1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  AMD CPU Microcode Update Driver for Linux
4  *
5  *  This driver allows to upgrade microcode on F10h AMD
6  *  CPUs and later.
7  *
8  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9  *	          2013-2018 Borislav Petkov <[email protected]>
10  *
11  *  Author: Peter Oruba <[email protected]>
12  *
13  *  Based on work by:
14  *  Tigran Aivazian <[email protected]>
15  *
16  *  early loader:
17  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
18  *
19  *  Author: Jacob Shin <[email protected]>
20  *  Fixes: Borislav Petkov <[email protected]>
21  */
22 #define pr_fmt(fmt) "microcode: " fmt
23 
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/bsearch.h>
27 #include <linux/uaccess.h>
28 #include <linux/vmalloc.h>
29 #include <linux/initrd.h>
30 #include <linux/kernel.h>
31 #include <linux/pci.h>
32 
33 #include <crypto/sha2.h>
34 
35 #include <asm/microcode.h>
36 #include <asm/processor.h>
37 #include <asm/cmdline.h>
38 #include <asm/setup.h>
39 #include <asm/cpu.h>
40 #include <asm/msr.h>
41 #include <asm/tlb.h>
42 
43 #include "internal.h"
44 
45 struct ucode_patch {
46 	struct list_head plist;
47 	void *data;
48 	unsigned int size;
49 	u32 patch_id;
50 	u16 equiv_cpu;
51 };
52 
53 static LIST_HEAD(microcode_cache);
54 
55 #define UCODE_MAGIC			0x00414d44
56 #define UCODE_EQUIV_CPU_TABLE_TYPE	0x00000000
57 #define UCODE_UCODE_TYPE		0x00000001
58 
59 #define SECTION_HDR_SIZE		8
60 #define CONTAINER_HDR_SZ		12
61 
62 struct equiv_cpu_entry {
63 	u32	installed_cpu;
64 	u32	fixed_errata_mask;
65 	u32	fixed_errata_compare;
66 	u16	equiv_cpu;
67 	u16	res;
68 } __packed;
69 
70 struct microcode_header_amd {
71 	u32	data_code;
72 	u32	patch_id;
73 	u16	mc_patch_data_id;
74 	u8	mc_patch_data_len;
75 	u8	init_flag;
76 	u32	mc_patch_data_checksum;
77 	u32	nb_dev_id;
78 	u32	sb_dev_id;
79 	u16	processor_rev_id;
80 	u8	nb_rev_id;
81 	u8	sb_rev_id;
82 	u8	bios_api_rev;
83 	u8	reserved1[3];
84 	u32	match_reg[8];
85 } __packed;
86 
87 struct microcode_amd {
88 	struct microcode_header_amd	hdr;
89 	unsigned int			mpb[];
90 };
91 
92 static struct equiv_cpu_table {
93 	unsigned int num_entries;
94 	struct equiv_cpu_entry *entry;
95 } equiv_table;
96 
97 union zen_patch_rev {
98 	struct {
99 		__u32 rev	 : 8,
100 		      stepping	 : 4,
101 		      model	 : 4,
102 		      __reserved : 4,
103 		      ext_model	 : 4,
104 		      ext_fam	 : 8;
105 	};
106 	__u32 ucode_rev;
107 };
108 
109 union cpuid_1_eax {
110 	struct {
111 		__u32 stepping    : 4,
112 		      model	  : 4,
113 		      family	  : 4,
114 		      __reserved0 : 4,
115 		      ext_model   : 4,
116 		      ext_fam     : 8,
117 		      __reserved1 : 4;
118 	};
119 	__u32 full;
120 };
121 
122 /*
123  * This points to the current valid container of microcode patches which we will
124  * save from the initrd/builtin before jettisoning its contents. @mc is the
125  * microcode patch we found to match.
126  */
127 struct cont_desc {
128 	struct microcode_amd *mc;
129 	u32		     psize;
130 	u8		     *data;
131 	size_t		     size;
132 };
133 
134 /*
135  * Microcode patch container file is prepended to the initrd in cpio
136  * format. See Documentation/arch/x86/microcode.rst
137  */
138 static const char
139 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
140 
141 /*
142  * This is CPUID(1).EAX on the BSP. It is used in two ways:
143  *
144  * 1. To ignore the equivalence table on Zen1 and newer.
145  *
146  * 2. To match which patches to load because the patch revision ID
147  *    already contains the f/m/s for which the microcode is destined
148  *    for.
