1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * User-space Probes (UProbes) for x86
4 *
5 * Copyright (C) IBM Corporation, 2008-2011
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 */
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/ptrace.h>
13 #include <linux/uprobes.h>
14 #include <linux/uaccess.h>
15 #include <linux/syscalls.h>
16
17 #include <linux/kdebug.h>
18 #include <asm/processor.h>
19 #include <asm/insn.h>
20 #include <asm/mmu_context.h>
21
22 /* Post-execution fixups. */
23
24 /* Adjust IP back to vicinity of actual insn */
25 #define UPROBE_FIX_IP 0x01
26
27 /* Adjust the return address of a call insn */
28 #define UPROBE_FIX_CALL 0x02
29
30 /* Instruction will modify TF, don't change it */
31 #define UPROBE_FIX_SETF 0x04
32
33 #define UPROBE_FIX_RIP_SI 0x08
34 #define UPROBE_FIX_RIP_DI 0x10
35 #define UPROBE_FIX_RIP_BX 0x20
36 #define UPROBE_FIX_RIP_MASK \
37 (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
38
39 #define UPROBE_TRAP_NR UINT_MAX
40
41 /* Adaptations for mhiramat x86 decoder v14. */
42 #define OPCODE1(insn) ((insn)->opcode.bytes[0])
43 #define OPCODE2(insn) ((insn)->opcode.bytes[1])
44 #define OPCODE3(insn) ((insn)->opcode.bytes[2])
45 #define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
46
47 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
48 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
49 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
50 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
51 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
52 << (row % 32))
53
54 /*
55 * Good-instruction tables for 32-bit apps. This is non-const and volatile
56 * to keep gcc from statically optimizing it out, as variable_test_bit makes
57 * some versions of gcc to think only *(unsigned long*) is used.
58 *
59 * Opcodes we'll probably never support:
60 * 6c-6f - ins,outs. SEGVs if used in userspace
61 * e4-e7 - in,out imm. SEGVs if used in userspace
62 * ec-ef - in,out acc. SEGVs if used in userspace
63 * cc - int3. SIGTRAP if used in userspace
64 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
65 * (why we support bound (62) then? it's similar, and similarly unused...)
66 * f1 - int1. SIGTRAP if used in userspace
67 * f4 - hlt. SEGVs if used in userspace
68 * fa - cli. SEGVs if used in userspace
69 * fb - sti. SEGVs if used in userspace
70 *
71 * Opcodes which need some work to be supported:
72 * 07,17,1f - pop es/ss/ds
73 * Normally not used in userspace, but would execute if used.
74 * Can cause GP or stack exception if tries to load wrong segment descriptor.
75 * We hesitate to run them under single step since kernel's handling
76 * of userspace single-stepping (TF flag) is fragile.
77 * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
78 * on the same grounds that they are never used.
79 * cd - int N.
80 * Used by userspace for "int 80" syscall entry. (Other "int N"
81 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
82 * Not supported since kernel's handling of userspace single-stepping
83 * (TF flag) is fragile.
84 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
85 */
86 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
87 static volatile u32 good_insns_32[256 / 32] = {
88 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
89 /* ---------------------------------------------- */
90 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
91 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
92 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
93 W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
94 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
95 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
96 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
97 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
98 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
99 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
100 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
101 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
102 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
103 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
104 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
105 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
106 /* ---------------------------------------------- */
107 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
108 };
109 #else
110 #define good_insns_32 NULL
111 #endif
112
113 /* Good-instruction tables for 64-bit apps.
114 *
115 * Genuinely invalid opcodes:
116 * 06,07 - formerly push/pop es
117 * 0e - formerly push cs
118 * 16,17 - formerly push/pop ss
119 * 1e,1f - formerly push/pop ds
120 * 27,2f,37,3f - formerly daa/das/aaa/aas
121 * 60,61 - formerly pusha/popa
122 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
123 * 82 - formerly redundant encoding of Group1
124 * 9a - formerly call seg:ofs
125 * ce - formerly into
126 * d4,d5 - formerly aam/aad
127 * d6 - formerly undocumented salc
128 * ea - formerly jmp seg:ofs
129 *
130 * Opcodes we'll probably never support:
131 * 6c-6f - ins,outs. SEGVs if used in userspace
132 * e4-e7 - in,out imm. SEGVs if used in userspace
133 * ec-ef - in,out acc. SEGVs if used in userspace
134 * cc - int3. SIGTRAP if used in userspace
135 * f1 - int1. SIGTRAP if used in userspace
136 * f4 - hlt. SEGVs if used in userspace
137 * fa - cli. SEGVs if used in userspace
138 * fb - sti. SEGVs if used in userspace
139 *
140 * Opcodes which need some work to be supported:
141 * cd - int N.
142 * Used by userspace for "int 80" syscall entry. (Other "int N"
143 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
144 * Not supported since kernel's handling of userspace single-stepping
145 * (TF flag) is fragile.
