1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * User-space Probes (UProbes) for x86
4  *
5  * Copyright (C) IBM Corporation, 2008-2011
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  */
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/ptrace.h>
13 #include <linux/uprobes.h>
14 #include <linux/uaccess.h>
15 #include <linux/syscalls.h>
16 
17 #include <linux/kdebug.h>
18 #include <asm/processor.h>
19 #include <asm/insn.h>
20 #include <asm/mmu_context.h>
21 
22 /* Post-execution fixups. */
23 
24 /* Adjust IP back to vicinity of actual insn */
25 #define UPROBE_FIX_IP		0x01
26 
27 /* Adjust the return address of a call insn */
28 #define UPROBE_FIX_CALL		0x02
29 
30 /* Instruction will modify TF, don't change it */
31 #define UPROBE_FIX_SETF		0x04
32 
33 #define UPROBE_FIX_RIP_SI	0x08
34 #define UPROBE_FIX_RIP_DI	0x10
35 #define UPROBE_FIX_RIP_BX	0x20
36 #define UPROBE_FIX_RIP_MASK	\
37 	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
38 
39 #define	UPROBE_TRAP_NR		UINT_MAX
40 
41 /* Adaptations for mhiramat x86 decoder v14. */
42 #define OPCODE1(insn)		((insn)->opcode.bytes[0])
43 #define OPCODE2(insn)		((insn)->opcode.bytes[1])
44 #define OPCODE3(insn)		((insn)->opcode.bytes[2])
45 #define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
46 
47 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
48 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
49 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
50 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
51 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
52 	 << (row % 32))
53 
54 /*
55  * Good-instruction tables for 32-bit apps.  This is non-const and volatile
56  * to keep gcc from statically optimizing it out, as variable_test_bit makes
57  * some versions of gcc to think only *(unsigned long*) is used.
58  *
59  * Opcodes we'll probably never support:
60  * 6c-6f - ins,outs. SEGVs if used in userspace
61  * e4-e7 - in,out imm. SEGVs if used in userspace
62  * ec-ef - in,out acc. SEGVs if used in userspace
63  * cc - int3. SIGTRAP if used in userspace
64  * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
65  *	(why we support bound (62) then? it's similar, and similarly unused...)
66  * f1 - int1. SIGTRAP if used in userspace
67  * f4 - hlt. SEGVs if used in userspace
68  * fa - cli. SEGVs if used in userspace
69  * fb - sti. SEGVs if used in userspace
70  *
71  * Opcodes which need some work to be supported:
72  * 07,17,1f - pop es/ss/ds
73  *	Normally not used in userspace, but would execute if used.
74  *	Can cause GP or stack exception if tries to load wrong segment descriptor.
75  *	We hesitate to run them under single step since kernel's handling
76  *	of userspace single-stepping (TF flag) is fragile.
77  *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
78  *	on the same grounds that they are never used.
79  * cd - int N.
80  *	Used by userspace for "int 80" syscall entry. (Other "int N"
81  *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
82  *	Not supported since kernel's handling of userspace single-stepping
83  *	(TF flag) is fragile.
84  * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
85  */
86 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
87 static volatile u32 good_insns_32[256 / 32] = {
88 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
89 	/*      ----------------------------------------------         */
90 	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
91 	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
92 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
93 	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
94 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
95 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
96 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
97 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
98 	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
99 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
100 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
101 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
102 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
103 	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
104 	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
105 	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
106 	/*      ----------------------------------------------         */
107 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
108 };
109 #else
110 #define good_insns_32	NULL
111 #endif
112 
113 /* Good-instruction tables for 64-bit apps.
114  *
115  * Genuinely invalid opcodes:
116  * 06,07 - formerly push/pop es
117  * 0e - formerly push cs
118  * 16,17 - formerly push/pop ss
119  * 1e,1f - formerly push/pop ds
120  * 27,2f,37,3f - formerly daa/das/aaa/aas
121  * 60,61 - formerly pusha/popa
122  * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
123  * 82 - formerly redundant encoding of Group1
124  * 9a - formerly call seg:ofs
125  * ce - formerly into
126  * d4,d5 - formerly aam/aad
127  * d6 - formerly undocumented salc
128  * ea - formerly jmp seg:ofs
129  *
130  * Opcodes we'll probably never support:
131  * 6c-6f - ins,outs. SEGVs if used in userspace
132  * e4-e7 - in,out imm. SEGVs if used in userspace
133  * ec-ef - in,out acc. SEGVs if used in userspace
134  * cc - int3. SIGTRAP if used in userspace
135  * f1 - int1. SIGTRAP if used in userspace
136  * f4 - hlt. SEGVs if used in userspace
137  * fa - cli. SEGVs if used in userspace
138  * fb - sti. SEGVs if used in userspace
139  *
140  * Opcodes which need some work to be supported:
141  * cd - int N.
142  *	Used by userspace for "int 80" syscall entry. (Other "int N"
143  *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
144  *	Not supported since kernel's handling of userspace single-stepping
145  *	(TF flag) is fragile.
