1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  prepare to run common code
4  *
5  *  Copyright (C) 2000 Andrea Arcangeli <[email protected]> SuSE
6  */
7 
8 /* cpu_feature_enabled() cannot be used this early */
9 #define USE_EARLY_PGTABLE_L5
10 
11 #include <linux/init.h>
12 #include <linux/linkage.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/string.h>
16 #include <linux/percpu.h>
17 #include <linux/start_kernel.h>
18 #include <linux/io.h>
19 #include <linux/memblock.h>
20 #include <linux/cc_platform.h>
21 #include <linux/pgtable.h>
22 
23 #include <asm/asm.h>
24 #include <asm/page_64.h>
25 #include <asm/processor.h>
26 #include <asm/proto.h>
27 #include <asm/smp.h>
28 #include <asm/setup.h>
29 #include <asm/desc.h>
30 #include <asm/tlbflush.h>
31 #include <asm/sections.h>
32 #include <asm/kdebug.h>
33 #include <asm/e820/api.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/bootparam_utils.h>
36 #include <asm/microcode.h>
37 #include <asm/kasan.h>
38 #include <asm/fixmap.h>
39 #include <asm/realmode.h>
40 #include <asm/extable.h>
41 #include <asm/trapnr.h>
42 #include <asm/sev.h>
43 #include <asm/tdx.h>
44 #include <asm/init.h>
45 
46 /*
47  * Manage page tables very early on.
48  */
49 extern pmd_t early_dynamic_pgts[EARLY_DYNAMIC_PAGE_TABLES][PTRS_PER_PMD];
50 static unsigned int __initdata next_early_pgt;
51 pmdval_t early_pmd_flags = __PAGE_KERNEL_LARGE & ~(_PAGE_GLOBAL | _PAGE_NX);
52 
53 #ifdef CONFIG_X86_5LEVEL
54 unsigned int __pgtable_l5_enabled __ro_after_init;
55 unsigned int pgdir_shift __ro_after_init = 39;
56 EXPORT_SYMBOL(pgdir_shift);
57 unsigned int ptrs_per_p4d __ro_after_init = 1;
58 EXPORT_SYMBOL(ptrs_per_p4d);
59 #endif
60 
61 #ifdef CONFIG_DYNAMIC_MEMORY_LAYOUT
62 unsigned long page_offset_base __ro_after_init = __PAGE_OFFSET_BASE_L4;
63 EXPORT_SYMBOL(page_offset_base);
64 unsigned long vmalloc_base __ro_after_init = __VMALLOC_BASE_L4;
65 EXPORT_SYMBOL(vmalloc_base);
66 unsigned long vmemmap_base __ro_after_init = __VMEMMAP_BASE_L4;
67 EXPORT_SYMBOL(vmemmap_base);
68 #endif
69 
check_la57_support(void)70 static inline bool check_la57_support(void)
71 {
72 	if (!IS_ENABLED(CONFIG_X86_5LEVEL))
73 		return false;
74 
75 	/*
76 	 * 5-level paging is detected and enabled at kernel decompression
77 	 * stage. Only check if it has been enabled there.
78 	 */
79 	if (!(native_read_cr4() & X86_CR4_LA57))
80 		return false;
81 
82 	RIP_REL_REF(__pgtable_l5_enabled)	= 1;
83 	RIP_REL_REF(pgdir_shift)		= 48;
84 	RIP_REL_REF(ptrs_per_p4d)		= 512;
85 	RIP_REL_REF(page_offset_base)		= __PAGE_OFFSET_BASE_L5;
86 	RIP_REL_REF(vmalloc_base)		= __VMALLOC_BASE_L5;
87 	RIP_REL_REF(vmemmap_base)		= __VMEMMAP_BASE_L5;
88 
89 	return true;
90 }
91 
sme_postprocess_startup(struct boot_params * bp,pmdval_t * pmd,unsigned long p2v_offset)92 static unsigned long __head sme_postprocess_startup(struct boot_params *bp,
93 						    pmdval_t *pmd,
94 						    unsigned long p2v_offset)
95 {
96 	unsigned long paddr, paddr_end;
97 	int i;
98 
99 	/* Encrypt the kernel and related (if SME is active) */
100 	sme_encrypt_kernel(bp);
101 
102 	/*
103 	 * Clear the memory encryption mask from the .bss..decrypted section.
