599 return;
2600
2601 /* update jump label if enable bit changes */
2602 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2603 if (value & MSR_IA32_APICBASE_ENABLE) {
2604 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2605 static_branch_slow_dec_deferred(&apic_hw_disabled);
2606 /* Check if there are APF page ready requests pending */
2607 kvm_make_request(KVM_REQ_APF_READY, vcpu);
2608 } else {
2609 static_branch_inc(&apic_hw_disabled.key);
2610 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2611 }
2612 }
2613
2614 if ((old_value ^ value) & X2APIC_ENABLE) {
2615 if (value & X2APIC_ENABLE)
2616 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2617 else if (value & MSR_IA32_APICBASE_ENABLE)
2618 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2619 }
2620
2621 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
2622 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2623 kvm_x86_call(set_virtual_apic_mode)(vcpu);
2624 }
2625
2626 apic->base_address = apic->vcpu->arch.apic_base &
2627 MSR_IA32_APICBASE_BASE;
2628
2629 if ((value & MSR_IA32_APICBASE_ENABLE) &&
2630 apic->base_address != APIC_DEFAULT_PHYS_BASE) {
2631 kvm_set_apicv_inhibit(apic->vcpu->kvm,
2632 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
2633 }
2634 }
2635
kvm_apic_set_base(struct kvm_vcpu * vcpu,u64 value,bool host_initiated)2636 int kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value, bool host_initiated)
2637 {
2638 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
2639 enum lapic_mode new_mode = kvm_apic_mode(value);
2640
2641 if (vcpu->arch.apic_base == value)
2642 return 0;
2643
2644 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
2645 (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
2646
2647 if ((value & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
2648 return 1;
2649 if (!host_initiated) {
2650 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
2651 return 1;
2652 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
2653 return 1;
2654 }
2655
2656 __kvm_apic_set_base(vcpu, value);
2657 kvm_recalculate_apic_map(vcpu->kvm);
2658 return 0;
2659 }
2660
kvm_apic_update_apicv(struct kvm_vcpu * vcpu)2661 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2662 {
2663 struct kvm_lapic *apic = vcpu->arch.apic;
2664
2665 /*
2666 * When APICv is enabled, KVM must always search the IRR for a pending
2667 * IRQ, as other vCPUs and devices can set IRR bits even if the vCPU
2668 * isn't running. If APICv is disabled, KVM _should_ search the IRR
2669 * for a pending IRQ. But KVM currently doesn't ensure *all* hardware,
2670 * e.g. CPUs and IOMMUs, has seen the change in state, i.e. searching
2671 * the IRR at this time could race with IRQ delivery from hardware that
2672 * still sees APICv as being enabled.
2673 *
2674 * FIXME: Ensure other vCPUs and devices observe the change in APICv
2675 * state prior to updating KVM's metadata caches, so that KVM
2676 * can safely search the IRR and set irr_pending accordingly.
2677 */
2678 apic->irr_pending = true;
2679
2680 if (apic->apicv_active)
2681 apic->isr_count = 1;
2682 else
2683 apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2684
2685 apic->highest_isr_cache = -1;
2686 }
2687
kvm_alloc_apic_access_page(struct kvm * kvm)2688 int kvm_alloc_apic_access_page(struct kvm *kvm)
2689 {
2690 void __user *hva;
2691 int ret = 0;
2692
2693 mutex_lock(&kvm->slots_lock);
2694 if (kvm->arch.apic_access_memslot_enabled ||
2695 kvm->arch.apic_access_memslot_inhibited)
2696 goto out;
2697
2698 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
2699 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
2700 if (IS_ERR(hva)) {
2701 ret = PTR_ERR(hva);
2702 goto out;
2703 }
2704
2705 kvm->arch.apic_access_memslot_enabled = true;
2706 out:
2707 mutex_unlock(&kvm->slots_lock);
2708 return ret;
2709 }
2710 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page);
2711
kvm_inhibit_apic_access_page(struct kvm_vcpu * vcpu)2712 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu)
2713 {
2714 struct kvm *kvm = vcpu->kvm;
2715
2716 if (!kvm->arch.apic_access_memslot_enabled)
2717 return;
2718
2719 kvm_vcpu_srcu_read_unlock(vcpu);
2720
2721 mutex_lock(&kvm->slots_lock);
2722
2723 if (kvm->arch.apic_access_memslot_enabled) {
2724 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
2725 /*
2726 * Clear "enabled" after the memslot is deleted so that a
2727 * different vCPU doesn't get a false negative when checking
2728 * the flag out of slots_lock. No additional memory barrier is
2729 * needed as modifying memslots requires waiting other vCPUs to
2730 * drop SRCU (see above), and false positives are ok as the
2731 * flag is rechecked after acquiring slots_lock.