146  * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
147  */
148 #if defined(CONFIG_X86_64)
149 static volatile u32 good_insns_64[256 / 32] = {
150 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
151 	/*      ----------------------------------------------         */
152 	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
153 	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
154 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
155 	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
156 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
157 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
158 	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
159 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
160 	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
161 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
162 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
163 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
164 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
165 	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
166 	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
167 	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
168 	/*      ----------------------------------------------         */
169 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
170 };
171 #else
172 #define good_insns_64	NULL
173 #endif
174 
175 /* Using this for both 64-bit and 32-bit apps.
176  * Opcodes we don't support:
177  * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
178  * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
179  *	Also encodes tons of other system insns if mod=11.
180  *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
181  * 0f 05 - syscall
182  * 0f 06 - clts (CPL0 insn)
183  * 0f 07 - sysret
184  * 0f 08 - invd (CPL0 insn)
185  * 0f 09 - wbinvd (CPL0 insn)
186  * 0f 0b - ud2
187  * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
188  * 0f 34 - sysenter
189  * 0f 35 - sysexit
190  * 0f 37 - getsec
191  * 0f 78 - vmread (Intel VMX. CPL0 insn)
192  * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
193  *	Note: with prefixes, these two opcodes are
194  *	extrq/insertq/AVX512 convert vector ops.
195  * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
196  *	{rd,wr}{fs,gs}base,{s,l,m}fence.
197  *	Why? They are all user-executable.
198  */
199 static volatile u32 good_2byte_insns[256 / 32] = {
200 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
201 	/*      ----------------------------------------------         */
202 	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
203 	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
204 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
205 	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
206 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
207 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
208 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
209 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
210 	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
211 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
212 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
213 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
214 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
215 	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
216 	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
217 	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
218 	/*      ----------------------------------------------         */
219 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
220 };
221 #undef W
222 
223 /*
224  * opcodes we may need to refine support for:
225  *
226  *  0f - 2-byte instructions: For many of these instructions, the validity
227  *  depends on the prefix and/or the reg field.  On such instructions, we
228  *  just consider the opcode combination valid if it corresponds to any
229  *  valid instruction.
230  *
231  *  8f - Group 1 - only reg = 0 is OK
232  *  c6-c7 - Group 11 - only reg = 0 is OK
233  *  d9-df - fpu insns with some illegal encodings
234  *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
235  *  certain floating-point instructions, such as addsd.
236  *
237  *  fe - Group 4 - only reg = 0 or 1 is OK
238  *  ff - Group 5 - only reg = 0-6 is OK
239  *
240  * others -- Do we need to support these?
241  *
242  *  0f - (floating-point?) prefetch instructions
243  *  07, 17, 1f - pop es, pop ss, pop ds
244  *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
245  *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
246  *  67 - addr16 prefix
247  *  ce - into
248  *  f0 - lock prefix
249  */
250 
251 /*
252  * TODO:
253  * - Where necessary, examine the modrm byte and allow only valid instructions
254  * in the different Groups and fpu instructions.
255  */
256 
is_prefix_bad(struct insn * insn)257 static bool is_prefix_bad(struct insn *insn)
258 {
259 	insn_byte_t p;
260 	int i;
261 
262 	for_each_insn_prefix(insn, i, p) {
263 		insn_attr_t attr;
264 
265 		attr = inat_get_opcode_attribute(p);
266 		switch (attr) {
267 		case INAT_MAKE_PREFIX(INAT_PFX_ES):
268 		case INAT_MAKE_PREFIX(INAT_PFX_CS):
269 		case INAT_MAKE_PREFIX(INAT_PFX_DS):
270 		case INAT_MAKE_PREFIX(INAT_PFX_SS):
271 		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
272 			return true;
273 		}
274 	}
275 	return false;
276 }
277 
uprobe_init_insn(struct arch_uprobe * auprobe,struct insn * insn,bool x86_64)278 static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
279 {
280 	enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32;
281 	u32 volatile *good_insns;
282 	int ret;
283 
284 	ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m);
285 	if (ret < 0)
286 		return -ENOEXEC;
287 
288 	if (is_prefix_bad(insn))
289 		return -ENOTSUPP;
290 
291 	/* We should not singlestep on the exception masking instructions */
292 	if (insn_masking_exception(insn))
293 		return -ENOTSUPP;
294 
295 	if (x86_64)
296 		good_insns = good_insns_64;
297 	else
298 		good_insns = good_insns_32;
299 
300 	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
301 		return 0;
302 
303 	if (insn->opcode.nbytes == 2) {
304 		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
305 			return 0;
306 	}
307 
308 	return -ENOTSUPP;
309 }
310 
311 #ifdef CONFIG_X86_64
312 
313 asm (
314 	".pushsection .rodata\n"
315 	".global uretprobe_trampoline_entry\n"
316 	"uretprobe_trampoline_entry:\n"
317 	"pushq %rax\n"
318 	"pushq %rcx\n"
319 	"pushq %r11\n"
320 	"movq $" __stringify(__NR_uretprobe) ", %rax\n"
321 	"syscall\n"
322 	".global uretprobe_syscall_check\n"
323 	"uretprobe_syscall_check:\n"
324 	"popq %r11\n"
325 	"popq %rcx\n"
326 
327 	/* The uretprobe syscall replaces stored %rax value with final
328 	 * return address, so we don't restore %rax in here and just
329 	 * call ret.
