1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * prepare to run common code
4 *
5 * Copyright (C) 2000 Andrea Arcangeli <[email protected]> SuSE
6 */
7
8 /* cpu_feature_enabled() cannot be used this early */
9 #define USE_EARLY_PGTABLE_L5
10
11 #include <linux/init.h>
12 #include <linux/linkage.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/string.h>
16 #include <linux/percpu.h>
17 #include <linux/start_kernel.h>
18 #include <linux/io.h>
19 #include <linux/memblock.h>
20 #include <linux/cc_platform.h>
21 #include <linux/pgtable.h>
22
23 #include <asm/asm.h>
24 #include <asm/page_64.h>
25 #include <asm/processor.h>
26 #include <asm/proto.h>
27 #include <asm/smp.h>
28 #include <asm/setup.h>
29 #include <asm/desc.h>
30 #include <asm/tlbflush.h>
31 #include <asm/sections.h>
32 #include <asm/kdebug.h>
33 #include <asm/e820/api.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/bootparam_utils.h>
36 #include <asm/microcode.h>
37 #include <asm/kasan.h>
38 #include <asm/fixmap.h>
39 #include <asm/realmode.h>
40 #include <asm/extable.h>
41 #include <asm/trapnr.h>
42 #include <asm/sev.h>
43 #include <asm/tdx.h>
44 #include <asm/init.h>
45
46 /*
47 * Manage page tables very early on.
48 */
49 extern pmd_t early_dynamic_pgts[EARLY_DYNAMIC_PAGE_TABLES][PTRS_PER_PMD];
50 static unsigned int __initdata next_early_pgt;
51 pmdval_t early_pmd_flags = __PAGE_KERNEL_LARGE & ~(_PAGE_GLOBAL | _PAGE_NX);
52
53 #ifdef CONFIG_X86_5LEVEL
54 unsigned int __pgtable_l5_enabled __ro_after_init;
55 unsigned int pgdir_shift __ro_after_init = 39;
56 EXPORT_SYMBOL(pgdir_shift);
57 unsigned int ptrs_per_p4d __ro_after_init = 1;
58 EXPORT_SYMBOL(ptrs_per_p4d);
59 #endif
60
61 #ifdef CONFIG_DYNAMIC_MEMORY_LAYOUT
62 unsigned long page_offset_base __ro_after_init = __PAGE_OFFSET_BASE_L4;
63 EXPORT_SYMBOL(page_offset_base);
64 unsigned long vmalloc_base __ro_after_init = __VMALLOC_BASE_L4;
65 EXPORT_SYMBOL(vmalloc_base);
66 unsigned long vmemmap_base __ro_after_init = __VMEMMAP_BASE_L4;
67 EXPORT_SYMBOL(vmemmap_base);
68 #endif
69
check_la57_support(void)70 static inline bool check_la57_support(void)
71 {
72 if (!IS_ENABLED(CONFIG_X86_5LEVEL))
73 return false;
74
75 /*
76 * 5-level paging is detected and enabled at kernel decompression
77 * stage. Only check if it has been enabled there.
78 */
79 if (!(native_read_cr4() & X86_CR4_LA57))
80 return false;
81
82 RIP_REL_REF(__pgtable_l5_enabled) = 1;
83 RIP_REL_REF(pgdir_shift) = 48;
84 RIP_REL_REF(ptrs_per_p4d) = 512;
85 RIP_REL_REF(page_offset_base) = __PAGE_OFFSET_BASE_L5;
86 RIP_REL_REF(vmalloc_base) = __VMALLOC_BASE_L5;
87 RIP_REL_REF(vmemmap_base) = __VMEMMAP_BASE_L5;
88
89 return true;
90 }
91
sme_postprocess_startup(struct boot_params * bp,pmdval_t * pmd,unsigned long p2v_offset)92 static unsigned long __head sme_postprocess_startup(struct boot_params *bp,
93 pmdval_t *pmd,
94 unsigned long p2v_offset)
95 {
96 unsigned long paddr, paddr_end;
97 int i;
98
99 /* Encrypt the kernel and related (if SME is active) */
100 sme_encrypt_kernel(bp);
101
102 /*
103 * Clear the memory encryption mask from the .bss..decrypted section.
104 * The bss section will be memset to zero later in the initialization so
105 * there is no need to zero it after changing the memory encryption
106 * attribute.
107 */
108 if (sme_get_me_mask()) {
109 paddr = (unsigned long)&RIP_REL_REF(__start_bss_decrypted);
110 paddr_end = (unsigned long)&RIP_REL_REF(__end_bss_decrypted);
111
112 for (; paddr < paddr_end; paddr += PMD_SIZE) {
113 /*
114 * On SNP, transition the page to shared in the RMP table so that
115 * it is consistent with the page table attribute change.
