1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * srmmu.c:  SRMMU specific routines for memory management.
4  *
5  * Copyright (C) 1995 David S. Miller  ([email protected])
6  * Copyright (C) 1995,2002 Pete Zaitcev ([email protected])
7  * Copyright (C) 1996 Eddie C. Dost    ([email protected])
8  * Copyright (C) 1997,1998 Jakub Jelinek ([email protected])
9  * Copyright (C) 1999,2000 Anton Blanchard ([email protected])
10  */
11 
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
37 #include <asm/mbus.h>
38 #include <asm/page.h>
39 #include <asm/asi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
42 
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
51 
52 #include "mm_32.h"
53 
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 EXPORT_SYMBOL(vac_cache_size);
58 int vac_line_size;
59 
60 extern struct resource sparc_iomap;
61 
62 extern unsigned long last_valid_pfn;
63 
64 static pgd_t *srmmu_swapper_pg_dir;
65 
66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67 EXPORT_SYMBOL(sparc32_cachetlb_ops);
68 
69 #ifdef CONFIG_SMP
70 const struct sparc32_cachetlb_ops *local_ops;
71 
72 #define FLUSH_BEGIN(mm)
73 #define FLUSH_END
74 #else
75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
76 #define FLUSH_END	}
77 #endif
78 
79 int flush_page_for_dma_global = 1;
80 
81 char *srmmu_name;
82 
83 ctxd_t *srmmu_ctx_table_phys;
84 static ctxd_t *srmmu_context_table;
85 
86 int viking_mxcc_present;
87 static DEFINE_SPINLOCK(srmmu_context_spinlock);
88 
89 static int is_hypersparc;
90 
91 static int srmmu_cache_pagetables;
92 
93 /* these will be initialized in srmmu_nocache_calcsize() */
94 static unsigned long srmmu_nocache_size;
95 static unsigned long srmmu_nocache_end;
96 
97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
99 
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
102 
103 void *srmmu_nocache_pool;
104 static struct bit_map srmmu_nocache_map;
105 
srmmu_pmd_none(pmd_t pmd)106 static inline int srmmu_pmd_none(pmd_t pmd)
107 { return !(pmd_val(pmd) & 0xFFFFFFF); }
108 
109 /* XXX should we hyper_flush_whole_icache here - Anton */
srmmu_ctxd_set(ctxd_t * ctxp,pgd_t * pgdp)110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
111 {
112 	pte_t pte;
113 
114 	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115 	set_pte((pte_t *)ctxp, pte);
116 }
117 
118 /*
119  * Locations of MSI Registers.
120  */
121 #define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */
122 
123 /*
124  * Useful bits in the MSI Registers.
125  */
126 #define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */
127 
msi_set_sync(void)128 static void msi_set_sync(void)
129 {
130 	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131 			      "andn %%g3, %2, %%g3\n\t"
132 			      "sta %%g3, [%0] %1\n\t" : :
133 			      "r" (MSI_MBUS_ARBEN),
134 			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
135 }
136 
pmd_set(pmd_t * pmdp,pte_t * ptep)137 void pmd_set(pmd_t *pmdp, pte_t *ptep)
138 {
139 	unsigned long ptp = __nocache_pa(ptep) >> 4;
140 	set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
141 }
142 
143 /*
144  * size: bytes to allocate in the nocache area.
145  * align: bytes, number to align at.
146  * Returns the virtual address of the allocated area.
147  */
__srmmu_get_nocache(int size,int align)148 static void *__srmmu_get_nocache(int size, int align)
149 {
150 	int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
151 	unsigned long addr;
152 
153 	if (size < minsz) {
154 		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
155 		       size);
156 		size = minsz;
157 	}
158 	if (size & (minsz - 1)) {
159 		printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
160 		       size);
161 		size += minsz - 1;
162 	}
163 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
164 
165 	offset = bit_map_string_get(&srmmu_nocache_map,
166 				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
167 				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
168 	if (offset == -1) {
169 		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
170 		       size, (int) srmmu_nocache_size,
171 		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
172 		return NULL;
173 	}
174 
175 	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
176 	return (void *)addr;
177 }
178 
srmmu_get_nocache(int size,int align)179 void *srmmu_get_nocache(int size, int align)
180 {
181 	void *tmp;
182 
183 	tmp = __srmmu_get_nocache(size, align);
184 
185 	if (tmp)
186 		memset(tmp, 0, size);
187 
188 	return tmp;
189 }
190 
srmmu_free_nocache(void * addr,int size)191 void srmmu_free_nocache(void *addr, int size)
192 {
193 	unsigned long vaddr;
194 	int offset;
195 
196 	vaddr = (unsigned long)addr;
197 	if (vaddr < SRMMU_NOCACHE_VADDR) {
198 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
199 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
200 		BUG();
201 	}
202 	if (vaddr + size > srmmu_nocache_end) {
203 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
204 		    vaddr, srmmu_nocache_end);
205 		BUG();
206 	}
207 	if (!is_power_of_2(size)) {
208 		printk("Size 0x%x is not a power of 2\n", size);
209 		BUG();
210 	}
211 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
212 		printk("Size 0x%x is too small\n", size);
213 		BUG();
214 	}
215 	if (vaddr & (size - 1)) {
216 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
217 		BUG();
218 	}
219 
220 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
221 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
222 
223 	bit_map_clear(&srmmu_nocache_map, offset, size);
224 }
225 
226 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
227 						 unsigned long end);
228 
229 /* Return how much physical memory we have.  */
probe_memory(void)230 static unsigned long __init probe_memory(void)
231 {
232 	unsigned long total = 0;
233 	int i;
234 
235 	for (i = 0; sp_banks[i].num_bytes; i++)
236 		total += sp_banks[i].num_bytes;
237 
238 	return total;
239 }
240 
241 /*
242  * Reserve nocache dynamically proportionally to the amount of
243  * system RAM. -- Tomas Szepe <[email protected]>, June 2002
244  */
srmmu_nocache_calcsize(void)245 static void __init srmmu_nocache_calcsize(void)
246 {
247 	unsigned long sysmemavail = probe_memory() / 1024;
248 	int srmmu_nocache_npages;
249 
250 	srmmu_nocache_npages =
251 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
252 
253  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
254 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
255 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
256 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
257 
258 	/* anything above 1280 blows up */
259 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
260 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
261 
262 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
263 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
264 }
265 
srmmu_nocache_init(void)266 static void __init srmmu_nocache_init(void)
267 {
268 	void *srmmu_nocache_bitmap;
269 	unsigned int bitmap_bits;
270 	pgd_t *pgd;
271 	p4d_t *p4d;
272 	pud_t *pud;
273 	pmd_t *pmd;
274 	pte_t *pte;
275 	unsigned long paddr, vaddr;
276 	unsigned long pteval;
277 
278 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
279 
280 	srmmu_nocache_pool = memblock_alloc_or_panic(srmmu_nocache_size,
281 					    SRMMU_NOCACHE_ALIGN_MAX);
282 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
283 
284 	srmmu_nocache_bitmap =
285 		memblock_alloc_or_panic(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
286 			       SMP_CACHE_BYTES);
287 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
288 
289 	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
290 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
291 	init_mm.pgd = srmmu_swapper_pg_dir;
292 
293 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
294 
295 	paddr = __pa((unsigned long)srmmu_nocache_pool);
296 	vaddr = SRMMU_NOCACHE_VADDR;
297 
298 	while (vaddr < srmmu_nocache_end) {
299 		pgd = pgd_offset_k(vaddr);
300 		p4d = p4d_offset(pgd, vaddr);
301 		pud = pud_offset(p4d, vaddr);
302 		pmd = pmd_offset(__nocache_fix(pud), vaddr);
303 		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
304 
305 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
306 
307 		if (srmmu_cache_pagetables)
308 			pteval |= SRMMU_CACHE;
309 
310 		set_pte(__nocache_fix(pte), __pte(pteval));
311 
312 		vaddr += PAGE_SIZE;
313 		paddr += PAGE_SIZE;
314 	}
315 
316 	flush_cache_all();
317 	flush_tlb_all();
318 }
319 
get_pgd_fast(void)320 pgd_t *get_pgd_fast(void)
321 {
322 	pgd_t *pgd = NULL;
323 
324 	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
325 	if (pgd) {
326 		pgd_t *init = pgd_offset_k(0);
327 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
328 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
329 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
330 	}
331 
332 	return pgd;
333 }
334 
335 /*
336  * Hardware needs alignment to 256 only, but we align to whole page size
337  * to reduce fragmentation problems due to the buddy principle.
