1 // SPDX-License-Identifier: GPL-2.0
2 /* irq.c: UltraSparc IRQ handling/init/registry.
3  *
4  * Copyright (C) 1997, 2007, 2008 David S. Miller ([email protected])
5  * Copyright (C) 1998  Eddie C. Dost    ([email protected])
6  * Copyright (C) 1998  Jakub Jelinek    ([email protected])
7  */
8 
9 #include <linux/sched.h>
10 #include <linux/linkage.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/ftrace.h>
24 #include <linux/irq.h>
25 #include <linux/string_choices.h>
26 
27 #include <asm/ptrace.h>
28 #include <asm/processor.h>
29 #include <linux/atomic.h>
30 #include <asm/irq.h>
31 #include <asm/io.h>
32 #include <asm/iommu.h>
33 #include <asm/upa.h>
34 #include <asm/oplib.h>
35 #include <asm/prom.h>
36 #include <asm/timer.h>
37 #include <asm/smp.h>
38 #include <asm/starfire.h>
39 #include <linux/uaccess.h>
40 #include <asm/cache.h>
41 #include <asm/cpudata.h>
42 #include <asm/auxio.h>
43 #include <asm/head.h>
44 #include <asm/hypervisor.h>
45 #include <asm/cacheflush.h>
46 #include <asm/softirq_stack.h>
47 
48 #include "entry.h"
49 #include "cpumap.h"
50 #include "kstack.h"
51 
52 struct ino_bucket *ivector_table;
53 unsigned long ivector_table_pa;
54 
55 /* On several sun4u processors, it is illegal to mix bypass and
56  * non-bypass accesses.  Therefore we access all INO buckets
57  * using bypass accesses only.
58  */
bucket_get_chain_pa(unsigned long bucket_pa)59 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
60 {
61 	unsigned long ret;
62 
63 	__asm__ __volatile__("ldxa	[%1] %2, %0"
64 			     : "=&r" (ret)
65 			     : "r" (bucket_pa +
66 				    offsetof(struct ino_bucket,
67 					     __irq_chain_pa)),
68 			       "i" (ASI_PHYS_USE_EC));
69 
70 	return ret;
71 }
72 
bucket_clear_chain_pa(unsigned long bucket_pa)73 static void bucket_clear_chain_pa(unsigned long bucket_pa)
74 {
75 	__asm__ __volatile__("stxa	%%g0, [%0] %1"
76 			     : /* no outputs */
77 			     : "r" (bucket_pa +
78 				    offsetof(struct ino_bucket,
79 					     __irq_chain_pa)),
80 			       "i" (ASI_PHYS_USE_EC));
81 }
82 
bucket_get_irq(unsigned long bucket_pa)83 static unsigned int bucket_get_irq(unsigned long bucket_pa)
84 {
85 	unsigned int ret;
86 
87 	__asm__ __volatile__("lduwa	[%1] %2, %0"
88 			     : "=&r" (ret)
89 			     : "r" (bucket_pa +
90 				    offsetof(struct ino_bucket,
91 					     __irq)),
92 			       "i" (ASI_PHYS_USE_EC));
93 
94 	return ret;
95 }
96 
bucket_set_irq(unsigned long bucket_pa,unsigned int irq)97 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
98 {
99 	__asm__ __volatile__("stwa	%0, [%1] %2"
100 			     : /* no outputs */
101 			     : "r" (irq),
102 			       "r" (bucket_pa +
103 				    offsetof(struct ino_bucket,
104 					     __irq)),
105 			       "i" (ASI_PHYS_USE_EC));
106 }
107 
108 #define irq_work_pa(__cpu)	&(trap_block[(__cpu)].irq_worklist_pa)
109 
110 static unsigned long hvirq_major __initdata;
early_hvirq_major(char * p)111 static int __init early_hvirq_major(char *p)
112 {
113 	int rc = kstrtoul(p, 10, &hvirq_major);
114 
115 	return rc;
116 }
117 early_param("hvirq", early_hvirq_major);
118 
119 static int hv_irq_version;
120 
121 /* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
122  * based interfaces, but:
123  *
124  * 1) Several OSs, Solaris and Linux included, use them even when only
125  *    negotiating version 1.0 (or failing to negotiate at all).  So the
126  *    hypervisor has a workaround that provides the VIRQ interfaces even
127  *    when only verion 1.0 of the API is in use.
128  *
129  * 2) Second, and more importantly, with major version 2.0 these VIRQ
130  *    interfaces only were actually hooked up for LDC interrupts, even
131  *    though the Hypervisor specification clearly stated:
132  *
133  *	The new interrupt API functions will be available to a guest
134  *	when it negotiates version 2.0 in the interrupt API group 0x2. When
135  *	a guest negotiates version 2.0, all interrupt sources will only
136  *	support using the cookie interface, and any attempt to use the
137  *	version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
138  *	ENOTSUPPORTED error being returned.
139  *
140  *   with an emphasis on "all interrupt sources".