149  */
150 static u32 bsp_cpuid_1_eax __ro_after_init;
151 
152 static bool sha_check = true;
153 
154 struct patch_digest {
155 	u32 patch_id;
156 	u8 sha256[SHA256_DIGEST_SIZE];
157 };
158 
159 #include "amd_shas.c"
160 
cmp_id(const void * key,const void * elem)161 static int cmp_id(const void *key, const void *elem)
162 {
163 	struct patch_digest *pd = (struct patch_digest *)elem;
164 	u32 patch_id = *(u32 *)key;
165 
166 	if (patch_id == pd->patch_id)
167 		return 0;
168 	else if (patch_id < pd->patch_id)
169 		return -1;
170 	else
171 		return 1;
172 }
173 
need_sha_check(u32 cur_rev)174 static bool need_sha_check(u32 cur_rev)
175 {
176 	switch (cur_rev >> 8) {
177 	case 0x80012: return cur_rev <= 0x800126f; break;
178 	case 0x80082: return cur_rev <= 0x800820f; break;
179 	case 0x83010: return cur_rev <= 0x830107c; break;
180 	case 0x86001: return cur_rev <= 0x860010e; break;
181 	case 0x86081: return cur_rev <= 0x8608108; break;
182 	case 0x87010: return cur_rev <= 0x8701034; break;
183 	case 0x8a000: return cur_rev <= 0x8a0000a; break;
184 	case 0xa0010: return cur_rev <= 0xa00107a; break;
185 	case 0xa0011: return cur_rev <= 0xa0011da; break;
186 	case 0xa0012: return cur_rev <= 0xa001243; break;
187 	case 0xa0082: return cur_rev <= 0xa00820e; break;
188 	case 0xa1011: return cur_rev <= 0xa101153; break;
189 	case 0xa1012: return cur_rev <= 0xa10124e; break;
190 	case 0xa1081: return cur_rev <= 0xa108109; break;
191 	case 0xa2010: return cur_rev <= 0xa20102f; break;
192 	case 0xa2012: return cur_rev <= 0xa201212; break;
193 	case 0xa4041: return cur_rev <= 0xa404109; break;
194 	case 0xa5000: return cur_rev <= 0xa500013; break;
195 	case 0xa6012: return cur_rev <= 0xa60120a; break;
196 	case 0xa7041: return cur_rev <= 0xa704109; break;
197 	case 0xa7052: return cur_rev <= 0xa705208; break;
198 	case 0xa7080: return cur_rev <= 0xa708009; break;
199 	case 0xa70c0: return cur_rev <= 0xa70C009; break;
200 	case 0xaa001: return cur_rev <= 0xaa00116; break;
201 	case 0xaa002: return cur_rev <= 0xaa00218; break;
202 	case 0xb0021: return cur_rev <= 0xb002146; break;
203 	case 0xb1010: return cur_rev <= 0xb101046; break;
204 	case 0xb2040: return cur_rev <= 0xb204031; break;
205 	case 0xb4040: return cur_rev <= 0xb404031; break;
206 	case 0xb6000: return cur_rev <= 0xb600031; break;
207 	case 0xb7000: return cur_rev <= 0xb700031; break;
208 	default: break;
209 	}
210 
211 	pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n");
212 	pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev);
213 	return true;
214 }
215 
verify_sha256_digest(u32 patch_id,u32 cur_rev,const u8 * data,unsigned int len)216 static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len)
217 {
218 	struct patch_digest *pd = NULL;
219 	u8 digest[SHA256_DIGEST_SIZE];
220 	struct sha256_state s;
221 	int i;
222 
223 	if (x86_family(bsp_cpuid_1_eax) < 0x17)
224 		return true;
225 
226 	if (!need_sha_check(cur_rev))
227 		return true;
228 
229 	if (!sha_check)
230 		return true;
231 
232 	pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id);
233 	if (!pd) {
234 		pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id);
235 		return false;
236 	}
237 
238 	sha256_init(&s);
239 	sha256_update(&s, data, len);
240 	sha256_final(&s, digest);
241 
242 	if (memcmp(digest, pd->sha256, sizeof(digest))) {
243 		pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id);
244 
245 		for (i = 0; i < SHA256_DIGEST_SIZE; i++)
246 			pr_cont("0x%x ", digest[i]);
247 		pr_info("\n");
248 
249 		return false;
250 	}
251 
252 	return true;
253 }
254 
get_patch_level(void)255 static u32 get_patch_level(void)
256 {
257 	u32 rev, dummy __always_unused;
258 
259 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
260 
261 	return rev;
262 }
263 
ucode_rev_to_cpuid(unsigned int val)264 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
265 {
266 	union zen_patch_rev p;
267 	union cpuid_1_eax c;
268 
269 	p.ucode_rev = val;
270 	c.full = 0;
271 
272 	c.stepping  = p.stepping;
273 	c.model     = p.model;
274 	c.ext_model = p.ext_model;
275 	c.family    = 0xf;
276 	c.ext_fam   = p.ext_fam;
277 
278 	return c;
279 }
280 
find_equiv_id(struct equiv_cpu_table * et,u32 sig)281 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
282 {
283 	unsigned int i;
284 
285 	/* Zen and newer do not need an equivalence table. */
286 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
287 		return 0;
288 
289 	if (!et || !et->num_entries)
290 		return 0;
291 
292 	for (i = 0; i < et->num_entries; i++) {
293 		struct equiv_cpu_entry *e = &et->entry[i];
294 
295 		if (sig == e->installed_cpu)
296 			return e->equiv_cpu;
297 	}
298 	return 0;
299 }
300 
301 /*
302  * Check whether there is a valid microcode container file at the beginning
303  * of @buf of size @buf_size.
