1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/init.h>
8 #include <linux/export.h>
9 #include <linux/timer.h>
10 #include <linux/acpi_pmtmr.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/clocksource.h>
14 #include <linux/percpu.h>
15 #include <linux/timex.h>
16 #include <linux/static_key.h>
17 #include <linux/static_call.h>
18
19 #include <asm/cpuid.h>
20 #include <asm/hpet.h>
21 #include <asm/timer.h>
22 #include <asm/vgtod.h>
23 #include <asm/time.h>
24 #include <asm/delay.h>
25 #include <asm/hypervisor.h>
26 #include <asm/nmi.h>
27 #include <asm/x86_init.h>
28 #include <asm/geode.h>
29 #include <asm/apic.h>
30 #include <asm/cpu_device_id.h>
31 #include <asm/i8259.h>
32 #include <asm/topology.h>
33 #include <asm/uv/uv.h>
34 #include <asm/sev.h>
35
36 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
37 EXPORT_SYMBOL(cpu_khz);
38
39 unsigned int __read_mostly tsc_khz;
40 EXPORT_SYMBOL(tsc_khz);
41
42 #define KHZ 1000
43
44 /*
45 * TSC can be unstable due to cpufreq or due to unsynced TSCs
46 */
47 static int __read_mostly tsc_unstable;
48 static unsigned int __initdata tsc_early_khz;
49
50 static DEFINE_STATIC_KEY_FALSE_RO(__use_tsc);
51
52 int tsc_clocksource_reliable;
53
54 static int __read_mostly tsc_force_recalibrate;
55
56 static struct clocksource_base art_base_clk = {
57 .id = CSID_X86_ART,
58 };
59 static bool have_art;
60
61 struct cyc2ns {
62 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
63 seqcount_latch_t seq; /* 32 + 4 = 36 */
64
65 }; /* fits one cacheline */
66
67 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
68
tsc_early_khz_setup(char * buf)69 static int __init tsc_early_khz_setup(char *buf)
70 {
71 return kstrtouint(buf, 0, &tsc_early_khz);
72 }
73 early_param("tsc_early_khz", tsc_early_khz_setup);
74
__cyc2ns_read(struct cyc2ns_data * data)75 __always_inline void __cyc2ns_read(struct cyc2ns_data *data)
76 {
77 int seq, idx;
78
79 do {
80 seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
81 idx = seq & 1;
82
83 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
84 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
85 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
86
87 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
88 }
89
cyc2ns_read_begin(struct cyc2ns_data * data)90 __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
91 {
92 preempt_disable_notrace();
93 __cyc2ns_read(data);
94 }
95
cyc2ns_read_end(void)96 __always_inline void cyc2ns_read_end(void)
97 {
98 preempt_enable_notrace();
99 }
100
101 /*
102 * Accelerators for sched_clock()
103 * convert from cycles(64bits) => nanoseconds (64bits)
104 * basic equation:
105 * ns = cycles / (freq / ns_per_sec)
106 * ns = cycles * (ns_per_sec / freq)
107 * ns = cycles * (10^9 / (cpu_khz * 10^3))
108 * ns = cycles * (10^6 / cpu_khz)
109 *
110 * Then we use scaling math (suggested by [email protected]) to get:
111 * ns = cycles * (10^6 * SC / cpu_khz) / SC
112 * ns = cycles * cyc2ns_scale / SC
113 *
114 * And since SC is a constant power of two, we can convert the div
115 * into a shift. The larger SC is, the more accurate the conversion, but
116 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
117 * (64-bit result) can be used.
118 *
119 * We can use khz divisor instead of mhz to keep a better precision.
120 * ([email protected])
121 *
122 * [email protected] "math is hard, lets go shopping!"
123 */
124
__cycles_2_ns(unsigned long long cyc)125 static __always_inline unsigned long long __cycles_2_ns(unsigned long long cyc)
126 {
127 struct cyc2ns_data data;
128 unsigned long long ns;
129
130 __cyc2ns_read(&data);
131
132 ns = data.cyc2ns_offset;
133 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
134
135 return ns;
136 }
137
cycles_2_ns(unsigned long long cyc)138 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
139 {
140 unsigned long long ns;
141 preempt_disable_notrace();
142 ns = __cycles_2_ns(cyc);
143 preempt_enable_notrace();
144 return ns;
145 }
146
__set_cyc2ns_scale(unsigned long khz,int cpu,unsigned long long tsc_now)147 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
148 {
149 unsigned long long ns_now;
150 struct cyc2ns_data data;
151 struct cyc2ns *c2n;
152
153 ns_now = cycles_2_ns(tsc_now);
154
155 /*
156 * Compute a new multiplier as per the above comment and ensure our
157 * time function is continuous; see the comment near struct
158 * cyc2ns_data.
159 */
160 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
161 NSEC_PER_MSEC, 0);
162
163 /*
164 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
165 * not expected to be greater than 31 due to the original published
166 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
167 * value) - refer perf_event_mmap_page documentation in perf_event.h.
168 */
169 if (data.cyc2ns_shift == 32) {
170 data.cyc2ns_shift = 31;
171 data.cyc2ns_mul >>= 1;
172 }
173
174 data.cyc2ns_offset = ns_now -
175 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
176
177 c2n = per_cpu_ptr(&cyc2ns, cpu);
178
179 write_seqcount_latch_begin(&c2n->seq);
180 c2n->data[0] = data;
181 write_seqcount_latch(&c2n->seq);
182 c2n->data[1] = data;
183 write_seqcount_latch_end(&c2n->seq);
184 }
185
set_cyc2ns_scale(unsigned long khz,int cpu,unsigned long long tsc_now)186 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
187 {
188 unsigned long flags;
189
190 local_irq_save(flags);
191 sched_clock_idle_sleep_event();
192
193 if (khz)
194 __set_cyc2ns_scale(khz, cpu, tsc_now);
195
196 sched_clock_idle_wakeup_event();
197 local_irq_restore(flags);
198 }
199
200 /*
201 * Initialize cyc2ns for boot cpu
202 */
cyc2ns_init_boot_cpu(void)203 static void __init cyc2ns_init_boot_cpu(void)
204 {
205 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
206
207 seqcount_latch_init(&c2n->seq);
208 __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
209 }
210
211 /*
212 * Secondary CPUs do not run through tsc_init(), so set up
213 * all the scale factors for all CPUs, assuming the same
214 * speed as the bootup CPU.