338  * XXX Provide actual fragmentation statistics in /proc.
339  *
340  * Alignments up to the page size are the same for physical and virtual
341  * addresses of the nocache area.
342  */
pte_alloc_one(struct mm_struct * mm)343 pgtable_t pte_alloc_one(struct mm_struct *mm)
344 {
345 	pte_t *ptep;
346 	struct page *page;
347 
348 	if (!(ptep = pte_alloc_one_kernel(mm)))
349 		return NULL;
350 	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
351 	spin_lock(&mm->page_table_lock);
352 	if (page_ref_inc_return(page) == 2 &&
353 			!pagetable_pte_ctor(page_ptdesc(page))) {
354 		page_ref_dec(page);
355 		ptep = NULL;
356 	}
357 	spin_unlock(&mm->page_table_lock);
358 
359 	return ptep;
360 }
361 
pte_free(struct mm_struct * mm,pgtable_t ptep)362 void pte_free(struct mm_struct *mm, pgtable_t ptep)
363 {
364 	struct page *page;
365 
366 	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
367 	spin_lock(&mm->page_table_lock);
368 	if (page_ref_dec_return(page) == 1)
369 		pagetable_dtor(page_ptdesc(page));
370 	spin_unlock(&mm->page_table_lock);
371 
372 	srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
373 }
374 
375 /* context handling - a dynamically sized pool is used */
376 #define NO_CONTEXT	-1
377 
378 struct ctx_list {
379 	struct ctx_list *next;
380 	struct ctx_list *prev;
381 	unsigned int ctx_number;
382 	struct mm_struct *ctx_mm;
383 };
384 
385 static struct ctx_list *ctx_list_pool;
386 static struct ctx_list ctx_free;
387 static struct ctx_list ctx_used;
388 
389 /* At boot time we determine the number of contexts */
390 static int num_contexts;
391 
remove_from_ctx_list(struct ctx_list * entry)392 static inline void remove_from_ctx_list(struct ctx_list *entry)
393 {
394 	entry->next->prev = entry->prev;
395 	entry->prev->next = entry->next;
396 }
397 
add_to_ctx_list(struct ctx_list * head,struct ctx_list * entry)398 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
399 {
400 	entry->next = head;
401 	(entry->prev = head->prev)->next = entry;
402 	head->prev = entry;
403 }
404 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
405 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
406 
407 
alloc_context(struct mm_struct * old_mm,struct mm_struct * mm)408 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
409 {
410 	struct ctx_list *ctxp;
411 
412 	ctxp = ctx_free.next;
413 	if (ctxp != &ctx_free) {
414 		remove_from_ctx_list(ctxp);
415 		add_to_used_ctxlist(ctxp);
416 		mm->context = ctxp->ctx_number;
417 		ctxp->ctx_mm = mm;
418 		return;
419 	}
420 	ctxp = ctx_used.next;
421 	if (ctxp->ctx_mm == old_mm)
422 		ctxp = ctxp->next;
423 	if (ctxp == &ctx_used)
424 		panic("out of mmu contexts");
425 	flush_cache_mm(ctxp->ctx_mm);
426 	flush_tlb_mm(ctxp->ctx_mm);
427 	remove_from_ctx_list(ctxp);
428 	add_to_used_ctxlist(ctxp);
429 	ctxp->ctx_mm->context = NO_CONTEXT;
430 	ctxp->ctx_mm = mm;
431 	mm->context = ctxp->ctx_number;
432 }
433 
free_context(int context)434 static inline void free_context(int context)
435 {
436 	struct ctx_list *ctx_old;
437 
438 	ctx_old = ctx_list_pool + context;
439 	remove_from_ctx_list(ctx_old);
440 	add_to_free_ctxlist(ctx_old);
441 }
442 
sparc_context_init(int numctx)443 static void __init sparc_context_init(int numctx)
444 {
445 	int ctx;
446 	unsigned long size;
447 
448 	size = numctx * sizeof(struct ctx_list);
449 	ctx_list_pool = memblock_alloc_or_panic(size, SMP_CACHE_BYTES);
450 
451 	for (ctx = 0; ctx < numctx; ctx++) {
452 		struct ctx_list *clist;
453 
454 		clist = (ctx_list_pool + ctx);
455 		clist->ctx_number = ctx;
456 		clist->ctx_mm = NULL;
457 	}
458 	ctx_free.next = ctx_free.prev = &ctx_free;
459 	ctx_used.next = ctx_used.prev = &ctx_used;
460 	for (ctx = 0; ctx < numctx; ctx++)
461 		add_to_free_ctxlist(ctx_list_pool + ctx);
462 }
463 
switch_mm(struct mm_struct * old_mm,struct mm_struct * mm,struct task_struct * tsk)464 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
465 	       struct task_struct *tsk)
466 {
467 	unsigned long flags;
468 
469 	if (mm->context == NO_CONTEXT) {
470 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
471 		alloc_context(old_mm, mm);
472 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
473 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
474 	}
475 
476 	if (sparc_cpu_model == sparc_leon)
477 		leon_switch_mm();
478 
479 	if (is_hypersparc)
480 		hyper_flush_whole_icache();
481 
482 	srmmu_set_context(mm->context);
483 }
484 
485 /* Low level IO area allocation on the SRMMU. */
srmmu_mapioaddr(unsigned long physaddr,unsigned long virt_addr,int bus_type)486 static inline void srmmu_mapioaddr(unsigned long physaddr,
487 				   unsigned long virt_addr, int bus_type)
488 {
489 	pgd_t *pgdp;
490 	p4d_t *p4dp;
491 	pud_t *pudp;
492 	pmd_t *pmdp;
493 	pte_t *ptep;
494 	unsigned long tmp;
495 
496 	physaddr &= PAGE_MASK;
497 	pgdp = pgd_offset_k(virt_addr);
498 	p4dp = p4d_offset(pgdp, virt_addr);
499 	pudp = pud_offset(p4dp, virt_addr);
500 	pmdp = pmd_offset(pudp, virt_addr);
501 	ptep = pte_offset_kernel(pmdp, virt_addr);
502 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
503 
504 	/* I need to test whether this is consistent over all
505 	 * sun4m's.  The bus_type represents the upper 4 bits of
506 	 * 36-bit physical address on the I/O space lines...