146 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
147 */
148 #if defined(CONFIG_X86_64)
149 static volatile u32 good_insns_64[256 / 32] = {
150 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
151 /* ---------------------------------------------- */
152 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
153 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
154 W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
155 W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
156 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
157 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
158 W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
159 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
160 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
161 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
162 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
163 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
164 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
165 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
166 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
167 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
168 /* ---------------------------------------------- */
169 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
170 };
171 #else
172 #define good_insns_64 NULL
173 #endif
174
175 /* Using this for both 64-bit and 32-bit apps.
176 * Opcodes we don't support:
177 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
178 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
179 * Also encodes tons of other system insns if mod=11.
180 * Some are in fact non-system: xend, xtest, rdtscp, maybe more
181 * 0f 05 - syscall
182 * 0f 06 - clts (CPL0 insn)
183 * 0f 07 - sysret
184 * 0f 08 - invd (CPL0 insn)
185 * 0f 09 - wbinvd (CPL0 insn)
186 * 0f 0b - ud2
187 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
188 * 0f 34 - sysenter
189 * 0f 35 - sysexit
190 * 0f 37 - getsec
191 * 0f 78 - vmread (Intel VMX. CPL0 insn)
192 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
193 * Note: with prefixes, these two opcodes are
194 * extrq/insertq/AVX512 convert vector ops.
195 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
196 * {rd,wr}{fs,gs}base,{s,l,m}fence.
197 * Why? They are all user-executable.
198 */
199 static volatile u32 good_2byte_insns[256 / 32] = {
200 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
201 /* ---------------------------------------------- */
202 W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
203 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
204 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
205 W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
206 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
207 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
208 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
209 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
210 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
211 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
212 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
213 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
214 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
215 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
216 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
217 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */
218 /* ---------------------------------------------- */
219 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
220 };
221 #undef W
222
223 /*
224 * opcodes we may need to refine support for:
225 *
226 * 0f - 2-byte instructions: For many of these instructions, the validity
227 * depends on the prefix and/or the reg field. On such instructions, we
228 * just consider the opcode combination valid if it corresponds to any
229 * valid instruction.
230 *
231 * 8f - Group 1 - only reg = 0 is OK
232 * c6-c7 - Group 11 - only reg = 0 is OK
233 * d9-df - fpu insns with some illegal encodings
234 * f2, f3 - repnz, repz prefixes. These are also the first byte for
235 * certain floating-point instructions, such as addsd.
236 *
237 * fe - Group 4 - only reg = 0 or 1 is OK
238 * ff - Group 5 - only reg = 0-6 is OK
239 *
240 * others -- Do we need to support these?
241 *
242 * 0f - (floating-point?) prefetch instructions
243 * 07, 17, 1f - pop es, pop ss, pop ds
244 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
245 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
246 * 67 - addr16 prefix
247 * ce - into
248 * f0 - lock prefix
249 */
250
251 /*
252 * TODO:
253 * - Where necessary, examine the modrm byte and allow only valid instructions
254 * in the different Groups and fpu instructions.
255 */
256
is_prefix_bad(struct insn * insn)257 static bool is_prefix_bad(struct insn *insn)
258 {
259 insn_byte_t p;
260 int i;
261
262 for_each_insn_prefix(insn, i, p) {
263 insn_attr_t attr;
264
265 attr = inat_get_opcode_attribute(p);
266 switch (attr) {
267 case INAT_MAKE_PREFIX(INAT_PFX_ES):
268 case INAT_MAKE_PREFIX(INAT_PFX_CS):
269 case INAT_MAKE_PREFIX(INAT_PFX_DS):
270 case INAT_MAKE_PREFIX(INAT_PFX_SS):
271 case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
272 return true;
273 }
274 }
275 return false;
276 }
277
uprobe_init_insn(struct arch_uprobe * auprobe,struct insn * insn,bool x86_64)278 static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
279 {
280 enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32;
281 u32 volatile *good_insns;
282 int ret;
283
284 ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m);
285 if (ret < 0)
286 return -ENOEXEC;
287
288 if (is_prefix_bad(insn))
289 return -ENOTSUPP;
290
291 /* We should not singlestep on the exception masking instructions */
292 if (insn_masking_exception(insn))
293 return -ENOTSUPP;
294
295 if (x86_64)
296 good_insns = good_insns_64;
297 else
298 good_insns = good_insns_32;
299
300 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
301 return 0;
302
303 if (insn->opcode.nbytes == 2) {
304 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
305 return 0;
306 }
307
308 return -ENOTSUPP;
309 }
310
311 #ifdef CONFIG_X86_64
312
313 asm (
314 ".pushsection .rodata\n"
315 ".global uretprobe_trampoline_entry\n"
316 "uretprobe_trampoline_entry:\n"
317 "pushq %rax\n"
318 "pushq %rcx\n"
319 "pushq %r11\n"
320 "movq $" __stringify(__NR_uretprobe) ", %rax\n"
321 "syscall\n"
322 ".global uretprobe_syscall_check\n"
323 "uretprobe_syscall_check:\n"
324 "popq %r11\n"
325 "popq %rcx\n"
326
327 /* The uretprobe syscall replaces stored %rax value with final
328 * return address, so we don't restore %rax in here and just
329 * call ret.