116 *
117 * __start_bss_decrypted has a virtual address in the high range
118 * mapping (kernel .text). PVALIDATE, by way of
119 * early_snp_set_memory_shared(), requires a valid virtual
120 * address but the kernel is currently running off of the identity
121 * mapping so use the PA to get a *currently* valid virtual address.
122 */
123 early_snp_set_memory_shared(paddr, paddr, PTRS_PER_PMD);
124
125 i = pmd_index(paddr - p2v_offset);
126 pmd[i] -= sme_get_me_mask();
127 }
128 }
129
130 /*
131 * Return the SME encryption mask (if SME is active) to be used as a
132 * modifier for the initial pgdir entry programmed into CR3.
133 */
134 return sme_get_me_mask();
135 }
136
137 /* Code in __startup_64() can be relocated during execution, but the compiler
138 * doesn't have to generate PC-relative relocations when accessing globals from
139 * that function. Clang actually does not generate them, which leads to
140 * boot-time crashes. To work around this problem, every global pointer must
141 * be accessed using RIP_REL_REF(). Kernel virtual addresses can be determined
142 * by subtracting p2v_offset from the RIP-relative address.
143 */
__startup_64(unsigned long p2v_offset,struct boot_params * bp)144 unsigned long __head __startup_64(unsigned long p2v_offset,
145 struct boot_params *bp)
146 {
147 pmd_t (*early_pgts)[PTRS_PER_PMD] = RIP_REL_REF(early_dynamic_pgts);
148 unsigned long physaddr = (unsigned long)&RIP_REL_REF(_text);
149 unsigned long va_text, va_end;
150 unsigned long pgtable_flags;
151 unsigned long load_delta;
152 pgdval_t *pgd;
153 p4dval_t *p4d;
154 pudval_t *pud;
155 pmdval_t *pmd, pmd_entry;
156 bool la57;
157 int i;
158
159 la57 = check_la57_support();
160
161 /* Is the address too large? */
162 if (physaddr >> MAX_PHYSMEM_BITS)
163 for (;;);
164
165 /*
166 * Compute the delta between the address I am compiled to run at
167 * and the address I am actually running at.
168 */
169 load_delta = __START_KERNEL_map + p2v_offset;
170 RIP_REL_REF(phys_base) = load_delta;
171
172 /* Is the address not 2M aligned? */
173 if (load_delta & ~PMD_MASK)
174 for (;;);
175
176 va_text = physaddr - p2v_offset;
177 va_end = (unsigned long)&RIP_REL_REF(_end) - p2v_offset;
178
179 /* Include the SME encryption mask in the fixup value */
180 load_delta += sme_get_me_mask();
181
182 /* Fixup the physical addresses in the page table */
183
184 pgd = &RIP_REL_REF(early_top_pgt)->pgd;
185 pgd[pgd_index(__START_KERNEL_map)] += load_delta;
186
187 if (IS_ENABLED(CONFIG_X86_5LEVEL) && la57) {
188 p4d = (p4dval_t *)&RIP_REL_REF(level4_kernel_pgt);
189 p4d[MAX_PTRS_PER_P4D - 1] += load_delta;
190
191 pgd[pgd_index(__START_KERNEL_map)] = (pgdval_t)p4d | _PAGE_TABLE;
192 }
193
194 RIP_REL_REF(level3_kernel_pgt)[PTRS_PER_PUD - 2].pud += load_delta;
195 RIP_REL_REF(level3_kernel_pgt)[PTRS_PER_PUD - 1].pud += load_delta;
196
197 for (i = FIXMAP_PMD_TOP; i > FIXMAP_PMD_TOP - FIXMAP_PMD_NUM; i--)
198 RIP_REL_REF(level2_fixmap_pgt)[i].pmd += load_delta;
199
200 /*
201 * Set up the identity mapping for the switchover. These
202 * entries should *NOT* have the global bit set! This also
203 * creates a bunch of nonsense entries but that is fine --
204 * it avoids problems around wraparound.