507 	 */
508 	tmp |= (bus_type << 28);
509 	tmp |= SRMMU_PRIV;
510 	__flush_page_to_ram(virt_addr);
511 	set_pte(ptep, __pte(tmp));
512 }
513 
srmmu_mapiorange(unsigned int bus,unsigned long xpa,unsigned long xva,unsigned int len)514 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
515 		      unsigned long xva, unsigned int len)
516 {
517 	while (len != 0) {
518 		len -= PAGE_SIZE;
519 		srmmu_mapioaddr(xpa, xva, bus);
520 		xva += PAGE_SIZE;
521 		xpa += PAGE_SIZE;
522 	}
523 	flush_tlb_all();
524 }
525 
srmmu_unmapioaddr(unsigned long virt_addr)526 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
527 {
528 	pgd_t *pgdp;
529 	p4d_t *p4dp;
530 	pud_t *pudp;
531 	pmd_t *pmdp;
532 	pte_t *ptep;
533 
534 
535 	pgdp = pgd_offset_k(virt_addr);
536 	p4dp = p4d_offset(pgdp, virt_addr);
537 	pudp = pud_offset(p4dp, virt_addr);
538 	pmdp = pmd_offset(pudp, virt_addr);
539 	ptep = pte_offset_kernel(pmdp, virt_addr);
540 
541 	/* No need to flush uncacheable page. */
542 	__pte_clear(ptep);
543 }
544 
srmmu_unmapiorange(unsigned long virt_addr,unsigned int len)545 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
546 {
547 	while (len != 0) {
548 		len -= PAGE_SIZE;
549 		srmmu_unmapioaddr(virt_addr);
550 		virt_addr += PAGE_SIZE;
551 	}
552 	flush_tlb_all();
553 }
554 
555 /* tsunami.S */
556 extern void tsunami_flush_cache_all(void);
557 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
558 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
559 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
560 extern void tsunami_flush_page_to_ram(unsigned long page);
561 extern void tsunami_flush_page_for_dma(unsigned long page);
562 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
563 extern void tsunami_flush_tlb_all(void);
564 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
565 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
566 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
567 extern void tsunami_setup_blockops(void);
568 
569 /* swift.S */
570 extern void swift_flush_cache_all(void);
571 extern void swift_flush_cache_mm(struct mm_struct *mm);
572 extern void swift_flush_cache_range(struct vm_area_struct *vma,
573 				    unsigned long start, unsigned long end);
574 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
575 extern void swift_flush_page_to_ram(unsigned long page);
576 extern void swift_flush_page_for_dma(unsigned long page);
577 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
578 extern void swift_flush_tlb_all(void);
579 extern void swift_flush_tlb_mm(struct mm_struct *mm);
580 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
581 				  unsigned long start, unsigned long end);
582 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
583 
584 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
585 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
586 {
587 	int cctx, ctx1;
588 
589 	page &= PAGE_MASK;
590 	if ((ctx1 = vma->vm_mm->context) != -1) {
591 		cctx = srmmu_get_context();
592 /* Is context # ever different from current context? P3 */
593 		if (cctx != ctx1) {
594 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
595 			srmmu_set_context(ctx1);
596 			swift_flush_page(page);
597 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
598 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
599 			srmmu_set_context(cctx);
600 		} else {
601 			 /* Rm. prot. bits from virt. c. */
602 			/* swift_flush_cache_all(); */
603 			/* swift_flush_cache_page(vma, page); */
604 			swift_flush_page(page);
605 
606 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
607 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
608 			/* same as above: srmmu_flush_tlb_page() */
609 		}
610 	}
611 }
612 #endif
613 
614 /*
615  * The following are all MBUS based SRMMU modules, and therefore could
616  * be found in a multiprocessor configuration.  On the whole, these
617  * chips seems to be much more touchy about DVMA and page tables
618  * with respect to cache coherency.
619  */
620 
621 /* viking.S */
622 extern void viking_flush_cache_all(void);
623 extern void viking_flush_cache_mm(struct mm_struct *mm);
624 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
625 				     unsigned long end);
626 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
627 extern void viking_flush_page_to_ram(unsigned long page);
628 extern void viking_flush_page_for_dma(unsigned long page);
629 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
630 extern void viking_flush_page(unsigned long page);
631 extern void viking_mxcc_flush_page(unsigned long page);
632 extern void viking_flush_tlb_all(void);
633 extern void viking_flush_tlb_mm(struct mm_struct *mm);
634 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
635 				   unsigned long end);
636 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
637 				  unsigned long page);
638 extern void sun4dsmp_flush_tlb_all(void);
639 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
640 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
641 				   unsigned long end);
642 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
643 				  unsigned long page);
644 
645 /* hypersparc.S */
646 extern void hypersparc_flush_cache_all(void);
647 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
648 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
649 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
650 extern void hypersparc_flush_page_to_ram(unsigned long page);
651 extern void hypersparc_flush_page_for_dma(unsigned long page);
652 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
653 extern void hypersparc_flush_tlb_all(void);
654 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
655 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
656 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
657 extern void hypersparc_setup_blockops(void);
658 
659 /*
660  * NOTE: All of this startup code assumes the low 16mb (approx.) of
661  *       kernel mappings are done with one single contiguous chunk of
662  *       ram.  On small ram machines (classics mainly) we only get
663  *       around 8mb mapped for us.
664  */
665 
early_pgtable_allocfail(char * type)666 static void __init early_pgtable_allocfail(char *type)
667 {
668 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
669 	prom_halt();
670 }
671 
srmmu_early_allocate_ptable_skeleton(unsigned long start,unsigned long end)672 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
673 							unsigned long end)
674 {
675 	pgd_t *pgdp;
676 	p4d_t *p4dp;
677 	pud_t *pudp;
678 	pmd_t *pmdp;
679 	pte_t *ptep;
680 
681 	while (start < end) {
682 		pgdp = pgd_offset_k(start);
683 		p4dp = p4d_offset(pgdp, start);
684 		pudp = pud_offset(p4dp, start);
685 		if (pud_none(*__nocache_fix(pudp))) {
686 			pmdp = __srmmu_get_nocache(
687 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
688 			if (pmdp == NULL)
689 				early_pgtable_allocfail("pmd");
690 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
691 			pud_set(__nocache_fix(pudp), pmdp);
692 		}
693 		pmdp = pmd_offset(__nocache_fix(pudp), start);
694 		if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
695 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
696 			if (ptep == NULL)
697 				early_pgtable_allocfail("pte");
698 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
699 			pmd_set(__nocache_fix(pmdp), ptep);
700 		}
701 		if (start > (0xffffffffUL - PMD_SIZE))
702 			break;
703 		start = (start + PMD_SIZE) & PMD_MASK;
704 	}
705 }
706 
srmmu_allocate_ptable_skeleton(unsigned long start,unsigned long end)707 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
708 						  unsigned long end)
709 {
710 	pgd_t *pgdp;
711 	p4d_t *p4dp;
712 	pud_t *pudp;
713 	pmd_t *pmdp;
714 	pte_t *ptep;
715 
716 	while (start < end) {
717 		pgdp = pgd_offset_k(start);
718 		p4dp = p4d_offset(pgdp, start);
719 		pudp = pud_offset(p4dp, start);
720 		if (pud_none(*pudp)) {
721 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
722 			if (pmdp == NULL)
723 				early_pgtable_allocfail("pmd");
724 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
725 			pud_set((pud_t *)pgdp, pmdp);
726 		}
727 		pmdp = pmd_offset(pudp, start);
728 		if (srmmu_pmd_none(*pmdp)) {
729 			ptep = __srmmu_get_nocache(PTE_SIZE,
730 							     PTE_SIZE);
731 			if (ptep == NULL)
732 				early_pgtable_allocfail("pte");
733 			memset(ptep, 0, PTE_SIZE);
734 			pmd_set(pmdp, ptep);
735 		}
736 		if (start > (0xffffffffUL - PMD_SIZE))
737 			break;
738 		start = (start + PMD_SIZE) & PMD_MASK;
739 	}
740 }
741 
742 /* These flush types are not available on all chips... */
srmmu_probe(unsigned long vaddr)743 static inline unsigned long srmmu_probe(unsigned long vaddr)
744 {
745 	unsigned long retval;
746 
747 	if (sparc_cpu_model != sparc_leon) {
748 
749 		vaddr &= PAGE_MASK;
750 		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
751 				     "=r" (retval) :
752 				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
753 	} else {
754 		retval = leon_swprobe(vaddr, NULL);
755 	}
756 	return retval;
757 }
758 
759 /*
760  * This is much cleaner than poking around physical address space
761  * looking at the prom's page table directly which is what most
762  * other OS's do.  Yuck... this is much better.