2732 */
2733 kvm->arch.apic_access_memslot_enabled = false;
2734
2735 /*
2736 * Mark the memslot as inhibited to prevent reallocating the
2737 * memslot during vCPU creation, e.g. if a vCPU is hotplugged.
2738 */
2739 kvm->arch.apic_access_memslot_inhibited = true;
2740 }
2741
2742 mutex_unlock(&kvm->slots_lock);
2743
2744 kvm_vcpu_srcu_read_lock(vcpu);
2745 }
2746
kvm_lapic_reset(struct kvm_vcpu * vcpu,bool init_event)2747 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2748 {
2749 struct kvm_lapic *apic = vcpu->arch.apic;
2750 u64 msr_val;
2751 int i;
2752
2753 kvm_x86_call(apicv_pre_state_restore)(vcpu);
2754
2755 if (!init_event) {
2756 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2757 if (kvm_vcpu_is_reset_bsp(vcpu))
2758 msr_val |= MSR_IA32_APICBASE_BSP;
2759
2760 /*
2761 * Use the inner helper to avoid an extra recalcuation of the
2762 * optimized APIC map if some other task has dirtied the map.
2763 * The recalculation needed for this vCPU will be done after
2764 * all APIC state has been initialized (see below).
2765 */
2766 __kvm_apic_set_base(vcpu, msr_val);
2767 }
2768
2769 if (!apic)
2770 return;
2771
2772 /* Stop the timer in case it's a reset to an active apic */
2773 hrtimer_cancel(&apic->lapic_timer.timer);
2774
2775 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2776 if (!init_event)
2777 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2778 kvm_apic_set_version(apic->vcpu);
2779
2780 for (i = 0; i < apic->nr_lvt_entries; i++)
2781 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
2782 apic_update_lvtt(apic);
2783 if (kvm_vcpu_is_reset_bsp(vcpu) &&
2784 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2785 kvm_lapic_set_reg(apic, APIC_LVT0,
2786 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2787 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2788
2789 kvm_apic_set_dfr(apic, 0xffffffffU);
2790 apic_set_spiv(apic, 0xff);
2791 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2792 if (!apic_x2apic_mode(apic))
2793 kvm_apic_set_ldr(apic, 0);
2794 kvm_lapic_set_reg(apic, APIC_ESR, 0);
2795 if (!apic_x2apic_mode(apic)) {
2796 kvm_lapic_set_reg(apic, APIC_ICR, 0);
2797 kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2798 } else {
2799 kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2800 }
2801 kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2802 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2803 for (i = 0; i < 8; i++) {
2804 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2805 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2806 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2807 }
2808 kvm_apic_update_apicv(vcpu);
2809 update_divide_count(apic);
2810 atomic_set(&apic->lapic_timer.pending, 0);
2811
2812 vcpu->arch.pv_eoi.msr_val = 0;
2813 apic_update_ppr(apic);
2814 if (apic->apicv_active) {
2815 kvm_x86_call(apicv_post_state_restore)(vcpu);
2816 kvm_x86_call(hwapic_isr_update)(vcpu, -1);
2817 }
2818
2819 vcpu->arch.apic_arb_prio = 0;
2820 vcpu->arch.apic_attention = 0;
2821
2822 kvm_recalculate_apic_map(vcpu->kvm);
2823 }
2824
2825 /*
2826 *----------------------------------------------------------------------
2827 * timer interface
2828 *----------------------------------------------------------------------
2829 */
2830
lapic_is_periodic(struct kvm_lapic * apic)2831 static bool lapic_is_periodic(struct kvm_lapic *apic)
2832 {
2833 return apic_lvtt_period(apic);
2834 }
2835
apic_has_pending_timer(struct kvm_vcpu * vcpu)2836 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2837 {
2838 struct kvm_lapic *apic = vcpu->arch.apic;
2839