215 */
cyc2ns_init_secondary_cpus(void)216 static void __init cyc2ns_init_secondary_cpus(void)
217 {
218 unsigned int cpu, this_cpu = smp_processor_id();
219 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
220 struct cyc2ns_data *data = c2n->data;
221
222 for_each_possible_cpu(cpu) {
223 if (cpu != this_cpu) {
224 seqcount_latch_init(&c2n->seq);
225 c2n = per_cpu_ptr(&cyc2ns, cpu);
226 c2n->data[0] = data[0];
227 c2n->data[1] = data[1];
228 }
229 }
230 }
231
232 /*
233 * Scheduler clock - returns current time in nanosec units.
234 */
native_sched_clock(void)235 noinstr u64 native_sched_clock(void)
236 {
237 if (static_branch_likely(&__use_tsc)) {
238 u64 tsc_now = rdtsc();
239
240 /* return the value in ns */
241 return __cycles_2_ns(tsc_now);
242 }
243
244 /*
245 * Fall back to jiffies if there's no TSC available:
246 * ( But note that we still use it if the TSC is marked
247 * unstable. We do this because unlike Time Of Day,
248 * the scheduler clock tolerates small errors and it's
249 * very important for it to be as fast as the platform
250 * can achieve it. )
251 */
252
253 /* No locking but a rare wrong value is not a big deal: */
254 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
255 }
256
257 /*
258 * Generate a sched_clock if you already have a TSC value.
259 */
native_sched_clock_from_tsc(u64 tsc)260 u64 native_sched_clock_from_tsc(u64 tsc)
261 {
262 return cycles_2_ns(tsc);
263 }
264
265 /* We need to define a real function for sched_clock, to override the
266 weak default version */
267 #ifdef CONFIG_PARAVIRT
sched_clock_noinstr(void)268 noinstr u64 sched_clock_noinstr(void)
269 {
270 return paravirt_sched_clock();
271 }
272
using_native_sched_clock(void)273 bool using_native_sched_clock(void)
274 {
275 return static_call_query(pv_sched_clock) == native_sched_clock;
276 }
277 #else
278 u64 sched_clock_noinstr(void) __attribute__((alias("native_sched_clock")));
279
using_native_sched_clock(void)280 bool using_native_sched_clock(void) { return true; }
281 #endif
282
sched_clock(void)283 notrace u64 sched_clock(void)
284 {
285 u64 now;
286 preempt_disable_notrace();
287 now = sched_clock_noinstr();
288 preempt_enable_notrace();
289 return now;
290 }
291
check_tsc_unstable(void)292 int check_tsc_unstable(void)
293 {
294 return tsc_unstable;
295 }
296 EXPORT_SYMBOL_GPL(check_tsc_unstable);
297
298 #ifdef CONFIG_X86_TSC
notsc_setup(char * str)299 int __init notsc_setup(char *str)
300 {
301 mark_tsc_unstable("boot parameter notsc");
302 return 1;
303 }
304 #else
305 /*
306 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
307 * in cpu/common.c
308 */
notsc_setup(char * str)309 int __init notsc_setup(char *str)
310 {
311 setup_clear_cpu_cap(X86_FEATURE_TSC);
312 return 1;
313 }
314 #endif
315
316 __setup("notsc", notsc_setup);
317
318 static int no_sched_irq_time;
319 static int no_tsc_watchdog;
320 static int tsc_as_watchdog;
321
tsc_setup(char * str)322 static int __init tsc_setup(char *str)
323 {
324 if (!strcmp(str, "reliable"))
325 tsc_clocksource_reliable = 1;
326 if (!strncmp(str, "noirqtime", 9))
327 no_sched_irq_time = 1;
328 if (!strcmp(str, "unstable"))
329 mark_tsc_unstable("boot parameter");
330 if (!strcmp(str, "nowatchdog")) {
331 no_tsc_watchdog = 1;
332 if (tsc_as_watchdog)
333 pr_alert("%s: Overriding earlier tsc=watchdog with tsc=nowatchdog\n",
334 __func__);
335 tsc_as_watchdog = 0;
336 }
337 if (!strcmp(str, "recalibrate"))
338 tsc_force_recalibrate = 1;
339 if (!strcmp(str, "watchdog")) {
340 if (no_tsc_watchdog)
341 pr_alert("%s: tsc=watchdog overridden by earlier tsc=nowatchdog\n",
342 __func__);
343 else
344 tsc_as_watchdog = 1;
345 }
346 return 1;
347 }
348
349 __setup("tsc=", tsc_setup);
350
351 #define MAX_RETRIES 5
352 #define TSC_DEFAULT_THRESHOLD 0x20000
353
354 /*
355 * Read TSC and the reference counters. Take care of any disturbances
356 */
tsc_read_refs(u64 * p,int hpet)357 static u64 tsc_read_refs(u64 *p, int hpet)
358 {
359 u64 t1, t2;
360 u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
361 int i;
362
363 for (i = 0; i < MAX_RETRIES; i++) {
364 t1 = get_cycles();
365 if (hpet)
366 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
367 else
368 *p = acpi_pm_read_early();
369 t2 = get_cycles();
370 if ((t2 - t1) < thresh)
371 return t2;
372 }
373 return ULLONG_MAX;
374 }
375
376 /*
377 * Calculate the TSC frequency from HPET reference
378 */
calc_hpet_ref(u64 deltatsc,u64 hpet1,u64 hpet2)379 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
380 {
381 u64 tmp;
382
383 if (hpet2 < hpet1)
384 hpet2 += 0x100000000ULL;
385 hpet2 -= hpet1;
386 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
387 do_div(tmp, 1000000);
388 deltatsc = div64_u64(deltatsc, tmp);
389
390 return (unsigned long) deltatsc;
391 }
392
393 /*
394 * Calculate the TSC frequency from PMTimer reference
395 */
calc_pmtimer_ref(u64 deltatsc,u64 pm1,u64 pm2)396 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
397 {
398 u64 tmp;
399
400 if (!pm1 && !pm2)
401 return ULONG_MAX;
402
403 if (pm2 < pm1)
404 pm2 += (u64)ACPI_PM_OVRRUN;
405 pm2 -= pm1;
406 tmp = pm2 * 1000000000LL;
407 do_div(tmp, PMTMR_TICKS_PER_SEC);
408 do_div(deltatsc, tmp);
409
410 return (unsigned long) deltatsc;
411 }
412
413 #define CAL_MS 10
414 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
415 #define CAL_PIT_LOOPS 1000
416
417 #define CAL2_MS 50
418 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
419 #define CAL2_PIT_LOOPS 5000
420
421
422 /*
423 * Try to calibrate the TSC against the Programmable
424 * Interrupt Timer and return the frequency of the TSC
425 * in kHz.