304  */
verify_container(const u8 * buf,size_t buf_size)305 static bool verify_container(const u8 *buf, size_t buf_size)
306 {
307 	u32 cont_magic;
308 
309 	if (buf_size <= CONTAINER_HDR_SZ) {
310 		pr_debug("Truncated microcode container header.\n");
311 		return false;
312 	}
313 
314 	cont_magic = *(const u32 *)buf;
315 	if (cont_magic != UCODE_MAGIC) {
316 		pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
317 		return false;
318 	}
319 
320 	return true;
321 }
322 
323 /*
324  * Check whether there is a valid, non-truncated CPU equivalence table at the
325  * beginning of @buf of size @buf_size.
326  */
verify_equivalence_table(const u8 * buf,size_t buf_size)327 static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
328 {
329 	const u32 *hdr = (const u32 *)buf;
330 	u32 cont_type, equiv_tbl_len;
331 
332 	if (!verify_container(buf, buf_size))
333 		return false;
334 
335 	/* Zen and newer do not need an equivalence table. */
336 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
337 		return true;
338 
339 	cont_type = hdr[1];
340 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
341 		pr_debug("Wrong microcode container equivalence table type: %u.\n",
342 			 cont_type);
343 		return false;
344 	}
345 
346 	buf_size -= CONTAINER_HDR_SZ;
347 
348 	equiv_tbl_len = hdr[2];
349 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
350 	    buf_size < equiv_tbl_len) {
351 		pr_debug("Truncated equivalence table.\n");
352 		return false;
353 	}
354 
355 	return true;
356 }
357 
358 /*
359  * Check whether there is a valid, non-truncated microcode patch section at the
360  * beginning of @buf of size @buf_size.
361  *
362  * On success, @sh_psize returns the patch size according to the section header,
363  * to the caller.
364  */
__verify_patch_section(const u8 * buf,size_t buf_size,u32 * sh_psize)365 static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
366 {
367 	u32 p_type, p_size;
368 	const u32 *hdr;
369 
370 	if (buf_size < SECTION_HDR_SIZE) {
371 		pr_debug("Truncated patch section.\n");
372 		return false;
373 	}
374 
375 	hdr = (const u32 *)buf;
376 	p_type = hdr[0];
377 	p_size = hdr[1];
378 
379 	if (p_type != UCODE_UCODE_TYPE) {
380 		pr_debug("Invalid type field (0x%x) in container file section header.\n",
381 			 p_type);
382 		return false;
383 	}
384 
385 	if (p_size < sizeof(struct microcode_header_amd)) {
386 		pr_debug("Patch of size %u too short.\n", p_size);
387 		return false;
388 	}
389 
390 	*sh_psize = p_size;
391 
392 	return true;
393 }
394 
395 /*
396  * Check whether the passed remaining file @buf_size is large enough to contain
397  * a patch of the indicated @sh_psize (and also whether this size does not
398  * exceed the per-family maximum). @sh_psize is the size read from the section
399  * header.
400  */
__verify_patch_size(u32 sh_psize,size_t buf_size)401 static bool __verify_patch_size(u32 sh_psize, size_t buf_size)
402 {
403 	u8 family = x86_family(bsp_cpuid_1_eax);
404 	u32 max_size;
405 
406 	if (family >= 0x15)
407 		goto ret;
408 
409 #define F1XH_MPB_MAX_SIZE 2048
410 #define F14H_MPB_MAX_SIZE 1824
411 
412 	switch (family) {
413 	case 0x10 ... 0x12:
414 		max_size = F1XH_MPB_MAX_SIZE;
415 		break;
416 	case 0x14:
417 		max_size = F14H_MPB_MAX_SIZE;
418 		break;
419 	default:
420 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
421 		return false;
422 	}
423 
424 	if (sh_psize > max_size)
425 		return false;
426 
427 ret:
428 	/* Working with the whole buffer so < is ok. */
429 	return sh_psize <= buf_size;
430 }
431 
432 /*
433  * Verify the patch in @buf.