2840 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2841 return atomic_read(&apic->lapic_timer.pending);
2842
2843 return 0;
2844 }
2845
kvm_apic_local_deliver(struct kvm_lapic * apic,int lvt_type)2846 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2847 {
2848 u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2849 int vector, mode, trig_mode;
2850 int r;
2851
2852 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2853 vector = reg & APIC_VECTOR_MASK;
2854 mode = reg & APIC_MODE_MASK;
2855 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2856
2857 r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL);
2858 if (r && lvt_type == APIC_LVTPC &&
2859 guest_cpuid_is_intel_compatible(apic->vcpu))
2860 kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED);
2861 return r;
2862 }
2863 return 0;
2864 }
2865
kvm_apic_nmi_wd_deliver(struct kvm_vcpu * vcpu)2866 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2867 {
2868 struct kvm_lapic *apic = vcpu->arch.apic;
2869
2870 if (apic)
2871 kvm_apic_local_deliver(apic, APIC_LVT0);
2872 }
2873
2874 static const struct kvm_io_device_ops apic_mmio_ops = {
2875 .read = apic_mmio_read,
2876 .write = apic_mmio_write,
2877 };
2878
apic_timer_fn(struct hrtimer * data)2879 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2880 {
2881 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2882 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2883
2884 apic_timer_expired(apic, true);
2885
2886 if (lapic_is_periodic(apic)) {
2887 advance_periodic_target_expiration(apic);
2888 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2889 return HRTIMER_RESTART;
2890 } else
2891 return HRTIMER_NORESTART;
2892 }
2893
kvm_create_lapic(struct kvm_vcpu * vcpu)2894 int kvm_create_lapic(struct kvm_vcpu *vcpu)
2895 {
2896 struct kvm_lapic *apic;
2897
2898 ASSERT(vcpu != NULL);
2899
2900 if (!irqchip_in_kernel(vcpu->kvm)) {
2901 static_branch_inc(&kvm_has_noapic_vcpu);
2902 return 0;
2903 }
2904
2905 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2906 if (!apic)
2907 goto nomem;
2908
2909 vcpu->arch.apic = apic;
2910
2911 if (kvm_x86_ops.alloc_apic_backing_page)
2912 apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu);
2913 else
2914 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2915 if (!apic->regs) {
2916 printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2917 vcpu->vcpu_id);
2918 goto nomem_free_apic;
2919 }
2920 apic->vcpu = vcpu;
2921
2922 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
2923
2924 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2925 HRTIMER_MODE_ABS_HARD);
2926 apic->lapic_timer.timer.function = apic_timer_fn;
2927 if (lapic_timer_advance)
2928 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2929
2930 /*
2931 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2932 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2933 */
2934 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2935 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2936 kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2937
2938 /*
2939 * Defer evaluating inhibits until the vCPU is first run, as this vCPU
2940 * will not get notified of any changes until this vCPU is visible to
2941 * other vCPUs (marked online and added to the set of vCPUs).
2942 *
2943 * Opportunistically mark APICv active as VMX in particularly is highly
2944 * unlikely to have inhibits. Ignore the current per-VM APICv state so
2945 * that vCPU creation is guaranteed to run with a deterministic value,
2946 * the request will ensure the vCPU gets the correct state before VM-Entry.
