1 // SPDX-License-Identifier: GPL-2.0
2 /* irq.c: UltraSparc IRQ handling/init/registry.
3 *
4 * Copyright (C) 1997, 2007, 2008 David S. Miller ([email protected])
5 * Copyright (C) 1998 Eddie C. Dost ([email protected])
6 * Copyright (C) 1998 Jakub Jelinek ([email protected])
7 */
8
9 #include <linux/sched.h>
10 #include <linux/linkage.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/ftrace.h>
24 #include <linux/irq.h>
25 #include <linux/string_choices.h>
26
27 #include <asm/ptrace.h>
28 #include <asm/processor.h>
29 #include <linux/atomic.h>
30 #include <asm/irq.h>
31 #include <asm/io.h>
32 #include <asm/iommu.h>
33 #include <asm/upa.h>
34 #include <asm/oplib.h>
35 #include <asm/prom.h>
36 #include <asm/timer.h>
37 #include <asm/smp.h>
38 #include <asm/starfire.h>
39 #include <linux/uaccess.h>
40 #include <asm/cache.h>
41 #include <asm/cpudata.h>
42 #include <asm/auxio.h>
43 #include <asm/head.h>
44 #include <asm/hypervisor.h>
45 #include <asm/cacheflush.h>
46 #include <asm/softirq_stack.h>
47
48 #include "entry.h"
49 #include "cpumap.h"
50 #include "kstack.h"
51
52 struct ino_bucket *ivector_table;
53 unsigned long ivector_table_pa;
54
55 /* On several sun4u processors, it is illegal to mix bypass and
56 * non-bypass accesses. Therefore we access all INO buckets
57 * using bypass accesses only.
58 */
bucket_get_chain_pa(unsigned long bucket_pa)59 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
60 {
61 unsigned long ret;
62
63 __asm__ __volatile__("ldxa [%1] %2, %0"
64 : "=&r" (ret)
65 : "r" (bucket_pa +
66 offsetof(struct ino_bucket,
67 __irq_chain_pa)),
68 "i" (ASI_PHYS_USE_EC));
69
70 return ret;
71 }
72
bucket_clear_chain_pa(unsigned long bucket_pa)73 static void bucket_clear_chain_pa(unsigned long bucket_pa)
74 {
75 __asm__ __volatile__("stxa %%g0, [%0] %1"
76 : /* no outputs */
77 : "r" (bucket_pa +
78 offsetof(struct ino_bucket,
79 __irq_chain_pa)),
80 "i" (ASI_PHYS_USE_EC));
81 }
82
bucket_get_irq(unsigned long bucket_pa)83 static unsigned int bucket_get_irq(unsigned long bucket_pa)
84 {
85 unsigned int ret;
86
87 __asm__ __volatile__("lduwa [%1] %2, %0"
88 : "=&r" (ret)
89 : "r" (bucket_pa +
90 offsetof(struct ino_bucket,
91 __irq)),
92 "i" (ASI_PHYS_USE_EC));
93
94 return ret;
95 }
96
bucket_set_irq(unsigned long bucket_pa,unsigned int irq)97 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
98 {
99 __asm__ __volatile__("stwa %0, [%1] %2"
100 : /* no outputs */
101 : "r" (irq),
102 "r" (bucket_pa +
103 offsetof(struct ino_bucket,
104 __irq)),
105 "i" (ASI_PHYS_USE_EC));
106 }
107
108 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
109
110 static unsigned long hvirq_major __initdata;
early_hvirq_major(char * p)111 static int __init early_hvirq_major(char *p)
112 {
113 int rc = kstrtoul(p, 10, &hvirq_major);
114
115 return rc;
116 }
117 early_param("hvirq", early_hvirq_major);
118
119 static int hv_irq_version;
120
121 /* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
122 * based interfaces, but:
123 *
124 * 1) Several OSs, Solaris and Linux included, use them even when only
125 * negotiating version 1.0 (or failing to negotiate at all). So the
126 * hypervisor has a workaround that provides the VIRQ interfaces even
127 * when only verion 1.0 of the API is in use.
