1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ASM_KVM_CACHE_REGS_H
3 #define ASM_KVM_CACHE_REGS_H
4
5 #include <linux/kvm_host.h>
6
7 #define KVM_POSSIBLE_CR0_GUEST_BITS (X86_CR0_TS | X86_CR0_WP)
8 #define KVM_POSSIBLE_CR4_GUEST_BITS \
9 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
10 | X86_CR4_OSXMMEXCPT | X86_CR4_PGE | X86_CR4_TSD | X86_CR4_FSGSBASE)
11
12 #define X86_CR0_PDPTR_BITS (X86_CR0_CD | X86_CR0_NW | X86_CR0_PG)
13 #define X86_CR4_TLBFLUSH_BITS (X86_CR4_PGE | X86_CR4_PCIDE | X86_CR4_PAE | X86_CR4_SMEP)
14 #define X86_CR4_PDPTR_BITS (X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_SMEP)
15
16 static_assert(!(KVM_POSSIBLE_CR0_GUEST_BITS & X86_CR0_PDPTR_BITS));
17
18 #define BUILD_KVM_GPR_ACCESSORS(lname, uname) \
19 static __always_inline unsigned long kvm_##lname##_read(struct kvm_vcpu *vcpu)\
20 { \
21 return vcpu->arch.regs[VCPU_REGS_##uname]; \
22 } \
23 static __always_inline void kvm_##lname##_write(struct kvm_vcpu *vcpu, \
24 unsigned long val) \
25 { \
26 vcpu->arch.regs[VCPU_REGS_##uname] = val; \
27 }
BUILD_KVM_GPR_ACCESSORS(rax,RAX)28 BUILD_KVM_GPR_ACCESSORS(rax, RAX)
29 BUILD_KVM_GPR_ACCESSORS(rbx, RBX)
30 BUILD_KVM_GPR_ACCESSORS(rcx, RCX)
31 BUILD_KVM_GPR_ACCESSORS(rdx, RDX)
32 BUILD_KVM_GPR_ACCESSORS(rbp, RBP)
33 BUILD_KVM_GPR_ACCESSORS(rsi, RSI)
34 BUILD_KVM_GPR_ACCESSORS(rdi, RDI)
35 #ifdef CONFIG_X86_64
36 BUILD_KVM_GPR_ACCESSORS(r8, R8)
37 BUILD_KVM_GPR_ACCESSORS(r9, R9)
38 BUILD_KVM_GPR_ACCESSORS(r10, R10)
39 BUILD_KVM_GPR_ACCESSORS(r11, R11)
40 BUILD_KVM_GPR_ACCESSORS(r12, R12)
41 BUILD_KVM_GPR_ACCESSORS(r13, R13)
42 BUILD_KVM_GPR_ACCESSORS(r14, R14)
43 BUILD_KVM_GPR_ACCESSORS(r15, R15)
44 #endif
45
46 /*
47 * Using the register cache from interrupt context is generally not allowed, as
48 * caching a register and marking it available/dirty can't be done atomically,
49 * i.e. accesses from interrupt context may clobber state or read stale data if
50 * the vCPU task is in the process of updating the cache. The exception is if
51 * KVM is handling a PMI IRQ/NMI VM-Exit, as that bound code sequence doesn't
52 * touch the cache, it runs after the cache is reset (post VM-Exit), and PMIs
53 * need to access several registers that are cacheable.