434  *
435  * Returns:
436  * negative: on error
437  * positive: patch is not for this family, skip it
438  * 0: success
439  */
verify_patch(const u8 * buf,size_t buf_size,u32 * patch_size)440 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
441 {
442 	u8 family = x86_family(bsp_cpuid_1_eax);
443 	struct microcode_header_amd *mc_hdr;
444 	u32 sh_psize;
445 	u16 proc_id;
446 	u8 patch_fam;
447 
448 	if (!__verify_patch_section(buf, buf_size, &sh_psize))
449 		return -1;
450 
451 	/*
452 	 * The section header length is not included in this indicated size
453 	 * but is present in the leftover file length so we need to subtract
454 	 * it before passing this value to the function below.
455 	 */
456 	buf_size -= SECTION_HDR_SIZE;
457 
458 	/*
459 	 * Check if the remaining buffer is big enough to contain a patch of
460 	 * size sh_psize, as the section claims.
461 	 */
462 	if (buf_size < sh_psize) {
463 		pr_debug("Patch of size %u truncated.\n", sh_psize);
464 		return -1;
465 	}
466 
467 	if (!__verify_patch_size(sh_psize, buf_size)) {
468 		pr_debug("Per-family patch size mismatch.\n");
469 		return -1;
470 	}
471 
472 	*patch_size = sh_psize;
473 
474 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
475 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
476 		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
477 		return -1;
478 	}
479 
480 	proc_id	= mc_hdr->processor_rev_id;
481 	patch_fam = 0xf + (proc_id >> 12);
482 	if (patch_fam != family)
483 		return 1;
484 
485 	return 0;
486 }
487 
mc_patch_matches(struct microcode_amd * mc,u16 eq_id)488 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
489 {
490 	/* Zen and newer do not need an equivalence table. */
491 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
492 		return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
493 	else
494 		return eq_id == mc->hdr.processor_rev_id;
495 }
496 
497 /*
498  * This scans the ucode blob for the proper container as we can have multiple
499  * containers glued together.
500  *
501  * Returns the amount of bytes consumed while scanning. @desc contains all the
502  * data we're going to use in later stages of the application.
503  */
parse_container(u8 * ucode,size_t size,struct cont_desc * desc)504 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
505 {
506 	struct equiv_cpu_table table;
507 	size_t orig_size = size;
508 	u32 *hdr = (u32 *)ucode;
509 	u16 eq_id;
510 	u8 *buf;
511 
512 	if (!verify_equivalence_table(ucode, size))
513 		return 0;
514 
515 	buf = ucode;
516 
517 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
518 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
519 
520 	/*
521 	 * Find the equivalence ID of our CPU in this table. Even if this table
522 	 * doesn't contain a patch for the CPU, scan through the whole container
523 	 * so that it can be skipped in case there are other containers appended.
524 	 */
525 	eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
526 
527 	buf  += hdr[2] + CONTAINER_HDR_SZ;
528 	size -= hdr[2] + CONTAINER_HDR_SZ;
529 
530 	/*
531 	 * Scan through the rest of the container to find where it ends. We do
532 	 * some basic sanity-checking too.
533 	 */
534 	while (size > 0) {
535 		struct microcode_amd *mc;
536 		u32 patch_size;
537 		int ret;
538 
539 		ret = verify_patch(buf, size, &patch_size);
540 		if (ret < 0) {
541 			/*
542 			 * Patch verification failed, skip to the next container, if
543 			 * there is one. Before exit, check whether that container has
544 			 * found a patch already. If so, use it.
545 			 */
546 			goto out;
547 		} else if (ret > 0) {
548 			goto skip;
549 		}
550 
551 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
552 		if (mc_patch_matches(mc, eq_id)) {
553 			desc->psize = patch_size;
554 			desc->mc = mc;
555 		}
556 
557 skip:
558 		/* Skip patch section header too: */
559 		buf  += patch_size + SECTION_HDR_SIZE;
560 		size -= patch_size + SECTION_HDR_SIZE;
561 	}
562 
563 out:
564 	/*
565 	 * If we have found a patch (desc->mc), it means we're looking at the
566 	 * container which has a patch for this CPU so return 0 to mean, @ucode
567 	 * already points to the proper container. Otherwise, we return the size
568 	 * we scanned so that we can advance to the next container in the
569 	 * buffer.
570 	 */
571 	if (desc->mc) {
572 		desc->data = ucode;
573 		desc->size = orig_size - size;
574 
575 		return 0;
576 	}
577 
578 	return orig_size - size;
579 }
580 
581 /*
582  * Scan the ucode blob for the proper container as we can have multiple
583  * containers glued together.