128 *
129 * 2) Second, and more importantly, with major version 2.0 these VIRQ
130 * interfaces only were actually hooked up for LDC interrupts, even
131 * though the Hypervisor specification clearly stated:
132 *
133 * The new interrupt API functions will be available to a guest
134 * when it negotiates version 2.0 in the interrupt API group 0x2. When
135 * a guest negotiates version 2.0, all interrupt sources will only
136 * support using the cookie interface, and any attempt to use the
137 * version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
138 * ENOTSUPPORTED error being returned.
139 *
140 * with an emphasis on "all interrupt sources".
141 *
142 * To correct this, major version 3.0 was created which does actually
143 * support VIRQs for all interrupt sources (not just LDC devices). So
144 * if we want to move completely over the cookie based VIRQs we must
145 * negotiate major version 3.0 or later of HV_GRP_INTR.
146 */
sun4v_cookie_only_virqs(void)147 static bool sun4v_cookie_only_virqs(void)
148 {
149 return hv_irq_version >= 3;
150 }
151
irq_init_hv(void)152 static void __init irq_init_hv(void)
153 {
154 unsigned long hv_error, major, minor = 0;
155
156 if (tlb_type != hypervisor)
157 return;
158
159 if (hvirq_major)
160 major = hvirq_major;
161 else
162 major = 3;
163
164 hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
165 if (!hv_error)
166 hv_irq_version = major;
167 else
168 hv_irq_version = 1;
169
170 pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
171 hv_irq_version,
172 str_enabled_disabled(sun4v_cookie_only_virqs()));
173 }
174
175 /* This function is for the timer interrupt.*/
arch_probe_nr_irqs(void)176 int __init arch_probe_nr_irqs(void)
177 {
178 return 1;
179 }
180
181 #define DEFAULT_NUM_IVECS (0xfffU)
182 static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
183 #define NUM_IVECS (nr_ivec)
184
size_nr_ivec(void)185 static unsigned int __init size_nr_ivec(void)
186 {
187 if (tlb_type == hypervisor) {
188 switch (sun4v_chip_type) {
189 /* Athena's devhandle|devino is large.*/
190 case SUN4V_CHIP_SPARC64X:
191 nr_ivec = 0xffff;
192 break;
193 }
194 }
195 return nr_ivec;
196 }
197
198 struct irq_handler_data {
199 union {
200 struct {
201 unsigned int dev_handle;
202 unsigned int dev_ino;
203 };
204 unsigned long sysino;
205 };
206 struct ino_bucket bucket;
207 unsigned long iclr;
208 unsigned long imap;
209 };
210
irq_data_to_handle(struct irq_data * data)211 static inline unsigned int irq_data_to_handle(struct irq_data *data)
212 {
213 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
214
215 return ihd->dev_handle;
216 }
217
irq_data_to_ino(struct irq_data * data)218 static inline unsigned int irq_data_to_ino(struct irq_data *data)
219 {
220 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
221
222 return ihd->dev_ino;
223 }
224
irq_data_to_sysino(struct irq_data * data)225 static inline unsigned long irq_data_to_sysino(struct irq_data *data)
226 {
227 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
228
229 return ihd->sysino;
230 }
231
irq_free(unsigned int irq)232 void irq_free(unsigned int irq)
233 {
234 void *data = irq_get_handler_data(irq);
235
236 kfree(data);
237 irq_set_handler_data(irq, NULL);
238 irq_free_descs(irq, 1);
239 }
240
irq_alloc(unsigned int dev_handle,unsigned int dev_ino)241 unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
242 {
243 int irq;
244
245 irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL);
246 if (irq <= 0)
247 goto out;
248
249 return irq;
250 out:
251 return 0;
252 }
253
cookie_exists(u32 devhandle,unsigned int devino)254 static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
255 {
256 unsigned long hv_err, cookie;
257 struct ino_bucket *bucket;
258 unsigned int irq = 0U;
259
260 hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
261 if (hv_err) {
262 pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
263 goto out;
264 }
265
266 if (cookie & ((1UL << 63UL))) {
267 cookie = ~cookie;
268 bucket = (struct ino_bucket *) __va(cookie);
269 irq = bucket->__irq;
270 }
271 out:
272 return irq;
273 }
274
sysino_exists(u32 devhandle,unsigned int devino)275 static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