205 */
206
207 pud = &early_pgts[0]->pmd;
208 pmd = &early_pgts[1]->pmd;
209 RIP_REL_REF(next_early_pgt) = 2;
210
211 pgtable_flags = _KERNPG_TABLE_NOENC + sme_get_me_mask();
212
213 if (la57) {
214 p4d = &early_pgts[RIP_REL_REF(next_early_pgt)++]->pmd;
215
216 i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
217 pgd[i + 0] = (pgdval_t)p4d + pgtable_flags;
218 pgd[i + 1] = (pgdval_t)p4d + pgtable_flags;
219
220 i = physaddr >> P4D_SHIFT;
221 p4d[(i + 0) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
222 p4d[(i + 1) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
223 } else {
224 i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
225 pgd[i + 0] = (pgdval_t)pud + pgtable_flags;
226 pgd[i + 1] = (pgdval_t)pud + pgtable_flags;
227 }
228
229 i = physaddr >> PUD_SHIFT;
230 pud[(i + 0) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
231 pud[(i + 1) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
232
233 pmd_entry = __PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL;
234 /* Filter out unsupported __PAGE_KERNEL_* bits: */
235 pmd_entry &= RIP_REL_REF(__supported_pte_mask);
236 pmd_entry += sme_get_me_mask();
237 pmd_entry += physaddr;
238
239 for (i = 0; i < DIV_ROUND_UP(va_end - va_text, PMD_SIZE); i++) {
240 int idx = i + (physaddr >> PMD_SHIFT);
241
242 pmd[idx % PTRS_PER_PMD] = pmd_entry + i * PMD_SIZE;
243 }
244
245 /*
246 * Fixup the kernel text+data virtual addresses. Note that
247 * we might write invalid pmds, when the kernel is relocated
248 * cleanup_highmap() fixes this up along with the mappings
249 * beyond _end.
250 *
251 * Only the region occupied by the kernel image has so far
252 * been checked against the table of usable memory regions
253 * provided by the firmware, so invalidate pages outside that
254 * region. A page table entry that maps to a reserved area of
255 * memory would allow processor speculation into that area,
256 * and on some hardware (particularly the UV platform) even
257 * speculative access to some reserved areas is caught as an
258 * error, causing the BIOS to halt the system.
259 */
260
261 pmd = &RIP_REL_REF(level2_kernel_pgt)->pmd;
262
263 /* invalidate pages before the kernel image */
264 for (i = 0; i < pmd_index(va_text); i++)
265 pmd[i] &= ~_PAGE_PRESENT;
266
267 /* fixup pages that are part of the kernel image */
268 for (; i <= pmd_index(va_end); i++)
269 if (pmd[i] & _PAGE_PRESENT)
270 pmd[i] += load_delta;
271
272 /* invalidate pages after the kernel image */
273 for (; i < PTRS_PER_PMD; i++)
274 pmd[i] &= ~_PAGE_PRESENT;
275
276 return sme_postprocess_startup(bp, pmd, p2v_offset);
277 }
278
279 /* Wipe all early page tables except for the kernel symbol map */
reset_early_page_tables(void)280 static void __init reset_early_page_tables(void)
281 {
282 memset(early_top_pgt, 0, sizeof(pgd_t)*(PTRS_PER_PGD-1));
283 next_early_pgt = 0;
284 write_cr3(__sme_pa_nodebug(early_top_pgt));
285 }
286
287 /* Create a new PMD entry */
__early_make_pgtable(unsigned long address,pmdval_t pmd)288 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd)
289 {
290 unsigned long physaddr = address - __PAGE_OFFSET;
291 pgdval_t pgd, *pgd_p;
292 p4dval_t p4d, *p4d_p;
293 pudval_t pud, *pud_p;
294 pmdval_t *pmd_p;
295
296 /* Invalid address or early pgt is done ? */
297 if (physaddr >= MAXMEM || read_cr3_pa() != __pa_nodebug(early_top_pgt))
298 return false;
299
300 again:
301 pgd_p = &early_top_pgt[pgd_index(address)].pgd;
302 pgd = *pgd_p;
303
304 /*
305 * The use of __START_KERNEL_map rather than __PAGE_OFFSET here is
306 * critical -- __PAGE_OFFSET would point us back into the dynamic
307 * range and we might end up looping forever...