141  *
142  * To correct this, major version 3.0 was created which does actually
143  * support VIRQs for all interrupt sources (not just LDC devices).  So
144  * if we want to move completely over the cookie based VIRQs we must
145  * negotiate major version 3.0 or later of HV_GRP_INTR.
146  */
sun4v_cookie_only_virqs(void)147 static bool sun4v_cookie_only_virqs(void)
148 {
149 	return hv_irq_version >= 3;
150 }
151 
irq_init_hv(void)152 static void __init irq_init_hv(void)
153 {
154 	unsigned long hv_error, major, minor = 0;
155 
156 	if (tlb_type != hypervisor)
157 		return;
158 
159 	if (hvirq_major)
160 		major = hvirq_major;
161 	else
162 		major = 3;
163 
164 	hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
165 	if (!hv_error)
166 		hv_irq_version = major;
167 	else
168 		hv_irq_version = 1;
169 
170 	pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
171 		hv_irq_version,
172 		str_enabled_disabled(sun4v_cookie_only_virqs()));
173 }
174 
175 /* This function is for the timer interrupt.*/
arch_probe_nr_irqs(void)176 int __init arch_probe_nr_irqs(void)
177 {
178 	return 1;
179 }
180 
181 #define DEFAULT_NUM_IVECS	(0xfffU)
182 static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
183 #define NUM_IVECS (nr_ivec)
184 
size_nr_ivec(void)185 static unsigned int __init size_nr_ivec(void)
186 {
187 	if (tlb_type == hypervisor) {
188 		switch (sun4v_chip_type) {
189 		/* Athena's devhandle|devino is large.*/
190 		case SUN4V_CHIP_SPARC64X:
191 			nr_ivec = 0xffff;
192 			break;
193 		}
194 	}
195 	return nr_ivec;
196 }
197 
198 struct irq_handler_data {
199 	union {
200 		struct {
201 			unsigned int dev_handle;
202 			unsigned int dev_ino;
203 		};
204 		unsigned long sysino;
205 	};
206 	struct ino_bucket bucket;
207 	unsigned long	iclr;
208 	unsigned long	imap;
209 };
210 
irq_data_to_handle(struct irq_data * data)211 static inline unsigned int irq_data_to_handle(struct irq_data *data)
212 {
213 	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
214 
215 	return ihd->dev_handle;
216 }
217 
irq_data_to_ino(struct irq_data * data)218 static inline unsigned int irq_data_to_ino(struct irq_data *data)
219 {
220 	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
221 
222 	return ihd->dev_ino;
223 }
224 
irq_data_to_sysino(struct irq_data * data)225 static inline unsigned long irq_data_to_sysino(struct irq_data *data)
226 {
227 	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
228 
229 	return ihd->sysino;
230 }
231 
irq_free(unsigned int irq)232 void irq_free(unsigned int irq)
233 {
234 	void *data = irq_get_handler_data(irq);
235 
236 	kfree(data);
237 	irq_set_handler_data(irq, NULL);
238 	irq_free_descs(irq, 1);
239 }
240 
irq_alloc(unsigned int dev_handle,unsigned int dev_ino)241 unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
242 {
243 	int irq;
244 
245 	irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL);
246 	if (irq <= 0)
247 		goto out;
248 
249 	return irq;
250 out:
251 	return 0;
252 }
253 
cookie_exists(u32 devhandle,unsigned int devino)254 static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
255 {
256 	unsigned long hv_err, cookie;
257 	struct ino_bucket *bucket;
258 	unsigned int irq = 0U;
259 
260 	hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
261 	if (hv_err) {
262 		pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
263 		goto out;
264 	}
265 
266 	if (cookie & ((1UL << 63UL))) {
267 		cookie = ~cookie;
268 		bucket = (struct ino_bucket *) __va(cookie);
269 		irq = bucket->__irq;
270 	}
271 out:
272 	return irq;
273 }
274 
sysino_exists(u32 devhandle,unsigned int devino)275 static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
276 {
277 	unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
278 	struct ino_bucket *bucket;
279 	unsigned int irq;
280 
281 	bucket = &ivector_table[sysino];
282 	irq = bucket_get_irq(__pa(bucket));
283 
284 	return irq;
285 }
286 
ack_bad_irq(unsigned int irq)287 void ack_bad_irq(unsigned int irq)
288 {
289 	pr_crit("BAD IRQ ack %d\n", irq);
290 }
291 
irq_install_pre_handler(int irq,void (* func)(unsigned int,void *,void *),void * arg1,void * arg2)292 void irq_install_pre_handler(int irq,
293 			     void (*func)(unsigned int, void *, void *),