2947 */
2948 if (enable_apicv) {
2949 apic->apicv_active = true;
2950 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2951 }
2952
2953 return 0;
2954 nomem_free_apic:
2955 kfree(apic);
2956 vcpu->arch.apic = NULL;
2957 nomem:
2958 return -ENOMEM;
2959 }
2960
kvm_apic_has_interrupt(struct kvm_vcpu * vcpu)2961 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2962 {
2963 struct kvm_lapic *apic = vcpu->arch.apic;
2964 u32 ppr;
2965
2966 if (!kvm_apic_present(vcpu))
2967 return -1;
2968
2969 __apic_update_ppr(apic, &ppr);
2970 return apic_has_interrupt_for_ppr(apic, ppr);
2971 }
2972 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2973
kvm_apic_accept_pic_intr(struct kvm_vcpu * vcpu)2974 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2975 {
2976 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2977
2978 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2979 return 1;
2980 if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2981 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2982 return 1;
2983 return 0;
2984 }
2985
kvm_inject_apic_timer_irqs(struct kvm_vcpu * vcpu)2986 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2987 {
2988 struct kvm_lapic *apic = vcpu->arch.apic;
2989
2990 if (atomic_read(&apic->lapic_timer.pending) > 0) {
2991 kvm_apic_inject_pending_timer_irqs(apic);
2992 atomic_set(&apic->lapic_timer.pending, 0);
2993 }
2994 }
2995
kvm_apic_ack_interrupt(struct kvm_vcpu * vcpu,int vector)2996 void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector)
2997 {
2998 struct kvm_lapic *apic = vcpu->arch.apic;
2999 u32 ppr;
3000
3001 if (WARN_ON_ONCE(vector < 0 || !apic))
3002 return;
3003
3004 /*
3005 * We get here even with APIC virtualization enabled, if doing
3006 * nested virtualization and L1 runs with the "acknowledge interrupt
3007 * on exit" mode. Then we cannot inject the interrupt via RVI,
3008 * because the process would deliver it through the IDT.
3009 */
3010
3011 apic_clear_irr(vector, apic);
3012 if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) {
3013 /*
3014 * For auto-EOI interrupts, there might be another pending
3015 * interrupt above PPR, so check whether to raise another
3016 * KVM_REQ_EVENT.
3017 */
3018 apic_update_ppr(apic);
3019 } else {
3020 /*
3021 * For normal interrupts, PPR has been raised and there cannot
3022 * be a higher-priority pending interrupt---except if there was
3023 * a concurrent interrupt injection, but that would have
3024 * triggered KVM_REQ_EVENT already.
3025 */
3026 apic_set_isr(vector, apic);
3027 __apic_update_ppr(apic, &ppr);
3028 }
3029
3030 }
3031 EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt);
3032
kvm_apic_state_fixup(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s,bool set)3033 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
3034 struct kvm_lapic_state *s, bool set)
3035 {
3036 if (apic_x2apic_mode(vcpu->arch.apic)) {
3037 u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic);
3038 u32 *id = (u32 *)(s->regs + APIC_ID);
3039 u32 *ldr = (u32 *)(s->regs + APIC_LDR);
3040 u64 icr;
3041
3042 if (vcpu->kvm->arch.x2apic_format) {
3043 if (*id != x2apic_id)
3044 return -EINVAL;
3045 } else {
3046 /*
3047 * Ignore the userspace value when setting APIC state.
3048 * KVM's model is that the x2APIC ID is readonly, e.g.
3049 * KVM only supports delivering interrupts to KVM's
3050 * version of the x2APIC ID. However, for backwards
3051 * compatibility, don't reject attempts to set a
3052 * mismatched ID for userspace that hasn't opted into
3053 * x2apic_format.