330 */
331 "retq\n"
332 ".global uretprobe_trampoline_end\n"
333 "uretprobe_trampoline_end:\n"
334 ".popsection\n"
335 );
336
337 extern u8 uretprobe_trampoline_entry[];
338 extern u8 uretprobe_trampoline_end[];
339 extern u8 uretprobe_syscall_check[];
340
arch_uprobe_trampoline(unsigned long * psize)341 void *arch_uprobe_trampoline(unsigned long *psize)
342 {
343 static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
344 struct pt_regs *regs = task_pt_regs(current);
345
346 /*
347 * At the moment the uretprobe syscall trampoline is supported
348 * only for native 64-bit process, the compat process still uses
349 * standard breakpoint.
350 */
351 if (user_64bit_mode(regs)) {
352 *psize = uretprobe_trampoline_end - uretprobe_trampoline_entry;
353 return uretprobe_trampoline_entry;
354 }
355
356 *psize = UPROBE_SWBP_INSN_SIZE;
357 return &insn;
358 }
359
trampoline_check_ip(unsigned long tramp)360 static unsigned long trampoline_check_ip(unsigned long tramp)
361 {
362 return tramp + (uretprobe_syscall_check - uretprobe_trampoline_entry);
363 }
364
SYSCALL_DEFINE0(uretprobe)365 SYSCALL_DEFINE0(uretprobe)
366 {
367 struct pt_regs *regs = task_pt_regs(current);
368 unsigned long err, ip, sp, r11_cx_ax[3], tramp;
369
370 /* If there's no trampoline, we are called from wrong place. */
371 tramp = uprobe_get_trampoline_vaddr();
372 if (unlikely(tramp == UPROBE_NO_TRAMPOLINE_VADDR))
373 goto sigill;
374
375 /* Make sure the ip matches the only allowed sys_uretprobe caller. */
376 if (unlikely(regs->ip != trampoline_check_ip(tramp)))
377 goto sigill;
378
379 err = copy_from_user(r11_cx_ax, (void __user *)regs->sp, sizeof(r11_cx_ax));
380 if (err)
381 goto sigill;
382
383 /* expose the "right" values of r11/cx/ax/sp to uprobe_consumer/s */
384 regs->r11 = r11_cx_ax[0];
385 regs->cx = r11_cx_ax[1];
386 regs->ax = r11_cx_ax[2];
387 regs->sp += sizeof(r11_cx_ax);
388 regs->orig_ax = -1;
389
390 ip = regs->ip;
391 sp = regs->sp;
392
393 uprobe_handle_trampoline(regs);
394
395 /*
396 * Some of the uprobe consumers has changed sp, we can do nothing,
397 * just return via iret.
398 * .. or shadow stack is enabled, in which case we need to skip
399 * return through the user space stack address.
400 */
401 if (regs->sp != sp || shstk_is_enabled())
402 return regs->ax;
403 regs->sp -= sizeof(r11_cx_ax);
404
405 /* for the case uprobe_consumer has changed r11/cx */
406 r11_cx_ax[0] = regs->r11;
407 r11_cx_ax[1] = regs->cx;
408
409 /*
410 * ax register is passed through as return value, so we can use
411 * its space on stack for ip value and jump to it through the
412 * trampoline's ret instruction
413 */
414 r11_cx_ax[2] = regs->ip;
415 regs->ip = ip;
416
417 err = copy_to_user((void __user *)regs->sp, r11_cx_ax, sizeof(r11_cx_ax));
418 if (err)
419 goto sigill;
420
421 /* ensure sysret, see do_syscall_64() */
422 regs->r11 = regs->flags;
423 regs->cx = regs->ip;
424
425 return regs->ax;
426
427 sigill:
428 force_sig(SIGILL);
429 return -1;
430 }
431
432 /*
433 * If arch_uprobe->insn doesn't use rip-relative addressing, return
434 * immediately. Otherwise, rewrite the instruction so that it accesses
435 * its memory operand indirectly through a scratch register. Set
436 * defparam->fixups accordingly. (The contents of the scratch register
437 * will be saved before we single-step the modified instruction,
438 * and restored afterward).
439 *
440 * We do this because a rip-relative instruction can access only a
441 * relatively small area (+/- 2 GB from the instruction), and the XOL
442 * area typically lies beyond that area. At least for instructions
443 * that store to memory, we can't execute the original instruction
444 * and "fix things up" later, because the misdirected store could be
445 * disastrous.
446 *
447 * Some useful facts about rip-relative instructions:
448 *
449 * - There's always a modrm byte with bit layout "00 reg 101".
450 * - There's never a SIB byte.
451 * - The displacement is always 4 bytes.
452 * - REX.B=1 bit in REX prefix, which normally extends r/m field,
453 * has no effect on rip-relative mode. It doesn't make modrm byte
454 * with r/m=101 refer to register 1101 = R13.