426 *
427 * Return ULONG_MAX on failure to calibrate.
428 */
pit_calibrate_tsc(u32 latch,unsigned long ms,int loopmin)429 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
430 {
431 u64 tsc, t1, t2, delta;
432 unsigned long tscmin, tscmax;
433 int pitcnt;
434
435 if (!has_legacy_pic()) {
436 /*
437 * Relies on tsc_early_delay_calibrate() to have given us semi
438 * usable udelay(), wait for the same 50ms we would have with
439 * the PIT loop below.
440 */
441 udelay(10 * USEC_PER_MSEC);
442 udelay(10 * USEC_PER_MSEC);
443 udelay(10 * USEC_PER_MSEC);
444 udelay(10 * USEC_PER_MSEC);
445 udelay(10 * USEC_PER_MSEC);
446 return ULONG_MAX;
447 }
448
449 /* Set the Gate high, disable speaker */
450 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
451
452 /*
453 * Setup CTC channel 2* for mode 0, (interrupt on terminal
454 * count mode), binary count. Set the latch register to 50ms
455 * (LSB then MSB) to begin countdown.
456 */
457 outb(0xb0, 0x43);
458 outb(latch & 0xff, 0x42);
459 outb(latch >> 8, 0x42);
460
461 tsc = t1 = t2 = get_cycles();
462
463 pitcnt = 0;
464 tscmax = 0;
465 tscmin = ULONG_MAX;
466 while ((inb(0x61) & 0x20) == 0) {
467 t2 = get_cycles();
468 delta = t2 - tsc;
469 tsc = t2;
470 if ((unsigned long) delta < tscmin)
471 tscmin = (unsigned int) delta;
472 if ((unsigned long) delta > tscmax)
473 tscmax = (unsigned int) delta;
474 pitcnt++;
475 }
476
477 /*
478 * Sanity checks:
479 *
480 * If we were not able to read the PIT more than loopmin
481 * times, then we have been hit by a massive SMI
482 *
483 * If the maximum is 10 times larger than the minimum,
484 * then we got hit by an SMI as well.
485 */
486 if (pitcnt < loopmin || tscmax > 10 * tscmin)
487 return ULONG_MAX;
488
489 /* Calculate the PIT value */
490 delta = t2 - t1;
491 do_div(delta, ms);
492 return delta;
493 }
494
495 /*
496 * This reads the current MSB of the PIT counter, and
497 * checks if we are running on sufficiently fast and
498 * non-virtualized hardware.
499 *
500 * Our expectations are:
501 *
502 * - the PIT is running at roughly 1.19MHz
503 *
504 * - each IO is going to take about 1us on real hardware,
505 * but we allow it to be much faster (by a factor of 10) or
506 * _slightly_ slower (ie we allow up to a 2us read+counter
507 * update - anything else implies a unacceptably slow CPU
508 * or PIT for the fast calibration to work.
509 *
510 * - with 256 PIT ticks to read the value, we have 214us to
511 * see the same MSB (and overhead like doing a single TSC
512 * read per MSB value etc).
513 *
514 * - We're doing 2 reads per loop (LSB, MSB), and we expect
515 * them each to take about a microsecond on real hardware.
516 * So we expect a count value of around 100. But we'll be
517 * generous, and accept anything over 50.
518 *
519 * - if the PIT is stuck, and we see *many* more reads, we
520 * return early (and the next caller of pit_expect_msb()
521 * then consider it a failure when they don't see the
522 * next expected value).
523 *
524 * These expectations mean that we know that we have seen the
525 * transition from one expected value to another with a fairly
526 * high accuracy, and we didn't miss any events. We can thus
527 * use the TSC value at the transitions to calculate a pretty
528 * good value for the TSC frequency.
529 */
pit_verify_msb(unsigned char val)530 static inline int pit_verify_msb(unsigned char val)
531 {
532 /* Ignore LSB */
533 inb(0x42);
534 return inb(0x42) == val;
535 }
536
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)537 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
538 {
539 int count;
540 u64 tsc = 0, prev_tsc = 0;
541
542 for (count = 0; count < 50000; count++) {
543 if (!pit_verify_msb(val))
544 break;
545 prev_tsc = tsc;
546 tsc = get_cycles();
547 }
548 *deltap = get_cycles() - prev_tsc;
549 *tscp = tsc;
550
551 /*
552 * We require _some_ success, but the quality control
553 * will be based on the error terms on the TSC values.
554 */
555 return count > 5;
556 }
557
558 /*
559 * How many MSB values do we want to see? We aim for
560 * a maximum error rate of 500ppm (in practice the
561 * real error is much smaller), but refuse to spend
562 * more than 50ms on it.
563 */
564 #define MAX_QUICK_PIT_MS 50
565 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
566
quick_pit_calibrate(void)567 static unsigned long quick_pit_calibrate(void)
568 {
569 int i;
570 u64 tsc, delta;
571 unsigned long d1, d2;
572
573 if (!has_legacy_pic())
574 return 0;
575
576 /* Set the Gate high, disable speaker */
577 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
578
579 /*
580 * Counter 2, mode 0 (one-shot), binary count
581 *
582 * NOTE! Mode 2 decrements by two (and then the
583 * output is flipped each time, giving the same
584 * final output frequency as a decrement-by-one),
585 * so mode 0 is much better when looking at the
586 * individual counts.
587 */
588 outb(0xb0, 0x43);
589
590 /* Start at 0xffff */
591 outb(0xff, 0x42);
592 outb(0xff, 0x42);
593
594 /*
595 * The PIT starts counting at the next edge, so we
596 * need to delay for a microsecond. The easiest way
597 * to do that is to just read back the 16-bit counter
598 * once from the PIT.
599 */
600 pit_verify_msb(0);
601
602 if (pit_expect_msb(0xff, &tsc, &d1)) {
603 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
604 if (!pit_expect_msb(0xff-i, &delta, &d2))
605 break;
606
607 delta -= tsc;
608
609 /*
610 * Extrapolate the error and fail fast if the error will
611 * never be below 500 ppm.