763  */
srmmu_inherit_prom_mappings(unsigned long start,unsigned long end)764 static void __init srmmu_inherit_prom_mappings(unsigned long start,
765 					       unsigned long end)
766 {
767 	unsigned long probed;
768 	unsigned long addr;
769 	pgd_t *pgdp;
770 	p4d_t *p4dp;
771 	pud_t *pudp;
772 	pmd_t *pmdp;
773 	pte_t *ptep;
774 	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
775 
776 	while (start <= end) {
777 		if (start == 0)
778 			break; /* probably wrap around */
779 		if (start == 0xfef00000)
780 			start = KADB_DEBUGGER_BEGVM;
781 		probed = srmmu_probe(start);
782 		if (!probed) {
783 			/* continue probing until we find an entry */
784 			start += PAGE_SIZE;
785 			continue;
786 		}
787 
788 		/* A red snapper, see what it really is. */
789 		what = 0;
790 		addr = start - PAGE_SIZE;
791 
792 		if (!(start & ~(PMD_MASK))) {
793 			if (srmmu_probe(addr + PMD_SIZE) == probed)
794 				what = 1;
795 		}
796 
797 		if (!(start & ~(PGDIR_MASK))) {
798 			if (srmmu_probe(addr + PGDIR_SIZE) == probed)
799 				what = 2;
800 		}
801 
802 		pgdp = pgd_offset_k(start);
803 		p4dp = p4d_offset(pgdp, start);
804 		pudp = pud_offset(p4dp, start);
805 		if (what == 2) {
806 			*__nocache_fix(pgdp) = __pgd(probed);
807 			start += PGDIR_SIZE;
808 			continue;
809 		}
810 		if (pud_none(*__nocache_fix(pudp))) {
811 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
812 						   SRMMU_PMD_TABLE_SIZE);
813 			if (pmdp == NULL)
814 				early_pgtable_allocfail("pmd");
815 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
816 			pud_set(__nocache_fix(pudp), pmdp);
817 		}
818 		pmdp = pmd_offset(__nocache_fix(pudp), start);
819 		if (what == 1) {
820 			*(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
821 			start += PMD_SIZE;
822 			continue;
823 		}
824 		if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
825 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
826 			if (ptep == NULL)
827 				early_pgtable_allocfail("pte");
828 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
829 			pmd_set(__nocache_fix(pmdp), ptep);
830 		}
831 		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
832 		*__nocache_fix(ptep) = __pte(probed);
833 		start += PAGE_SIZE;
834 	}
835 }
836 
837 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
838 
839 /* Create a third-level SRMMU 16MB page mapping. */
do_large_mapping(unsigned long vaddr,unsigned long phys_base)840 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
841 {
842 	pgd_t *pgdp = pgd_offset_k(vaddr);
843 	unsigned long big_pte;
844 
845 	big_pte = KERNEL_PTE(phys_base >> 4);
846 	*__nocache_fix(pgdp) = __pgd(big_pte);
847 }
848 
849 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
map_spbank(unsigned long vbase,int sp_entry)850 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
851 {
852 	unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
853 	unsigned long vstart = (vbase & PGDIR_MASK);
854 	unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
855 	/* Map "low" memory only */
856 	const unsigned long min_vaddr = PAGE_OFFSET;
857 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
858 
859 	if (vstart < min_vaddr || vstart >= max_vaddr)
860 		return vstart;
861 
862 	if (vend > max_vaddr || vend < min_vaddr)
863 		vend = max_vaddr;
864 
865 	while (vstart < vend) {
866 		do_large_mapping(vstart, pstart);
867 		vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
868 	}
869 	return vstart;
870 }
871 
map_kernel(void)872 static void __init map_kernel(void)
873 {
874 	int i;
875 
876 	if (phys_base > 0) {
877 		do_large_mapping(PAGE_OFFSET, phys_base);
878 	}
879 
880 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
881 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
882 	}
883 }
884 
885 void (*poke_srmmu)(void) = NULL;
886 
srmmu_paging_init(void)887 void __init srmmu_paging_init(void)
888 {
889 	int i;
890 	phandle cpunode;
891 	char node_str[128];
892 	pgd_t *pgd;
893 	p4d_t *p4d;
894 	pud_t *pud;
895 	pmd_t *pmd;
896 	pte_t *pte;
897 	unsigned long pages_avail;
898 
899 	init_mm.context = (unsigned long) NO_CONTEXT;
900 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
901 
902 	if (sparc_cpu_model == sun4d)
903 		num_contexts = 65536; /* We know it is Viking */
904 	else {
905 		/* Find the number of contexts on the srmmu. */
906 		cpunode = prom_getchild(prom_root_node);
907 		num_contexts = 0;
908 		while (cpunode != 0) {
909 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
910 			if (!strcmp(node_str, "cpu")) {
911 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
912 				break;
913 			}
914 			cpunode = prom_getsibling(cpunode);
915 		}
916 	}
917 
918 	if (!num_contexts) {
919 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
920 		prom_halt();
921 	}
922 
923 	pages_avail = 0;
924 	last_valid_pfn = bootmem_init(&pages_avail);
925 
926 	srmmu_nocache_calcsize();
927 	srmmu_nocache_init();
928 	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
929 	map_kernel();
930 
931 	/* ctx table has to be physically aligned to its size */
932 	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
933 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
934 
935 	for (i = 0; i < num_contexts; i++)
936 		srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
937 
938 	flush_cache_all();
939 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
940 #ifdef CONFIG_SMP
941 	/* Stop from hanging here... */
942 	local_ops->tlb_all();
943 #else
944 	flush_tlb_all();
945 #endif
946 	poke_srmmu();
947 
948 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
949 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
950 
951 	srmmu_allocate_ptable_skeleton(
952 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
953 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
954 
955 	pgd = pgd_offset_k(PKMAP_BASE);
956 	p4d = p4d_offset(pgd, PKMAP_BASE);
957 	pud = pud_offset(p4d, PKMAP_BASE);
958 	pmd = pmd_offset(pud, PKMAP_BASE);
959 	pte = pte_offset_kernel(pmd, PKMAP_BASE);
960 	pkmap_page_table = pte;
961 
962 	flush_cache_all();
963 	flush_tlb_all();
964 
965 	sparc_context_init(num_contexts);
966 
967 	{
968 		unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
969 
970 		max_zone_pfn[ZONE_DMA] = max_low_pfn;
971 		max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
972 		max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
973 
974 		free_area_init(max_zone_pfn);
975 	}
976 }
977 
mmu_info(struct seq_file * m)978 void mmu_info(struct seq_file *m)
979 {
980 	seq_printf(m,
981 		   "MMU type\t: %s\n"
982 		   "contexts\t: %d\n"
983 		   "nocache total\t: %ld\n"
984 		   "nocache used\t: %d\n",
985 		   srmmu_name,
986 		   num_contexts,
987 		   srmmu_nocache_size,
988 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
989 }
990 
init_new_context(struct task_struct * tsk,struct mm_struct * mm)991 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
992 {
993 	mm->context = NO_CONTEXT;
994 	return 0;
995 }
996 
destroy_context(struct mm_struct * mm)997 void destroy_context(struct mm_struct *mm)
998 {
999 	unsigned long flags;
1000 
1001 	if (mm->context != NO_CONTEXT) {
1002 		flush_cache_mm(mm);
1003 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1004 		flush_tlb_mm(mm);
1005 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1006 		free_context(mm->context);
1007 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1008 		mm->context = NO_CONTEXT;
1009 	}
1010 }
1011 
1012 /* Init various srmmu chip types. */
srmmu_is_bad(void)1013 static void __init srmmu_is_bad(void)
1014 {
1015 	prom_printf("Could not determine SRMMU chip type.\n");
1016 	prom_halt();
1017 }
1018 
init_vac_layout(void)1019 static void __init init_vac_layout(void)
1020 {
1021 	phandle nd;
1022 	int cache_lines;
1023 	char node_str[128];
1024 #ifdef CONFIG_SMP
1025 	int cpu = 0;
1026 	unsigned long max_size = 0;
1027 	unsigned long min_line_size = 0x10000000;
1028 #endif
1029 
1030 	nd = prom_getchild(prom_root_node);
1031 	while ((nd = prom_getsibling(nd)) != 0) {
1032 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1033 		if (!strcmp(node_str, "cpu")) {
1034 			vac_line_size = prom_getint(nd, "cache-line-size");
1035 			if (vac_line_size == -1) {
1036 				prom_printf("can't determine cache-line-size, halting.\n");
1037 				prom_halt();
1038 			}
1039 			cache_lines = prom_getint(nd, "cache-nlines");
1040 			if (cache_lines == -1) {
1041 				prom_printf("can't determine cache-nlines, halting.\n");
1042 				prom_halt();
1043 			}
1044 
1045 			vac_cache_size = cache_lines * vac_line_size;
1046 #ifdef CONFIG_SMP
1047 			if (vac_cache_size > max_size)
1048 				max_size = vac_cache_size;
1049 			if (vac_line_size < min_line_size)
1050 				min_line_size = vac_line_size;
1051 			//FIXME: cpus not contiguous!!