276 {
277 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
278 struct ino_bucket *bucket;
279 unsigned int irq;
280
281 bucket = &ivector_table[sysino];
282 irq = bucket_get_irq(__pa(bucket));
283
284 return irq;
285 }
286
ack_bad_irq(unsigned int irq)287 void ack_bad_irq(unsigned int irq)
288 {
289 pr_crit("BAD IRQ ack %d\n", irq);
290 }
291
irq_install_pre_handler(int irq,void (* func)(unsigned int,void *,void *),void * arg1,void * arg2)292 void irq_install_pre_handler(int irq,
293 void (*func)(unsigned int, void *, void *),
294 void *arg1, void *arg2)
295 {
296 pr_warn("IRQ pre handler NOT supported.\n");
297 }
298
299 /*
300 * /proc/interrupts printing:
301 */
arch_show_interrupts(struct seq_file * p,int prec)302 int arch_show_interrupts(struct seq_file *p, int prec)
303 {
304 int j;
305
306 seq_printf(p, "NMI:");
307 for_each_online_cpu(j)
308 seq_put_decimal_ull_width(p, " ", cpu_data(j).__nmi_count, 10);
309 seq_printf(p, " Non-maskable interrupts\n");
310 return 0;
311 }
312
sun4u_compute_tid(unsigned long imap,unsigned long cpuid)313 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
314 {
315 unsigned int tid;
316
317 if (this_is_starfire) {
318 tid = starfire_translate(imap, cpuid);
319 tid <<= IMAP_TID_SHIFT;
320 tid &= IMAP_TID_UPA;
321 } else {
322 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
323 unsigned long ver;
324
325 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
326 if ((ver >> 32UL) == __JALAPENO_ID ||
327 (ver >> 32UL) == __SERRANO_ID) {
328 tid = cpuid << IMAP_TID_SHIFT;
329 tid &= IMAP_TID_JBUS;
330 } else {
331 unsigned int a = cpuid & 0x1f;
332 unsigned int n = (cpuid >> 5) & 0x1f;
333
334 tid = ((a << IMAP_AID_SHIFT) |
335 (n << IMAP_NID_SHIFT));
336 tid &= (IMAP_AID_SAFARI |
337 IMAP_NID_SAFARI);
338 }
339 } else {
340 tid = cpuid << IMAP_TID_SHIFT;
341 tid &= IMAP_TID_UPA;
342 }
343 }
344
345 return tid;
346 }
347
348 #ifdef CONFIG_SMP
irq_choose_cpu(unsigned int irq,const struct cpumask * affinity)349 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
350 {
351 int cpuid;
352
353 if (cpumask_equal(affinity, cpu_online_mask)) {
354 cpuid = map_to_cpu(irq);
355 } else {
356 cpuid = cpumask_first_and(affinity, cpu_online_mask);
357 cpuid = cpuid < nr_cpu_ids ? cpuid : map_to_cpu(irq);
358 }
359
360 return cpuid;
361 }
362 #else
363 #define irq_choose_cpu(irq, affinity) \
364 real_hard_smp_processor_id()
365 #endif
366
sun4u_irq_enable(struct irq_data * data)367 static void sun4u_irq_enable(struct irq_data *data)
368 {
369 struct irq_handler_data *handler_data;
370
371 handler_data = irq_data_get_irq_handler_data(data);
372 if (likely(handler_data)) {
373 unsigned long cpuid, imap, val;
374 unsigned int tid;
375
376 cpuid = irq_choose_cpu(data->irq,
377 irq_data_get_affinity_mask(data));
378 imap = handler_data->imap;
379
380 tid = sun4u_compute_tid(imap, cpuid);
381
382 val = upa_readq(imap);
383 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
384 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
385 val |= tid | IMAP_VALID;
386 upa_writeq(val, imap);
387 upa_writeq(ICLR_IDLE, handler_data->iclr);
388 }
389 }
390
sun4u_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)391 static int sun4u_set_affinity(struct irq_data *data,
392 const struct cpumask *mask, bool force)
393 {
394 struct irq_handler_data *handler_data;
395
396 handler_data = irq_data_get_irq_handler_data(data);
397 if (likely(handler_data)) {
398 unsigned long cpuid, imap, val;
399 unsigned int tid;
400
401 cpuid = irq_choose_cpu(data->irq, mask);
402 imap = handler_data->imap;
403
404 tid = sun4u_compute_tid(imap, cpuid);
405
406 val = upa_readq(imap);
407 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
408 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
409 val |= tid | IMAP_VALID;
410 upa_writeq(val, imap);
411 upa_writeq(ICLR_IDLE, handler_data->iclr);
412 }
413
414 return 0;
415 }
416
417 /* Don't do anything. The desc->status check for IRQ_DISABLED in
418 * handler_irq() will skip the handler call and that will leave the
419 * interrupt in the sent state. The next ->enable() call will hit the
420 * ICLR register to reset the state machine.