104 	 * The bss section will be memset to zero later in the initialization so
105 	 * there is no need to zero it after changing the memory encryption
106 	 * attribute.
107 	 */
108 	if (sme_get_me_mask()) {
109 		paddr = (unsigned long)&RIP_REL_REF(__start_bss_decrypted);
110 		paddr_end = (unsigned long)&RIP_REL_REF(__end_bss_decrypted);
111 
112 		for (; paddr < paddr_end; paddr += PMD_SIZE) {
113 			/*
114 			 * On SNP, transition the page to shared in the RMP table so that
115 			 * it is consistent with the page table attribute change.
116 			 *
117 			 * __start_bss_decrypted has a virtual address in the high range
118 			 * mapping (kernel .text). PVALIDATE, by way of
119 			 * early_snp_set_memory_shared(), requires a valid virtual
120 			 * address but the kernel is currently running off of the identity
121 			 * mapping so use the PA to get a *currently* valid virtual address.
122 			 */
123 			early_snp_set_memory_shared(paddr, paddr, PTRS_PER_PMD);
124 
125 			i = pmd_index(paddr - p2v_offset);
126 			pmd[i] -= sme_get_me_mask();
127 		}
128 	}
129 
130 	/*
131 	 * Return the SME encryption mask (if SME is active) to be used as a
132 	 * modifier for the initial pgdir entry programmed into CR3.
133 	 */
134 	return sme_get_me_mask();
135 }
136 
137 /* Code in __startup_64() can be relocated during execution, but the compiler
138  * doesn't have to generate PC-relative relocations when accessing globals from
139  * that function. Clang actually does not generate them, which leads to
140  * boot-time crashes. To work around this problem, every global pointer must
141  * be accessed using RIP_REL_REF(). Kernel virtual addresses can be determined
142  * by subtracting p2v_offset from the RIP-relative address.
143  */
__startup_64(unsigned long p2v_offset,struct boot_params * bp)144 unsigned long __head __startup_64(unsigned long p2v_offset,
145 				  struct boot_params *bp)
146 {
147 	pmd_t (*early_pgts)[PTRS_PER_PMD] = RIP_REL_REF(early_dynamic_pgts);
148 	unsigned long physaddr = (unsigned long)&RIP_REL_REF(_text);
149 	unsigned long va_text, va_end;
150 	unsigned long pgtable_flags;
151 	unsigned long load_delta;
152 	pgdval_t *pgd;
153 	p4dval_t *p4d;
154 	pudval_t *pud;
155 	pmdval_t *pmd, pmd_entry;
156 	bool la57;
157 	int i;
158 
159 	la57 = check_la57_support();
160 
161 	/* Is the address too large? */
162 	if (physaddr >> MAX_PHYSMEM_BITS)
163 		for (;;);
164 
165 	/*
166 	 * Compute the delta between the address I am compiled to run at
167 	 * and the address I am actually running at.
