1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Fast user context implementation of clock_gettime, gettimeofday, and time.
4 *
5 * Copyright (C) 2019 ARM Limited.
6 * Copyright 2006 Andi Kleen, SUSE Labs.
7 * 32 Bit compat layer by Stefani Seibold <[email protected]>
8 * sponsored by Rohde & Schwarz GmbH & Co. KG Munich/Germany
9 */
10 #ifndef __ASM_VDSO_GETTIMEOFDAY_H
11 #define __ASM_VDSO_GETTIMEOFDAY_H
12
13 #ifndef __ASSEMBLY__
14
15 #include <uapi/linux/time.h>
16 #include <asm/vgtod.h>
17 #include <asm/unistd.h>
18 #include <asm/msr.h>
19 #include <asm/pvclock.h>
20 #include <clocksource/hyperv_timer.h>
21
22 extern struct vdso_data vvar_page
23 __attribute__((visibility("hidden")));
24
25 extern struct vdso_data timens_page
26 __attribute__((visibility("hidden")));
27
28 #define VDSO_HAS_TIME 1
29
30 #define VDSO_HAS_CLOCK_GETRES 1
31
32 /*
33 * Declare the memory-mapped vclock data pages. These come from hypervisors.
34 * If we ever reintroduce something like direct access to an MMIO clock like
35 * the HPET again, it will go here as well.
36 *
37 * A load from any of these pages will segfault if the clock in question is
38 * disabled, so appropriate compiler barriers and checks need to be used
39 * to prevent stray loads.
40 *
41 * These declarations MUST NOT be const. The compiler will assume that
42 * an extern const variable has genuinely constant contents, and the
43 * resulting code won't work, since the whole point is that these pages
44 * change over time, possibly while we're accessing them.
45 */
46
47 #ifdef CONFIG_PARAVIRT_CLOCK
48 /*
49 * This is the vCPU 0 pvclock page. We only use pvclock from the vDSO
50 * if the hypervisor tells us that all vCPUs can get valid data from the
51 * vCPU 0 page.
52 */
53 extern struct pvclock_vsyscall_time_info pvclock_page
54 __attribute__((visibility("hidden")));
55 #endif
56
57 #ifdef CONFIG_HYPERV_TIMER
58 extern struct ms_hyperv_tsc_page hvclock_page
59 __attribute__((visibility("hidden")));
60 #endif
61
62 #ifdef CONFIG_TIME_NS
63 static __always_inline
__arch_get_timens_vdso_data(const struct vdso_data * vd)64 const struct vdso_data *__arch_get_timens_vdso_data(const struct vdso_data *vd)
65 {
66 return &timens_page;
67 }
68 #endif
69
70 #ifndef BUILD_VDSO32
71
72 static __always_inline
clock_gettime_fallback(clockid_t _clkid,struct __kernel_timespec * _ts)73 long clock_gettime_fallback(clockid_t _clkid, struct __kernel_timespec *_ts)
74 {
75 long ret;
76
77 asm ("syscall" : "=a" (ret), "=m" (*_ts) :
78 "0" (__NR_clock_gettime), "D" (_clkid), "S" (_ts) :
79 "rcx", "r11");
80
81 return ret;
82 }
83
84 static __always_inline
gettimeofday_fallback(struct __kernel_old_timeval * _tv,struct timezone * _tz)85 long gettimeofday_fallback(struct __kernel_old_timeval *_tv,
86 struct timezone *_tz)
87 {
88 long ret;
89
90 asm("syscall" : "=a" (ret) :
91 "0" (__NR_gettimeofday), "D" (_tv), "S" (_tz) : "memory");
92
93 return ret;
94 }
95
96 static __always_inline
clock_getres_fallback(clockid_t _clkid,struct __kernel_timespec * _ts)97 long clock_getres_fallback(clockid_t _clkid, struct __kernel_timespec *_ts)
98 {
99 long ret;
100
101 asm ("syscall" : "=a" (ret), "=m" (*_ts) :
102 "0" (__NR_clock_getres), "D" (_clkid), "S" (_ts) :
103 "rcx", "r11");
104
105 return ret;
106 }
107
108 #else
109
110 static __always_inline