330 	 */
331 	"retq\n"
332 	".global uretprobe_trampoline_end\n"
333 	"uretprobe_trampoline_end:\n"
334 	".popsection\n"
335 );
336 
337 extern u8 uretprobe_trampoline_entry[];
338 extern u8 uretprobe_trampoline_end[];
339 extern u8 uretprobe_syscall_check[];
340 
arch_uprobe_trampoline(unsigned long * psize)341 void *arch_uprobe_trampoline(unsigned long *psize)
342 {
343 	static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
344 	struct pt_regs *regs = task_pt_regs(current);
345 
346 	/*
347 	 * At the moment the uretprobe syscall trampoline is supported
348 	 * only for native 64-bit process, the compat process still uses
349 	 * standard breakpoint.
350 	 */
351 	if (user_64bit_mode(regs)) {
352 		*psize = uretprobe_trampoline_end - uretprobe_trampoline_entry;
353 		return uretprobe_trampoline_entry;
354 	}
355 
356 	*psize = UPROBE_SWBP_INSN_SIZE;
357 	return &insn;
358 }
359 
trampoline_check_ip(unsigned long tramp)360 static unsigned long trampoline_check_ip(unsigned long tramp)
361 {
362 	return tramp + (uretprobe_syscall_check - uretprobe_trampoline_entry);
363 }
364 
SYSCALL_DEFINE0(uretprobe)365 SYSCALL_DEFINE0(uretprobe)
366 {
367 	struct pt_regs *regs = task_pt_regs(current);
368 	unsigned long err, ip, sp, r11_cx_ax[3], tramp;
369 
370 	/* If there's no trampoline, we are called from wrong place. */
371 	tramp = uprobe_get_trampoline_vaddr();
372 	if (unlikely(tramp == UPROBE_NO_TRAMPOLINE_VADDR))
373 		goto sigill;
374 
375 	/* Make sure the ip matches the only allowed sys_uretprobe caller. */
376 	if (unlikely(regs->ip != trampoline_check_ip(tramp)))
377 		goto sigill;
378 
379 	err = copy_from_user(r11_cx_ax, (void __user *)regs->sp, sizeof(r11_cx_ax));
380 	if (err)
381 		goto sigill;
382 
383 	/* expose the "right" values of r11/cx/ax/sp to uprobe_consumer/s */
384 	regs->r11 = r11_cx_ax[0];
385 	regs->cx  = r11_cx_ax[1];
386 	regs->ax  = r11_cx_ax[2];
387 	regs->sp += sizeof(r11_cx_ax);
388 	regs->orig_ax = -1;
389 
390 	ip = regs->ip;
391 	sp = regs->sp;
392 
393 	uprobe_handle_trampoline(regs);
394 
395 	/*
396 	 * Some of the uprobe consumers has changed sp, we can do nothing,
397 	 * just return via iret.
398 	 * .. or shadow stack is enabled, in which case we need to skip
399 	 * return through the user space stack address.
400 	 */
401 	if (regs->sp != sp || shstk_is_enabled())
402 		return regs->ax;
403 	regs->sp -= sizeof(r11_cx_ax);
404 
405 	/* for the case uprobe_consumer has changed r11/cx */
406 	r11_cx_ax[0] = regs->r11;
407 	r11_cx_ax[1] = regs->cx;
408 
409 	/*
410 	 * ax register is passed through as return value, so we can use
411 	 * its space on stack for ip value and jump to it through the
412 	 * trampoline's ret instruction
413 	 */
414 	r11_cx_ax[2] = regs->ip;
415 	regs->ip = ip;
416 
417 	err = copy_to_user((void __user *)regs->sp, r11_cx_ax, sizeof(r11_cx_ax));
418 	if (err)
419 		goto sigill;
420 
421 	/* ensure sysret, see do_syscall_64() */
422 	regs->r11 = regs->flags;
423 	regs->cx  = regs->ip;
424 
425 	return regs->ax;
426 
427 sigill:
428 	force_sig(SIGILL);
429 	return -1;
430 }
431 
432 /*
433  * If arch_uprobe->insn doesn't use rip-relative addressing, return
434  * immediately.  Otherwise, rewrite the instruction so that it accesses
435  * its memory operand indirectly through a scratch register.  Set
436  * defparam->fixups accordingly. (The contents of the scratch register
437  * will be saved before we single-step the modified instruction,
438  * and restored afterward).
439  *
440  * We do this because a rip-relative instruction can access only a
441  * relatively small area (+/- 2 GB from the instruction), and the XOL
442  * area typically lies beyond that area.  At least for instructions
443  * that store to memory, we can't execute the original instruction
444  * and "fix things up" later, because the misdirected store could be
445  * disastrous.
446  *
447  * Some useful facts about rip-relative instructions:
448  *
449  *  - There's always a modrm byte with bit layout "00 reg 101".
450  *  - There's never a SIB byte.
451  *  - The displacement is always 4 bytes.
452  *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
453  *    has no effect on rip-relative mode. It doesn't make modrm byte
454  *    with r/m=101 refer to register 1101 = R13.
455  */
riprel_analyze(struct arch_uprobe * auprobe,struct insn * insn)456 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
457 {
458 	u8 *cursor;
459 	u8 reg;
460 	u8 reg2;
461 
462 	if (!insn_rip_relative(insn))
463 		return;
464 
465 	/*
466 	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
467 	 * Clear REX.b bit (extension of MODRM.rm field):
468 	 * we want to encode low numbered reg, not r8+.