1052 			cpu++;
1053 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1054 				break;
1055 #else
1056 			break;
1057 #endif
1058 		}
1059 	}
1060 	if (nd == 0) {
1061 		prom_printf("No CPU nodes found, halting.\n");
1062 		prom_halt();
1063 	}
1064 #ifdef CONFIG_SMP
1065 	vac_cache_size = max_size;
1066 	vac_line_size = min_line_size;
1067 #endif
1068 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1069 	       (int)vac_cache_size, (int)vac_line_size);
1070 }
1071 
poke_hypersparc(void)1072 static void poke_hypersparc(void)
1073 {
1074 	volatile unsigned long clear;
1075 	unsigned long mreg = srmmu_get_mmureg();
1076 
1077 	hyper_flush_unconditional_combined();
1078 
1079 	mreg &= ~(HYPERSPARC_CWENABLE);
1080 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1081 	mreg |= (HYPERSPARC_CMODE);
1082 
1083 	srmmu_set_mmureg(mreg);
1084 
1085 #if 0 /* XXX I think this is bad news... -DaveM */
1086 	hyper_clear_all_tags();
1087 #endif
1088 
1089 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1090 	hyper_flush_whole_icache();
1091 	clear = srmmu_get_faddr();
1092 	clear = srmmu_get_fstatus();
1093 }
1094 
1095 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1096 	.cache_all	= hypersparc_flush_cache_all,
1097 	.cache_mm	= hypersparc_flush_cache_mm,
1098 	.cache_page	= hypersparc_flush_cache_page,
1099 	.cache_range	= hypersparc_flush_cache_range,
1100 	.tlb_all	= hypersparc_flush_tlb_all,
1101 	.tlb_mm		= hypersparc_flush_tlb_mm,
1102 	.tlb_page	= hypersparc_flush_tlb_page,
1103 	.tlb_range	= hypersparc_flush_tlb_range,
1104 	.page_to_ram	= hypersparc_flush_page_to_ram,
1105 	.sig_insns	= hypersparc_flush_sig_insns,
1106 	.page_for_dma	= hypersparc_flush_page_for_dma,
1107 };
1108 
init_hypersparc(void)1109 static void __init init_hypersparc(void)
1110 {
1111 	srmmu_name = "ROSS HyperSparc";
1112 	srmmu_modtype = HyperSparc;
1113 
1114 	init_vac_layout();
1115 
1116 	is_hypersparc = 1;
1117 	sparc32_cachetlb_ops = &hypersparc_ops;
1118 
1119 	poke_srmmu = poke_hypersparc;
1120 
1121 	hypersparc_setup_blockops();
1122 }
1123 
poke_swift(void)1124 static void poke_swift(void)
1125 {
1126 	unsigned long mreg;
1127 
1128 	/* Clear any crap from the cache or else... */
1129 	swift_flush_cache_all();
1130 
1131 	/* Enable I & D caches */
1132 	mreg = srmmu_get_mmureg();
1133 	mreg |= (SWIFT_IE | SWIFT_DE);
1134 	/*
1135 	 * The Swift branch folding logic is completely broken.  At
1136 	 * trap time, if things are just right, if can mistakenly
1137 	 * think that a trap is coming from kernel mode when in fact
1138 	 * it is coming from user mode (it mis-executes the branch in
1139 	 * the trap code).  So you see things like crashme completely
1140 	 * hosing your machine which is completely unacceptable.  Turn
1141 	 * this shit off... nice job Fujitsu.
1142 	 */
1143 	mreg &= ~(SWIFT_BF);
1144 	srmmu_set_mmureg(mreg);
1145 }
1146 
1147 static const struct sparc32_cachetlb_ops swift_ops = {
1148 	.cache_all	= swift_flush_cache_all,
1149 	.cache_mm	= swift_flush_cache_mm,
1150 	.cache_page	= swift_flush_cache_page,
1151 	.cache_range	= swift_flush_cache_range,
1152 	.tlb_all	= swift_flush_tlb_all,
1153 	.tlb_mm		= swift_flush_tlb_mm,
1154 	.tlb_page	= swift_flush_tlb_page,
1155 	.tlb_range	= swift_flush_tlb_range,
1156 	.page_to_ram	= swift_flush_page_to_ram,
1157 	.sig_insns	= swift_flush_sig_insns,
1158 	.page_for_dma	= swift_flush_page_for_dma,
1159 };
1160 
1161 #define SWIFT_MASKID_ADDR  0x10003018
init_swift(void)1162 static void __init init_swift(void)
1163 {
1164 	unsigned long swift_rev;
1165 
1166 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1167 			     "srl %0, 0x18, %0\n\t" :
1168 			     "=r" (swift_rev) :
1169 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1170 	srmmu_name = "Fujitsu Swift";
1171 	switch (swift_rev) {
1172 	case 0x11:
1173 	case 0x20:
1174 	case 0x23:
1175 	case 0x30:
1176 		srmmu_modtype = Swift_lots_o_bugs;
1177 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1178 		/*
1179 		 * Gee george, I wonder why Sun is so hush hush about
1180 		 * this hardware bug... really braindamage stuff going
1181 		 * on here.  However I think we can find a way to avoid
1182 		 * all of the workaround overhead under Linux.  Basically,
1183 		 * any page fault can cause kernel pages to become user
1184 		 * accessible (the mmu gets confused and clears some of
1185 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1186 		 * horrible eh?  But wait, after extensive testing it appears
1187 		 * that if you use pgd_t level large kernel pte's (like the
1188 		 * 4MB pages on the Pentium) the bug does not get tripped
1189 		 * at all.  This avoids almost all of the major overhead.