584  */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)585 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
586 {
587 	while (size) {
588 		size_t s = parse_container(ucode, size, desc);
589 		if (!s)
590 			return;
591 
592 		/* catch wraparound */
593 		if (size >= s) {
594 			ucode += s;
595 			size  -= s;
596 		} else {
597 			return;
598 		}
599 	}
600 }
601 
__apply_microcode_amd(struct microcode_amd * mc,u32 * cur_rev,unsigned int psize)602 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev,
603 				  unsigned int psize)
604 {
605 	unsigned long p_addr = (unsigned long)&mc->hdr.data_code;
606 
607 	if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize))
608 		return false;
609 
610 	native_wrmsrl(MSR_AMD64_PATCH_LOADER, p_addr);
611 
612 	if (x86_family(bsp_cpuid_1_eax) == 0x17) {
613 		unsigned long p_addr_end = p_addr + psize - 1;
614 
615 		invlpg(p_addr);
616 
617 		/*
618 		 * Flush next page too if patch image is crossing a page
619 		 * boundary.
620 		 */
621 		if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT)
622 			invlpg(p_addr_end);
623 	}
624 
625 	/* verify patch application was successful */
626 	*cur_rev = get_patch_level();
627 	if (*cur_rev != mc->hdr.patch_id)
628 		return false;
629 
630 	return true;
631 }
632 
get_builtin_microcode(struct cpio_data * cp)633 static bool get_builtin_microcode(struct cpio_data *cp)
634 {
635 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
636 	u8 family = x86_family(bsp_cpuid_1_eax);
637 	struct firmware fw;
638 
639 	if (IS_ENABLED(CONFIG_X86_32))
640 		return false;
641 
642 	if (family >= 0x15)
643 		snprintf(fw_name, sizeof(fw_name),
644 			 "amd-ucode/microcode_amd_fam%02hhxh.bin", family);
645 
646 	if (firmware_request_builtin(&fw, fw_name)) {
647 		cp->size = fw.size;
648 		cp->data = (void *)fw.data;
649 		return true;
650 	}
651 
652 	return false;
653 }
654 
find_blobs_in_containers(struct cpio_data * ret)655 static bool __init find_blobs_in_containers(struct cpio_data *ret)
656 {
657 	struct cpio_data cp;
658 	bool found;
659 
660 	if (!get_builtin_microcode(&cp))
661 		cp = find_microcode_in_initrd(ucode_path);
662 
663 	found = cp.data && cp.size;
664 	if (found)
665 		*ret = cp;
666 
667 	return found;
668 }
669 
670 /*
671  * Early load occurs before we can vmalloc(). So we look for the microcode
672  * patch container file in initrd, traverse equivalent cpu table, look for a
673  * matching microcode patch, and update, all in initrd memory in place.
674  * When vmalloc() is available for use later -- on 64-bit during first AP load,
675  * and on 32-bit during save_microcode_in_initrd() -- we can call
676  * load_microcode_amd() to save equivalent cpu table and microcode patches in
677  * kernel heap memory.
678  */
load_ucode_amd_bsp(struct early_load_data * ed,unsigned int cpuid_1_eax)679 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
680 {
681 	struct cont_desc desc = { };
682 	struct microcode_amd *mc;
683 	struct cpio_data cp = { };
684 	char buf[4];
685 	u32 rev;
686 
687 	if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) {
688 		if (!strncmp(buf, "off", 3)) {
689 			sha_check = false;
690 			pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n");
691 			add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
692 		}
693 	}
694 
695 	bsp_cpuid_1_eax = cpuid_1_eax;
696 
697 	rev = get_patch_level();
698 	ed->old_rev = rev;
699 
700 	/* Needed in load_microcode_amd() */
701 	ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
702 
703 	if (!find_blobs_in_containers(&cp))
704 		return;
705 
706 	scan_containers(cp.data, cp.size, &desc);
707 
708 	mc = desc.mc;
709 	if (!mc)
710 		return;
711 
712 	/*
713 	 * Allow application of the same revision to pick up SMT-specific
714 	 * changes even if the revision of the other SMT thread is already
715 	 * up-to-date.