3054 */
3055 if (set)
3056 *id = x2apic_id;
3057 else
3058 *id = x2apic_id << 24;
3059 }
3060
3061 /*
3062 * In x2APIC mode, the LDR is fixed and based on the id. And
3063 * if the ICR is _not_ split, ICR is internally a single 64-bit
3064 * register, but needs to be split to ICR+ICR2 in userspace for
3065 * backwards compatibility.
3066 */
3067 if (set)
3068 *ldr = kvm_apic_calc_x2apic_ldr(x2apic_id);
3069
3070 if (!kvm_x86_ops.x2apic_icr_is_split) {
3071 if (set) {
3072 icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) |
3073 (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32;
3074 __kvm_lapic_set_reg64(s->regs, APIC_ICR, icr);
3075 } else {
3076 icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR);
3077 __kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32);
3078 }
3079 }
3080 }
3081
3082 return 0;
3083 }
3084
kvm_apic_get_state(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3085 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
3086 {
3087 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
3088
3089 /*
3090 * Get calculated timer current count for remaining timer period (if
3091 * any) and store it in the returned register set.
3092 */
3093 __kvm_lapic_set_reg(s->regs, APIC_TMCCT,
3094 __apic_read(vcpu->arch.apic, APIC_TMCCT));
3095
3096 return kvm_apic_state_fixup(vcpu, s, false);
3097 }
3098
kvm_apic_set_state(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3099 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
3100 {
3101 struct kvm_lapic *apic = vcpu->arch.apic;
3102 int r;
3103
3104 kvm_x86_call(apicv_pre_state_restore)(vcpu);
3105
3106 /* set SPIV separately to get count of SW disabled APICs right */
3107 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
3108
3109 r = kvm_apic_state_fixup(vcpu, s, true);
3110 if (r) {
3111 kvm_recalculate_apic_map(vcpu->kvm);
3112 return r;
3113 }
3114 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
3115
3116 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
3117 kvm_recalculate_apic_map(vcpu->kvm);
3118 kvm_apic_set_version(vcpu);
3119
3120 apic_update_ppr(apic);
3121 cancel_apic_timer(apic);
3122 apic->lapic_timer.expired_tscdeadline = 0;
3123 apic_update_lvtt(apic);
3124 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
3125 update_divide_count(apic);
3126 __start_apic_timer(apic, APIC_TMCCT);
3127 kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
3128 kvm_apic_update_apicv(vcpu);
3129 if (apic->apicv_active) {
3130 kvm_x86_call(apicv_post_state_restore)(vcpu);
3131 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic));
3132 }
3133 kvm_make_request(KVM_REQ_EVENT, vcpu);
3134 if (ioapic_in_kernel(vcpu->kvm))
3135 kvm_rtc_eoi_tracking_restore_one(vcpu);
3136
3137 vcpu->arch.apic_arb_prio = 0;
3138
3139 return 0;
3140 }
3141
__kvm_migrate_apic_timer(struct kvm_vcpu * vcpu)3142 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
3143 {
3144 struct hrtimer *timer;
3145
3146 if (!lapic_in_kernel(vcpu) ||
3147 kvm_can_post_timer_interrupt(vcpu))
3148 return;
3149
3150 timer = &vcpu->arch.apic->lapic_timer.timer;
3151 if (hrtimer_cancel(timer))
3152 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
3153 }
3154
3155 /*
3156 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
3157 *
3158 * Detect whether guest triggered PV EOI since the
3159 * last entry. If yes, set EOI on guests's behalf.
3160 * Clear PV EOI in guest memory in any case.
3161 */
apic_sync_pv_eoi_from_guest(struct kvm_vcpu * vcpu,struct kvm_lapic * apic)3162 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
3163 struct kvm_lapic *apic)
3164 {
3165 int vector;
3166 /*
3167 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
3168 * and KVM_PV_EOI_ENABLED in guest memory as follows:
3169 *
3170 * KVM_APIC_PV_EOI_PENDING is unset:
3171 * -> host disabled PV EOI.