455 */
riprel_analyze(struct arch_uprobe * auprobe,struct insn * insn)456 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
457 {
458 u8 *cursor;
459 u8 reg;
460 u8 reg2;
461
462 if (!insn_rip_relative(insn))
463 return;
464
465 /*
466 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
467 * Clear REX.b bit (extension of MODRM.rm field):
468 * we want to encode low numbered reg, not r8+.
469 */
470 if (insn->rex_prefix.nbytes) {
471 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
472 /* REX byte has 0100wrxb layout, clearing REX.b bit */
473 *cursor &= 0xfe;
474 }
475 /*
476 * Similar treatment for VEX3/EVEX prefix.
477 * TODO: add XOP treatment when insn decoder supports them
478 */
479 if (insn->vex_prefix.nbytes >= 3) {
480 /*
481 * vex2: c5 rvvvvLpp (has no b bit)
482 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
483 * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
484 * Setting VEX3.b (setting because it has inverted meaning).
485 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
486 * is the 4th bit of MODRM.rm, and needs the same treatment.
487 * For VEX3-encoded insns, VEX3.x value has no effect in
488 * non-SIB encoding, the change is superfluous but harmless.
489 */
490 cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
491 *cursor |= 0x60;
492 }
493
494 /*
495 * Convert from rip-relative addressing to register-relative addressing
496 * via a scratch register.
497 *
498 * This is tricky since there are insns with modrm byte
499 * which also use registers not encoded in modrm byte:
500 * [i]div/[i]mul: implicitly use dx:ax
501 * shift ops: implicitly use cx
502 * cmpxchg: implicitly uses ax
503 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
504 * Encoding: 0f c7/1 modrm
505 * The code below thinks that reg=1 (cx), chooses si as scratch.
506 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
507 * First appeared in Haswell (BMI2 insn). It is vex-encoded.
508 * Example where none of bx,cx,dx can be used as scratch reg:
509 * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
510 * [v]pcmpistri: implicitly uses cx, xmm0
511 * [v]pcmpistrm: implicitly uses xmm0
512 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
513 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
514 * Evil SSE4.2 string comparison ops from hell.
515 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
516 * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
517 * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
518 * AMD says it has no 3-operand form (vex.vvvv must be 1111)
519 * and that it can have only register operands, not mem
520 * (its modrm byte must have mode=11).
521 * If these restrictions will ever be lifted,
522 * we'll need code to prevent selection of di as scratch reg!
523 *
524 * Summary: I don't know any insns with modrm byte which
525 * use SI register implicitly. DI register is used only
526 * by one insn (maskmovq) and BX register is used
527 * only by one too (cmpxchg8b).
528 * BP is stack-segment based (may be a problem?).
529 * AX, DX, CX are off-limits (many implicit users).
530 * SP is unusable (it's stack pointer - think about "pop mem";
531 * also, rsp+disp32 needs sib encoding -> insn length change).
532 */
533
534 reg = MODRM_REG(insn); /* Fetch modrm.reg */
535 reg2 = 0xff; /* Fetch vex.vvvv */
536 if (insn->vex_prefix.nbytes)
537 reg2 = insn->vex_prefix.bytes[2];
538 /*
539 * TODO: add XOP vvvv reading.
540 *
541 * vex.vvvv field is in bits 6-3, bits are inverted.
542 * But in 32-bit mode, high-order bit may be ignored.
543 * Therefore, let's consider only 3 low-order bits.
544 */
545 reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
546 /*
547 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
548 *
549 * Choose scratch reg. Order is important: must not select bx
550 * if we can use si (cmpxchg8b case!)
551 */
552 if (reg != 6 && reg2 != 6) {
553 reg2 = 6;
554 auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
555 } else if (reg != 7 && reg2 != 7) {
556 reg2 = 7;
557 auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
558 /* TODO (paranoia): force maskmovq to not use di */
559 } else {
560 reg2 = 3;
561 auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
562 }
563 /*
564 * Point cursor at the modrm byte. The next 4 bytes are the
565 * displacement. Beyond the displacement, for some instructions,
566 * is the immediate operand.
567 */
568 cursor = auprobe->insn + insn_offset_modrm(insn);
569 /*
570 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
571 * 89 05 disp32 mov %eax,disp32(%rip) becomes
572 * 89 86 disp32 mov %eax,disp32(%rsi)
573 */
574 *cursor = 0x80 | (reg << 3) | reg2;
575 }
576
577 static inline unsigned long *
scratch_reg(struct arch_uprobe * auprobe,struct pt_regs * regs)578 scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
579 {
580 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
581 return ®s->si;
582 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
583 return ®s->di;
584 return ®s->bx;
585 }
586
587 /*
588 * If we're emulating a rip-relative instruction, save the contents
589 * of the scratch register and store the target address in that register.