469 	 */
470 	if (insn->rex_prefix.nbytes) {
471 		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
472 		/* REX byte has 0100wrxb layout, clearing REX.b bit */
473 		*cursor &= 0xfe;
474 	}
475 	/*
476 	 * Similar treatment for VEX3/EVEX prefix.
477 	 * TODO: add XOP treatment when insn decoder supports them
478 	 */
479 	if (insn->vex_prefix.nbytes >= 3) {
480 		/*
481 		 * vex2:     c5    rvvvvLpp   (has no b bit)
482 		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
483 		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
484 		 * Setting VEX3.b (setting because it has inverted meaning).
485 		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
486 		 * is the 4th bit of MODRM.rm, and needs the same treatment.
487 		 * For VEX3-encoded insns, VEX3.x value has no effect in
488 		 * non-SIB encoding, the change is superfluous but harmless.
489 		 */
490 		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
491 		*cursor |= 0x60;
492 	}
493 
494 	/*
495 	 * Convert from rip-relative addressing to register-relative addressing
496 	 * via a scratch register.
497 	 *
498 	 * This is tricky since there are insns with modrm byte
499 	 * which also use registers not encoded in modrm byte:
500 	 * [i]div/[i]mul: implicitly use dx:ax
501 	 * shift ops: implicitly use cx
502 	 * cmpxchg: implicitly uses ax
503 	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
504 	 *   Encoding: 0f c7/1 modrm
505 	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
506 	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
507 	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
508 	 *   Example where none of bx,cx,dx can be used as scratch reg:
509 	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
510 	 * [v]pcmpistri: implicitly uses cx, xmm0
511 	 * [v]pcmpistrm: implicitly uses xmm0
512 	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
513 	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
514 	 *   Evil SSE4.2 string comparison ops from hell.
515 	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
516 	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
517 	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
518 	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
519 	 *   and that it can have only register operands, not mem
520 	 *   (its modrm byte must have mode=11).
521 	 *   If these restrictions will ever be lifted,
522 	 *   we'll need code to prevent selection of di as scratch reg!
523 	 *
524 	 * Summary: I don't know any insns with modrm byte which
525 	 * use SI register implicitly. DI register is used only
526 	 * by one insn (maskmovq) and BX register is used
527 	 * only by one too (cmpxchg8b).
528 	 * BP is stack-segment based (may be a problem?).
529 	 * AX, DX, CX are off-limits (many implicit users).
530 	 * SP is unusable (it's stack pointer - think about "pop mem";
531 	 * also, rsp+disp32 needs sib encoding -> insn length change).
532 	 */
533 
534 	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
535 	reg2 = 0xff;		/* Fetch vex.vvvv */
536 	if (insn->vex_prefix.nbytes)
537 		reg2 = insn->vex_prefix.bytes[2];
538 	/*
539 	 * TODO: add XOP vvvv reading.
540 	 *
541 	 * vex.vvvv field is in bits 6-3, bits are inverted.
542 	 * But in 32-bit mode, high-order bit may be ignored.
543 	 * Therefore, let's consider only 3 low-order bits.
544 	 */
545 	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
546 	/*
547 	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
548 	 *
549 	 * Choose scratch reg. Order is important: must not select bx
550 	 * if we can use si (cmpxchg8b case!)
551 	 */
552 	if (reg != 6 && reg2 != 6) {
553 		reg2 = 6;
554 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
555 	} else if (reg != 7 && reg2 != 7) {
556 		reg2 = 7;
557 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
558 		/* TODO (paranoia): force maskmovq to not use di */
559 	} else {
560 		reg2 = 3;
561 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
562 	}
563 	/*
564 	 * Point cursor at the modrm byte.  The next 4 bytes are the
565 	 * displacement.  Beyond the displacement, for some instructions,
566 	 * is the immediate operand.
567 	 */
568 	cursor = auprobe->insn + insn_offset_modrm(insn);
569 	/*
570 	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
571 	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
572 	 * 89 86 disp32  mov %eax,disp32(%rsi)
573 	 */
574 	*cursor = 0x80 | (reg << 3) | reg2;
575 }
576 
577 static inline unsigned long *
scratch_reg(struct arch_uprobe * auprobe,struct pt_regs * regs)578 scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
579 {
580 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
581 		return &regs->si;
582 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
583 		return &regs->di;
584 	return &regs->bx;
585 }
586 
587 /*
588  * If we're emulating a rip-relative instruction, save the contents
589  * of the scratch register and store the target address in that register.