168 	 */
169 	load_delta = __START_KERNEL_map + p2v_offset;
170 	RIP_REL_REF(phys_base) = load_delta;
171 
172 	/* Is the address not 2M aligned? */
173 	if (load_delta & ~PMD_MASK)
174 		for (;;);
175 
176 	va_text = physaddr - p2v_offset;
177 	va_end  = (unsigned long)&RIP_REL_REF(_end) - p2v_offset;
178 
179 	/* Include the SME encryption mask in the fixup value */
180 	load_delta += sme_get_me_mask();
181 
182 	/* Fixup the physical addresses in the page table */
183 
184 	pgd = &RIP_REL_REF(early_top_pgt)->pgd;
185 	pgd[pgd_index(__START_KERNEL_map)] += load_delta;
186 
187 	if (IS_ENABLED(CONFIG_X86_5LEVEL) && la57) {
188 		p4d = (p4dval_t *)&RIP_REL_REF(level4_kernel_pgt);
189 		p4d[MAX_PTRS_PER_P4D - 1] += load_delta;
190 
191 		pgd[pgd_index(__START_KERNEL_map)] = (pgdval_t)p4d | _PAGE_TABLE;
192 	}
193 
194 	RIP_REL_REF(level3_kernel_pgt)[PTRS_PER_PUD - 2].pud += load_delta;
195 	RIP_REL_REF(level3_kernel_pgt)[PTRS_PER_PUD - 1].pud += load_delta;
196 
197 	for (i = FIXMAP_PMD_TOP; i > FIXMAP_PMD_TOP - FIXMAP_PMD_NUM; i--)
198 		RIP_REL_REF(level2_fixmap_pgt)[i].pmd += load_delta;
199 
200 	/*
201 	 * Set up the identity mapping for the switchover.  These
202 	 * entries should *NOT* have the global bit set!  This also
203 	 * creates a bunch of nonsense entries but that is fine --
204 	 * it avoids problems around wraparound.
205 	 */
206 
207 	pud = &early_pgts[0]->pmd;
208 	pmd = &early_pgts[1]->pmd;
209 	RIP_REL_REF(next_early_pgt) = 2;
210 
211 	pgtable_flags = _KERNPG_TABLE_NOENC + sme_get_me_mask();
212 
213 	if (la57) {
214 		p4d = &early_pgts[RIP_REL_REF(next_early_pgt)++]->pmd;
215 
216 		i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
217 		pgd[i + 0] = (pgdval_t)p4d + pgtable_flags;
218 		pgd[i + 1] = (pgdval_t)p4d + pgtable_flags;
219 
220 		i = physaddr >> P4D_SHIFT;
221 		p4d[(i + 0) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
222 		p4d[(i + 1) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
223 	} else {
224 		i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
225 		pgd[i + 0] = (pgdval_t)pud + pgtable_flags;
226 		pgd[i + 1] = (pgdval_t)pud + pgtable_flags;
227 	}
228 
229 	i = physaddr >> PUD_SHIFT;
230 	pud[(i + 0) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
231 	pud[(i + 1) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
232 
233 	pmd_entry = __PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL;
234 	/* Filter out unsupported __PAGE_KERNEL_* bits: */
235 	pmd_entry &= RIP_REL_REF(__supported_pte_mask);
236 	pmd_entry += sme_get_me_mask();
237 	pmd_entry +=  physaddr;
238 
239 	for (i = 0; i < DIV_ROUND_UP(va_end - va_text, PMD_SIZE); i++) {
240 		int idx = i + (physaddr >> PMD_SHIFT);
241 
242 		pmd[idx % PTRS_PER_PMD] = pmd_entry + i * PMD_SIZE;
243 	}
244 
245 	/*
246 	 * Fixup the kernel text+data virtual addresses. Note that
247 	 * we might write invalid pmds, when the kernel is relocated
248 	 * cleanup_highmap() fixes this up along with the mappings
249 	 * beyond _end.
250 	 *
251 	 * Only the region occupied by the kernel image has so far
252 	 * been checked against the table of usable memory regions
253 	 * provided by the firmware, so invalidate pages outside that
254 	 * region. A page table entry that maps to a reserved area of
255 	 * memory would allow processor speculation into that area,
256 	 * and on some hardware (particularly the UV platform) even
257 	 * speculative access to some reserved areas is caught as an
258 	 * error, causing the BIOS to halt the system.