590 */
riprel_pre_xol(struct arch_uprobe * auprobe,struct pt_regs * regs)591 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
592 {
593 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
594 struct uprobe_task *utask = current->utask;
595 unsigned long *sr = scratch_reg(auprobe, regs);
596
597 utask->autask.saved_scratch_register = *sr;
598 *sr = utask->vaddr + auprobe->defparam.ilen;
599 }
600 }
601
riprel_post_xol(struct arch_uprobe * auprobe,struct pt_regs * regs)602 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
603 {
604 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
605 struct uprobe_task *utask = current->utask;
606 unsigned long *sr = scratch_reg(auprobe, regs);
607
608 *sr = utask->autask.saved_scratch_register;
609 }
610 }
611 #else /* 32-bit: */
612 /*
613 * No RIP-relative addressing on 32-bit
614 */
riprel_analyze(struct arch_uprobe * auprobe,struct insn * insn)615 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
616 {
617 }
riprel_pre_xol(struct arch_uprobe * auprobe,struct pt_regs * regs)618 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
619 {
620 }
riprel_post_xol(struct arch_uprobe * auprobe,struct pt_regs * regs)621 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
622 {
623 }
624 #endif /* CONFIG_X86_64 */
625
626 struct uprobe_xol_ops {
627 bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
628 int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
629 int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
630 void (*abort)(struct arch_uprobe *, struct pt_regs *);
631 };
632
sizeof_long(struct pt_regs * regs)633 static inline int sizeof_long(struct pt_regs *regs)
634 {
635 /*
636 * Check registers for mode as in_xxx_syscall() does not apply here.
637 */
638 return user_64bit_mode(regs) ? 8 : 4;
639 }
640
default_pre_xol_op(struct arch_uprobe * auprobe,struct pt_regs * regs)641 static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
642 {
643 riprel_pre_xol(auprobe, regs);
644 return 0;
645 }
646
emulate_push_stack(struct pt_regs * regs,unsigned long val)647 static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
648 {
649 unsigned long new_sp = regs->sp - sizeof_long(regs);
650
651 if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
652 return -EFAULT;
653
654 regs->sp = new_sp;
655 return 0;
656 }
657
658 /*
659 * We have to fix things up as follows:
660 *
661 * Typically, the new ip is relative to the copied instruction. We need
662 * to make it relative to the original instruction (FIX_IP). Exceptions
663 * are return instructions and absolute or indirect jump or call instructions.
664 *
665 * If the single-stepped instruction was a call, the return address that
666 * is atop the stack is the address following the copied instruction. We
667 * need to make it the address following the original instruction (FIX_CALL).
668 *
669 * If the original instruction was a rip-relative instruction such as
670 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
671 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
672 * We need to restore the contents of the scratch register
673 * (FIX_RIP_reg).
674 */
default_post_xol_op(struct arch_uprobe * auprobe,struct pt_regs * regs)675 static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
676 {
677 struct uprobe_task *utask = current->utask;
678
679 riprel_post_xol(auprobe, regs);
680 if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
681 long correction = utask->vaddr - utask->xol_vaddr;
682 regs->ip += correction;
683 } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
684 regs->sp += sizeof_long(regs); /* Pop incorrect return address */
685 if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
686 return -ERESTART;
687 }
688 /* popf; tell the caller to not touch TF */
689 if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
690 utask->autask.saved_tf = true;
691
692 return 0;
693 }
694
default_abort_op(struct arch_uprobe * auprobe,struct pt_regs * regs)695 static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
696 {
697 riprel_post_xol(auprobe, regs);
698 }
699
700 static const struct uprobe_xol_ops default_xol_ops = {
701 .pre_xol = default_pre_xol_op,
702 .post_xol = default_post_xol_op,
703 .abort = default_abort_op,
704 };
705
branch_is_call(struct arch_uprobe * auprobe)706 static bool branch_is_call(struct arch_uprobe *auprobe)
707 {
708 return auprobe->branch.opc1 == 0xe8;
709 }
710
711 #define CASE_COND \
712 COND(70, 71, XF(OF)) \
713 COND(72, 73, XF(CF)) \
714 COND(74, 75, XF(ZF)) \
715 COND(78, 79, XF(SF)) \
716 COND(7a, 7b, XF(PF)) \
717 COND(76, 77, XF(CF) || XF(ZF)) \
718 COND(7c, 7d, XF(SF) != XF(OF)) \
719 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
720
721 #define COND(op_y, op_n, expr) \
722 case 0x ## op_y: DO((expr) != 0) \
723 case 0x ## op_n: DO((expr) == 0)
724
725 #define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
726
is_cond_jmp_opcode(u8 opcode)727 static bool is_cond_jmp_opcode(u8 opcode)
728 {
729 switch (opcode) {
730 #define DO(expr) \
731 return true;
732 CASE_COND
733 #undef DO
734
735 default:
736 return false;
737 }
738 }
739
check_jmp_cond(struct arch_uprobe * auprobe,struct pt_regs * regs)740 static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
741 {
742 unsigned long flags = regs->flags;
743
744 switch (auprobe->branch.opc1) {
745 #define DO(expr) \
746 return expr;
747 CASE_COND
748 #undef DO
749
750 default: /* not a conditional jmp */
751 return true;
752 }
753 }
754
755 #undef XF
756 #undef COND
757 #undef CASE_COND
758
branch_emulate_op(struct arch_uprobe * auprobe,struct pt_regs * regs)759 static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
760 {
761 unsigned long new_ip = regs->ip += auprobe->branch.ilen;
762 unsigned long offs = (long)auprobe->branch.offs;
763
764 if (branch_is_call(auprobe)) {
765 /*
766 * If it fails we execute this (mangled, see the comment in
767 * branch_clear_offset) insn out-of-line. In the likely case
768 * this should trigger the trap, and the probed application
769 * should die or restart the same insn after it handles the
770 * signal, arch_uprobe_post_xol() won't be even called.