590  */
riprel_pre_xol(struct arch_uprobe * auprobe,struct pt_regs * regs)591 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
592 {
593 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
594 		struct uprobe_task *utask = current->utask;
595 		unsigned long *sr = scratch_reg(auprobe, regs);
596 
597 		utask->autask.saved_scratch_register = *sr;
598 		*sr = utask->vaddr + auprobe->defparam.ilen;
599 	}
600 }
601 
riprel_post_xol(struct arch_uprobe * auprobe,struct pt_regs * regs)602 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
603 {
604 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
605 		struct uprobe_task *utask = current->utask;
606 		unsigned long *sr = scratch_reg(auprobe, regs);
607 
608 		*sr = utask->autask.saved_scratch_register;
609 	}
610 }
611 #else /* 32-bit: */
612 /*
613  * No RIP-relative addressing on 32-bit
614  */
riprel_analyze(struct arch_uprobe * auprobe,struct insn * insn)615 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
616 {
617 }
riprel_pre_xol(struct arch_uprobe * auprobe,struct pt_regs * regs)618 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
619 {
620 }
riprel_post_xol(struct arch_uprobe * auprobe,struct pt_regs * regs)621 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
622 {
623 }
624 #endif /* CONFIG_X86_64 */
625 
626 struct uprobe_xol_ops {
627 	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
628 	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
629 	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
630 	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
631 };
632 
sizeof_long(struct pt_regs * regs)633 static inline int sizeof_long(struct pt_regs *regs)
634 {
635 	/*
636 	 * Check registers for mode as in_xxx_syscall() does not apply here.
637 	 */
638 	return user_64bit_mode(regs) ? 8 : 4;
639 }
640 
default_pre_xol_op(struct arch_uprobe * auprobe,struct pt_regs * regs)641 static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
642 {
643 	riprel_pre_xol(auprobe, regs);
644 	return 0;
645 }
646 
emulate_push_stack(struct pt_regs * regs,unsigned long val)647 static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
648 {
649 	unsigned long new_sp = regs->sp - sizeof_long(regs);
650 
651 	if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
652 		return -EFAULT;
653 
654 	regs->sp = new_sp;
655 	return 0;
656 }
657 
658 /*
659  * We have to fix things up as follows:
660  *
661  * Typically, the new ip is relative to the copied instruction.  We need
662  * to make it relative to the original instruction (FIX_IP).  Exceptions
663  * are return instructions and absolute or indirect jump or call instructions.
664  *
665  * If the single-stepped instruction was a call, the return address that
666  * is atop the stack is the address following the copied instruction.  We
667  * need to make it the address following the original instruction (FIX_CALL).
668  *
669  * If the original instruction was a rip-relative instruction such as
670  * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
671  * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
672  * We need to restore the contents of the scratch register
673  * (FIX_RIP_reg).
674  */
default_post_xol_op(struct arch_uprobe * auprobe,struct pt_regs * regs)675 static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
676 {
677 	struct uprobe_task *utask = current->utask;
678 
679 	riprel_post_xol(auprobe, regs);
680 	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
681 		long correction = utask->vaddr - utask->xol_vaddr;
682 		regs->ip += correction;
683 	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
684 		regs->sp += sizeof_long(regs); /* Pop incorrect return address */
685 		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
686 			return -ERESTART;
687 	}
688 	/* popf; tell the caller to not touch TF */
689 	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
690 		utask->autask.saved_tf = true;
691 
692 	return 0;
693 }
694 
default_abort_op(struct arch_uprobe * auprobe,struct pt_regs * regs)695 static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
696 {
697 	riprel_post_xol(auprobe, regs);
698 }
699 
700 static const struct uprobe_xol_ops default_xol_ops = {
701 	.pre_xol  = default_pre_xol_op,
702 	.post_xol = default_post_xol_op,
703 	.abort	  = default_abort_op,
704 };
705 
branch_is_call(struct arch_uprobe * auprobe)706 static bool branch_is_call(struct arch_uprobe *auprobe)
707 {
708 	return auprobe->branch.opc1 == 0xe8;
709 }
710 
711 #define CASE_COND					\
712 	COND(70, 71, XF(OF))				\
713 	COND(72, 73, XF(CF))				\
714 	COND(74, 75, XF(ZF))				\
715 	COND(78, 79, XF(SF))				\
716 	COND(7a, 7b, XF(PF))				\
717 	COND(76, 77, XF(CF) || XF(ZF))			\
718 	COND(7c, 7d, XF(SF) != XF(OF))			\
719 	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
720 
721 #define COND(op_y, op_n, expr)				\
722 	case 0x ## op_y: DO((expr) != 0)		\
723 	case 0x ## op_n: DO((expr) == 0)
724 
725 #define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
726 
is_cond_jmp_opcode(u8 opcode)727 static bool is_cond_jmp_opcode(u8 opcode)
728 {
729 	switch (opcode) {
730 	#define DO(expr)	\
731 		return true;
732 	CASE_COND
733 	#undef	DO
734 
735 	default:
736 		return false;
737 	}
738 }
739 
check_jmp_cond(struct arch_uprobe * auprobe,struct pt_regs * regs)740 static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
741 {
742 	unsigned long flags = regs->flags;
743 
744 	switch (auprobe->branch.opc1) {
745 	#define DO(expr)	\
746 		return expr;
747 	CASE_COND
748 	#undef	DO
749 
750 	default:	/* not a conditional jmp */
751 		return true;
752 	}
753 }
754 
755 #undef	XF
756 #undef	COND
757 #undef	CASE_COND
758 
branch_emulate_op(struct arch_uprobe * auprobe,struct pt_regs * regs)759 static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
760 {
761 	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
762 	unsigned long offs = (long)auprobe->branch.offs;
763 
764 	if (branch_is_call(auprobe)) {
765 		/*
766 		 * If it fails we execute this (mangled, see the comment in
767 		 * branch_clear_offset) insn out-of-line. In the likely case
768 		 * this should trigger the trap, and the probed application
769 		 * should die or restart the same insn after it handles the
770 		 * signal, arch_uprobe_post_xol() won't be even called.