294 			     void *arg1, void *arg2)
295 {
296 	pr_warn("IRQ pre handler NOT supported.\n");
297 }
298 
299 /*
300  * /proc/interrupts printing:
301  */
arch_show_interrupts(struct seq_file * p,int prec)302 int arch_show_interrupts(struct seq_file *p, int prec)
303 {
304 	int j;
305 
306 	seq_printf(p, "NMI:");
307 	for_each_online_cpu(j)
308 		seq_put_decimal_ull_width(p, " ", cpu_data(j).__nmi_count, 10);
309 	seq_printf(p, "     Non-maskable interrupts\n");
310 	return 0;
311 }
312 
sun4u_compute_tid(unsigned long imap,unsigned long cpuid)313 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
314 {
315 	unsigned int tid;
316 
317 	if (this_is_starfire) {
318 		tid = starfire_translate(imap, cpuid);
319 		tid <<= IMAP_TID_SHIFT;
320 		tid &= IMAP_TID_UPA;
321 	} else {
322 		if (tlb_type == cheetah || tlb_type == cheetah_plus) {
323 			unsigned long ver;
324 
325 			__asm__ ("rdpr %%ver, %0" : "=r" (ver));
326 			if ((ver >> 32UL) == __JALAPENO_ID ||
327 			    (ver >> 32UL) == __SERRANO_ID) {
328 				tid = cpuid << IMAP_TID_SHIFT;
329 				tid &= IMAP_TID_JBUS;
330 			} else {
331 				unsigned int a = cpuid & 0x1f;
332 				unsigned int n = (cpuid >> 5) & 0x1f;
333 
334 				tid = ((a << IMAP_AID_SHIFT) |
335 				       (n << IMAP_NID_SHIFT));
336 				tid &= (IMAP_AID_SAFARI |
337 					IMAP_NID_SAFARI);
338 			}
339 		} else {
340 			tid = cpuid << IMAP_TID_SHIFT;
341 			tid &= IMAP_TID_UPA;
342 		}
343 	}
344 
345 	return tid;
346 }
347 
348 #ifdef CONFIG_SMP
irq_choose_cpu(unsigned int irq,const struct cpumask * affinity)349 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
350 {
351 	int cpuid;
352 
353 	if (cpumask_equal(affinity, cpu_online_mask)) {
354 		cpuid = map_to_cpu(irq);
355 	} else {
356 		cpuid = cpumask_first_and(affinity, cpu_online_mask);
357 		cpuid = cpuid < nr_cpu_ids ? cpuid : map_to_cpu(irq);
358 	}
359 
360 	return cpuid;
361 }
362 #else
363 #define irq_choose_cpu(irq, affinity)	\
364 	real_hard_smp_processor_id()
365 #endif
366 
sun4u_irq_enable(struct irq_data * data)367 static void sun4u_irq_enable(struct irq_data *data)
368 {
369 	struct irq_handler_data *handler_data;
370 
371 	handler_data = irq_data_get_irq_handler_data(data);
372 	if (likely(handler_data)) {
373 		unsigned long cpuid, imap, val;
374 		unsigned int tid;
375 
376 		cpuid = irq_choose_cpu(data->irq,
377 				       irq_data_get_affinity_mask(data));
378 		imap = handler_data->imap;
379 
380 		tid = sun4u_compute_tid(imap, cpuid);
381 
382 		val = upa_readq(imap);
383 		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
384 			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
385 		val |= tid | IMAP_VALID;
386 		upa_writeq(val, imap);
387 		upa_writeq(ICLR_IDLE, handler_data->iclr);
388 	}
389 }
390 
sun4u_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)391 static int sun4u_set_affinity(struct irq_data *data,
392 			       const struct cpumask *mask, bool force)
393 {
394 	struct irq_handler_data *handler_data;
395 
396 	handler_data = irq_data_get_irq_handler_data(data);
397 	if (likely(handler_data)) {
398 		unsigned long cpuid, imap, val;
399 		unsigned int tid;
400 
401 		cpuid = irq_choose_cpu(data->irq, mask);
402 		imap = handler_data->imap;
403 
404 		tid = sun4u_compute_tid(imap, cpuid);
405 
406 		val = upa_readq(imap);
407 		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
408 			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
409 		val |= tid | IMAP_VALID;
410 		upa_writeq(val, imap);
411 		upa_writeq(ICLR_IDLE, handler_data->iclr);
412 	}
413 
414 	return 0;
415 }
416 
417 /* Don't do anything.  The desc->status check for IRQ_DISABLED in
418  * handler_irq() will skip the handler call and that will leave the
419  * interrupt in the sent state.  The next ->enable() call will hit the
420  * ICLR register to reset the state machine.
421  *
422  * This scheme is necessary, instead of clearing the Valid bit in the
423  * IMAP register, to handle the case of IMAP registers being shared by
424  * multiple INOs (and thus ICLR registers).  Since we use a different
425  * virtual IRQ for each shared IMAP instance, the generic code thinks
426  * there is only one user so it prematurely calls ->disable() on
427  * free_irq().