3172 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
3173 * -> host enabled PV EOI, guest did not execute EOI yet.
3174 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
3175 * -> host enabled PV EOI, guest executed EOI.
3176 */
3177 BUG_ON(!pv_eoi_enabled(vcpu));
3178
3179 if (pv_eoi_test_and_clr_pending(vcpu))
3180 return;
3181 vector = apic_set_eoi(apic);
3182 trace_kvm_pv_eoi(apic, vector);
3183 }
3184
kvm_lapic_sync_from_vapic(struct kvm_vcpu * vcpu)3185 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
3186 {
3187 u32 data;
3188
3189 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
3190 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
3191
3192 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3193 return;
3194
3195 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3196 sizeof(u32)))
3197 return;
3198
3199 apic_set_tpr(vcpu->arch.apic, data & 0xff);
3200 }
3201
3202 /*
3203 * apic_sync_pv_eoi_to_guest - called before vmentry
3204 *
3205 * Detect whether it's safe to enable PV EOI and
3206 * if yes do so.
3207 */
apic_sync_pv_eoi_to_guest(struct kvm_vcpu * vcpu,struct kvm_lapic * apic)3208 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
3209 struct kvm_lapic *apic)
3210 {
3211 if (!pv_eoi_enabled(vcpu) ||
3212 /* IRR set or many bits in ISR: could be nested. */
3213 apic->irr_pending ||
3214 /* Cache not set: could be safe but we don't bother. */
3215 apic->highest_isr_cache == -1 ||
3216 /* Need EOI to update ioapic. */
3217 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
3218 /*
3219 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
3220 * so we need not do anything here.
3221 */
3222 return;
3223 }
3224
3225 pv_eoi_set_pending(apic->vcpu);
3226 }
3227
kvm_lapic_sync_to_vapic(struct kvm_vcpu * vcpu)3228 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
3229 {
3230 u32 data, tpr;
3231 int max_irr, max_isr;
3232 struct kvm_lapic *apic = vcpu->arch.apic;
3233
3234 apic_sync_pv_eoi_to_guest(vcpu, apic);
3235
3236 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3237 return;
3238
3239 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
3240 max_irr = apic_find_highest_irr(apic);
3241 if (max_irr < 0)
3242 max_irr = 0;
3243 max_isr = apic_find_highest_isr(apic);
3244 if (max_isr < 0)
3245 max_isr = 0;
3246 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
3247
3248 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3249 sizeof(u32));
3250 }
3251
kvm_lapic_set_vapic_addr(struct kvm_vcpu * vcpu,gpa_t vapic_addr)3252 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
3253 {
3254 if (vapic_addr) {
3255 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
3256 &vcpu->arch.apic->vapic_cache,
3257 vapic_addr, sizeof(u32)))
3258 return -EINVAL;
3259 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3260 } else {
3261 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3262 }
3263
3264 vcpu->arch.apic->vapic_addr = vapic_addr;
3265 return 0;
3266 }
3267
kvm_lapic_msr_read(struct kvm_lapic * apic,u32 reg,u64 * data)3268 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
3269 {
3270 u32 low;
3271
3272 if (reg == APIC_ICR) {
3273 *data = kvm_x2apic_icr_read(apic);
3274 return 0;
3275 }
3276
3277 if (kvm_lapic_reg_read(apic, reg, 4, &low))
3278 return 1;
3279
3280 *data = low;
3281
3282 return 0;
3283 }
3284
kvm_lapic_msr_write(struct kvm_lapic * apic,u32 reg,u64 data)3285 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
3286 {
3287 /*
3288 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
3289 * can be written as such, all other registers remain accessible only
3290 * through 32-bit reads/writes.