771 		 *
772 		 * But there is corner case, see the comment in ->post_xol().
773 		 */
774 		if (emulate_push_stack(regs, new_ip))
775 			return false;
776 	} else if (!check_jmp_cond(auprobe, regs)) {
777 		offs = 0;
778 	}
779 
780 	regs->ip = new_ip + offs;
781 	return true;
782 }
783 
push_emulate_op(struct arch_uprobe * auprobe,struct pt_regs * regs)784 static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
785 {
786 	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
787 
788 	if (emulate_push_stack(regs, *src_ptr))
789 		return false;
790 	regs->ip += auprobe->push.ilen;
791 	return true;
792 }
793 
branch_post_xol_op(struct arch_uprobe * auprobe,struct pt_regs * regs)794 static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
795 {
796 	BUG_ON(!branch_is_call(auprobe));
797 	/*
798 	 * We can only get here if branch_emulate_op() failed to push the ret
799 	 * address _and_ another thread expanded our stack before the (mangled)
800 	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
801 	 * We could also restore ->ip and try to call branch_emulate_op() again.
802 	 */
803 	regs->sp += sizeof_long(regs);
804 	return -ERESTART;
805 }
806 
branch_clear_offset(struct arch_uprobe * auprobe,struct insn * insn)807 static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
808 {
809 	/*
810 	 * Turn this insn into "call 1f; 1:", this is what we will execute
811 	 * out-of-line if ->emulate() fails. We only need this to generate
812 	 * a trap, so that the probed task receives the correct signal with
813 	 * the properly filled siginfo.
814 	 *
815 	 * But see the comment in ->post_xol(), in the unlikely case it can
816 	 * succeed. So we need to ensure that the new ->ip can not fall into
817 	 * the non-canonical area and trigger #GP.
818 	 *
819 	 * We could turn it into (say) "pushf", but then we would need to
820 	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
821 	 * of ->insn[] for set_orig_insn().
822 	 */
823 	memset(auprobe->insn + insn_offset_immediate(insn),
824 		0, insn->immediate.nbytes);
825 }
826 
827 static const struct uprobe_xol_ops branch_xol_ops = {
828 	.emulate  = branch_emulate_op,
829 	.post_xol = branch_post_xol_op,
830 };
831 
832 static const struct uprobe_xol_ops push_xol_ops = {
833 	.emulate  = push_emulate_op,
834 };
835 
836 /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
branch_setup_xol_ops(struct arch_uprobe * auprobe,struct insn * insn)837 static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
838 {
839 	u8 opc1 = OPCODE1(insn);
840 	insn_byte_t p;
841 	int i;
842 
843 	switch (opc1) {
844 	case 0xeb:	/* jmp 8 */
845 	case 0xe9:	/* jmp 32 */
846 		break;
847 	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
848 		goto setup;
849 
850 	case 0xe8:	/* call relative */
851 		branch_clear_offset(auprobe, insn);
852 		break;
853 
854 	case 0x0f:
855 		if (insn->opcode.nbytes != 2)
856 			return -ENOSYS;
857 		/*
858 		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
859 		 * OPCODE1() of the "short" jmp which checks the same condition.
860 		 */
861 		opc1 = OPCODE2(insn) - 0x10;
862 		fallthrough;
863 	default:
864 		if (!is_cond_jmp_opcode(opc1))
865 			return -ENOSYS;
866 	}
867 
868 	/*
869 	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
870 	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
871 	 * No one uses these insns, reject any branch insns with such prefix.
872 	 */
873 	for_each_insn_prefix(insn, i, p) {
874 		if (p == 0x66)
875 			return -ENOTSUPP;
876 	}
877 
878 setup:
879 	auprobe->branch.opc1 = opc1;
880 	auprobe->branch.ilen = insn->length;
881 	auprobe->branch.offs = insn->immediate.value;
882 
883 	auprobe->ops = &branch_xol_ops;
884 	return 0;
885 }
886 
887 /* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
push_setup_xol_ops(struct arch_uprobe * auprobe,struct insn * insn)888 static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
889 {
890 	u8 opc1 = OPCODE1(insn), reg_offset = 0;
891 
892 	if (opc1 < 0x50 || opc1 > 0x57)
893 		return -ENOSYS;
894 
895 	if (insn->length > 2)
896 		return -ENOSYS;
897 	if (insn->length == 2) {
898 		/* only support rex_prefix 0x41 (x64 only) */
899 #ifdef CONFIG_X86_64
900 		if (insn->rex_prefix.nbytes != 1 ||
901 		    insn->rex_prefix.bytes[0] != 0x41)
902 			return -ENOSYS;
903 
904 		switch (opc1) {
905 		case 0x50:
906 			reg_offset = offsetof(struct pt_regs, r8);
907 			break;
908 		case 0x51:
909 			reg_offset = offsetof(struct pt_regs, r9);
910 			break;
911 		case 0x52:
912 			reg_offset = offsetof(struct pt_regs, r10);
913 			break;
914 		case 0x53:
915 			reg_offset = offsetof(struct pt_regs, r11);
916 			break;
917 		case 0x54:
918 			reg_offset = offsetof(struct pt_regs, r12);
919 			break;
920 		case 0x55:
921 			reg_offset = offsetof(struct pt_regs, r13);