428  *
429  * We have to provide an explicit ->disable() method instead of using
430  * NULL to get the default.  The reason is that if the generic code
431  * sees that, it also hooks up a default ->shutdown method which
432  * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
433  */
sun4u_irq_disable(struct irq_data * data)434 static void sun4u_irq_disable(struct irq_data *data)
435 {
436 }
437 
sun4u_irq_eoi(struct irq_data * data)438 static void sun4u_irq_eoi(struct irq_data *data)
439 {
440 	struct irq_handler_data *handler_data;
441 
442 	handler_data = irq_data_get_irq_handler_data(data);
443 	if (likely(handler_data))
444 		upa_writeq(ICLR_IDLE, handler_data->iclr);
445 }
446 
sun4v_irq_enable(struct irq_data * data)447 static void sun4v_irq_enable(struct irq_data *data)
448 {
449 	unsigned long cpuid = irq_choose_cpu(data->irq,
450 					     irq_data_get_affinity_mask(data));
451 	unsigned int ino = irq_data_to_sysino(data);
452 	int err;
453 
454 	err = sun4v_intr_settarget(ino, cpuid);
455 	if (err != HV_EOK)
456 		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
457 		       "err(%d)\n", ino, cpuid, err);
458 	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
459 	if (err != HV_EOK)
460 		printk(KERN_ERR "sun4v_intr_setstate(%x): "
461 		       "err(%d)\n", ino, err);
462 	err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
463 	if (err != HV_EOK)
464 		printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
465 		       ino, err);
466 }
467 
sun4v_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)468 static int sun4v_set_affinity(struct irq_data *data,
469 			       const struct cpumask *mask, bool force)
470 {
471 	unsigned long cpuid = irq_choose_cpu(data->irq, mask);
472 	unsigned int ino = irq_data_to_sysino(data);
473 	int err;
474 
475 	err = sun4v_intr_settarget(ino, cpuid);
476 	if (err != HV_EOK)
477 		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
478 		       "err(%d)\n", ino, cpuid, err);
479 
480 	return 0;
481 }
482 
sun4v_irq_disable(struct irq_data * data)483 static void sun4v_irq_disable(struct irq_data *data)
484 {
485 	unsigned int ino = irq_data_to_sysino(data);
486 	int err;
487 
488 	err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
489 	if (err != HV_EOK)
490 		printk(KERN_ERR "sun4v_intr_setenabled(%x): "
491 		       "err(%d)\n", ino, err);
492 }
493 
sun4v_irq_eoi(struct irq_data * data)494 static void sun4v_irq_eoi(struct irq_data *data)
495 {
496 	unsigned int ino = irq_data_to_sysino(data);
497 	int err;
498 
499 	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
500 	if (err != HV_EOK)
501 		printk(KERN_ERR "sun4v_intr_setstate(%x): "
502 		       "err(%d)\n", ino, err);
503 }
504 
sun4v_virq_enable(struct irq_data * data)505 static void sun4v_virq_enable(struct irq_data *data)
506 {
507 	unsigned long dev_handle = irq_data_to_handle(data);
508 	unsigned long dev_ino = irq_data_to_ino(data);
509 	unsigned long cpuid;
510 	int err;
511 
512 	cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data));
513 
514 	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
515 	if (err != HV_EOK)
516 		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
517 		       "err(%d)\n",
518 		       dev_handle, dev_ino, cpuid, err);
519 	err = sun4v_vintr_set_state(dev_handle, dev_ino,
520 				    HV_INTR_STATE_IDLE);
521 	if (err != HV_EOK)
522 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
523 		       "HV_INTR_STATE_IDLE): err(%d)\n",
524 		       dev_handle, dev_ino, err);
525 	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
526 				    HV_INTR_ENABLED);
527 	if (err != HV_EOK)
528 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
529 		       "HV_INTR_ENABLED): err(%d)\n",
530 		       dev_handle, dev_ino, err);
531 }
532 
sun4v_virt_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)533 static int sun4v_virt_set_affinity(struct irq_data *data,
534 				    const struct cpumask *mask, bool force)
535 {
536 	unsigned long dev_handle = irq_data_to_handle(data);
537 	unsigned long dev_ino = irq_data_to_ino(data);
538 	unsigned long cpuid;
539 	int err;
540 
541 	cpuid = irq_choose_cpu(data->irq, mask);
542 
543 	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
544 	if (err != HV_EOK)
545 		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
546 		       "err(%d)\n",