259 	 */
260 
261 	pmd = &RIP_REL_REF(level2_kernel_pgt)->pmd;
262 
263 	/* invalidate pages before the kernel image */
264 	for (i = 0; i < pmd_index(va_text); i++)
265 		pmd[i] &= ~_PAGE_PRESENT;
266 
267 	/* fixup pages that are part of the kernel image */
268 	for (; i <= pmd_index(va_end); i++)
269 		if (pmd[i] & _PAGE_PRESENT)
270 			pmd[i] += load_delta;
271 
272 	/* invalidate pages after the kernel image */
273 	for (; i < PTRS_PER_PMD; i++)
274 		pmd[i] &= ~_PAGE_PRESENT;
275 
276 	return sme_postprocess_startup(bp, pmd, p2v_offset);
277 }
278 
279 /* Wipe all early page tables except for the kernel symbol map */
reset_early_page_tables(void)280 static void __init reset_early_page_tables(void)
281 {
282 	memset(early_top_pgt, 0, sizeof(pgd_t)*(PTRS_PER_PGD-1));
283 	next_early_pgt = 0;
284 	write_cr3(__sme_pa_nodebug(early_top_pgt));
285 }
286 
287 /* Create a new PMD entry */
__early_make_pgtable(unsigned long address,pmdval_t pmd)288 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd)
289 {
290 	unsigned long physaddr = address - __PAGE_OFFSET;
291 	pgdval_t pgd, *pgd_p;
292 	p4dval_t p4d, *p4d_p;
293 	pudval_t pud, *pud_p;
294 	pmdval_t *pmd_p;
295 
296 	/* Invalid address or early pgt is done ?  */
297 	if (physaddr >= MAXMEM || read_cr3_pa() != __pa_nodebug(early_top_pgt))
298 		return false;
299 
300 again:
301 	pgd_p = &early_top_pgt[pgd_index(address)].pgd;
302 	pgd = *pgd_p;
303 
304 	/*
305 	 * The use of __START_KERNEL_map rather than __PAGE_OFFSET here is
306 	 * critical -- __PAGE_OFFSET would point us back into the dynamic
307 	 * range and we might end up looping forever...
308 	 */
309 	if (!pgtable_l5_enabled())
310 		p4d_p = pgd_p;
311 	else if (pgd)
312 		p4d_p = (p4dval_t *)((pgd & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
313 	else {
314 		if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
315 			reset_early_page_tables();
316 			goto again;
317 		}
318 
319 		p4d_p = (p4dval_t *)early_dynamic_pgts[next_early_pgt++];
320 		memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
321 		*pgd_p = (pgdval_t)p4d_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
322 	}
323 	p4d_p += p4d_index(address);
324 	p4d = *p4d_p;
325 
326 	if (p4d)
327 		pud_p = (pudval_t *)((p4d & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
328 	else {
329 		if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
330 			reset_early_page_tables();
331 			goto again;
332 		}
333 
334 		pud_p = (pudval_t *)early_dynamic_pgts[next_early_pgt++];
335 		memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
336 		*p4d_p = (p4dval_t)pud_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
337 	}
338 	pud_p += pud_index(address);
339 	pud = *pud_p;
340 
341 	if (pud)
342 		pmd_p = (pmdval_t *)((pud & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
343 	else {
344 		if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
345 			reset_early_page_tables();
346 			goto again;
347 		}
348 
349 		pmd_p = (pmdval_t *)early_dynamic_pgts[next_early_pgt++];
350 		memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
351 		*pud_p = (pudval_t)pmd_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
352 	}
353 	pmd_p[pmd_index(address)] = pmd;
354 
355 	return true;
356 }
357 
early_make_pgtable(unsigned long address)358 static bool __init early_make_pgtable(unsigned long address)
359 {
360 	unsigned long physaddr = address - __PAGE_OFFSET;
361 	pmdval_t pmd;
362 
363 	pmd = (physaddr & PMD_MASK) + early_pmd_flags;
364 
365 	return __early_make_pgtable(address, pmd);
366 }
367 
do_early_exception(struct pt_regs * regs,int trapnr)368 void __init do_early_exception(struct pt_regs *regs, int trapnr)
369 {
370 	if (trapnr == X86_TRAP_PF &&
371 	    early_make_pgtable(native_read_cr2()))
372 		return;
373 
374 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT) &&
375 	    trapnr == X86_TRAP_VC && handle_vc_boot_ghcb(regs))
376 		return;
377 
378 	if (trapnr == X86_TRAP_VE && tdx_early_handle_ve(regs))
379 		return;
380 
381 	early_fixup_exception(regs, trapnr);
382 }
383 
384 /* Don't add a printk in there. printk relies on the PDA which is not initialized
385    yet. */
clear_bss(void)386 void __init clear_bss(void)
387 {
388 	memset(__bss_start, 0,
389 	       (unsigned long) __bss_stop - (unsigned long) __bss_start);
390 	memset(__brk_base, 0,
391 	       (unsigned long) __brk_limit - (unsigned long) __brk_base);
392 }
393 
get_cmd_line_ptr(void)394 static unsigned long get_cmd_line_ptr(void)
395 {
396 	unsigned long cmd_line_ptr = boot_params.hdr.cmd_line_ptr;
397 
398 	cmd_line_ptr |= (u64)boot_params.ext_cmd_line_ptr << 32;
399 
400 	return cmd_line_ptr;
401 }
402 
copy_bootdata(char * real_mode_data)403 static void __init copy_bootdata(char *real_mode_data)
404 {
405 	char * command_line;
406 	unsigned long cmd_line_ptr;
407 
408 	/*
409 	 * If SME is active, this will create decrypted mappings of the
410 	 * boot data in advance of the copy operations.