421 *
422 * This scheme is necessary, instead of clearing the Valid bit in the
423 * IMAP register, to handle the case of IMAP registers being shared by
424 * multiple INOs (and thus ICLR registers). Since we use a different
425 * virtual IRQ for each shared IMAP instance, the generic code thinks
426 * there is only one user so it prematurely calls ->disable() on
427 * free_irq().
428 *
429 * We have to provide an explicit ->disable() method instead of using
430 * NULL to get the default. The reason is that if the generic code
431 * sees that, it also hooks up a default ->shutdown method which
432 * invokes ->mask() which we do not want. See irq_chip_set_defaults().
433 */
sun4u_irq_disable(struct irq_data * data)434 static void sun4u_irq_disable(struct irq_data *data)
435 {
436 }
437
sun4u_irq_eoi(struct irq_data * data)438 static void sun4u_irq_eoi(struct irq_data *data)
439 {
440 struct irq_handler_data *handler_data;
441
442 handler_data = irq_data_get_irq_handler_data(data);
443 if (likely(handler_data))
444 upa_writeq(ICLR_IDLE, handler_data->iclr);
445 }
446
sun4v_irq_enable(struct irq_data * data)447 static void sun4v_irq_enable(struct irq_data *data)
448 {
449 unsigned long cpuid = irq_choose_cpu(data->irq,
450 irq_data_get_affinity_mask(data));
451 unsigned int ino = irq_data_to_sysino(data);
452 int err;
453
454 err = sun4v_intr_settarget(ino, cpuid);
455 if (err != HV_EOK)
456 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
457 "err(%d)\n", ino, cpuid, err);
458 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
459 if (err != HV_EOK)
460 printk(KERN_ERR "sun4v_intr_setstate(%x): "
461 "err(%d)\n", ino, err);
462 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
463 if (err != HV_EOK)
464 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
465 ino, err);
466 }
467
sun4v_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)468 static int sun4v_set_affinity(struct irq_data *data,
469 const struct cpumask *mask, bool force)
470 {
471 unsigned long cpuid = irq_choose_cpu(data->irq, mask);
472 unsigned int ino = irq_data_to_sysino(data);
473 int err;
474
475 err = sun4v_intr_settarget(ino, cpuid);
476 if (err != HV_EOK)
477 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
478 "err(%d)\n", ino, cpuid, err);
479
480 return 0;
481 }
482
sun4v_irq_disable(struct irq_data * data)483 static void sun4v_irq_disable(struct irq_data *data)
484 {
485 unsigned int ino = irq_data_to_sysino(data);
486 int err;
487
488 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
489 if (err != HV_EOK)
490 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
491 "err(%d)\n", ino, err);
492 }
493
sun4v_irq_eoi(struct irq_data * data)494 static void sun4v_irq_eoi(struct irq_data *data)
495 {
496 unsigned int ino = irq_data_to_sysino(data);
497 int err;
498
499 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
500 if (err != HV_EOK)
501 printk(KERN_ERR "sun4v_intr_setstate(%x): "
502 "err(%d)\n", ino, err);
503 }
504
sun4v_virq_enable(struct irq_data * data)505 static void sun4v_virq_enable(struct irq_data *data)
506 {
507 unsigned long dev_handle = irq_data_to_handle(data);
508 unsigned long dev_ino = irq_data_to_ino(data);
509 unsigned long cpuid;
510 int err;
511
512 cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data));
513
514 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
515 if (err != HV_EOK)
516 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
517 "err(%d)\n",
518 dev_handle, dev_ino, cpuid, err);
519 err = sun4v_vintr_set_state(dev_handle, dev_ino,
520 HV_INTR_STATE_IDLE);
521 if (err != HV_EOK)
522 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
523 "HV_INTR_STATE_IDLE): err(%d)\n",
524 dev_handle, dev_ino, err);
525 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
526 HV_INTR_ENABLED);