612 */
613 if (i == 1 &&
614 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
615 return 0;
616
617 /*
618 * Iterate until the error is less than 500 ppm
619 */
620 if (d1+d2 >= delta >> 11)
621 continue;
622
623 /*
624 * Check the PIT one more time to verify that
625 * all TSC reads were stable wrt the PIT.
626 *
627 * This also guarantees serialization of the
628 * last cycle read ('d2') in pit_expect_msb.
629 */
630 if (!pit_verify_msb(0xfe - i))
631 break;
632 goto success;
633 }
634 }
635 pr_info("Fast TSC calibration failed\n");
636 return 0;
637
638 success:
639 /*
640 * Ok, if we get here, then we've seen the
641 * MSB of the PIT decrement 'i' times, and the
642 * error has shrunk to less than 500 ppm.
643 *
644 * As a result, we can depend on there not being
645 * any odd delays anywhere, and the TSC reads are
646 * reliable (within the error).
647 *
648 * kHz = ticks / time-in-seconds / 1000;
649 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
650 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
651 */
652 delta *= PIT_TICK_RATE;
653 do_div(delta, i*256*1000);
654 pr_info("Fast TSC calibration using PIT\n");
655 return delta;
656 }
657
658 /**
659 * native_calibrate_tsc - determine TSC frequency
660 * Determine TSC frequency via CPUID, else return 0.
661 */
native_calibrate_tsc(void)662 unsigned long native_calibrate_tsc(void)
663 {
664 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
665 unsigned int crystal_khz;
666
667 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
668 return 0;
669
670 if (boot_cpu_data.cpuid_level < CPUID_LEAF_TSC)
671 return 0;
672
673 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
674
675 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
676 cpuid(CPUID_LEAF_TSC, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
677
678 if (ebx_numerator == 0 || eax_denominator == 0)
679 return 0;
680
681 crystal_khz = ecx_hz / 1000;
682
683 /*
684 * Denverton SoCs don't report crystal clock, and also don't support
685 * CPUID_LEAF_FREQ for the calculation below, so hardcode the 25MHz
686 * crystal clock.
687 */
688 if (crystal_khz == 0 &&
689 boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT_D)
690 crystal_khz = 25000;
691
692 /*
693 * TSC frequency reported directly by CPUID is a "hardware reported"
694 * frequency and is the most accurate one so far we have. This
695 * is considered a known frequency.
696 */
697 if (crystal_khz != 0)
698 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
699
700 /*
701 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
702 * clock, but we can easily calculate it to a high degree of accuracy
703 * by considering the crystal ratio and the CPU speed.
704 */
705 if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= CPUID_LEAF_FREQ) {
706 unsigned int eax_base_mhz, ebx, ecx, edx;
707
708 cpuid(CPUID_LEAF_FREQ, &eax_base_mhz, &ebx, &ecx, &edx);
709 crystal_khz = eax_base_mhz * 1000 *
710 eax_denominator / ebx_numerator;
711 }
712
713 if (crystal_khz == 0)
714 return 0;
715
716 /*
717 * For Atom SoCs TSC is the only reliable clocksource.
718 * Mark TSC reliable so no watchdog on it.
719 */
720 if (boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT)
721 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
722
723 #ifdef CONFIG_X86_LOCAL_APIC
724 /*
725 * The local APIC appears to be fed by the core crystal clock
726 * (which sounds entirely sensible). We can set the global
727 * lapic_timer_period here to avoid having to calibrate the APIC
728 * timer later.
729 */
730 lapic_timer_period = crystal_khz * 1000 / HZ;
731 #endif
732
733 return crystal_khz * ebx_numerator / eax_denominator;
734 }
735
cpu_khz_from_cpuid(void)736 static unsigned long cpu_khz_from_cpuid(void)
737 {
738 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
739
740 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
741 return 0;
742
743 if (boot_cpu_data.cpuid_level < CPUID_LEAF_FREQ)
744 return 0;
745
746 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
747
748 cpuid(CPUID_LEAF_FREQ, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
749
750 return eax_base_mhz * 1000;
751 }
752
753 /*
754 * calibrate cpu using pit, hpet, and ptimer methods. They are available
755 * later in boot after acpi is initialized.
756 */
pit_hpet_ptimer_calibrate_cpu(void)757 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
758 {
759 u64 tsc1, tsc2, delta, ref1, ref2;
760 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
761 unsigned long flags, latch, ms;
762 int hpet = is_hpet_enabled(), i, loopmin;
763
764 /*
765 * Run 5 calibration loops to get the lowest frequency value
766 * (the best estimate). We use two different calibration modes
767 * here:
768 *
769 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
770 * load a timeout of 50ms. We read the time right after we
771 * started the timer and wait until the PIT count down reaches
772 * zero. In each wait loop iteration we read the TSC and check
773 * the delta to the previous read. We keep track of the min
774 * and max values of that delta. The delta is mostly defined
775 * by the IO time of the PIT access, so we can detect when
776 * any disturbance happened between the two reads. If the
777 * maximum time is significantly larger than the minimum time,
778 * then we discard the result and have another try.
779 *
780 * 2) Reference counter. If available we use the HPET or the
781 * PMTIMER as a reference to check the sanity of that value.
782 * We use separate TSC readouts and check inside of the
783 * reference read for any possible disturbance. We discard
784 * disturbed values here as well. We do that around the PIT
785 * calibration delay loop as we have to wait for a certain
786 * amount of time anyway.
787 */
788
789 /* Preset PIT loop values */
790 latch = CAL_LATCH;
791 ms = CAL_MS;
792 loopmin = CAL_PIT_LOOPS;
793
794 for (i = 0; i < 3; i++) {
795 unsigned long tsc_pit_khz;
796
797 /*
798 * Read the start value and the reference count of
799 * hpet/pmtimer when available. Then do the PIT
800 * calibration, which will take at least 50ms, and
801 * read the end value.
802 */
803 local_irq_save(flags);
804 tsc1 = tsc_read_refs(&ref1, hpet);
805 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
806 tsc2 = tsc_read_refs(&ref2, hpet);
807 local_irq_restore(flags);
808
809 /* Pick the lowest PIT TSC calibration so far */
810 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
811
812 /* hpet or pmtimer available ? */
813 if (ref1 == ref2)
814 continue;
815
816 /* Check, whether the sampling was disturbed */
817 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
818 continue;
819
820 tsc2 = (tsc2 - tsc1) * 1000000LL;
821 if (hpet)
822 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
823 else
824 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
825
826 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
827
828 /* Check the reference deviation */
829 delta = ((u64) tsc_pit_min) * 100;
830 do_div(delta, tsc_ref_min);
831
832 /*
833 * If both calibration results are inside a 10% window
834 * then we can be sure, that the calibration
835 * succeeded. We break out of the loop right away. We
836 * use the reference value, as it is more precise.