1190 		 * Welcome to a world where your vendor tells you to,
1191 		 * "apply this kernel patch" instead of "sorry for the
1192 		 * broken hardware, send it back and we'll give you
1193 		 * properly functioning parts"
1194 		 */
1195 		break;
1196 	case 0x25:
1197 	case 0x31:
1198 		srmmu_modtype = Swift_bad_c;
1199 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1200 		/*
1201 		 * You see Sun allude to this hardware bug but never
1202 		 * admit things directly, they'll say things like,
1203 		 * "the Swift chip cache problems" or similar.
1204 		 */
1205 		break;
1206 	default:
1207 		srmmu_modtype = Swift_ok;
1208 		break;
1209 	}
1210 
1211 	sparc32_cachetlb_ops = &swift_ops;
1212 	flush_page_for_dma_global = 0;
1213 
1214 	/*
1215 	 * Are you now convinced that the Swift is one of the
1216 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1217 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1218 	 * you examined the microcode of the Swift you'd find
1219 	 * XXX's all over the place.
1220 	 */
1221 	poke_srmmu = poke_swift;
1222 }
1223 
turbosparc_flush_cache_all(void)1224 static void turbosparc_flush_cache_all(void)
1225 {
1226 	flush_user_windows();
1227 	turbosparc_idflash_clear();
1228 }
1229 
turbosparc_flush_cache_mm(struct mm_struct * mm)1230 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1231 {
1232 	FLUSH_BEGIN(mm)
1233 	flush_user_windows();
1234 	turbosparc_idflash_clear();
1235 	FLUSH_END
1236 }
1237 
turbosparc_flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)1238 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1239 {
1240 	FLUSH_BEGIN(vma->vm_mm)
1241 	flush_user_windows();
1242 	turbosparc_idflash_clear();
1243 	FLUSH_END
1244 }
1245 
turbosparc_flush_cache_page(struct vm_area_struct * vma,unsigned long page)1246 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1247 {
1248 	FLUSH_BEGIN(vma->vm_mm)
1249 	flush_user_windows();
1250 	if (vma->vm_flags & VM_EXEC)
1251 		turbosparc_flush_icache();
1252 	turbosparc_flush_dcache();
1253 	FLUSH_END
1254 }
1255 
1256 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
turbosparc_flush_page_to_ram(unsigned long page)1257 static void turbosparc_flush_page_to_ram(unsigned long page)
1258 {
1259 #ifdef TURBOSPARC_WRITEBACK
1260 	volatile unsigned long clear;
1261 
1262 	if (srmmu_probe(page))
1263 		turbosparc_flush_page_cache(page);
1264 	clear = srmmu_get_fstatus();
1265 #endif
1266 }
1267 
turbosparc_flush_sig_insns(struct mm_struct * mm,unsigned long insn_addr)1268 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1269 {
1270 }
1271 
turbosparc_flush_page_for_dma(unsigned long page)1272 static void turbosparc_flush_page_for_dma(unsigned long page)
1273 {
1274 	turbosparc_flush_dcache();
1275 }
1276 
turbosparc_flush_tlb_all(void)1277 static void turbosparc_flush_tlb_all(void)
1278 {
1279 	srmmu_flush_whole_tlb();
1280 }
1281 
turbosparc_flush_tlb_mm(struct mm_struct * mm)1282 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1283 {
1284 	FLUSH_BEGIN(mm)
1285 	srmmu_flush_whole_tlb();
1286 	FLUSH_END
1287 }
1288 
turbosparc_flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)1289 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1290 {
1291 	FLUSH_BEGIN(vma->vm_mm)
1292 	srmmu_flush_whole_tlb();
1293 	FLUSH_END
1294 }
1295 
turbosparc_flush_tlb_page(struct vm_area_struct * vma,unsigned long page)1296 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1297 {
1298 	FLUSH_BEGIN(vma->vm_mm)
1299 	srmmu_flush_whole_tlb();
1300 	FLUSH_END
1301 }
1302 
1303 
poke_turbosparc(void)1304 static void poke_turbosparc(void)
1305 {
1306 	unsigned long mreg = srmmu_get_mmureg();
1307 	unsigned long ccreg;
1308 
1309 	/* Clear any crap from the cache or else... */
1310 	turbosparc_flush_cache_all();
1311 	/* Temporarily disable I & D caches */
1312 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1313 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1314 	srmmu_set_mmureg(mreg);
1315 
1316 	ccreg = turbosparc_get_ccreg();
1317 
1318 #ifdef TURBOSPARC_WRITEBACK
1319 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1320 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1321 			/* Write-back D-cache, emulate VLSI
1322 			 * abortion number three, not number one */
1323 #else
1324 	/* For now let's play safe, optimize later */
1325 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1326 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1327 	ccreg &= ~(TURBOSPARC_uS2);
1328 			/* Emulate VLSI abortion number three, not number one */
1329 #endif
1330 
1331 	switch (ccreg & 7) {
1332 	case 0: /* No SE cache */
1333 	case 7: /* Test mode */
1334 		break;
1335 	default:
1336 		ccreg |= (TURBOSPARC_SCENABLE);
1337 	}
1338 	turbosparc_set_ccreg(ccreg);
1339 
1340 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1341 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1342 	srmmu_set_mmureg(mreg);
1343 }
1344 
1345 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1346 	.cache_all	= turbosparc_flush_cache_all,
1347 	.cache_mm	= turbosparc_flush_cache_mm,
1348 	.cache_page	= turbosparc_flush_cache_page,
1349 	.cache_range	= turbosparc_flush_cache_range,
1350 	.tlb_all	= turbosparc_flush_tlb_all,
1351 	.tlb_mm		= turbosparc_flush_tlb_mm,
1352 	.tlb_page	= turbosparc_flush_tlb_page,
1353 	.tlb_range	= turbosparc_flush_tlb_range,
1354 	.page_to_ram	= turbosparc_flush_page_to_ram,
1355 	.sig_insns	= turbosparc_flush_sig_insns,
1356 	.page_for_dma	= turbosparc_flush_page_for_dma,
1357 };
1358 
init_turbosparc(void)1359 static void __init init_turbosparc(void)
1360 {
1361 	srmmu_name = "Fujitsu TurboSparc";
1362 	srmmu_modtype = TurboSparc;
1363 	sparc32_cachetlb_ops = &turbosparc_ops;
1364 	poke_srmmu = poke_turbosparc;
1365 }
1366 
poke_tsunami(void)1367 static void poke_tsunami(void)
1368 {
1369 	unsigned long mreg = srmmu_get_mmureg();
1370 
1371 	tsunami_flush_icache();
1372 	tsunami_flush_dcache();
1373 	mreg &= ~TSUNAMI_ITD;
1374 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1375 	srmmu_set_mmureg(mreg);
1376 }
1377 
1378 static const struct sparc32_cachetlb_ops tsunami_ops = {
1379 	.cache_all	= tsunami_flush_cache_all,
1380 	.cache_mm	= tsunami_flush_cache_mm,
1381 	.cache_page	= tsunami_flush_cache_page,
1382 	.cache_range	= tsunami_flush_cache_range,
1383 	.tlb_all	= tsunami_flush_tlb_all,
1384 	.tlb_mm		= tsunami_flush_tlb_mm,
1385 	.tlb_page	= tsunami_flush_tlb_page,
1386 	.tlb_range	= tsunami_flush_tlb_range,
1387 	.page_to_ram	= tsunami_flush_page_to_ram,
1388 	.sig_insns	= tsunami_flush_sig_insns,
1389 	.page_for_dma	= tsunami_flush_page_for_dma,
1390 };
1391 
init_tsunami(void)1392 static void __init init_tsunami(void)
1393 {
1394 	/*
1395 	 * Tsunami's pretty sane, Sun and TI actually got it
1396 	 * somewhat right this time.  Fujitsu should have
1397 	 * taken some lessons from them.