54 */
55 #define kvm_assert_register_caching_allowed(vcpu) \
56 lockdep_assert_once(in_task() || kvm_arch_pmi_in_guest(vcpu))
57
58 /*
59 * avail dirty
60 * 0 0 register in VMCS/VMCB
61 * 0 1 *INVALID*
62 * 1 0 register in vcpu->arch
63 * 1 1 register in vcpu->arch, needs to be stored back
64 */
65 static inline bool kvm_register_is_available(struct kvm_vcpu *vcpu,
66 enum kvm_reg reg)
67 {
68 kvm_assert_register_caching_allowed(vcpu);
69 return test_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
70 }
71
kvm_register_is_dirty(struct kvm_vcpu * vcpu,enum kvm_reg reg)72 static inline bool kvm_register_is_dirty(struct kvm_vcpu *vcpu,
73 enum kvm_reg reg)
74 {
75 kvm_assert_register_caching_allowed(vcpu);
76 return test_bit(reg, (unsigned long *)&vcpu->arch.regs_dirty);
77 }
78
kvm_register_mark_available(struct kvm_vcpu * vcpu,enum kvm_reg reg)79 static inline void kvm_register_mark_available(struct kvm_vcpu *vcpu,
80 enum kvm_reg reg)
81 {
82 kvm_assert_register_caching_allowed(vcpu);
83 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
84 }
85
kvm_register_mark_dirty(struct kvm_vcpu * vcpu,enum kvm_reg reg)86 static inline void kvm_register_mark_dirty(struct kvm_vcpu *vcpu,
87 enum kvm_reg reg)
88 {
89 kvm_assert_register_caching_allowed(vcpu);
90 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
91 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_dirty);
92 }
93
94 /*
95 * kvm_register_test_and_mark_available() is a special snowflake that uses an
96 * arch bitop directly to avoid the explicit instrumentation that comes with
97 * the generic bitops. This allows code that cannot be instrumented (noinstr
98 * functions), e.g. the low level VM-Enter/VM-Exit paths, to cache registers.
99 */
kvm_register_test_and_mark_available(struct kvm_vcpu * vcpu,enum kvm_reg reg)100 static __always_inline bool kvm_register_test_and_mark_available(struct kvm_vcpu *vcpu,
101 enum kvm_reg reg)
102 {
103 kvm_assert_register_caching_allowed(vcpu);
104 return arch___test_and_set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
105 }
106
107 /*
108 * The "raw" register helpers are only for cases where the full 64 bits of a
109 * register are read/written irrespective of current vCPU mode. In other words,
110 * odds are good you shouldn't be using the raw variants.
111 */
kvm_register_read_raw(struct kvm_vcpu * vcpu,int reg)112 static inline unsigned long kvm_register_read_raw(struct kvm_vcpu *vcpu, int reg)
113 {
114 if (WARN_ON_ONCE((unsigned int)reg >= NR_VCPU_REGS))
115 return 0;
116
117 if (!kvm_register_is_available(vcpu, reg))
118 kvm_x86_call(cache_reg)(vcpu, reg);
119
120 return vcpu->arch.regs[reg];
121 }
122
kvm_register_write_raw(struct kvm_vcpu * vcpu,int reg,unsigned long val)123 static inline void kvm_register_write_raw(struct kvm_vcpu *vcpu, int reg,
124 unsigned long val)
125 {
126 if (WARN_ON_ONCE((unsigned int)reg >= NR_VCPU_REGS))
127 return;
128
129 vcpu->arch.regs[reg] = val;
130 kvm_register_mark_dirty(vcpu, reg);
131 }
132
kvm_rip_read(struct kvm_vcpu * vcpu)133 static inline unsigned long kvm_rip_read(struct kvm_vcpu *vcpu)
134 {
135 return kvm_register_read_raw(vcpu, VCPU_REGS_RIP);
136 }
137
kvm_rip_write(struct kvm_vcpu * vcpu,unsigned long val)138 static inline void kvm_rip_write(struct kvm_vcpu *vcpu, unsigned long val)
139 {
140 kvm_register_write_raw(vcpu, VCPU_REGS_RIP, val);
141 }
142
kvm_rsp_read(struct kvm_vcpu * vcpu)143 static inline unsigned long kvm_rsp_read(struct kvm_vcpu *vcpu)
144 {
145 return kvm_register_read_raw(vcpu, VCPU_REGS_RSP);
146 }
147