527 if (err != HV_EOK)
528 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
529 "HV_INTR_ENABLED): err(%d)\n",
530 dev_handle, dev_ino, err);
531 }
532
sun4v_virt_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)533 static int sun4v_virt_set_affinity(struct irq_data *data,
534 const struct cpumask *mask, bool force)
535 {
536 unsigned long dev_handle = irq_data_to_handle(data);
537 unsigned long dev_ino = irq_data_to_ino(data);
538 unsigned long cpuid;
539 int err;
540
541 cpuid = irq_choose_cpu(data->irq, mask);
542
543 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
544 if (err != HV_EOK)
545 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
546 "err(%d)\n",
547 dev_handle, dev_ino, cpuid, err);
548
549 return 0;
550 }
551
sun4v_virq_disable(struct irq_data * data)552 static void sun4v_virq_disable(struct irq_data *data)
553 {
554 unsigned long dev_handle = irq_data_to_handle(data);
555 unsigned long dev_ino = irq_data_to_ino(data);
556 int err;
557
558
559 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
560 HV_INTR_DISABLED);
561 if (err != HV_EOK)
562 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
563 "HV_INTR_DISABLED): err(%d)\n",
564 dev_handle, dev_ino, err);
565 }
566
sun4v_virq_eoi(struct irq_data * data)567 static void sun4v_virq_eoi(struct irq_data *data)
568 {
569 unsigned long dev_handle = irq_data_to_handle(data);
570 unsigned long dev_ino = irq_data_to_ino(data);
571 int err;
572
573 err = sun4v_vintr_set_state(dev_handle, dev_ino,
574 HV_INTR_STATE_IDLE);
575 if (err != HV_EOK)
576 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
577 "HV_INTR_STATE_IDLE): err(%d)\n",
578 dev_handle, dev_ino, err);
579 }
580
581 static struct irq_chip sun4u_irq = {
582 .name = "sun4u",
583 .irq_enable = sun4u_irq_enable,
584 .irq_disable = sun4u_irq_disable,
585 .irq_eoi = sun4u_irq_eoi,
586 .irq_set_affinity = sun4u_set_affinity,
587 .flags = IRQCHIP_EOI_IF_HANDLED,
588 };
589
590 static struct irq_chip sun4v_irq = {
591 .name = "sun4v",
592 .irq_enable = sun4v_irq_enable,
593 .irq_disable = sun4v_irq_disable,
594 .irq_eoi = sun4v_irq_eoi,
595 .irq_set_affinity = sun4v_set_affinity,
596 .flags = IRQCHIP_EOI_IF_HANDLED,
597 };
598
599 static struct irq_chip sun4v_virq = {
600 .name = "vsun4v",
601 .irq_enable = sun4v_virq_enable,
602 .irq_disable = sun4v_virq_disable,
603 .irq_eoi = sun4v_virq_eoi,
604 .irq_set_affinity = sun4v_virt_set_affinity,
605 .flags = IRQCHIP_EOI_IF_HANDLED,
606 };
607
build_irq(int inofixup,unsigned long iclr,unsigned long imap)608 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
609 {
610 struct irq_handler_data *handler_data;
611 struct ino_bucket *bucket;
612 unsigned int irq;
613 int ino;
614
615 BUG_ON(tlb_type == hypervisor);
616
617 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
618 bucket = &ivector_table[ino];
619 irq = bucket_get_irq(__pa(bucket));
620 if (!irq) {
621 irq = irq_alloc(0, ino);
622 bucket_set_irq(__pa(bucket), irq);
623 irq_set_chip_and_handler_name(irq, &sun4u_irq,
624 handle_fasteoi_irq, "IVEC");
625 }
626
627 handler_data = irq_get_handler_data(irq);
628 if (unlikely(handler_data))
629 goto out;
630
631 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
632 if (unlikely(!handler_data)) {
633 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
634 prom_halt();
635 }
636 irq_set_handler_data(irq, handler_data);
637
638 handler_data->imap = imap;
639 handler_data->iclr = iclr;
640
641 out:
642 return irq;
643 }
644
sun4v_build_common(u32 devhandle,unsigned int devino,void (* handler_data_init)(struct irq_handler_data * data,u32 devhandle,unsigned int devino),struct irq_chip * chip)645 static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
646 void (*handler_data_init)(struct irq_handler_data *data,
647 u32 devhandle, unsigned int devino),