clock_gettime_fallback(clockid_t _clkid,struct __kernel_timespec * _ts)111 long clock_gettime_fallback(clockid_t _clkid, struct __kernel_timespec *_ts)
112 {
113 long ret;
114
115 asm (
116 "mov %%ebx, %%edx \n"
117 "mov %[clock], %%ebx \n"
118 "call __kernel_vsyscall \n"
119 "mov %%edx, %%ebx \n"
120 : "=a" (ret), "=m" (*_ts)
121 : "0" (__NR_clock_gettime64), [clock] "g" (_clkid), "c" (_ts)
122 : "edx");
123
124 return ret;
125 }
126
127 static __always_inline
clock_gettime32_fallback(clockid_t _clkid,struct old_timespec32 * _ts)128 long clock_gettime32_fallback(clockid_t _clkid, struct old_timespec32 *_ts)
129 {
130 long ret;
131
132 asm (
133 "mov %%ebx, %%edx \n"
134 "mov %[clock], %%ebx \n"
135 "call __kernel_vsyscall \n"
136 "mov %%edx, %%ebx \n"
137 : "=a" (ret), "=m" (*_ts)
138 : "0" (__NR_clock_gettime), [clock] "g" (_clkid), "c" (_ts)
139 : "edx");
140
141 return ret;
142 }
143
144 static __always_inline
gettimeofday_fallback(struct __kernel_old_timeval * _tv,struct timezone * _tz)145 long gettimeofday_fallback(struct __kernel_old_timeval *_tv,
146 struct timezone *_tz)
147 {
148 long ret;
149
150 asm(
151 "mov %%ebx, %%edx \n"
152 "mov %2, %%ebx \n"
153 "call __kernel_vsyscall \n"
154 "mov %%edx, %%ebx \n"
155 : "=a" (ret)
156 : "0" (__NR_gettimeofday), "g" (_tv), "c" (_tz)
157 : "memory", "edx");
158
159 return ret;
160 }
161
162 static __always_inline long
clock_getres_fallback(clockid_t _clkid,struct __kernel_timespec * _ts)163 clock_getres_fallback(clockid_t _clkid, struct __kernel_timespec *_ts)
164 {
165 long ret;
166
167 asm (
168 "mov %%ebx, %%edx \n"
169 "mov %[clock], %%ebx \n"
170 "call __kernel_vsyscall \n"
171 "mov %%edx, %%ebx \n"
172 : "=a" (ret), "=m" (*_ts)
173 : "0" (__NR_clock_getres_time64), [clock] "g" (_clkid), "c" (_ts)
174 : "edx");
175
176 return ret;
177 }
178
179 static __always_inline
clock_getres32_fallback(clockid_t _clkid,struct old_timespec32 * _ts)180 long clock_getres32_fallback(clockid_t _clkid, struct old_timespec32 *_ts)
181 {
182 long ret;
183
184 asm (
185 "mov %%ebx, %%edx \n"
186 "mov %[clock], %%ebx \n"
187 "call __kernel_vsyscall \n"
188 "mov %%edx, %%ebx \n"
189 : "=a" (ret), "=m" (*_ts)
190 : "0" (__NR_clock_getres), [clock] "g" (_clkid), "c" (_ts)
191 : "edx");
192
193 return ret;
194 }
195
196 #endif
197
198 #ifdef CONFIG_PARAVIRT_CLOCK
vread_pvclock(void)199 static u64 vread_pvclock(void)
200 {
201 const struct pvclock_vcpu_time_info *pvti = &pvclock_page.pvti;
202 u32 version;
203 u64 ret;
204
205 /*
206 * Note: The kernel and hypervisor must guarantee that cpu ID
207 * number maps 1:1 to per-CPU pvclock time info.
208 *
209 * Because the hypervisor is entirely unaware of guest userspace
210 * preemption, it cannot guarantee that per-CPU pvclock time
211 * info is updated if the underlying CPU changes or that that
212 * version is increased whenever underlying CPU changes.
213 *
214 * On KVM, we are guaranteed that pvti updates for any vCPU are
215 * atomic as seen by *all* vCPUs. This is an even stronger
216 * guarantee than we get with a normal seqlock.
217 *
218 * On Xen, we don't appear to have that guarantee, but Xen still
219 * supplies a valid seqlock using the version field.
220 *
221 * We only do pvclock vdso timing at all if
222 * PVCLOCK_TSC_STABLE_BIT is set, and we interpret that bit to
223 * mean that all vCPUs have matching pvti and that the TSC is
224 * synced, so we can just look at vCPU 0's pvti.