kvm_rsp_write(struct kvm_vcpu * vcpu,unsigned long val)148 static inline void kvm_rsp_write(struct kvm_vcpu *vcpu, unsigned long val)
149 {
150 kvm_register_write_raw(vcpu, VCPU_REGS_RSP, val);
151 }
152
kvm_pdptr_read(struct kvm_vcpu * vcpu,int index)153 static inline u64 kvm_pdptr_read(struct kvm_vcpu *vcpu, int index)
154 {
155 might_sleep(); /* on svm */
156
157 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
158 kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_PDPTR);
159
160 return vcpu->arch.walk_mmu->pdptrs[index];
161 }
162
kvm_pdptr_write(struct kvm_vcpu * vcpu,int index,u64 value)163 static inline void kvm_pdptr_write(struct kvm_vcpu *vcpu, int index, u64 value)
164 {
165 vcpu->arch.walk_mmu->pdptrs[index] = value;
166 }
167
kvm_read_cr0_bits(struct kvm_vcpu * vcpu,ulong mask)168 static inline ulong kvm_read_cr0_bits(struct kvm_vcpu *vcpu, ulong mask)
169 {
170 ulong tmask = mask & KVM_POSSIBLE_CR0_GUEST_BITS;
171 if ((tmask & vcpu->arch.cr0_guest_owned_bits) &&
172 !kvm_register_is_available(vcpu, VCPU_EXREG_CR0))
173 kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_CR0);
174 return vcpu->arch.cr0 & mask;
175 }
176
kvm_is_cr0_bit_set(struct kvm_vcpu * vcpu,unsigned long cr0_bit)177 static __always_inline bool kvm_is_cr0_bit_set(struct kvm_vcpu *vcpu,
178 unsigned long cr0_bit)
179 {
180 BUILD_BUG_ON(!is_power_of_2(cr0_bit));
181
182 return !!kvm_read_cr0_bits(vcpu, cr0_bit);
183 }
184
kvm_read_cr0(struct kvm_vcpu * vcpu)185 static inline ulong kvm_read_cr0(struct kvm_vcpu *vcpu)
186 {
187 return kvm_read_cr0_bits(vcpu, ~0UL);
188 }
189
kvm_read_cr4_bits(struct kvm_vcpu * vcpu,ulong mask)190 static inline ulong kvm_read_cr4_bits(struct kvm_vcpu *vcpu, ulong mask)
191 {
192 ulong tmask = mask & KVM_POSSIBLE_CR4_GUEST_BITS;
193 if ((tmask & vcpu->arch.cr4_guest_owned_bits) &&
194 !kvm_register_is_available(vcpu, VCPU_EXREG_CR4))
195 kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_CR4);
196 return vcpu->arch.cr4 & mask;
197 }
198
kvm_is_cr4_bit_set(struct kvm_vcpu * vcpu,unsigned long cr4_bit)199 static __always_inline bool kvm_is_cr4_bit_set(struct kvm_vcpu *vcpu,
200 unsigned long cr4_bit)
201 {
202 BUILD_BUG_ON(!is_power_of_2(cr4_bit));
203
204 return !!kvm_read_cr4_bits(vcpu, cr4_bit);
205 }
206
kvm_read_cr3(struct kvm_vcpu * vcpu)207 static inline ulong kvm_read_cr3(struct kvm_vcpu *vcpu)
208 {
209 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
210 kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_CR3);
211 return vcpu->arch.cr3;
212 }
213
kvm_read_cr4(struct kvm_vcpu * vcpu)214 static inline ulong kvm_read_cr4(struct kvm_vcpu *vcpu)
215 {
216 return kvm_read_cr4_bits(vcpu, ~0UL);
217 }
218
kvm_read_edx_eax(struct kvm_vcpu * vcpu)219 static inline u64 kvm_read_edx_eax(struct kvm_vcpu *vcpu)
220 {
221 return (kvm_rax_read(vcpu) & -1u)
222 | ((u64)(kvm_rdx_read(vcpu) & -1u) << 32);
223 }
224
enter_guest_mode(struct kvm_vcpu * vcpu)225 static inline void enter_guest_mode(struct kvm_vcpu *vcpu)
226 {
227 vcpu->arch.hflags |= HF_GUEST_MASK;
228 vcpu->stat.guest_mode = 1;
229 }
230
leave_guest_mode(struct kvm_vcpu * vcpu)231 static inline void leave_guest_mode(struct kvm_vcpu *vcpu)
232 {
233 vcpu->arch.hflags &= ~HF_GUEST_MASK;
234
235 if (vcpu->arch.load_eoi_exitmap_pending) {
236 vcpu->arch.load_eoi_exitmap_pending = false;
237 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
238 }
239
240 vcpu->stat.guest_mode = 0;
241 }
242
is_guest_mode(struct kvm_vcpu * vcpu)243 static inline bool is_guest_mode(struct kvm_vcpu *vcpu)
244 {
245 return vcpu->arch.hflags & HF_GUEST_MASK;
246 }
247
248 #endif
249