1398 	 */
1399 
1400 	srmmu_name = "TI Tsunami";
1401 	srmmu_modtype = Tsunami;
1402 	sparc32_cachetlb_ops = &tsunami_ops;
1403 	poke_srmmu = poke_tsunami;
1404 
1405 	tsunami_setup_blockops();
1406 }
1407 
poke_viking(void)1408 static void poke_viking(void)
1409 {
1410 	unsigned long mreg = srmmu_get_mmureg();
1411 	static int smp_catch;
1412 
1413 	if (viking_mxcc_present) {
1414 		unsigned long mxcc_control = mxcc_get_creg();
1415 
1416 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1417 		mxcc_control &= ~(MXCC_CTL_RRC);
1418 		mxcc_set_creg(mxcc_control);
1419 
1420 		/*
1421 		 * We don't need memory parity checks.
1422 		 * XXX This is a mess, have to dig out later. ecd.
1423 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1424 		 */
1425 
1426 		/* We do cache ptables on MXCC. */
1427 		mreg |= VIKING_TCENABLE;
1428 	} else {
1429 		unsigned long bpreg;
1430 
1431 		mreg &= ~(VIKING_TCENABLE);
1432 		if (smp_catch++) {
1433 			/* Must disable mixed-cmd mode here for other cpu's. */
1434 			bpreg = viking_get_bpreg();
1435 			bpreg &= ~(VIKING_ACTION_MIX);
1436 			viking_set_bpreg(bpreg);
1437 
1438 			/* Just in case PROM does something funny. */
1439 			msi_set_sync();
1440 		}
1441 	}
1442 
1443 	mreg |= VIKING_SPENABLE;
1444 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1445 	mreg |= VIKING_SBENABLE;
1446 	mreg &= ~(VIKING_ACENABLE);
1447 	srmmu_set_mmureg(mreg);
1448 }
1449 
1450 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1451 	.cache_all	= viking_flush_cache_all,
1452 	.cache_mm	= viking_flush_cache_mm,
1453 	.cache_page	= viking_flush_cache_page,
1454 	.cache_range	= viking_flush_cache_range,
1455 	.tlb_all	= viking_flush_tlb_all,
1456 	.tlb_mm		= viking_flush_tlb_mm,
1457 	.tlb_page	= viking_flush_tlb_page,
1458 	.tlb_range	= viking_flush_tlb_range,
1459 	.page_to_ram	= viking_flush_page_to_ram,
1460 	.sig_insns	= viking_flush_sig_insns,
1461 	.page_for_dma	= viking_flush_page_for_dma,
1462 };
1463 
1464 #ifdef CONFIG_SMP
1465 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1466  * perform the local TLB flush and all the other cpus will see it.
1467  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1468  * that requires that we add some synchronization to these flushes.
1469  *
1470  * The bug is that the fifo which keeps track of all the pending TLB
1471  * broadcasts in the system is an entry or two too small, so if we
1472  * have too many going at once we'll overflow that fifo and lose a TLB
1473  * flush resulting in corruption.
1474  *
1475  * Our workaround is to take a global spinlock around the TLB flushes,
1476  * which guarentees we won't ever have too many pending.  It's a big
1477  * hammer, but a semaphore like system to make sure we only have N TLB
1478  * flushes going at once will require SMP locking anyways so there's
1479  * no real value in trying any harder than this.
1480  */
1481 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1482 	.cache_all	= viking_flush_cache_all,
1483 	.cache_mm	= viking_flush_cache_mm,
1484 	.cache_page	= viking_flush_cache_page,
1485 	.cache_range	= viking_flush_cache_range,
1486 	.tlb_all	= sun4dsmp_flush_tlb_all,
1487 	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1488 	.tlb_page	= sun4dsmp_flush_tlb_page,
1489 	.tlb_range	= sun4dsmp_flush_tlb_range,
1490 	.page_to_ram	= viking_flush_page_to_ram,
1491 	.sig_insns	= viking_flush_sig_insns,
1492 	.page_for_dma	= viking_flush_page_for_dma,
1493 };
1494 #endif
1495 
init_viking(void)1496 static void __init init_viking(void)
1497 {
1498 	unsigned long mreg = srmmu_get_mmureg();
1499 
1500 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1501 	if (mreg & VIKING_MMODE) {
1502 		srmmu_name = "TI Viking";
1503 		viking_mxcc_present = 0;
1504 		msi_set_sync();
1505 
1506 		/*
1507 		 * We need this to make sure old viking takes no hits
1508 		 * on its cache for dma snoops to workaround the
1509 		 * "load from non-cacheable memory" interrupt bug.
1510 		 * This is only necessary because of the new way in
1511 		 * which we use the IOMMU.
1512 		 */
1513 		viking_ops.page_for_dma = viking_flush_page;
1514 #ifdef CONFIG_SMP
1515 		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1516 #endif
1517 		flush_page_for_dma_global = 0;
1518 	} else {
1519 		srmmu_name = "TI Viking/MXCC";
1520 		viking_mxcc_present = 1;
1521 		srmmu_cache_pagetables = 1;
1522 	}
1523 
1524 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1525 		&viking_ops;
1526 #ifdef CONFIG_SMP
1527 	if (sparc_cpu_model == sun4d)
1528 		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1529 			&viking_sun4d_smp_ops;
1530 #endif
1531 
1532 	poke_srmmu = poke_viking;
1533 }
1534 
1535 /* Probe for the srmmu chip version. */
get_srmmu_type(void)1536 static void __init get_srmmu_type(void)
1537 {
1538 	unsigned long mreg, psr;
1539 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1540 
1541 	srmmu_modtype = SRMMU_INVAL_MOD;
1542 	hwbug_bitmask = 0;
1543 
1544 	mreg = srmmu_get_mmureg(); psr = get_psr();
1545 	mod_typ = (mreg & 0xf0000000) >> 28;
1546 	mod_rev = (mreg & 0x0f000000) >> 24;
1547 	psr_typ = (psr >> 28) & 0xf;
1548 	psr_vers = (psr >> 24) & 0xf;
1549 
1550 	/* First, check for sparc-leon. */
1551 	if (sparc_cpu_model == sparc_leon) {
1552 		init_leon();
1553 		return;
1554 	}
1555 
1556 	/* Second, check for HyperSparc or Cypress. */
1557 	if (mod_typ == 1) {
1558 		switch (mod_rev) {
1559 		case 7:
1560 			/* UP or MP Hypersparc */
1561 			init_hypersparc();
1562 			break;
1563 		case 0:
1564 		case 2:
1565 		case 10:
1566 		case 11:
1567 		case 12:
1568 		case 13:
1569 		case 14:
1570 		case 15:
1571 		default:
1572 			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1573 			prom_halt();
1574 			break;
1575 		}
1576 		return;
1577 	}
1578 
1579 	/* Now Fujitsu TurboSparc. It might happen that it is
1580 	 * in Swift emulation mode, so we will check later...