547 		       dev_handle, dev_ino, cpuid, err);
548 
549 	return 0;
550 }
551 
sun4v_virq_disable(struct irq_data * data)552 static void sun4v_virq_disable(struct irq_data *data)
553 {
554 	unsigned long dev_handle = irq_data_to_handle(data);
555 	unsigned long dev_ino = irq_data_to_ino(data);
556 	int err;
557 
558 
559 	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
560 				    HV_INTR_DISABLED);
561 	if (err != HV_EOK)
562 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
563 		       "HV_INTR_DISABLED): err(%d)\n",
564 		       dev_handle, dev_ino, err);
565 }
566 
sun4v_virq_eoi(struct irq_data * data)567 static void sun4v_virq_eoi(struct irq_data *data)
568 {
569 	unsigned long dev_handle = irq_data_to_handle(data);
570 	unsigned long dev_ino = irq_data_to_ino(data);
571 	int err;
572 
573 	err = sun4v_vintr_set_state(dev_handle, dev_ino,
574 				    HV_INTR_STATE_IDLE);
575 	if (err != HV_EOK)
576 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
577 		       "HV_INTR_STATE_IDLE): err(%d)\n",
578 		       dev_handle, dev_ino, err);
579 }
580 
581 static struct irq_chip sun4u_irq = {
582 	.name			= "sun4u",
583 	.irq_enable		= sun4u_irq_enable,
584 	.irq_disable		= sun4u_irq_disable,
585 	.irq_eoi		= sun4u_irq_eoi,
586 	.irq_set_affinity	= sun4u_set_affinity,
587 	.flags			= IRQCHIP_EOI_IF_HANDLED,
588 };
589 
590 static struct irq_chip sun4v_irq = {
591 	.name			= "sun4v",
592 	.irq_enable		= sun4v_irq_enable,
593 	.irq_disable		= sun4v_irq_disable,
594 	.irq_eoi		= sun4v_irq_eoi,
595 	.irq_set_affinity	= sun4v_set_affinity,
596 	.flags			= IRQCHIP_EOI_IF_HANDLED,
597 };
598 
599 static struct irq_chip sun4v_virq = {
600 	.name			= "vsun4v",
601 	.irq_enable		= sun4v_virq_enable,
602 	.irq_disable		= sun4v_virq_disable,
603 	.irq_eoi		= sun4v_virq_eoi,
604 	.irq_set_affinity	= sun4v_virt_set_affinity,
605 	.flags			= IRQCHIP_EOI_IF_HANDLED,
606 };
607 
build_irq(int inofixup,unsigned long iclr,unsigned long imap)608 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
609 {
610 	struct irq_handler_data *handler_data;
611 	struct ino_bucket *bucket;
612 	unsigned int irq;
613 	int ino;
614 
615 	BUG_ON(tlb_type == hypervisor);
616 
617 	ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
618 	bucket = &ivector_table[ino];
619 	irq = bucket_get_irq(__pa(bucket));
620 	if (!irq) {
621 		irq = irq_alloc(0, ino);
622 		bucket_set_irq(__pa(bucket), irq);
623 		irq_set_chip_and_handler_name(irq, &sun4u_irq,
624 					      handle_fasteoi_irq, "IVEC");
625 	}
626 
627 	handler_data = irq_get_handler_data(irq);
628 	if (unlikely(handler_data))
629 		goto out;
630 
631 	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
632 	if (unlikely(!handler_data)) {
633 		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
634 		prom_halt();
635 	}
636 	irq_set_handler_data(irq, handler_data);
637 
638 	handler_data->imap  = imap;
639 	handler_data->iclr  = iclr;
640 
641 out:
642 	return irq;
643 }
644 
sun4v_build_common(u32 devhandle,unsigned int devino,void (* handler_data_init)(struct irq_handler_data * data,u32 devhandle,unsigned int devino),struct irq_chip * chip)645 static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
646 		void (*handler_data_init)(struct irq_handler_data *data,
647 		u32 devhandle, unsigned int devino),
648 		struct irq_chip *chip)
649 {
650 	struct irq_handler_data *data;
651 	unsigned int irq;
652 
653 	irq = irq_alloc(devhandle, devino);
654 	if (!irq)
655 		goto out;
656 
657 	data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
658 	if (unlikely(!data)) {
659 		pr_err("IRQ handler data allocation failed.\n");
660 		irq_free(irq);
661 		irq = 0;
662 		goto out;
663 	}
664 
665 	irq_set_handler_data(irq, data);
666 	handler_data_init(data, devhandle, devino);
667 	irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
668 	data->imap = ~0UL;
669 	data->iclr = ~0UL;
670 out:
671 	return irq;
672 }
673 
cookie_assign(unsigned int irq,u32 devhandle,unsigned int devino)674 static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
675 		unsigned int devino)
676 {
677 	struct irq_handler_data *ihd = irq_get_handler_data(irq);
678 	unsigned long hv_error, cookie;
679 
680 	/* handler_irq needs to find the irq. cookie is seen signed in
681 	 * sun4v_dev_mondo and treated as a non ivector_table delivery.