922 			break;
923 		case 0x56:
924 			reg_offset = offsetof(struct pt_regs, r14);
925 			break;
926 		case 0x57:
927 			reg_offset = offsetof(struct pt_regs, r15);
928 			break;
929 		}
930 #else
931 		return -ENOSYS;
932 #endif
933 	} else {
934 		switch (opc1) {
935 		case 0x50:
936 			reg_offset = offsetof(struct pt_regs, ax);
937 			break;
938 		case 0x51:
939 			reg_offset = offsetof(struct pt_regs, cx);
940 			break;
941 		case 0x52:
942 			reg_offset = offsetof(struct pt_regs, dx);
943 			break;
944 		case 0x53:
945 			reg_offset = offsetof(struct pt_regs, bx);
946 			break;
947 		case 0x54:
948 			reg_offset = offsetof(struct pt_regs, sp);
949 			break;
950 		case 0x55:
951 			reg_offset = offsetof(struct pt_regs, bp);
952 			break;
953 		case 0x56:
954 			reg_offset = offsetof(struct pt_regs, si);
955 			break;
956 		case 0x57:
957 			reg_offset = offsetof(struct pt_regs, di);
958 			break;
959 		}
960 	}
961 
962 	auprobe->push.reg_offset = reg_offset;
963 	auprobe->push.ilen = insn->length;
964 	auprobe->ops = &push_xol_ops;
965 	return 0;
966 }
967 
968 /**
969  * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
970  * @auprobe: the probepoint information.
971  * @mm: the probed address space.
972  * @addr: virtual address at which to install the probepoint
973  * Return 0 on success or a -ve number on error.
974  */
arch_uprobe_analyze_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long addr)975 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
976 {
977 	struct insn insn;
978 	u8 fix_ip_or_call = UPROBE_FIX_IP;
979 	int ret;
980 
981 	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
982 	if (ret)
983 		return ret;
984 
985 	ret = branch_setup_xol_ops(auprobe, &insn);
986 	if (ret != -ENOSYS)
987 		return ret;
988 
989 	ret = push_setup_xol_ops(auprobe, &insn);
990 	if (ret != -ENOSYS)
991 		return ret;
992 
993 	/*
994 	 * Figure out which fixups default_post_xol_op() will need to perform,
995 	 * and annotate defparam->fixups accordingly.
996 	 */
997 	switch (OPCODE1(&insn)) {
998 	case 0x9d:		/* popf */
999 		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
1000 		break;
1001 	case 0xc3:		/* ret or lret -- ip is correct */
1002 	case 0xcb:
1003 	case 0xc2:
1004 	case 0xca:
1005 	case 0xea:		/* jmp absolute -- ip is correct */
1006 		fix_ip_or_call = 0;
1007 		break;
1008 	case 0x9a:		/* call absolute - Fix return addr, not ip */
1009 		fix_ip_or_call = UPROBE_FIX_CALL;
1010 		break;
1011 	case 0xff:
1012 		switch (MODRM_REG(&insn)) {
1013 		case 2: case 3:			/* call or lcall, indirect */
1014 			fix_ip_or_call = UPROBE_FIX_CALL;
1015 			break;
1016 		case 4: case 5:			/* jmp or ljmp, indirect */
1017 			fix_ip_or_call = 0;
1018 			break;
1019 		}
1020 		fallthrough;
1021 	default:
1022 		riprel_analyze(auprobe, &insn);
1023 	}
1024 
1025 	auprobe->defparam.ilen = insn.length;
1026 	auprobe->defparam.fixups |= fix_ip_or_call;
1027 
1028 	auprobe->ops = &default_xol_ops;
1029 	return 0;
1030 }
1031 
1032 /*
1033  * arch_uprobe_pre_xol - prepare to execute out of line.
1034  * @auprobe: the probepoint information.
1035  * @regs: reflects the saved user state of current task.
1036  */
arch_uprobe_pre_xol(struct arch_uprobe * auprobe,struct pt_regs * regs)1037 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1038 {
1039 	struct uprobe_task *utask = current->utask;
1040 
1041 	if (auprobe->ops->pre_xol) {
1042 		int err = auprobe->ops->pre_xol(auprobe, regs);
1043 		if (err)
1044 			return err;
1045 	}
1046 
1047 	regs->ip = utask->xol_vaddr;
1048 	utask->autask.saved_trap_nr = current->thread.trap_nr;
1049 	current->thread.trap_nr = UPROBE_TRAP_NR;
1050 
1051 	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
1052 	regs->flags |= X86_EFLAGS_TF;
1053 	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
1054 		set_task_blockstep(current, false);
1055 
1056 	return 0;
1057 }
1058 
1059 /*
1060  * If xol insn itself traps and generates a signal(Say,
1061  * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
1062  * instruction jumps back to its own address. It is assumed that anything
1063  * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
1064  *
1065  * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
1066  * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
1067  * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
1068  */
arch_uprobe_xol_was_trapped(struct task_struct * t)1069 bool arch_uprobe_xol_was_trapped(struct task_struct *t)
1070 {
1071 	if (t->thread.trap_nr != UPROBE_TRAP_NR)
1072 		return true;
1073 
1074 	return false;
1075 }
1076 
1077 /*
1078  * Called after single-stepping. To avoid the SMP problems that can
1079  * occur when we temporarily put back the original opcode to
1080  * single-step, we single-stepped a copy of the instruction.