837 */
838 if (delta >= 90 && delta <= 110) {
839 pr_info("PIT calibration matches %s. %d loops\n",
840 hpet ? "HPET" : "PMTIMER", i + 1);
841 return tsc_ref_min;
842 }
843
844 /*
845 * Check whether PIT failed more than once. This
846 * happens in virtualized environments. We need to
847 * give the virtual PC a slightly longer timeframe for
848 * the HPET/PMTIMER to make the result precise.
849 */
850 if (i == 1 && tsc_pit_min == ULONG_MAX) {
851 latch = CAL2_LATCH;
852 ms = CAL2_MS;
853 loopmin = CAL2_PIT_LOOPS;
854 }
855 }
856
857 /*
858 * Now check the results.
859 */
860 if (tsc_pit_min == ULONG_MAX) {
861 /* PIT gave no useful value */
862 pr_warn("Unable to calibrate against PIT\n");
863
864 /* We don't have an alternative source, disable TSC */
865 if (!hpet && !ref1 && !ref2) {
866 pr_notice("No reference (HPET/PMTIMER) available\n");
867 return 0;
868 }
869
870 /* The alternative source failed as well, disable TSC */
871 if (tsc_ref_min == ULONG_MAX) {
872 pr_warn("HPET/PMTIMER calibration failed\n");
873 return 0;
874 }
875
876 /* Use the alternative source */
877 pr_info("using %s reference calibration\n",
878 hpet ? "HPET" : "PMTIMER");
879
880 return tsc_ref_min;
881 }
882
883 /* We don't have an alternative source, use the PIT calibration value */
884 if (!hpet && !ref1 && !ref2) {
885 pr_info("Using PIT calibration value\n");
886 return tsc_pit_min;
887 }
888
889 /* The alternative source failed, use the PIT calibration value */
890 if (tsc_ref_min == ULONG_MAX) {
891 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
892 return tsc_pit_min;
893 }
894
895 /*
896 * The calibration values differ too much. In doubt, we use
897 * the PIT value as we know that there are PMTIMERs around
898 * running at double speed. At least we let the user know:
899 */
900 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
901 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
902 pr_info("Using PIT calibration value\n");
903 return tsc_pit_min;
904 }
905
906 /**
907 * native_calibrate_cpu_early - can calibrate the cpu early in boot
908 */
native_calibrate_cpu_early(void)909 unsigned long native_calibrate_cpu_early(void)
910 {
911 unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
912
913 if (!fast_calibrate)
914 fast_calibrate = cpu_khz_from_msr();
915 if (!fast_calibrate) {
916 local_irq_save(flags);
917 fast_calibrate = quick_pit_calibrate();
918 local_irq_restore(flags);
919 }
920 return fast_calibrate;
921 }
922
923
924 /**
925 * native_calibrate_cpu - calibrate the cpu
926 */
native_calibrate_cpu(void)927 static unsigned long native_calibrate_cpu(void)
928 {
929 unsigned long tsc_freq = native_calibrate_cpu_early();
930
931 if (!tsc_freq)
932 tsc_freq = pit_hpet_ptimer_calibrate_cpu();
933
934 return tsc_freq;
935 }
936
recalibrate_cpu_khz(void)937 void recalibrate_cpu_khz(void)
938 {
939 #ifndef CONFIG_SMP
940 unsigned long cpu_khz_old = cpu_khz;
941
942 if (!boot_cpu_has(X86_FEATURE_TSC))
943 return;
944
945 cpu_khz = x86_platform.calibrate_cpu();
946 tsc_khz = x86_platform.calibrate_tsc();
947 if (tsc_khz == 0)
948 tsc_khz = cpu_khz;
949 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
950 cpu_khz = tsc_khz;
951 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
952 cpu_khz_old, cpu_khz);
953 #endif
954 }
955 EXPORT_SYMBOL_GPL(recalibrate_cpu_khz);
956
957
958 static unsigned long long cyc2ns_suspend;
959
tsc_save_sched_clock_state(void)960 void tsc_save_sched_clock_state(void)
961 {
962 if (!static_branch_likely(&__use_tsc) && !sched_clock_stable())
963 return;
964
965 cyc2ns_suspend = sched_clock();
966 }
967
968 /*
969 * Even on processors with invariant TSC, TSC gets reset in some the
970 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
971 * arbitrary value (still sync'd across cpu's) during resume from such sleep
972 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
973 * that sched_clock() continues from the point where it was left off during
974 * suspend.
975 */
tsc_restore_sched_clock_state(void)976 void tsc_restore_sched_clock_state(void)
977 {
978 unsigned long long offset;
979 unsigned long flags;
980 int cpu;
981
982 if (!static_branch_likely(&__use_tsc) && !sched_clock_stable())
983 return;
984
985 local_irq_save(flags);
986
987 /*
988 * We're coming out of suspend, there's no concurrency yet; don't
989 * bother being nice about the RCU stuff, just write to both
990 * data fields.
991 */
992
993 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
994 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
995
996 offset = cyc2ns_suspend - sched_clock();
997
998 for_each_possible_cpu(cpu) {
999 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
1000 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
1001 }
1002
1003 local_irq_restore(flags);
1004 }
1005
1006 #ifdef CONFIG_CPU_FREQ
1007 /*
1008 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
1009 * changes.
1010 *
1011 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
1012 * as unstable and give up in those cases.
1013 *
1014 * Should fix up last_tsc too. Currently gettimeofday in the
1015 * first tick after the change will be slightly wrong.