682 	 */
683 	ihd->bucket.__irq = irq;
684 	cookie = ~__pa(&ihd->bucket);
685 
686 	hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
687 	if (hv_error)
688 		pr_err("HV vintr set cookie failed = %ld\n", hv_error);
689 
690 	return hv_error;
691 }
692 
cookie_handler_data(struct irq_handler_data * data,u32 devhandle,unsigned int devino)693 static void cookie_handler_data(struct irq_handler_data *data,
694 				u32 devhandle, unsigned int devino)
695 {
696 	data->dev_handle = devhandle;
697 	data->dev_ino = devino;
698 }
699 
cookie_build_irq(u32 devhandle,unsigned int devino,struct irq_chip * chip)700 static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
701 				     struct irq_chip *chip)
702 {
703 	unsigned long hv_error;
704 	unsigned int irq;
705 
706 	irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
707 
708 	hv_error = cookie_assign(irq, devhandle, devino);
709 	if (hv_error) {
710 		irq_free(irq);
711 		irq = 0;
712 	}
713 
714 	return irq;
715 }
716 
sun4v_build_cookie(u32 devhandle,unsigned int devino)717 static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
718 {
719 	unsigned int irq;
720 
721 	irq = cookie_exists(devhandle, devino);
722 	if (irq)
723 		goto out;
724 
725 	irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
726 
727 out:
728 	return irq;
729 }
730 
sysino_set_bucket(unsigned int irq)731 static void sysino_set_bucket(unsigned int irq)
732 {
733 	struct irq_handler_data *ihd = irq_get_handler_data(irq);
734 	struct ino_bucket *bucket;
735 	unsigned long sysino;
736 
737 	sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
738 	BUG_ON(sysino >= nr_ivec);
739 	bucket = &ivector_table[sysino];
740 	bucket_set_irq(__pa(bucket), irq);
741 }
742 
sysino_handler_data(struct irq_handler_data * data,u32 devhandle,unsigned int devino)743 static void sysino_handler_data(struct irq_handler_data *data,
744 				u32 devhandle, unsigned int devino)
745 {
746 	unsigned long sysino;
747 
748 	sysino = sun4v_devino_to_sysino(devhandle, devino);
749 	data->sysino = sysino;
750 }
751 
sysino_build_irq(u32 devhandle,unsigned int devino,struct irq_chip * chip)752 static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
753 				     struct irq_chip *chip)
754 {
755 	unsigned int irq;
756 
757 	irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
758 	if (!irq)
759 		goto out;
760 
761 	sysino_set_bucket(irq);
762 out:
763 	return irq;
764 }
765 
sun4v_build_sysino(u32 devhandle,unsigned int devino)766 static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
767 {
768 	int irq;
769 
770 	irq = sysino_exists(devhandle, devino);
771 	if (irq)
772 		goto out;
773 
774 	irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
775 out:
776 	return irq;
777 }
778 
sun4v_build_irq(u32 devhandle,unsigned int devino)779 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
780 {
781 	unsigned int irq;
782 
783 	if (sun4v_cookie_only_virqs())
784 		irq = sun4v_build_cookie(devhandle, devino);
785 	else
786 		irq = sun4v_build_sysino(devhandle, devino);
787 
788 	return irq;
789 }
790 
sun4v_build_virq(u32 devhandle,unsigned int devino)791 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
792 {
793 	int irq;
794 
795 	irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
796 	if (!irq)
797 		goto out;
798 
799 	/* This is borrowed from the original function.
800 	 */
801 	irq_set_status_flags(irq, IRQ_NOAUTOEN);
802 
803 out:
804 	return irq;
805 }
806 
807 void *hardirq_stack[NR_CPUS];
808 void *softirq_stack[NR_CPUS];
809 
handler_irq(int pil,struct pt_regs * regs)810 void __irq_entry handler_irq(int pil, struct pt_regs *regs)
811 {
812 	unsigned long pstate, bucket_pa;
813 	struct pt_regs *old_regs;
814 	void *orig_sp;
815 
816 	clear_softint(1 << pil);
817 
818 	old_regs = set_irq_regs(regs);
819 	irq_enter();
820 
821 	/* Grab an atomic snapshot of the pending IVECs.  */
822 	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
823 			     "wrpr	%0, %3, %%pstate\n\t"
824 			     "ldx	[%2], %1\n\t"
825 			     "stx	%%g0, [%2]\n\t"
826 			     "wrpr	%0, 0x0, %%pstate\n\t"
827 			     : "=&r" (pstate), "=&r" (bucket_pa)
828 			     : "r" (irq_work_pa(smp_processor_id())),
829 			       "i" (PSTATE_IE)
830 			     : "memory");
831 
832 	orig_sp = set_hardirq_stack();
833 
834 	while (bucket_pa) {
835 		unsigned long next_pa;
836 		unsigned int irq;
837 
838 		next_pa = bucket_get_chain_pa(bucket_pa);
839 		irq = bucket_get_irq(bucket_pa);
840 		bucket_clear_chain_pa(bucket_pa);
841 
842 		generic_handle_irq(irq);
843 
844 		bucket_pa = next_pa;
845 	}
846 
847 	restore_hardirq_stack(orig_sp);
848 
849 	irq_exit();
850 	set_irq_regs(old_regs);
851 }
852 
853 #ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
do_softirq_own_stack(void)854 void do_softirq_own_stack(void)
855 {