308 */
309 if (!pgtable_l5_enabled())
310 p4d_p = pgd_p;
311 else if (pgd)
312 p4d_p = (p4dval_t *)((pgd & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
313 else {
314 if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
315 reset_early_page_tables();
316 goto again;
317 }
318
319 p4d_p = (p4dval_t *)early_dynamic_pgts[next_early_pgt++];
320 memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
321 *pgd_p = (pgdval_t)p4d_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
322 }
323 p4d_p += p4d_index(address);
324 p4d = *p4d_p;
325
326 if (p4d)
327 pud_p = (pudval_t *)((p4d & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
328 else {
329 if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
330 reset_early_page_tables();
331 goto again;
332 }
333
334 pud_p = (pudval_t *)early_dynamic_pgts[next_early_pgt++];
335 memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
336 *p4d_p = (p4dval_t)pud_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
337 }
338 pud_p += pud_index(address);
339 pud = *pud_p;
340
341 if (pud)
342 pmd_p = (pmdval_t *)((pud & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
343 else {
344 if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
345 reset_early_page_tables();
346 goto again;
347 }
348
349 pmd_p = (pmdval_t *)early_dynamic_pgts[next_early_pgt++];
350 memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
351 *pud_p = (pudval_t)pmd_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
352 }
353 pmd_p[pmd_index(address)] = pmd;
354
355 return true;
356 }
357
early_make_pgtable(unsigned long address)358 static bool __init early_make_pgtable(unsigned long address)
359 {
360 unsigned long physaddr = address - __PAGE_OFFSET;
361 pmdval_t pmd;
362
363 pmd = (physaddr & PMD_MASK) + early_pmd_flags;
364
365 return __early_make_pgtable(address, pmd);
366 }
367
do_early_exception(struct pt_regs * regs,int trapnr)368 void __init do_early_exception(struct pt_regs *regs, int trapnr)
369 {
370 if (trapnr == X86_TRAP_PF &&
371 early_make_pgtable(native_read_cr2()))
372 return;
373
374 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT) &&
375 trapnr == X86_TRAP_VC && handle_vc_boot_ghcb(regs))
376 return;
377
378 if (trapnr == X86_TRAP_VE && tdx_early_handle_ve(regs))
379 return;
380
381 early_fixup_exception(regs, trapnr);
382 }
383
384 /* Don't add a printk in there. printk relies on the PDA which is not initialized
385 yet. */
clear_bss(void)386 void __init clear_bss(void)
387 {
388 memset(__bss_start, 0,
389 (unsigned long) __bss_stop - (unsigned long) __bss_start);
390 memset(__brk_base, 0,
391 (unsigned long) __brk_limit - (unsigned long) __brk_base);
392 }
393
get_cmd_line_ptr(void)394 static unsigned long get_cmd_line_ptr(void)
395 {
396 unsigned long cmd_line_ptr = boot_params.hdr.cmd_line_ptr;
397
398 cmd_line_ptr |= (u64)boot_params.ext_cmd_line_ptr << 32;
399
400 return cmd_line_ptr;
401 }
402
copy_bootdata(char * real_mode_data)403 static void __init copy_bootdata(char *real_mode_data)
404 {
405 char * command_line;
406 unsigned long cmd_line_ptr;
407
408 /*
409 * If SME is active, this will create decrypted mappings of the
410 * boot data in advance of the copy operations.
411 */
412 sme_map_bootdata(real_mode_data);
413
414 memcpy(&boot_params, real_mode_data, sizeof(boot_params));
415 sanitize_boot_params(&boot_params);
416 cmd_line_ptr = get_cmd_line_ptr();
417 if (cmd_line_ptr) {
418 command_line = __va(cmd_line_ptr);
419 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
420 }
421
422 /*
423 * The old boot data is no longer needed and won't be reserved,
424 * freeing up that memory for use by the system. If SME is active,
425 * we need to remove the mappings that were created so that the
426 * memory doesn't remain mapped as decrypted.
427 */
428 sme_unmap_bootdata(real_mode_data);
429 }
430
x86_64_start_kernel(char * real_mode_data)431 asmlinkage __visible void __init __noreturn x86_64_start_kernel(char * real_mode_data)
432 {
433 /*
434 * Build-time sanity checks on the kernel image and module
435 * area mappings. (these are purely build-time and produce no code)
436 */
437 BUILD_BUG_ON(MODULES_VADDR < __START_KERNEL_map);
438 BUILD_BUG_ON(MODULES_VADDR - __START_KERNEL_map < KERNEL_IMAGE_SIZE);
439 BUILD_BUG_ON(MODULES_LEN + KERNEL_IMAGE_SIZE > 2*PUD_SIZE);
440 BUILD_BUG_ON((__START_KERNEL_map & ~PMD_MASK) != 0);
441 BUILD_BUG_ON((MODULES_VADDR & ~PMD_MASK) != 0);
442 BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
443 MAYBE_BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
444 (__START_KERNEL & PGDIR_MASK)));
445 BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) <= MODULES_END);
446
447 cr4_init_shadow();
448
449 /* Kill off the identity-map trampoline */
450 reset_early_page_tables();
451
452 clear_bss();
453
454 /*
455 * This needs to happen *before* kasan_early_init() because latter maps stuff
456 * into that page.