225 */
226
227 do {
228 version = pvclock_read_begin(pvti);
229
230 if (unlikely(!(pvti->flags & PVCLOCK_TSC_STABLE_BIT)))
231 return U64_MAX;
232
233 ret = __pvclock_read_cycles(pvti, rdtsc_ordered());
234 } while (pvclock_read_retry(pvti, version));
235
236 return ret & S64_MAX;
237 }
238 #endif
239
240 #ifdef CONFIG_HYPERV_TIMER
vread_hvclock(void)241 static u64 vread_hvclock(void)
242 {
243 u64 tsc, time;
244
245 if (hv_read_tsc_page_tsc(&hvclock_page, &tsc, &time))
246 return time & S64_MAX;
247
248 return U64_MAX;
249 }
250 #endif
251
__arch_get_hw_counter(s32 clock_mode,const struct vdso_data * vd)252 static inline u64 __arch_get_hw_counter(s32 clock_mode,
253 const struct vdso_data *vd)
254 {
255 if (likely(clock_mode == VDSO_CLOCKMODE_TSC))
256 return (u64)rdtsc_ordered() & S64_MAX;
257 /*
258 * For any memory-mapped vclock type, we need to make sure that gcc
259 * doesn't cleverly hoist a load before the mode check. Otherwise we
260 * might end up touching the memory-mapped page even if the vclock in
261 * question isn't enabled, which will segfault. Hence the barriers.
262 */
263 #ifdef CONFIG_PARAVIRT_CLOCK
264 if (clock_mode == VDSO_CLOCKMODE_PVCLOCK) {
265 barrier();
266 return vread_pvclock();
267 }
268 #endif
269 #ifdef CONFIG_HYPERV_TIMER
270 if (clock_mode == VDSO_CLOCKMODE_HVCLOCK) {
271 barrier();
272 return vread_hvclock();
273 }
274 #endif
275 return U64_MAX;
276 }
277
__arch_get_vdso_data(void)278 static __always_inline const struct vdso_data *__arch_get_vdso_data(void)
279 {
280 return &vvar_page;
281 }
282
arch_vdso_clocksource_ok(const struct vdso_data * vd)283 static inline bool arch_vdso_clocksource_ok(const struct vdso_data *vd)
284 {
285 return true;
286 }
287 #define vdso_clocksource_ok arch_vdso_clocksource_ok
288
289 /*
290 * Clocksource read value validation to handle PV and HyperV clocksources
291 * which can be invalidated asynchronously and indicate invalidation by
292 * returning U64_MAX, which can be effectively tested by checking for a
293 * negative value after casting it to s64.
294 *
295 * This effectively forces a S64_MAX mask on the calculations, unlike the
296 * U64_MAX mask normally used by x86 clocksources.
297 */
arch_vdso_cycles_ok(u64 cycles)298 static inline bool arch_vdso_cycles_ok(u64 cycles)
299 {
300 return (s64)cycles >= 0;
301 }
302 #define vdso_cycles_ok arch_vdso_cycles_ok
303
304 /*
305 * x86 specific calculation of nanoseconds for the current cycle count
306 *
307 * The regular implementation assumes that clocksource reads are globally
308 * monotonic. The TSC can be slightly off across sockets which can cause
309 * the regular delta calculation (@cycles - @last) to return a huge time
310 * jump.
311 *
312 * Therefore it needs to be verified that @cycles are greater than
313 * @vd->cycles_last. If not then use @vd->cycles_last, which is the base
314 * time of the current conversion period.
315 *
316 * This variant also uses a custom mask because while the clocksource mask of
317 * all the VDSO capable clocksources on x86 is U64_MAX, the above code uses
318 * U64_MASK as an exception value, additionally arch_vdso_cycles_ok() above
319 * declares everything with the MSB/Sign-bit set as invalid. Therefore the
320 * effective mask is S64_MAX.
321 */
vdso_calc_ns(const struct vdso_data * vd,u64 cycles,u64 base)322 static __always_inline u64 vdso_calc_ns(const struct vdso_data *vd, u64 cycles, u64 base)
323 {
324 u64 delta = cycles - vd->cycle_last;
325
326 /*
327 * Negative motion and deltas which can cause multiplication
328 * overflow require special treatment. This check covers both as
329 * negative motion is guaranteed to be greater than @vd::max_cycles
330 * due to unsigned comparison.
331 *
332 * Due to the MSB/Sign-bit being used as invalid marker (see
333 * arch_vdso_cycles_ok() above), the effective mask is S64_MAX, but that
334 * case is also unlikely and will also take the unlikely path here.
335 */
336 if (unlikely(delta > vd->max_cycles)) {
337 /*
338 * Due to the above mentioned TSC wobbles, filter out
339 * negative motion. Per the above masking, the effective
340 * sign bit is now bit 62.
341 */
342 if (delta & (1ULL << 62))
343 return base >> vd->shift;
344
345 /* Handle multiplication overflow gracefully */
346 return mul_u64_u32_add_u64_shr(delta & S64_MAX, vd->mult, base, vd->shift);
347 }
348
349 return ((delta * vd->mult) + base) >> vd->shift;
350 }
351 #define vdso_calc_ns vdso_calc_ns
352
353 #endif /* !__ASSEMBLY__ */
354
355 #endif /* __ASM_VDSO_GETTIMEOFDAY_H */
356