856 	void *orig_sp, *sp = softirq_stack[smp_processor_id()];
857 
858 	sp += THREAD_SIZE - 192 - STACK_BIAS;
859 
860 	__asm__ __volatile__("mov %%sp, %0\n\t"
861 			     "mov %1, %%sp"
862 			     : "=&r" (orig_sp)
863 			     : "r" (sp));
864 	__do_softirq();
865 	__asm__ __volatile__("mov %0, %%sp"
866 			     : : "r" (orig_sp));
867 }
868 #endif
869 
870 #ifdef CONFIG_HOTPLUG_CPU
fixup_irqs(void)871 void fixup_irqs(void)
872 {
873 	unsigned int irq;
874 
875 	for (irq = 0; irq < NR_IRQS; irq++) {
876 		struct irq_desc *desc = irq_to_desc(irq);
877 		struct irq_data *data;
878 		unsigned long flags;
879 
880 		if (!desc)
881 			continue;
882 		data = irq_desc_get_irq_data(desc);
883 		raw_spin_lock_irqsave(&desc->lock, flags);
884 		if (desc->action && !irqd_is_per_cpu(data)) {
885 			if (data->chip->irq_set_affinity)
886 				data->chip->irq_set_affinity(data,
887 					irq_data_get_affinity_mask(data),
888 					false);
889 		}
890 		raw_spin_unlock_irqrestore(&desc->lock, flags);
891 	}
892 
893 	tick_ops->disable_irq();
894 }
895 #endif
896 
897 struct sun5_timer {
898 	u64	count0;
899 	u64	limit0;
900 	u64	count1;
901 	u64	limit1;
902 };
903 
904 static struct sun5_timer *prom_timers;
905 static u64 prom_limit0, prom_limit1;
906 
map_prom_timers(void)907 static void map_prom_timers(void)
908 {
909 	struct device_node *dp;
910 	const unsigned int *addr;
911 
912 	/* PROM timer node hangs out in the top level of device siblings... */
913 	dp = of_find_node_by_path("/");
914 	dp = dp->child;
915 	while (dp) {
916 		if (of_node_name_eq(dp, "counter-timer"))
917 			break;
918 		dp = dp->sibling;
919 	}
920 
921 	/* Assume if node is not present, PROM uses different tick mechanism
922 	 * which we should not care about.
923 	 */
924 	if (!dp) {
925 		prom_timers = (struct sun5_timer *) 0;
926 		return;
927 	}
928 
929 	/* If PROM is really using this, it must be mapped by him. */
930 	addr = of_get_property(dp, "address", NULL);
931 	if (!addr) {
932 		prom_printf("PROM does not have timer mapped, trying to continue.\n");
933 		prom_timers = (struct sun5_timer *) 0;
934 		return;
935 	}
936 	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
937 }
938 
kill_prom_timer(void)939 static void kill_prom_timer(void)
940 {
941 	if (!prom_timers)
942 		return;
943 
944 	/* Save them away for later. */
945 	prom_limit0 = prom_timers->limit0;
946 	prom_limit1 = prom_timers->limit1;
947 
948 	/* Just as in sun4c PROM uses timer which ticks at IRQ 14.
949 	 * We turn both off here just to be paranoid.
950 	 */
951 	prom_timers->limit0 = 0;
952 	prom_timers->limit1 = 0;
953 
954 	/* Wheee, eat the interrupt packet too... */
955 	__asm__ __volatile__(
956 "	mov	0x40, %%g2\n"
957 "	ldxa	[%%g0] %0, %%g1\n"
958 "	ldxa	[%%g2] %1, %%g1\n"
959 "	stxa	%%g0, [%%g0] %0\n"
960 "	membar	#Sync\n"
961 	: /* no outputs */
962 	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
963 	: "g1", "g2");
964 }
965 
init_irqwork_curcpu(void)966 void notrace init_irqwork_curcpu(void)
967 {
968 	int cpu = hard_smp_processor_id();
969 
970 	trap_block[cpu].irq_worklist_pa = 0UL;
971 }
972 
973 /* Please be very careful with register_one_mondo() and
974  * sun4v_register_mondo_queues().
975  *
976  * On SMP this gets invoked from the CPU trampoline before
977  * the cpu has fully taken over the trap table from OBP,
978  * and its kernel stack + %g6 thread register state is
979  * not fully cooked yet.
980  *
981  * Therefore you cannot make any OBP calls, not even prom_printf,
982  * from these two routines.
983  */
register_one_mondo(unsigned long paddr,unsigned long type,unsigned long qmask)984 static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
985 				       unsigned long qmask)
986 {
987 	unsigned long num_entries = (qmask + 1) / 64;
988 	unsigned long status;
989 
990 	status = sun4v_cpu_qconf(type, paddr, num_entries);
991 	if (status != HV_EOK) {
992 		prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
993 			    "err %lu\n", type, paddr, num_entries, status);
994 		prom_halt();
995 	}
996 }
997 
sun4v_register_mondo_queues(int this_cpu)998 void notrace sun4v_register_mondo_queues(int this_cpu)
999 {
1000 	struct trap_per_cpu *tb = &trap_block[this_cpu];
1001 
1002 	register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1003 			   tb->cpu_mondo_qmask);
1004 	register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1005 			   tb->dev_mondo_qmask);
1006 	register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1007 			   tb->resum_qmask);
1008 	register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1009 			   tb->nonresum_qmask);
1010 }
1011 
1012 /* Each queue region must be a power of 2 multiple of 64 bytes in
1013  * size.  The base real address must be aligned to the size of the
1014  * region.  Thus, an 8KB queue must be 8KB aligned, for example.