771 *
772 * But there is corner case, see the comment in ->post_xol().
773 */
774 if (emulate_push_stack(regs, new_ip))
775 return false;
776 } else if (!check_jmp_cond(auprobe, regs)) {
777 offs = 0;
778 }
779
780 regs->ip = new_ip + offs;
781 return true;
782 }
783
push_emulate_op(struct arch_uprobe * auprobe,struct pt_regs * regs)784 static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
785 {
786 unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
787
788 if (emulate_push_stack(regs, *src_ptr))
789 return false;
790 regs->ip += auprobe->push.ilen;
791 return true;
792 }
793
branch_post_xol_op(struct arch_uprobe * auprobe,struct pt_regs * regs)794 static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
795 {
796 BUG_ON(!branch_is_call(auprobe));
797 /*
798 * We can only get here if branch_emulate_op() failed to push the ret
799 * address _and_ another thread expanded our stack before the (mangled)
800 * "call" insn was executed out-of-line. Just restore ->sp and restart.
801 * We could also restore ->ip and try to call branch_emulate_op() again.
802 */
803 regs->sp += sizeof_long(regs);
804 return -ERESTART;
805 }
806
branch_clear_offset(struct arch_uprobe * auprobe,struct insn * insn)807 static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
808 {
809 /*
810 * Turn this insn into "call 1f; 1:", this is what we will execute
811 * out-of-line if ->emulate() fails. We only need this to generate
812 * a trap, so that the probed task receives the correct signal with
813 * the properly filled siginfo.
814 *
815 * But see the comment in ->post_xol(), in the unlikely case it can
816 * succeed. So we need to ensure that the new ->ip can not fall into
817 * the non-canonical area and trigger #GP.
818 *
819 * We could turn it into (say) "pushf", but then we would need to
820 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
821 * of ->insn[] for set_orig_insn().
822 */
823 memset(auprobe->insn + insn_offset_immediate(insn),
824 0, insn->immediate.nbytes);
825 }
826
827 static const struct uprobe_xol_ops branch_xol_ops = {
828 .emulate = branch_emulate_op,
829 .post_xol = branch_post_xol_op,
830 };
831
832 static const struct uprobe_xol_ops push_xol_ops = {
833 .emulate = push_emulate_op,
834 };
835
836 /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
branch_setup_xol_ops(struct arch_uprobe * auprobe,struct insn * insn)837 static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
838 {
839 u8 opc1 = OPCODE1(insn);
840 insn_byte_t p;
841 int i;
842
843 switch (opc1) {
844 case 0xeb: /* jmp 8 */
845 case 0xe9: /* jmp 32 */
846 break;
847 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
848 goto setup;
849
850 case 0xe8: /* call relative */
851 branch_clear_offset(auprobe, insn);
852 break;
853
854 case 0x0f:
855 if (insn->opcode.nbytes != 2)
856 return -ENOSYS;
857 /*
858 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
859 * OPCODE1() of the "short" jmp which checks the same condition.
860 */
861 opc1 = OPCODE2(insn) - 0x10;
862 fallthrough;
863 default:
864 if (!is_cond_jmp_opcode(opc1))
865 return -ENOSYS;
866 }
867
868 /*
869 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
870 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
871 * No one uses these insns, reject any branch insns with such prefix.