1081  *
1082  * This function prepares to resume execution after the single-step.
1083  */
arch_uprobe_post_xol(struct arch_uprobe * auprobe,struct pt_regs * regs)1084 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1085 {
1086 	struct uprobe_task *utask = current->utask;
1087 	bool send_sigtrap = utask->autask.saved_tf;
1088 	int err = 0;
1089 
1090 	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
1091 	current->thread.trap_nr = utask->autask.saved_trap_nr;
1092 
1093 	if (auprobe->ops->post_xol) {
1094 		err = auprobe->ops->post_xol(auprobe, regs);
1095 		if (err) {
1096 			/*
1097 			 * Restore ->ip for restart or post mortem analysis.
1098 			 * ->post_xol() must not return -ERESTART unless this
1099 			 * is really possible.
1100 			 */
1101 			regs->ip = utask->vaddr;
1102 			if (err == -ERESTART)
1103 				err = 0;
1104 			send_sigtrap = false;
1105 		}
1106 	}
1107 	/*
1108 	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
1109 	 * so we can get an extra SIGTRAP if we do not clear TF. We need
1110 	 * to examine the opcode to make it right.
1111 	 */
1112 	if (send_sigtrap)
1113 		send_sig(SIGTRAP, current, 0);
1114 
1115 	if (!utask->autask.saved_tf)
1116 		regs->flags &= ~X86_EFLAGS_TF;
1117 
1118 	return err;
1119 }
1120 
1121 /* callback routine for handling exceptions. */
arch_uprobe_exception_notify(struct notifier_block * self,unsigned long val,void * data)1122 int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1123 {
1124 	struct die_args *args = data;
1125 	struct pt_regs *regs = args->regs;
1126 	int ret = NOTIFY_DONE;
1127 
1128 	/* We are only interested in userspace traps */
1129 	if (regs && !user_mode(regs))
1130 		return NOTIFY_DONE;
1131 
1132 	switch (val) {
1133 	case DIE_INT3:
1134 		if (uprobe_pre_sstep_notifier(regs))
1135 			ret = NOTIFY_STOP;
1136 
1137 		break;
1138 
1139 	case DIE_DEBUG:
1140 		if (uprobe_post_sstep_notifier(regs))
1141 			ret = NOTIFY_STOP;
1142 
1143 		break;
1144 
1145 	default:
1146 		break;
1147 	}
1148 
1149 	return ret;
1150 }
1151 
1152 /*
1153  * This function gets called when XOL instruction either gets trapped or
1154  * the thread has a fatal signal. Reset the instruction pointer to its
1155  * probed address for the potential restart or for post mortem analysis.
1156  */
arch_uprobe_abort_xol(struct arch_uprobe * auprobe,struct pt_regs * regs)1157 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1158 {
1159 	struct uprobe_task *utask = current->utask;
1160 
1161 	if (auprobe->ops->abort)
1162 		auprobe->ops->abort(auprobe, regs);
1163 
1164 	current->thread.trap_nr = utask->autask.saved_trap_nr;
1165 	regs->ip = utask->vaddr;
1166 	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1167 	if (!utask->autask.saved_tf)
1168 		regs->flags &= ~X86_EFLAGS_TF;
1169 }
1170 
__skip_sstep(struct arch_uprobe * auprobe,struct pt_regs * regs)1171 static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1172 {
1173 	if (auprobe->ops->emulate)
1174 		return auprobe->ops->emulate(auprobe, regs);
1175 	return false;
1176 }
1177 
arch_uprobe_skip_sstep(struct arch_uprobe * auprobe,struct pt_regs * regs)1178 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1179 {
1180 	bool ret = __skip_sstep(auprobe, regs);
1181 	if (ret && (regs->flags & X86_EFLAGS_TF))
1182 		send_sig(SIGTRAP, current, 0);
1183 	return ret;
1184 }
1185 
1186 unsigned long
arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr,struct pt_regs * regs)1187 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1188 {
1189 	int rasize = sizeof_long(regs), nleft;
1190 	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1191 
1192 	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1193 		return -1;
1194 
1195 	/* check whether address has been already hijacked */
1196 	if (orig_ret_vaddr == trampoline_vaddr)
1197 		return orig_ret_vaddr;
1198 
1199 	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1200 	if (likely(!nleft)) {
1201 		if (shstk_update_last_frame(trampoline_vaddr)) {
1202 			force_sig(SIGSEGV);
1203 			return -1;
1204 		}
1205 		return orig_ret_vaddr;
1206 	}
1207 
1208 	if (nleft != rasize) {
1209 		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1210 		       current->pid, regs->sp, regs->ip);
1211 
1212 		force_sig(SIGSEGV);
1213 	}
1214 
1215 	return -1;
1216 }
1217 
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)1218 bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1219 				struct pt_regs *regs)
1220 {
1221 	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1222 		return regs->sp < ret->stack;
1223 	else
1224 		return regs->sp <= ret->stack;
1225 }
1226