1016 */
1017
1018 static unsigned int ref_freq;
1019 static unsigned long loops_per_jiffy_ref;
1020 static unsigned long tsc_khz_ref;
1021
time_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)1022 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1023 void *data)
1024 {
1025 struct cpufreq_freqs *freq = data;
1026
1027 if (num_online_cpus() > 1) {
1028 mark_tsc_unstable("cpufreq changes on SMP");
1029 return 0;
1030 }
1031
1032 if (!ref_freq) {
1033 ref_freq = freq->old;
1034 loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
1035 tsc_khz_ref = tsc_khz;
1036 }
1037
1038 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
1039 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1040 boot_cpu_data.loops_per_jiffy =
1041 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1042
1043 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1044 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1045 mark_tsc_unstable("cpufreq changes");
1046
1047 set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1048 }
1049
1050 return 0;
1051 }
1052
1053 static struct notifier_block time_cpufreq_notifier_block = {
1054 .notifier_call = time_cpufreq_notifier
1055 };
1056
cpufreq_register_tsc_scaling(void)1057 static int __init cpufreq_register_tsc_scaling(void)
1058 {
1059 if (!boot_cpu_has(X86_FEATURE_TSC))
1060 return 0;
1061 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1062 return 0;
1063 cpufreq_register_notifier(&time_cpufreq_notifier_block,
1064 CPUFREQ_TRANSITION_NOTIFIER);
1065 return 0;
1066 }
1067
1068 core_initcall(cpufreq_register_tsc_scaling);
1069
1070 #endif /* CONFIG_CPU_FREQ */
1071
1072 #define ART_MIN_DENOMINATOR (1)
1073
1074 /*
1075 * If ART is present detect the numerator:denominator to convert to TSC
1076 */
detect_art(void)1077 static void __init detect_art(void)
1078 {
1079 unsigned int unused;
1080
1081 if (boot_cpu_data.cpuid_level < CPUID_LEAF_TSC)
1082 return;
1083
1084 /*
1085 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1086 * and the TSC counter resets must not occur asynchronously.
1087 */
1088 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1089 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1090 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1091 tsc_async_resets)
1092 return;
1093
1094 cpuid(CPUID_LEAF_TSC, &art_base_clk.denominator,
1095 &art_base_clk.numerator, &art_base_clk.freq_khz, &unused);
1096
1097 art_base_clk.freq_khz /= KHZ;
1098 if (art_base_clk.denominator < ART_MIN_DENOMINATOR)
1099 return;
1100
1101 rdmsrl(MSR_IA32_TSC_ADJUST, art_base_clk.offset);
1102
1103 /* Make this sticky over multiple CPU init calls */
1104 setup_force_cpu_cap(X86_FEATURE_ART);
1105 }
1106
1107
1108 /* clocksource code */
1109
tsc_resume(struct clocksource * cs)1110 static void tsc_resume(struct clocksource *cs)
1111 {
1112 tsc_verify_tsc_adjust(true);
1113 }
1114
1115 /*
1116 * We used to compare the TSC to the cycle_last value in the clocksource
1117 * structure to avoid a nasty time-warp. This can be observed in a
1118 * very small window right after one CPU updated cycle_last under
1119 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1120 * is smaller than the cycle_last reference value due to a TSC which
1121 * is slightly behind. This delta is nowhere else observable, but in
1122 * that case it results in a forward time jump in the range of hours
1123 * due to the unsigned delta calculation of the time keeping core
1124 * code, which is necessary to support wrapping clocksources like pm
1125 * timer.
1126 *
1127 * This sanity check is now done in the core timekeeping code.
1128 * checking the result of read_tsc() - cycle_last for being negative.
1129 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1130 */
read_tsc(struct clocksource * cs)1131 static u64 read_tsc(struct clocksource *cs)
1132 {
1133 return (u64)rdtsc_ordered();
1134 }
1135
tsc_cs_mark_unstable(struct clocksource * cs)1136 static void tsc_cs_mark_unstable(struct clocksource *cs)
1137 {
1138 if (tsc_unstable)
1139 return;
1140
1141 tsc_unstable = 1;
1142 if (using_native_sched_clock())
1143 clear_sched_clock_stable();
1144 disable_sched_clock_irqtime();
1145 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1146 }
1147
tsc_cs_tick_stable(struct clocksource * cs)1148 static void tsc_cs_tick_stable(struct clocksource *cs)
1149 {
1150 if (tsc_unstable)
1151 return;
1152
1153 if (using_native_sched_clock())
1154 sched_clock_tick_stable();
1155 }
1156
tsc_cs_enable(struct clocksource * cs)1157 static int tsc_cs_enable(struct clocksource *cs)
1158 {
1159 vclocks_set_used(VDSO_CLOCKMODE_TSC);
1160 return 0;
1161 }
1162
1163 /*
1164 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1165 */
1166 static struct clocksource clocksource_tsc_early = {
1167 .name = "tsc-early",
1168 .rating = 299,
1169 .uncertainty_margin = 32 * NSEC_PER_MSEC,
1170 .read = read_tsc,
1171 .mask = CLOCKSOURCE_MASK(64),
1172 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1173 CLOCK_SOURCE_MUST_VERIFY,
1174 .id = CSID_X86_TSC_EARLY,
1175 .vdso_clock_mode = VDSO_CLOCKMODE_TSC,
1176 .enable = tsc_cs_enable,
1177 .resume = tsc_resume,
1178 .mark_unstable = tsc_cs_mark_unstable,
1179 .tick_stable = tsc_cs_tick_stable,
1180 .list = LIST_HEAD_INIT(clocksource_tsc_early.list),
1181 };
1182
1183 /*
1184 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1185 * this one will immediately take over. We will only register if TSC has
1186 * been found good.