716 	 */
717 	if (ed->old_rev > mc->hdr.patch_id)
718 		return;
719 
720 	if (__apply_microcode_amd(mc, &rev, desc.psize))
721 		ed->new_rev = rev;
722 }
723 
patch_cpus_equivalent(struct ucode_patch * p,struct ucode_patch * n,bool ignore_stepping)724 static inline bool patch_cpus_equivalent(struct ucode_patch *p,
725 					 struct ucode_patch *n,
726 					 bool ignore_stepping)
727 {
728 	/* Zen and newer hardcode the f/m/s in the patch ID */
729         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
730 		union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
731 		union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
732 
733 		if (ignore_stepping) {
734 			p_cid.stepping = 0;
735 			n_cid.stepping = 0;
736 		}
737 
738 		return p_cid.full == n_cid.full;
739 	} else {
740 		return p->equiv_cpu == n->equiv_cpu;
741 	}
742 }
743 
744 /*
745  * a small, trivial cache of per-family ucode patches
746  */
cache_find_patch(struct ucode_cpu_info * uci,u16 equiv_cpu)747 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
748 {
749 	struct ucode_patch *p;
750 	struct ucode_patch n;
751 
752 	n.equiv_cpu = equiv_cpu;
753 	n.patch_id  = uci->cpu_sig.rev;
754 
755 	WARN_ON_ONCE(!n.patch_id);
756 
757 	list_for_each_entry(p, &microcode_cache, plist)
758 		if (patch_cpus_equivalent(p, &n, false))
759 			return p;
760 
761 	return NULL;
762 }
763 
patch_newer(struct ucode_patch * p,struct ucode_patch * n)764 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
765 {
766 	/* Zen and newer hardcode the f/m/s in the patch ID */
767         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
768 		union zen_patch_rev zp, zn;
769 
770 		zp.ucode_rev = p->patch_id;
771 		zn.ucode_rev = n->patch_id;
772 
773 		if (zn.stepping != zp.stepping)
774 			return -1;
775 
776 		return zn.rev > zp.rev;
777 	} else {
778 		return n->patch_id > p->patch_id;
779 	}
780 }
781 
update_cache(struct ucode_patch * new_patch)782 static void update_cache(struct ucode_patch *new_patch)
783 {
784 	struct ucode_patch *p;
785 	int ret;
786 
787 	list_for_each_entry(p, &microcode_cache, plist) {
788 		if (patch_cpus_equivalent(p, new_patch, true)) {
789 			ret = patch_newer(p, new_patch);
790 			if (ret < 0)
791 				continue;
792 			else if (!ret) {
793 				/* we already have the latest patch */
794 				kfree(new_patch->data);
795 				kfree(new_patch);
796 				return;
797 			}
798 
799 			list_replace(&p->plist, &new_patch->plist);
800 			kfree(p->data);
801 			kfree(p);
802 			return;
803 		}
804 	}
805 	/* no patch found, add it */
806 	list_add_tail(&new_patch->plist, &microcode_cache);
807 }
808 
free_cache(void)809 static void free_cache(void)
810 {
811 	struct ucode_patch *p, *tmp;
812 
813 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
814 		__list_del(p->plist.prev, p->plist.next);
815 		kfree(p->data);
816 		kfree(p);
817 	}
818 }
819 
find_patch(unsigned int cpu)820 static struct ucode_patch *find_patch(unsigned int cpu)
821 {
822 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
823 	u16 equiv_id = 0;
824 
825 	uci->cpu_sig.rev = get_patch_level();
826 
827 	if (x86_family(bsp_cpuid_1_eax) < 0x17) {
828 		equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
829 		if (!equiv_id)
830 			return NULL;
831 	}
832 
833 	return cache_find_patch(uci, equiv_id);
834 }
835 
reload_ucode_amd(unsigned int cpu)836 void reload_ucode_amd(unsigned int cpu)
837 {
838 	u32 rev, dummy __always_unused;
839 	struct microcode_amd *mc;
840 	struct ucode_patch *p;
841 
842 	p = find_patch(cpu);
843 	if (!p)
844 		return;
845 
846 	mc = p->data;
847 
848 	rev = get_patch_level();
849 	if (rev < mc->hdr.patch_id) {
850 		if (__apply_microcode_amd(mc, &rev, p->size))
851 			pr_info_once("reload revision: 0x%08x\n", rev);
852 	}
853 }
854 
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)855 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
856 {
857 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
858 	struct ucode_patch *p;
859 
860 	csig->sig = cpuid_eax(0x00000001);
861 	csig->rev = get_patch_level();
862 
863 	/*
864 	 * a patch could have been loaded early, set uci->mc so that
865 	 * mc_bp_resume() can call apply_microcode()
866 	 */
867 	p = find_patch(cpu);
868 	if (p && (p->patch_id == csig->rev))
869 		uci->mc = p->data;
870 
871 	return 0;
872 }
873 
apply_microcode_amd(int cpu)874 static enum ucode_state apply_microcode_amd(int cpu)
875 {
876 	struct cpuinfo_x86 *c = &cpu_data(cpu);
877 	struct microcode_amd *mc_amd;