411 	 */
412 	sme_map_bootdata(real_mode_data);
413 
414 	memcpy(&boot_params, real_mode_data, sizeof(boot_params));
415 	sanitize_boot_params(&boot_params);
416 	cmd_line_ptr = get_cmd_line_ptr();
417 	if (cmd_line_ptr) {
418 		command_line = __va(cmd_line_ptr);
419 		memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
420 	}
421 
422 	/*
423 	 * The old boot data is no longer needed and won't be reserved,
424 	 * freeing up that memory for use by the system. If SME is active,
425 	 * we need to remove the mappings that were created so that the
426 	 * memory doesn't remain mapped as decrypted.
427 	 */
428 	sme_unmap_bootdata(real_mode_data);
429 }
430 
x86_64_start_kernel(char * real_mode_data)431 asmlinkage __visible void __init __noreturn x86_64_start_kernel(char * real_mode_data)
432 {
433 	/*
434 	 * Build-time sanity checks on the kernel image and module
435 	 * area mappings. (these are purely build-time and produce no code)
436 	 */
437 	BUILD_BUG_ON(MODULES_VADDR < __START_KERNEL_map);
438 	BUILD_BUG_ON(MODULES_VADDR - __START_KERNEL_map < KERNEL_IMAGE_SIZE);
439 	BUILD_BUG_ON(MODULES_LEN + KERNEL_IMAGE_SIZE > 2*PUD_SIZE);
440 	BUILD_BUG_ON((__START_KERNEL_map & ~PMD_MASK) != 0);
441 	BUILD_BUG_ON((MODULES_VADDR & ~PMD_MASK) != 0);
442 	BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
443 	MAYBE_BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
444 				(__START_KERNEL & PGDIR_MASK)));
445 	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) <= MODULES_END);
446 
447 	cr4_init_shadow();
448 
449 	/* Kill off the identity-map trampoline */
450 	reset_early_page_tables();
451 
452 	clear_bss();
453 
454 	/*
455 	 * This needs to happen *before* kasan_early_init() because latter maps stuff
456 	 * into that page.
457 	 */
458 	clear_page(init_top_pgt);
459 
460 	/*
461 	 * SME support may update early_pmd_flags to include the memory
462 	 * encryption mask, so it needs to be called before anything
463 	 * that may generate a page fault.
464 	 */
465 	sme_early_init();
466 
467 	kasan_early_init();
468 
469 	/*
470 	 * Flush global TLB entries which could be left over from the trampoline page
471 	 * table.
472 	 *
473 	 * This needs to happen *after* kasan_early_init() as KASAN-enabled .configs
474 	 * instrument native_write_cr4() so KASAN must be initialized for that
475 	 * instrumentation to work.
476 	 */
477 	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
478 
479 	idt_setup_early_handler();
480 
481 	/* Needed before cc_platform_has() can be used for TDX */
482 	tdx_early_init();
483 
484 	copy_bootdata(__va(real_mode_data));
485 
486 	/*
487 	 * Load microcode early on BSP.