1187 */
1188 static struct clocksource clocksource_tsc = {
1189 .name = "tsc",
1190 .rating = 300,
1191 .read = read_tsc,
1192 .mask = CLOCKSOURCE_MASK(64),
1193 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1194 CLOCK_SOURCE_VALID_FOR_HRES |
1195 CLOCK_SOURCE_MUST_VERIFY |
1196 CLOCK_SOURCE_VERIFY_PERCPU,
1197 .id = CSID_X86_TSC,
1198 .vdso_clock_mode = VDSO_CLOCKMODE_TSC,
1199 .enable = tsc_cs_enable,
1200 .resume = tsc_resume,
1201 .mark_unstable = tsc_cs_mark_unstable,
1202 .tick_stable = tsc_cs_tick_stable,
1203 .list = LIST_HEAD_INIT(clocksource_tsc.list),
1204 };
1205
mark_tsc_unstable(char * reason)1206 void mark_tsc_unstable(char *reason)
1207 {
1208 if (tsc_unstable)
1209 return;
1210
1211 tsc_unstable = 1;
1212 if (using_native_sched_clock())
1213 clear_sched_clock_stable();
1214 disable_sched_clock_irqtime();
1215 pr_info("Marking TSC unstable due to %s\n", reason);
1216
1217 clocksource_mark_unstable(&clocksource_tsc_early);
1218 clocksource_mark_unstable(&clocksource_tsc);
1219 }
1220
1221 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1222
tsc_disable_clocksource_watchdog(void)1223 static void __init tsc_disable_clocksource_watchdog(void)
1224 {
1225 clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1226 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1227 }
1228
tsc_clocksource_watchdog_disabled(void)1229 bool tsc_clocksource_watchdog_disabled(void)
1230 {
1231 return !(clocksource_tsc.flags & CLOCK_SOURCE_MUST_VERIFY) &&
1232 tsc_as_watchdog && !no_tsc_watchdog;
1233 }
1234
check_system_tsc_reliable(void)1235 static void __init check_system_tsc_reliable(void)
1236 {
1237 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1238 if (is_geode_lx()) {
1239 /* RTSC counts during suspend */
1240 #define RTSC_SUSP 0x100
1241 unsigned long res_low, res_high;
1242
1243 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1244 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1245 if (res_low & RTSC_SUSP)
1246 tsc_clocksource_reliable = 1;
1247 }
1248 #endif
1249 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1250 tsc_clocksource_reliable = 1;
1251
1252 /*
1253 * Disable the clocksource watchdog when the system has:
1254 * - TSC running at constant frequency
1255 * - TSC which does not stop in C-States
1256 * - the TSC_ADJUST register which allows to detect even minimal
1257 * modifications
1258 * - not more than four packages
1259 */
1260 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1261 boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
1262 boot_cpu_has(X86_FEATURE_TSC_ADJUST) &&
1263 topology_max_packages() <= 4)
1264 tsc_disable_clocksource_watchdog();
1265 }
1266
1267 /*
1268 * Make an educated guess if the TSC is trustworthy and synchronized
1269 * over all CPUs.
1270 */
unsynchronized_tsc(void)1271 int unsynchronized_tsc(void)
1272 {
1273 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1274 return 1;
1275
1276 #ifdef CONFIG_SMP
1277 if (apic_is_clustered_box())
1278 return 1;
1279 #endif
1280
1281 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1282 return 0;
1283
1284 if (tsc_clocksource_reliable)
1285 return 0;
1286 /*
1287 * Intel systems are normally all synchronized.
1288 * Exceptions must mark TSC as unstable:
1289 */
1290 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1291 /* assume multi socket systems are not synchronized: */
1292 if (topology_max_packages() > 1)
1293 return 1;
1294 }
1295
1296 return 0;
1297 }
1298
1299 static void tsc_refine_calibration_work(struct work_struct *work);
1300 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1301 /**
1302 * tsc_refine_calibration_work - Further refine tsc freq calibration
1303 * @work: ignored.
1304 *
1305 * This functions uses delayed work over a period of a
1306 * second to further refine the TSC freq value. Since this is
1307 * timer based, instead of loop based, we don't block the boot
1308 * process while this longer calibration is done.
1309 *
1310 * If there are any calibration anomalies (too many SMIs, etc),
1311 * or the refined calibration is off by 1% of the fast early
1312 * calibration, we throw out the new calibration and use the
1313 * early calibration.
1314 */
tsc_refine_calibration_work(struct work_struct * work)1315 static void tsc_refine_calibration_work(struct work_struct *work)
1316 {
1317 static u64 tsc_start = ULLONG_MAX, ref_start;
1318 static int hpet;
1319 u64 tsc_stop, ref_stop, delta;
1320 unsigned long freq;
1321 int cpu;
1322
1323 /* Don't bother refining TSC on unstable systems */
1324 if (tsc_unstable)
1325 goto unreg;
1326
1327 /*
1328 * Since the work is started early in boot, we may be
1329 * delayed the first time we expire. So set the workqueue
1330 * again once we know timers are working.
1331 */
1332 if (tsc_start == ULLONG_MAX) {
1333 restart:
1334 /*
1335 * Only set hpet once, to avoid mixing hardware
1336 * if the hpet becomes enabled later.
1337 */
1338 hpet = is_hpet_enabled();
1339 tsc_start = tsc_read_refs(&ref_start, hpet);
1340 schedule_delayed_work(&tsc_irqwork, HZ);
1341 return;
1342 }
1343
1344 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1345
1346 /* hpet or pmtimer available ? */
1347 if (ref_start == ref_stop)
1348 goto out;
1349
1350 /* Check, whether the sampling was disturbed */
1351 if (tsc_stop == ULLONG_MAX)
1352 goto restart;
1353
1354 delta = tsc_stop - tsc_start;
1355 delta *= 1000000LL;
1356 if (hpet)
1357 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1358 else
1359 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1360
1361 /* Will hit this only if tsc_force_recalibrate has been set */
1362 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1363
1364 /* Warn if the deviation exceeds 500 ppm */
1365 if (abs(tsc_khz - freq) > (tsc_khz >> 11)) {
1366 pr_warn("Warning: TSC freq calibrated by CPUID/MSR differs from what is calibrated by HW timer, please check with vendor!!\n");
1367 pr_info("Previous calibrated TSC freq:\t %lu.%03lu MHz\n",
1368 (unsigned long)tsc_khz / 1000,
1369 (unsigned long)tsc_khz % 1000);
1370 }
1371
1372 pr_info("TSC freq recalibrated by [%s]:\t %lu.%03lu MHz\n",
1373 hpet ? "HPET" : "PM_TIMER",
1374 (unsigned long)freq / 1000,
1375 (unsigned long)freq % 1000);
1376
1377 return;
1378 }
1379
1380 /* Make sure we're within 1% */
1381 if (abs(tsc_khz - freq) > tsc_khz/100)
1382 goto out;
1383
1384 tsc_khz = freq;
1385 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1386 (unsigned long)tsc_khz / 1000,
1387 (unsigned long)tsc_khz % 1000);
1388
1389 /* Inform the TSC deadline clockevent devices about the recalibration */
1390 lapic_update_tsc_freq();
1391
1392 /* Update the sched_clock() rate to match the clocksource one */
1393 for_each_possible_cpu(cpu)
1394 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1395
1396 out:
1397 if (tsc_unstable)
1398 goto unreg;
1399
1400 if (boot_cpu_has(X86_FEATURE_ART)) {
1401 have_art = true;
1402 clocksource_tsc.base = &art_base_clk;
1403 }
1404 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1405 unreg:
1406 clocksource_unregister(&clocksource_tsc_early);
1407 }
1408
1409
init_tsc_clocksource(void)1410 static int __init init_tsc_clocksource(void)
1411 {
1412 if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1413 return 0;
1414
1415 if (tsc_unstable) {
1416 clocksource_unregister(&clocksource_tsc_early);
1417 return 0;
1418 }
1419
1420 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1421 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1422
1423 /*
1424 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1425 * the refined calibration and directly register it as a clocksource.