457 */
458 clear_page(init_top_pgt);
459
460 /*
461 * SME support may update early_pmd_flags to include the memory
462 * encryption mask, so it needs to be called before anything
463 * that may generate a page fault.
464 */
465 sme_early_init();
466
467 kasan_early_init();
468
469 /*
470 * Flush global TLB entries which could be left over from the trampoline page
471 * table.
472 *
473 * This needs to happen *after* kasan_early_init() as KASAN-enabled .configs
474 * instrument native_write_cr4() so KASAN must be initialized for that
475 * instrumentation to work.
476 */
477 __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
478
479 idt_setup_early_handler();
480
481 /* Needed before cc_platform_has() can be used for TDX */
482 tdx_early_init();
483
484 copy_bootdata(__va(real_mode_data));
485
486 /*
487 * Load microcode early on BSP.
488 */
489 load_ucode_bsp();
490
491 /* set init_top_pgt kernel high mapping*/
492 init_top_pgt[511] = early_top_pgt[511];
493
494 x86_64_start_reservations(real_mode_data);
495 }
496
x86_64_start_reservations(char * real_mode_data)497 void __init __noreturn x86_64_start_reservations(char *real_mode_data)
498 {
499 /* version is always not zero if it is copied */
500 if (!boot_params.hdr.version)
501 copy_bootdata(__va(real_mode_data));
502
503 x86_early_init_platform_quirks();
504
505 switch (boot_params.hdr.hardware_subarch) {
506 case X86_SUBARCH_INTEL_MID:
507 x86_intel_mid_early_setup();
508 break;
509 default:
510 break;
511 }
512
513 start_kernel();
514 }
515
516 /*
517 * Data structures and code used for IDT setup in head_64.S. The bringup-IDT is
518 * used until the idt_table takes over. On the boot CPU this happens in
519 * x86_64_start_kernel(), on secondary CPUs in start_secondary(). In both cases
520 * this happens in the functions called from head_64.S.
521 *
522 * The idt_table can't be used that early because all the code modifying it is
523 * in idt.c and can be instrumented by tracing or KASAN, which both don't work
524 * during early CPU bringup. Also the idt_table has the runtime vectors
525 * configured which require certain CPU state to be setup already (like TSS),
526 * which also hasn't happened yet in early CPU bringup.
527 */
528 static gate_desc bringup_idt_table[NUM_EXCEPTION_VECTORS] __page_aligned_data;
529
530 /* This may run while still in the direct mapping */
startup_64_load_idt(void * vc_handler)531 static void __head startup_64_load_idt(void *vc_handler)
532 {
533 struct desc_ptr desc = {
534 .address = (unsigned long)&RIP_REL_REF(bringup_idt_table),
535 .size = sizeof(bringup_idt_table) - 1,
536 };
537 struct idt_data data;
538 gate_desc idt_desc;
539
540 /* @vc_handler is set only for a VMM Communication Exception */
541 if (vc_handler) {
542 init_idt_data(&data, X86_TRAP_VC, vc_handler);
543 idt_init_desc(&idt_desc, &data);
544 native_write_idt_entry((gate_desc *)desc.address, X86_TRAP_VC, &idt_desc);
545 }
546
547 native_load_idt(&desc);
548 }
549
550 /* This is used when running on kernel addresses */
early_setup_idt(void)551 void early_setup_idt(void)
552 {
553 void *handler = NULL;
554
555 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) {
556 setup_ghcb();
557 handler = vc_boot_ghcb;
558 }
559
560 startup_64_load_idt(handler);
561 }
562
563 /*
564 * Setup boot CPU state needed before kernel switches to virtual addresses.
565 */
startup_64_setup_gdt_idt(void)566 void __head startup_64_setup_gdt_idt(void)
567 {
568 struct desc_struct *gdt = (void *)(__force unsigned long)init_per_cpu_var(gdt_page.gdt);
569 void *handler = NULL;
570
571 struct desc_ptr startup_gdt_descr = {
572 .address = (unsigned long)&RIP_REL_REF(*gdt),
573 .size = GDT_SIZE - 1,
574 };
575
576 /* Load GDT */
577 native_load_gdt(&startup_gdt_descr);
578
579 /* New GDT is live - reload data segment registers */
580 asm volatile("movl %%eax, %%ds\n"
581 "movl %%eax, %%ss\n"
582 "movl %%eax, %%es\n" : : "a"(__KERNEL_DS) : "memory");
583
584 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT))
585 handler = &RIP_REL_REF(vc_no_ghcb);
586
587 startup_64_load_idt(handler);
588 }
589