1015  */
alloc_one_queue(unsigned long * pa_ptr,unsigned long qmask)1016 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1017 {
1018 	unsigned long size = PAGE_ALIGN(qmask + 1);
1019 	unsigned long order = get_order(size);
1020 	unsigned long p;
1021 
1022 	p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1023 	if (!p) {
1024 		prom_printf("SUN4V: Error, cannot allocate queue.\n");
1025 		prom_halt();
1026 	}
1027 
1028 	*pa_ptr = __pa(p);
1029 }
1030 
init_cpu_send_mondo_info(struct trap_per_cpu * tb)1031 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1032 {
1033 #ifdef CONFIG_SMP
1034 	unsigned long page;
1035 	void *mondo, *p;
1036 
1037 	BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE);
1038 
1039 	/* Make sure mondo block is 64byte aligned */
1040 	p = kzalloc(127, GFP_KERNEL);
1041 	if (!p) {
1042 		prom_printf("SUN4V: Error, cannot allocate mondo block.\n");
1043 		prom_halt();
1044 	}
1045 	mondo = (void *)(((unsigned long)p + 63) & ~0x3f);
1046 	tb->cpu_mondo_block_pa = __pa(mondo);
1047 
1048 	page = get_zeroed_page(GFP_KERNEL);
1049 	if (!page) {
1050 		prom_printf("SUN4V: Error, cannot allocate cpu list page.\n");
1051 		prom_halt();
1052 	}
1053 
1054 	tb->cpu_list_pa = __pa(page);
1055 #endif
1056 }
1057 
1058 /* Allocate mondo and error queues for all possible cpus.  */
sun4v_init_mondo_queues(void)1059 static void __init sun4v_init_mondo_queues(void)
1060 {
1061 	int cpu;
1062 
1063 	for_each_possible_cpu(cpu) {
1064 		struct trap_per_cpu *tb = &trap_block[cpu];
1065 
1066 		alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1067 		alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1068 		alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1069 		alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1070 		alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1071 		alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1072 				tb->nonresum_qmask);
1073 	}
1074 }
1075 
init_send_mondo_info(void)1076 static void __init init_send_mondo_info(void)
1077 {
1078 	int cpu;
1079 
1080 	for_each_possible_cpu(cpu) {
1081 		struct trap_per_cpu *tb = &trap_block[cpu];
1082 
1083 		init_cpu_send_mondo_info(tb);
1084 	}
1085 }
1086 
1087 static struct irqaction timer_irq_action = {
1088 	.name = "timer",
1089 };
1090 
irq_ivector_init(void)1091 static void __init irq_ivector_init(void)
1092 {
1093 	unsigned long size, order;
1094 	unsigned int ivecs;
1095 
1096 	/* If we are doing cookie only VIRQs then we do not need the ivector
1097 	 * table to process interrupts.
1098 	 */
1099 	if (sun4v_cookie_only_virqs())
1100 		return;
1101 
1102 	ivecs = size_nr_ivec();
1103 	size = sizeof(struct ino_bucket) * ivecs;
1104 	order = get_order(size);
1105 	ivector_table = (struct ino_bucket *)
1106 		__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1107 	if (!ivector_table) {
1108 		prom_printf("Fatal error, cannot allocate ivector_table\n");
1109 		prom_halt();
1110 	}
1111 	__flush_dcache_range((unsigned long) ivector_table,
1112 			     ((unsigned long) ivector_table) + size);
1113 
1114 	ivector_table_pa = __pa(ivector_table);
1115 }
1116 
1117 /* Only invoked on boot processor.*/
init_IRQ(void)1118 void __init init_IRQ(void)
1119 {
1120 	irq_init_hv();
1121 	irq_ivector_init();
1122 	map_prom_timers();
1123 	kill_prom_timer();
1124 
1125 	if (tlb_type == hypervisor)
1126 		sun4v_init_mondo_queues();
1127 
1128 	init_send_mondo_info();
1129 
1130 	if (tlb_type == hypervisor) {
1131 		/* Load up the boot cpu's entries.  */
1132 		sun4v_register_mondo_queues(hard_smp_processor_id());
1133 	}
1134 
1135 	/* We need to clear any IRQ's pending in the soft interrupt
1136 	 * registers, a spurious one could be left around from the
1137 	 * PROM timer which we just disabled.
1138 	 */
1139 	clear_softint(get_softint());
1140 
1141 	/* Now that ivector table is initialized, it is safe
1142 	 * to receive IRQ vector traps.  We will normally take
1143 	 * one or two right now, in case some device PROM used
1144 	 * to boot us wants to speak to us.  We just ignore them.
1145 	 */
1146 	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
1147 			     "or	%%g1, %0, %%g1\n\t"
1148 			     "wrpr	%%g1, 0x0, %%pstate"
1149 			     : /* No outputs */
1150 			     : "i" (PSTATE_IE)
1151 			     : "g1");
1152 
1153 	irq_to_desc(0)->action = &timer_irq_action;
1154 }
1155