1426 */
1427 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1428 if (boot_cpu_has(X86_FEATURE_ART)) {
1429 have_art = true;
1430 clocksource_tsc.base = &art_base_clk;
1431 }
1432 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1433 clocksource_unregister(&clocksource_tsc_early);
1434
1435 if (!tsc_force_recalibrate)
1436 return 0;
1437 }
1438
1439 schedule_delayed_work(&tsc_irqwork, 0);
1440 return 0;
1441 }
1442 /*
1443 * We use device_initcall here, to ensure we run after the hpet
1444 * is fully initialized, which may occur at fs_initcall time.
1445 */
1446 device_initcall(init_tsc_clocksource);
1447
determine_cpu_tsc_frequencies(bool early)1448 static bool __init determine_cpu_tsc_frequencies(bool early)
1449 {
1450 /* Make sure that cpu and tsc are not already calibrated */
1451 WARN_ON(cpu_khz || tsc_khz);
1452
1453 if (early) {
1454 cpu_khz = x86_platform.calibrate_cpu();
1455 if (tsc_early_khz) {
1456 tsc_khz = tsc_early_khz;
1457 } else {
1458 tsc_khz = x86_platform.calibrate_tsc();
1459 clocksource_tsc.freq_khz = tsc_khz;
1460 }
1461 } else {
1462 /* We should not be here with non-native cpu calibration */
1463 WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1464 cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1465 }
1466
1467 /*
1468 * Trust non-zero tsc_khz as authoritative,
1469 * and use it to sanity check cpu_khz,
1470 * which will be off if system timer is off.
1471 */
1472 if (tsc_khz == 0)
1473 tsc_khz = cpu_khz;
1474 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1475 cpu_khz = tsc_khz;
1476
1477 if (tsc_khz == 0)
1478 return false;
1479
1480 pr_info("Detected %lu.%03lu MHz processor\n",
1481 (unsigned long)cpu_khz / KHZ,
1482 (unsigned long)cpu_khz % KHZ);
1483
1484 if (cpu_khz != tsc_khz) {
1485 pr_info("Detected %lu.%03lu MHz TSC",
1486 (unsigned long)tsc_khz / KHZ,
1487 (unsigned long)tsc_khz % KHZ);
1488 }
1489 return true;
1490 }
1491
get_loops_per_jiffy(void)1492 static unsigned long __init get_loops_per_jiffy(void)
1493 {
1494 u64 lpj = (u64)tsc_khz * KHZ;
1495
1496 do_div(lpj, HZ);
1497 return lpj;
1498 }
1499
tsc_enable_sched_clock(void)1500 static void __init tsc_enable_sched_clock(void)
1501 {
1502 loops_per_jiffy = get_loops_per_jiffy();
1503 use_tsc_delay();
1504
1505 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1506 tsc_store_and_check_tsc_adjust(true);
1507 cyc2ns_init_boot_cpu();
1508 static_branch_enable(&__use_tsc);
1509 }
1510
tsc_early_init(void)1511 void __init tsc_early_init(void)
1512 {
1513 if (!boot_cpu_has(X86_FEATURE_TSC))
1514 return;
1515 /* Don't change UV TSC multi-chassis synchronization */
1516 if (is_early_uv_system())
1517 return;
1518
1519 snp_secure_tsc_init();
1520
1521 if (!determine_cpu_tsc_frequencies(true))
1522 return;
1523 tsc_enable_sched_clock();
1524 }
1525
tsc_init(void)1526 void __init tsc_init(void)
1527 {
1528 if (!cpu_feature_enabled(X86_FEATURE_TSC)) {
1529 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1530 return;
1531 }
1532
1533 /*
1534 * native_calibrate_cpu_early can only calibrate using methods that are
1535 * available early in boot.
1536 */
1537 if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1538 x86_platform.calibrate_cpu = native_calibrate_cpu;
1539
1540 if (!tsc_khz) {
1541 /* We failed to determine frequencies earlier, try again */
1542 if (!determine_cpu_tsc_frequencies(false)) {
1543 mark_tsc_unstable("could not calculate TSC khz");
1544 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1545 return;
1546 }
1547 tsc_enable_sched_clock();
1548 }
1549
1550 cyc2ns_init_secondary_cpus();
1551
1552 if (!no_sched_irq_time)
1553 enable_sched_clock_irqtime();
1554
1555 lpj_fine = get_loops_per_jiffy();
1556
1557 check_system_tsc_reliable();
1558
1559 if (unsynchronized_tsc()) {
1560 mark_tsc_unstable("TSCs unsynchronized");
1561 return;
1562 }
1563
1564 if (tsc_clocksource_reliable || no_tsc_watchdog)
1565 tsc_disable_clocksource_watchdog();
1566
1567 clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1568 detect_art();
1569 }
1570
1571 #ifdef CONFIG_SMP
1572 /*
1573 * Check whether existing calibration data can be reused.
1574 */
calibrate_delay_is_known(void)1575 unsigned long calibrate_delay_is_known(void)
1576 {
1577 int sibling, cpu = smp_processor_id();
1578 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1579 const struct cpumask *mask = topology_core_cpumask(cpu);
1580
1581 /*
1582 * If TSC has constant frequency and TSC is synchronized across
1583 * sockets then reuse CPU0 calibration.
1584 */
1585 if (constant_tsc && !tsc_unstable)
1586 return cpu_data(0).loops_per_jiffy;
1587
1588 /*
1589 * If TSC has constant frequency and TSC is not synchronized across
1590 * sockets and this is not the first CPU in the socket, then reuse
1591 * the calibration value of an already online CPU on that socket.
1592 *
1593 * This assumes that CONSTANT_TSC is consistent for all CPUs in a
1594 * socket.
1595 */
1596 if (!constant_tsc || !mask)
1597 return 0;
1598
1599 sibling = cpumask_any_but(mask, cpu);
1600 if (sibling < nr_cpu_ids)
1601 return cpu_data(sibling).loops_per_jiffy;
1602 return 0;
1603 }
1604 #endif
1605