488 	 */
489 	load_ucode_bsp();
490 
491 	/* set init_top_pgt kernel high mapping*/
492 	init_top_pgt[511] = early_top_pgt[511];
493 
494 	x86_64_start_reservations(real_mode_data);
495 }
496 
x86_64_start_reservations(char * real_mode_data)497 void __init __noreturn x86_64_start_reservations(char *real_mode_data)
498 {
499 	/* version is always not zero if it is copied */
500 	if (!boot_params.hdr.version)
501 		copy_bootdata(__va(real_mode_data));
502 
503 	x86_early_init_platform_quirks();
504 
505 	switch (boot_params.hdr.hardware_subarch) {
506 	case X86_SUBARCH_INTEL_MID:
507 		x86_intel_mid_early_setup();
508 		break;
509 	default:
510 		break;
511 	}
512 
513 	start_kernel();
514 }
515 
516 /*
517  * Data structures and code used for IDT setup in head_64.S. The bringup-IDT is
518  * used until the idt_table takes over. On the boot CPU this happens in
519  * x86_64_start_kernel(), on secondary CPUs in start_secondary(). In both cases
520  * this happens in the functions called from head_64.S.
521  *
522  * The idt_table can't be used that early because all the code modifying it is
523  * in idt.c and can be instrumented by tracing or KASAN, which both don't work
524  * during early CPU bringup. Also the idt_table has the runtime vectors
525  * configured which require certain CPU state to be setup already (like TSS),
526  * which also hasn't happened yet in early CPU bringup.
527  */
528 static gate_desc bringup_idt_table[NUM_EXCEPTION_VECTORS] __page_aligned_data;
529 
530 /* This may run while still in the direct mapping */
startup_64_load_idt(void * vc_handler)531 static void __head startup_64_load_idt(void *vc_handler)
532 {
533 	struct desc_ptr desc = {
534 		.address = (unsigned long)&RIP_REL_REF(bringup_idt_table),
535 		.size    = sizeof(bringup_idt_table) - 1,
536 	};
537 	struct idt_data data;
538 	gate_desc idt_desc;
539 
540 	/* @vc_handler is set only for a VMM Communication Exception */
541 	if (vc_handler) {
542 		init_idt_data(&data, X86_TRAP_VC, vc_handler);
543 		idt_init_desc(&idt_desc, &data);
544 		native_write_idt_entry((gate_desc *)desc.address, X86_TRAP_VC, &idt_desc);
545 	}
546 
547 	native_load_idt(&desc);
548 }
549 
550 /* This is used when running on kernel addresses */
early_setup_idt(void)551 void early_setup_idt(void)
552 {
553 	void *handler = NULL;
554 
555 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) {
556 		setup_ghcb();
557 		handler = vc_boot_ghcb;
558 	}
559 
560 	startup_64_load_idt(handler);
561 }
562 
563 /*
564  * Setup boot CPU state needed before kernel switches to virtual addresses.
565  */
startup_64_setup_gdt_idt(void)566 void __head startup_64_setup_gdt_idt(void)
567 {
568 	struct desc_struct *gdt = (void *)(__force unsigned long)init_per_cpu_var(gdt_page.gdt);
569 	void *handler = NULL;
570 
571 	struct desc_ptr startup_gdt_descr = {
572 		.address = (unsigned long)&RIP_REL_REF(*gdt),
573 		.size    = GDT_SIZE - 1,
574 	};
575 
576 	/* Load GDT */
577 	native_load_gdt(&startup_gdt_descr);
578 
579 	/* New GDT is live - reload data segment registers */
580 	asm volatile("movl %%eax, %%ds\n"
581 		     "movl %%eax, %%ss\n"
582 		     "movl %%eax, %%es\n" : : "a"(__KERNEL_DS) : "memory");
583 
584 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT))
585 		handler = &RIP_REL_REF(vc_no_ghcb);
586 
587 	startup_64_load_idt(handler);
588 }
589