3291 */
3292 if (reg == APIC_ICR)
3293 return kvm_x2apic_icr_write(apic, data);
3294
3295 /* Bits 63:32 are reserved in all other registers. */
3296 if (data >> 32)
3297 return 1;
3298
3299 return kvm_lapic_reg_write(apic, reg, (u32)data);
3300 }
3301
kvm_x2apic_msr_write(struct kvm_vcpu * vcpu,u32 msr,u64 data)3302 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
3303 {
3304 struct kvm_lapic *apic = vcpu->arch.apic;
3305 u32 reg = (msr - APIC_BASE_MSR) << 4;
3306
3307 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3308 return 1;
3309
3310 return kvm_lapic_msr_write(apic, reg, data);
3311 }
3312
kvm_x2apic_msr_read(struct kvm_vcpu * vcpu,u32 msr,u64 * data)3313 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
3314 {
3315 struct kvm_lapic *apic = vcpu->arch.apic;
3316 u32 reg = (msr - APIC_BASE_MSR) << 4;
3317
3318 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3319 return 1;
3320
3321 return kvm_lapic_msr_read(apic, reg, data);
3322 }
3323
kvm_hv_vapic_msr_write(struct kvm_vcpu * vcpu,u32 reg,u64 data)3324 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
3325 {
3326 if (!lapic_in_kernel(vcpu))
3327 return 1;
3328
3329 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
3330 }
3331
kvm_hv_vapic_msr_read(struct kvm_vcpu * vcpu,u32 reg,u64 * data)3332 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
3333 {
3334 if (!lapic_in_kernel(vcpu))
3335 return 1;
3336
3337 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
3338 }
3339
kvm_lapic_set_pv_eoi(struct kvm_vcpu * vcpu,u64 data,unsigned long len)3340 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
3341 {
3342 u64 addr = data & ~KVM_MSR_ENABLED;
3343 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
3344 unsigned long new_len;
3345 int ret;
3346
3347 if (!IS_ALIGNED(addr, 4))
3348 return 1;
3349
3350 if (data & KVM_MSR_ENABLED) {
3351 if (addr == ghc->gpa && len <= ghc->len)
3352 new_len = ghc->len;
3353 else
3354 new_len = len;
3355
3356 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
3357 if (ret)
3358 return ret;
3359 }
3360
3361 vcpu->arch.pv_eoi.msr_val = data;
3362
3363 return 0;
3364 }
3365
kvm_apic_accept_events(struct kvm_vcpu * vcpu)3366 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
3367 {
3368 struct kvm_lapic *apic = vcpu->arch.apic;
3369 u8 sipi_vector;
3370 int r;
3371
3372 if (!kvm_apic_has_pending_init_or_sipi(vcpu))
3373 return 0;
3374
3375 if (is_guest_mode(vcpu)) {
3376 r = kvm_check_nested_events(vcpu);
3377 if (r < 0)
3378 return r == -EBUSY ? 0 : r;
3379 /*
3380 * Continue processing INIT/SIPI even if a nested VM-Exit
3381 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3382 * are blocked as a result of transitioning to VMX root mode.
3383 */
3384 }
3385
3386 /*
3387 * INITs are blocked while CPU is in specific states (SMM, VMX root
3388 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3389 * wait-for-SIPI (WFS).
3390 */
3391 if (!kvm_apic_init_sipi_allowed(vcpu)) {
3392 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
3393 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3394 return 0;
3395 }
3396
3397 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
3398 kvm_vcpu_reset(vcpu, true);
3399 if (kvm_vcpu_is_bsp(apic->vcpu))
3400 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3401 else
3402 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3403 }
3404 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3405 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3406 /* evaluate pending_events before reading the vector */
3407 smp_rmb();
3408 sipi_vector = apic->sipi_vector;
3409 kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu,
3410 sipi_vector);
3411 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3412 }
3413 }
3414 return 0;
3415 }
3416
kvm_lapic_exit(void)3417 void kvm_lapic_exit(void)
3418 {
3419 static_key_deferred_flush(&apic_hw_disabled);
3420 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3421 static_key_deferred_flush(&apic_sw_disabled);
3422 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3423 }
3424