872 */
873 for_each_insn_prefix(insn, i, p) {
874 if (p == 0x66)
875 return -ENOTSUPP;
876 }
877
878 setup:
879 auprobe->branch.opc1 = opc1;
880 auprobe->branch.ilen = insn->length;
881 auprobe->branch.offs = insn->immediate.value;
882
883 auprobe->ops = &branch_xol_ops;
884 return 0;
885 }
886
887 /* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
push_setup_xol_ops(struct arch_uprobe * auprobe,struct insn * insn)888 static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
889 {
890 u8 opc1 = OPCODE1(insn), reg_offset = 0;
891
892 if (opc1 < 0x50 || opc1 > 0x57)
893 return -ENOSYS;
894
895 if (insn->length > 2)
896 return -ENOSYS;
897 if (insn->length == 2) {
898 /* only support rex_prefix 0x41 (x64 only) */
899 #ifdef CONFIG_X86_64
900 if (insn->rex_prefix.nbytes != 1 ||
901 insn->rex_prefix.bytes[0] != 0x41)
902 return -ENOSYS;
903
904 switch (opc1) {
905 case 0x50:
906 reg_offset = offsetof(struct pt_regs, r8);
907 break;
908 case 0x51:
909 reg_offset = offsetof(struct pt_regs, r9);
910 break;
911 case 0x52:
912 reg_offset = offsetof(struct pt_regs, r10);
913 break;
914 case 0x53:
915 reg_offset = offsetof(struct pt_regs, r11);
916 break;
917 case 0x54:
918 reg_offset = offsetof(struct pt_regs, r12);
919 break;
920 case 0x55:
921 reg_offset = offsetof(struct pt_regs, r13);
922 break;
923 case 0x56:
924 reg_offset = offsetof(struct pt_regs, r14);
925 break;
926 case 0x57:
927 reg_offset = offsetof(struct pt_regs, r15);
928 break;
929 }
930 #else
931 return -ENOSYS;
932 #endif
933 } else {
934 switch (opc1) {
935 case 0x50:
936 reg_offset = offsetof(struct pt_regs, ax);
937 break;
938 case 0x51:
939 reg_offset = offsetof(struct pt_regs, cx);
940 break;
941 case 0x52:
942 reg_offset = offsetof(struct pt_regs, dx);
943 break;
944 case 0x53:
945 reg_offset = offsetof(struct pt_regs, bx);
946 break;
947 case 0x54:
948 reg_offset = offsetof(struct pt_regs, sp);
949 break;
950 case 0x55:
951 reg_offset = offsetof(struct pt_regs, bp);
952 break;
953 case 0x56:
954 reg_offset = offsetof(struct pt_regs, si);
955 break;
956 case 0x57:
957 reg_offset = offsetof(struct pt_regs, di);
958 break;
959 }
960 }
961
962 auprobe->push.reg_offset = reg_offset;
963 auprobe->push.ilen = insn->length;
964 auprobe->ops = &push_xol_ops;
965 return 0;
966 }
967
968 /**
969 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
970 * @auprobe: the probepoint information.
971 * @mm: the probed address space.
972 * @addr: virtual address at which to install the probepoint
973 * Return 0 on success or a -ve number on error.
974 */
arch_uprobe_analyze_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long addr)975 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
976 {
977 struct insn insn;
978 u8 fix_ip_or_call = UPROBE_FIX_IP;
979 int ret;
980
981 ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
982 if (ret)
983 return ret;
984
985 ret = branch_setup_xol_ops(auprobe, &insn);
986 if (ret != -ENOSYS)
987 return ret;
988
989 ret = push_setup_xol_ops(auprobe, &insn);
990 if (ret != -ENOSYS)
991 return ret;
992
993 /*
994 * Figure out which fixups default_post_xol_op() will need to perform,
995 * and annotate defparam->fixups accordingly.
996 */
997 switch (OPCODE1(&insn)) {
998 case 0x9d: /* popf */
999 auprobe->defparam.fixups |= UPROBE_FIX_SETF;
1000 break;
1001 case 0xc3: /* ret or lret -- ip is correct */
1002 case 0xcb:
1003 case 0xc2:
1004 case 0xca:
1005 case 0xea: /* jmp absolute -- ip is correct */
1006 fix_ip_or_call = 0;
1007 break;
1008 case 0x9a: /* call absolute - Fix return addr, not ip */
1009 fix_ip_or_call = UPROBE_FIX_CALL;
1010 break;
1011 case 0xff:
1012 switch (MODRM_REG(&insn)) {
1013 case 2: case 3: /* call or lcall, indirect */
1014 fix_ip_or_call = UPROBE_FIX_CALL;
1015 break;
1016 case 4: case 5: /* jmp or ljmp, indirect */
1017 fix_ip_or_call = 0;
1018 break;
1019 }
1020 fallthrough;
1021 default:
1022 riprel_analyze(auprobe, &insn);
1023 }
1024
1025 auprobe->defparam.ilen = insn.length;
1026 auprobe->defparam.fixups |= fix_ip_or_call;
1027
1028 auprobe->ops = &default_xol_ops;
1029 return 0;
1030 }
1031
1032 /*
1033 * arch_uprobe_pre_xol - prepare to execute out of line.
1034 * @auprobe: the probepoint information.
1035 * @regs: reflects the saved user state of current task.
1036 */
arch_uprobe_pre_xol(struct arch_uprobe * auprobe,struct pt_regs * regs)1037 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1038 {
1039 struct uprobe_task *utask = current->utask;
1040
1041 if (auprobe->ops->pre_xol) {
1042 int err = auprobe->ops->pre_xol(auprobe, regs);
1043 if (err)
1044 return err;
1045 }
1046
1047 regs->ip = utask->xol_vaddr;
1048 utask->autask.saved_trap_nr = current->thread.trap_nr;
1049 current->thread.trap_nr = UPROBE_TRAP_NR;
1050
1051 utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
1052 regs->flags |= X86_EFLAGS_TF;
1053 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
1054 set_task_blockstep(current, false);
1055
1056 return 0;
1057 }
1058
1059 /*
1060 * If xol insn itself traps and generates a signal(Say,
1061 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
1062 * instruction jumps back to its own address. It is assumed that anything
1063 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
1064 *
1065 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
1066 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
1067 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
1068 */
arch_uprobe_xol_was_trapped(struct task_struct * t)1069 bool arch_uprobe_xol_was_trapped(struct task_struct *t)
1070 {
1071 if (t->thread.trap_nr != UPROBE_TRAP_NR)
1072 return true;
1073
1074 return false;
1075 }
1076
1077 /*
1078 * Called after single-stepping. To avoid the SMP problems that can
1079 * occur when we temporarily put back the original opcode to
1080 * single-step, we single-stepped a copy of the instruction.