878 	struct ucode_cpu_info *uci;
879 	struct ucode_patch *p;
880 	enum ucode_state ret;
881 	u32 rev;
882 
883 	BUG_ON(raw_smp_processor_id() != cpu);
884 
885 	uci = ucode_cpu_info + cpu;
886 
887 	p = find_patch(cpu);
888 	if (!p)
889 		return UCODE_NFOUND;
890 
891 	rev = uci->cpu_sig.rev;
892 
893 	mc_amd  = p->data;
894 	uci->mc = p->data;
895 
896 	/* need to apply patch? */
897 	if (rev > mc_amd->hdr.patch_id) {
898 		ret = UCODE_OK;
899 		goto out;
900 	}
901 
902 	if (!__apply_microcode_amd(mc_amd, &rev, p->size)) {
903 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
904 			cpu, mc_amd->hdr.patch_id);
905 		return UCODE_ERROR;
906 	}
907 
908 	rev = mc_amd->hdr.patch_id;
909 	ret = UCODE_UPDATED;
910 
911 out:
912 	uci->cpu_sig.rev = rev;
913 	c->microcode	 = rev;
914 
915 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
916 	if (c->cpu_index == boot_cpu_data.cpu_index)
917 		boot_cpu_data.microcode = rev;
918 
919 	return ret;
920 }
921 
load_ucode_amd_ap(unsigned int cpuid_1_eax)922 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
923 {
924 	unsigned int cpu = smp_processor_id();
925 
926 	ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
927 	apply_microcode_amd(cpu);
928 }
929 
install_equiv_cpu_table(const u8 * buf,size_t buf_size)930 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
931 {
932 	u32 equiv_tbl_len;
933 	const u32 *hdr;
934 
935 	if (!verify_equivalence_table(buf, buf_size))
936 		return 0;
937 
938 	hdr = (const u32 *)buf;
939 	equiv_tbl_len = hdr[2];
940 
941 	/* Zen and newer do not need an equivalence table. */
942 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
943 		goto out;
944 
945 	equiv_table.entry = vmalloc(equiv_tbl_len);
946 	if (!equiv_table.entry) {
947 		pr_err("failed to allocate equivalent CPU table\n");
948 		return 0;
949 	}
950 
951 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
952 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
953 
954 out:
955 	/* add header length */
956 	return equiv_tbl_len + CONTAINER_HDR_SZ;
957 }
958 
free_equiv_cpu_table(void)959 static void free_equiv_cpu_table(void)
960 {
961 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
962 		return;
963 
964 	vfree(equiv_table.entry);
965 	memset(&equiv_table, 0, sizeof(equiv_table));
966 }
967 
cleanup(void)968 static void cleanup(void)
969 {
970 	free_equiv_cpu_table();
971 	free_cache();
972 }
973 
974 /*
975  * Return a non-negative value even if some of the checks failed so that
976  * we can skip over the next patch. If we return a negative value, we
977  * signal a grave error like a memory allocation has failed and the
978  * driver cannot continue functioning normally. In such cases, we tear
979  * down everything we've used up so far and exit.
980  */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover,unsigned int * patch_size)981 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
982 				unsigned int *patch_size)
983 {
984 	struct microcode_header_amd *mc_hdr;
985 	struct ucode_patch *patch;
986 	u16 proc_id;
987 	int ret;
988 
989 	ret = verify_patch(fw, leftover, patch_size);
990 	if (ret)
991 		return ret;
992 
993 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
994 	if (!patch) {
995 		pr_err("Patch allocation failure.\n");
996 		return -EINVAL;
997 	}
998 
999 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
1000 	if (!patch->data) {
1001 		pr_err("Patch data allocation failure.\n");
1002 		kfree(patch);
1003 		return -EINVAL;
1004 	}
1005 	patch->size = *patch_size;
1006 
1007 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
1008 	proc_id     = mc_hdr->processor_rev_id;
1009 
1010 	INIT_LIST_HEAD(&patch->plist);
1011 	patch->patch_id  = mc_hdr->patch_id;
1012 	patch->equiv_cpu = proc_id;
1013 
1014 	pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
1015 		 __func__, patch->patch_id, proc_id);
1016 
1017 	/* ... and add to cache. */
1018 	update_cache(patch);
1019 
1020 	return 0;
1021 }
1022 
1023 /* Scan the blob in @data and add microcode patches to the cache. */
__load_microcode_amd(u8 family,const u8 * data,size_t size)1024 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size)
1025 {
1026 	u8 *fw = (u8 *)data;
1027 	size_t offset;
1028 
1029 	offset = install_equiv_cpu_table(data, size);
1030 	if (!offset)
1031 		return UCODE_ERROR;
1032 
1033 	fw   += offset;
1034 	size -= offset;
1035 
1036 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