1581 	 */
1582 	if (psr_typ == 0 && psr_vers == 5) {
1583 		init_turbosparc();
1584 		return;
1585 	}
1586 
1587 	/* Next check for Fujitsu Swift. */
1588 	if (psr_typ == 0 && psr_vers == 4) {
1589 		phandle cpunode;
1590 		char node_str[128];
1591 
1592 		/* Look if it is not a TurboSparc emulating Swift... */
1593 		cpunode = prom_getchild(prom_root_node);
1594 		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1595 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1596 			if (!strcmp(node_str, "cpu")) {
1597 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1598 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1599 					init_turbosparc();
1600 					return;
1601 				}
1602 				break;
1603 			}
1604 		}
1605 
1606 		init_swift();
1607 		return;
1608 	}
1609 
1610 	/* Now the Viking family of srmmu. */
1611 	if (psr_typ == 4 &&
1612 	   ((psr_vers == 0) ||
1613 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1614 		init_viking();
1615 		return;
1616 	}
1617 
1618 	/* Finally the Tsunami. */
1619 	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1620 		init_tsunami();
1621 		return;
1622 	}
1623 
1624 	/* Oh well */
1625 	srmmu_is_bad();
1626 }
1627 
1628 #ifdef CONFIG_SMP
1629 /* Local cross-calls. */
smp_flush_page_for_dma(unsigned long page)1630 static void smp_flush_page_for_dma(unsigned long page)
1631 {
1632 	xc1(local_ops->page_for_dma, page);
1633 	local_ops->page_for_dma(page);
1634 }
1635 
smp_flush_cache_all(void)1636 static void smp_flush_cache_all(void)
1637 {
1638 	xc0(local_ops->cache_all);
1639 	local_ops->cache_all();
1640 }
1641 
smp_flush_tlb_all(void)1642 static void smp_flush_tlb_all(void)
1643 {
1644 	xc0(local_ops->tlb_all);
1645 	local_ops->tlb_all();
1646 }
1647 
any_other_mm_cpus(struct mm_struct * mm)1648 static bool any_other_mm_cpus(struct mm_struct *mm)
1649 {
1650 	return cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids;
1651 }
1652 
smp_flush_cache_mm(struct mm_struct * mm)1653 static void smp_flush_cache_mm(struct mm_struct *mm)
1654 {
1655 	if (mm->context != NO_CONTEXT) {
1656 		if (any_other_mm_cpus(mm))
1657 			xc1(local_ops->cache_mm, (unsigned long)mm);
1658 		local_ops->cache_mm(mm);
1659 	}
1660 }
1661 
smp_flush_tlb_mm(struct mm_struct * mm)1662 static void smp_flush_tlb_mm(struct mm_struct *mm)
1663 {
1664 	if (mm->context != NO_CONTEXT) {
1665 		if (any_other_mm_cpus(mm)) {
1666 			xc1(local_ops->tlb_mm, (unsigned long)mm);
1667 			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1668 				cpumask_copy(mm_cpumask(mm),
1669 					     cpumask_of(smp_processor_id()));
1670 		}
1671 		local_ops->tlb_mm(mm);
1672 	}
1673 }
1674 
smp_flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)1675 static void smp_flush_cache_range(struct vm_area_struct *vma,
1676 				  unsigned long start,
1677 				  unsigned long end)
1678 {
1679 	struct mm_struct *mm = vma->vm_mm;
1680 
1681 	if (mm->context != NO_CONTEXT) {
1682 		if (any_other_mm_cpus(mm))
1683 			xc3(local_ops->cache_range, (unsigned long)vma, start,
1684 			    end);
1685 		local_ops->cache_range(vma, start, end);
1686 	}
1687 }
1688 
smp_flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)1689 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1690 				unsigned long start,
1691 				unsigned long end)
1692 {
1693 	struct mm_struct *mm = vma->vm_mm;
1694 
1695 	if (mm->context != NO_CONTEXT) {
1696 		if (any_other_mm_cpus(mm))
1697 			xc3(local_ops->tlb_range, (unsigned long)vma, start,
1698 			    end);
1699 		local_ops->tlb_range(vma, start, end);
1700 	}
1701 }
1702 
smp_flush_cache_page(struct vm_area_struct * vma,unsigned long page)1703 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1704 {
1705 	struct mm_struct *mm = vma->vm_mm;
1706 
1707 	if (mm->context != NO_CONTEXT) {
1708 		if (any_other_mm_cpus(mm))
1709 			xc2(local_ops->cache_page, (unsigned long)vma, page);
1710 		local_ops->cache_page(vma, page);
1711 	}
1712 }
1713 
smp_flush_tlb_page(struct vm_area_struct * vma,unsigned long page)1714 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1715 {
1716 	struct mm_struct *mm = vma->vm_mm;
1717 
1718 	if (mm->context != NO_CONTEXT) {
1719 		if (any_other_mm_cpus(mm))
1720 			xc2(local_ops->tlb_page, (unsigned long)vma, page);
1721 		local_ops->tlb_page(vma, page);
1722 	}
1723 }
1724 
smp_flush_page_to_ram(unsigned long page)1725 static void smp_flush_page_to_ram(unsigned long page)
1726 {
1727 	/* Current theory is that those who call this are the one's
1728 	 * who have just dirtied their cache with the pages contents
1729 	 * in kernel space, therefore we only run this on local cpu.
1730 	 *
1731 	 * XXX This experiment failed, research further... -DaveM
1732 	 */
1733 #if 1
1734 	xc1(local_ops->page_to_ram, page);
1735 #endif
1736 	local_ops->page_to_ram(page);
1737 }
1738 
smp_flush_sig_insns(struct mm_struct * mm,unsigned long insn_addr)1739 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1740 {
1741 	if (any_other_mm_cpus(mm))
1742 		xc2(local_ops->sig_insns, (unsigned long)mm, insn_addr);
1743 	local_ops->sig_insns(mm, insn_addr);
1744 }
1745 
1746 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1747 	.cache_all	= smp_flush_cache_all,
1748 	.cache_mm	= smp_flush_cache_mm,
1749 	.cache_page	= smp_flush_cache_page,
1750 	.cache_range	= smp_flush_cache_range,
1751 	.tlb_all	= smp_flush_tlb_all,
1752 	.tlb_mm		= smp_flush_tlb_mm,
1753 	.tlb_page	= smp_flush_tlb_page,
1754 	.tlb_range	= smp_flush_tlb_range,
1755 	.page_to_ram	= smp_flush_page_to_ram,
1756 	.sig_insns	= smp_flush_sig_insns,
1757 	.page_for_dma	= smp_flush_page_for_dma,
1758 };
1759 #endif
1760 
1761 /* Load up routines and constants for sun4m and sun4d mmu */
load_mmu(void)1762 void __init load_mmu(void)
1763 {
1764 	/* Functions */
1765 	get_srmmu_type();
1766 
1767 #ifdef CONFIG_SMP
1768 	/* El switcheroo... */
1769 	local_ops = sparc32_cachetlb_ops;
1770 
1771 	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1772 		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1773 		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1774 		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1775 		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1776 	}
1777 
1778 	if (poke_srmmu == poke_viking) {
1779 		/* Avoid unnecessary cross calls. */
1780 		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1781 		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1782 		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1783 		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1784 
1785 		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1786 		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1787 		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1788 	}
1789 
1790 	/* It really is const after this point. */
1791 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1792 		&smp_cachetlb_ops;
1793 #endif
1794 
1795 	if (sparc_cpu_model != sun4d)
1796 		ld_mmu_iommu();
1797 #ifdef CONFIG_SMP
1798 	if (sparc_cpu_model == sun4d)
1799 		sun4d_init_smp();
1800 	else if (sparc_cpu_model == sparc_leon)
1801 		leon_init_smp();
1802 	else
1803 		sun4m_init_smp();
1804 #endif
1805 }
1806