1081 *
1082 * This function prepares to resume execution after the single-step.
1083 */
arch_uprobe_post_xol(struct arch_uprobe * auprobe,struct pt_regs * regs)1084 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1085 {
1086 struct uprobe_task *utask = current->utask;
1087 bool send_sigtrap = utask->autask.saved_tf;
1088 int err = 0;
1089
1090 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
1091 current->thread.trap_nr = utask->autask.saved_trap_nr;
1092
1093 if (auprobe->ops->post_xol) {
1094 err = auprobe->ops->post_xol(auprobe, regs);
1095 if (err) {
1096 /*
1097 * Restore ->ip for restart or post mortem analysis.
1098 * ->post_xol() must not return -ERESTART unless this
1099 * is really possible.
1100 */
1101 regs->ip = utask->vaddr;
1102 if (err == -ERESTART)
1103 err = 0;
1104 send_sigtrap = false;
1105 }
1106 }
1107 /*
1108 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
1109 * so we can get an extra SIGTRAP if we do not clear TF. We need
1110 * to examine the opcode to make it right.
1111 */
1112 if (send_sigtrap)
1113 send_sig(SIGTRAP, current, 0);
1114
1115 if (!utask->autask.saved_tf)
1116 regs->flags &= ~X86_EFLAGS_TF;
1117
1118 return err;
1119 }
1120
1121 /* callback routine for handling exceptions. */
arch_uprobe_exception_notify(struct notifier_block * self,unsigned long val,void * data)1122 int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1123 {
1124 struct die_args *args = data;
1125 struct pt_regs *regs = args->regs;
1126 int ret = NOTIFY_DONE;
1127
1128 /* We are only interested in userspace traps */
1129 if (regs && !user_mode(regs))
1130 return NOTIFY_DONE;
1131
1132 switch (val) {
1133 case DIE_INT3:
1134 if (uprobe_pre_sstep_notifier(regs))
1135 ret = NOTIFY_STOP;
1136
1137 break;
1138
1139 case DIE_DEBUG:
1140 if (uprobe_post_sstep_notifier(regs))
1141 ret = NOTIFY_STOP;
1142
1143 break;
1144
1145 default:
1146 break;
1147 }
1148
1149 return ret;
1150 }
1151
1152 /*
1153 * This function gets called when XOL instruction either gets trapped or
1154 * the thread has a fatal signal. Reset the instruction pointer to its
1155 * probed address for the potential restart or for post mortem analysis.
1156 */
arch_uprobe_abort_xol(struct arch_uprobe * auprobe,struct pt_regs * regs)1157 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1158 {
1159 struct uprobe_task *utask = current->utask;
1160
1161 if (auprobe->ops->abort)
1162 auprobe->ops->abort(auprobe, regs);
1163
1164 current->thread.trap_nr = utask->autask.saved_trap_nr;
1165 regs->ip = utask->vaddr;
1166 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
1167 if (!utask->autask.saved_tf)
1168 regs->flags &= ~X86_EFLAGS_TF;
1169 }
1170
__skip_sstep(struct arch_uprobe * auprobe,struct pt_regs * regs)1171 static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1172 {
1173 if (auprobe->ops->emulate)
1174 return auprobe->ops->emulate(auprobe, regs);
1175 return false;
1176 }
1177
arch_uprobe_skip_sstep(struct arch_uprobe * auprobe,struct pt_regs * regs)1178 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1179 {
1180 bool ret = __skip_sstep(auprobe, regs);
1181 if (ret && (regs->flags & X86_EFLAGS_TF))
1182 send_sig(SIGTRAP, current, 0);
1183 return ret;
1184 }
1185
1186 unsigned long
arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr,struct pt_regs * regs)1187 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1188 {
1189 int rasize = sizeof_long(regs), nleft;
1190 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1191
1192 if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1193 return -1;
1194
1195 /* check whether address has been already hijacked */
1196 if (orig_ret_vaddr == trampoline_vaddr)
1197 return orig_ret_vaddr;
1198
1199 nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1200 if (likely(!nleft)) {
1201 if (shstk_update_last_frame(trampoline_vaddr)) {
1202 force_sig(SIGSEGV);
1203 return -1;
1204 }
1205 return orig_ret_vaddr;
1206 }
1207
1208 if (nleft != rasize) {
1209 pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1210 current->pid, regs->sp, regs->ip);
1211
1212 force_sig(SIGSEGV);
1213 }
1214
1215 return -1;
1216 }
1217
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)1218 bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1219 struct pt_regs *regs)
1220 {
1221 if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1222 return regs->sp < ret->stack;
1223 else
1224 return regs->sp <= ret->stack;
1225 }
1226