1037 		pr_err("invalid type field in container file section header\n");
1038 		free_equiv_cpu_table();
1039 		return UCODE_ERROR;
1040 	}
1041 
1042 	while (size > 0) {
1043 		unsigned int crnt_size = 0;
1044 		int ret;
1045 
1046 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
1047 		if (ret < 0)
1048 			return UCODE_ERROR;
1049 
1050 		fw   +=  crnt_size + SECTION_HDR_SIZE;
1051 		size -= (crnt_size + SECTION_HDR_SIZE);
1052 	}
1053 
1054 	return UCODE_OK;
1055 }
1056 
_load_microcode_amd(u8 family,const u8 * data,size_t size)1057 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
1058 {
1059 	enum ucode_state ret;
1060 
1061 	/* free old equiv table */
1062 	free_equiv_cpu_table();
1063 
1064 	ret = __load_microcode_amd(family, data, size);
1065 	if (ret != UCODE_OK)
1066 		cleanup();
1067 
1068 	return ret;
1069 }
1070 
load_microcode_amd(u8 family,const u8 * data,size_t size)1071 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
1072 {
1073 	struct cpuinfo_x86 *c;
1074 	unsigned int nid, cpu;
1075 	struct ucode_patch *p;
1076 	enum ucode_state ret;
1077 
1078 	ret = _load_microcode_amd(family, data, size);
1079 	if (ret != UCODE_OK)
1080 		return ret;
1081 
1082 	for_each_node_with_cpus(nid) {
1083 		cpu = cpumask_first(cpumask_of_node(nid));
1084 		c = &cpu_data(cpu);
1085 
1086 		p = find_patch(cpu);
1087 		if (!p)
1088 			continue;
1089 
1090 		if (c->microcode >= p->patch_id)
1091 			continue;
1092 
1093 		ret = UCODE_NEW;
1094 	}
1095 
1096 	return ret;
1097 }
1098 
save_microcode_in_initrd(void)1099 static int __init save_microcode_in_initrd(void)
1100 {
1101 	unsigned int cpuid_1_eax = native_cpuid_eax(1);
1102 	struct cpuinfo_x86 *c = &boot_cpu_data;
1103 	struct cont_desc desc = { 0 };
1104 	enum ucode_state ret;
1105 	struct cpio_data cp;
1106 
1107 	if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
1108 		return 0;
1109 
1110 	if (!find_blobs_in_containers(&cp))
1111 		return -EINVAL;
1112 
1113 	scan_containers(cp.data, cp.size, &desc);
1114 	if (!desc.mc)
1115 		return -EINVAL;
1116 
1117 	ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
1118 	if (ret > UCODE_UPDATED)
1119 		return -EINVAL;
1120 
1121 	return 0;
1122 }
1123 early_initcall(save_microcode_in_initrd);
1124 
1125 /*
1126  * AMD microcode firmware naming convention, up to family 15h they are in
1127  * the legacy file:
1128  *
1129  *    amd-ucode/microcode_amd.bin
1130  *
1131  * This legacy file is always smaller than 2K in size.
1132  *
1133  * Beginning with family 15h, they are in family-specific firmware files:
1134  *
1135  *    amd-ucode/microcode_amd_fam15h.bin
1136  *    amd-ucode/microcode_amd_fam16h.bin
1137  *    ...
1138  *
1139  * These might be larger than 2K.
1140  */
request_microcode_amd(int cpu,struct device * device)1141 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
1142 {
1143 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
1144 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1145 	enum ucode_state ret = UCODE_NFOUND;
1146 	const struct firmware *fw;
1147 
1148 	if (force_minrev)
1149 		return UCODE_NFOUND;
1150 
1151 	if (c->x86 >= 0x15)
1152 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
1153 
1154 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
1155 		pr_debug("failed to load file %s\n", fw_name);
1156 		goto out;
1157 	}
1158 
1159 	ret = UCODE_ERROR;
1160 	if (!verify_container(fw->data, fw->size))
1161 		goto fw_release;
1162 
1163 	ret = load_microcode_amd(c->x86, fw->data, fw->size);
1164 
1165  fw_release:
1166 	release_firmware(fw);
1167 
1168  out:
1169 	return ret;
1170 }
1171 
microcode_fini_cpu_amd(int cpu)1172 static void microcode_fini_cpu_amd(int cpu)
1173 {
1174 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
1175 
1176 	uci->mc = NULL;
1177 }
1178 
1179 static struct microcode_ops microcode_amd_ops = {
1180 	.request_microcode_fw	= request_microcode_amd,
1181 	.collect_cpu_info	= collect_cpu_info_amd,
1182 	.apply_microcode	= apply_microcode_amd,
1183 	.microcode_fini_cpu	= microcode_fini_cpu_amd,
1184 	.nmi_safe		= true,
1185 };
1186 
init_amd_microcode(void)1187 struct microcode_ops * __init init_amd_microcode(void)
1188 {
1189 	struct cpuinfo_x86 *c = &boot_cpu_data;
1190 
1191 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
1192 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
1193 		return NULL;
1194 	}
1195 	return &microcode_amd_ops;
1196 }
1197 
exit_amd_microcode(void)1198 void __exit exit_amd_microcode(void)
1199 {
1200 	cleanup();
1201 }
1202