648 struct irq_chip *chip)
649 {
650 struct irq_handler_data *data;
651 unsigned int irq;
652
653 irq = irq_alloc(devhandle, devino);
654 if (!irq)
655 goto out;
656
657 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
658 if (unlikely(!data)) {
659 pr_err("IRQ handler data allocation failed.\n");
660 irq_free(irq);
661 irq = 0;
662 goto out;
663 }
664
665 irq_set_handler_data(irq, data);
666 handler_data_init(data, devhandle, devino);
667 irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
668 data->imap = ~0UL;
669 data->iclr = ~0UL;
670 out:
671 return irq;
672 }
673
cookie_assign(unsigned int irq,u32 devhandle,unsigned int devino)674 static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
675 unsigned int devino)
676 {
677 struct irq_handler_data *ihd = irq_get_handler_data(irq);
678 unsigned long hv_error, cookie;
679
680 /* handler_irq needs to find the irq. cookie is seen signed in
681 * sun4v_dev_mondo and treated as a non ivector_table delivery.
682 */
683 ihd->bucket.__irq = irq;
684 cookie = ~__pa(&ihd->bucket);
685
686 hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
687 if (hv_error)
688 pr_err("HV vintr set cookie failed = %ld\n", hv_error);
689
690 return hv_error;
691 }
692
cookie_handler_data(struct irq_handler_data * data,u32 devhandle,unsigned int devino)693 static void cookie_handler_data(struct irq_handler_data *data,
694 u32 devhandle, unsigned int devino)
695 {
696 data->dev_handle = devhandle;
697 data->dev_ino = devino;
698 }
699
cookie_build_irq(u32 devhandle,unsigned int devino,struct irq_chip * chip)700 static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
701 struct irq_chip *chip)
702 {
703 unsigned long hv_error;
704 unsigned int irq;
705
706 irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
707
708 hv_error = cookie_assign(irq, devhandle, devino);
709 if (hv_error) {
710 irq_free(irq);
711 irq = 0;
712 }
713
714 return irq;
715 }
716
sun4v_build_cookie(u32 devhandle,unsigned int devino)717 static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
718 {
719 unsigned int irq;
720
721 irq = cookie_exists(devhandle, devino);
722 if (irq)
723 goto out;
724
725 irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
726
727 out:
728 return irq;
729 }
730
sysino_set_bucket(unsigned int irq)731 static void sysino_set_bucket(unsigned int irq)
732 {
733 struct irq_handler_data *ihd = irq_get_handler_data(irq);
734 struct ino_bucket *bucket;
735 unsigned long sysino;
736
737 sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
738 BUG_ON(sysino >= nr_ivec);
739 bucket = &ivector_table[sysino];
740 bucket_set_irq(__pa(bucket), irq);
741 }
742
sysino_handler_data(struct irq_handler_data * data,u32 devhandle,unsigned int devino)743 static void sysino_handler_data(struct irq_handler_data *data,
744 u32 devhandle, unsigned int devino)
745 {
746 unsigned long sysino;
747
748 sysino = sun4v_devino_to_sysino(devhandle, devino);
749 data->sysino = sysino;
750 }
751
sysino_build_irq(u32 devhandle,unsigned int devino,struct irq_chip * chip)752 static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
753 struct irq_chip *chip)
754 {
755 unsigned int irq;
756
757 irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
758 if (!irq)
759 goto out;
760
761 sysino_set_bucket(irq);
762 out:
763 return irq;
764 }
765
sun4v_build_sysino(u32 devhandle,unsigned int devino)766 static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
767 {
768 int irq;
769
770 irq = sysino_exists(devhandle, devino);
771 if (irq)
772 goto out;
773
774 irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
775 out:
776 return irq;
777 }
778
sun4v_build_irq(u32 devhandle,unsigned int devino)779 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
780 {
781 unsigned int irq;
782
783 if (sun4v_cookie_only_virqs())
784 irq = sun4v_build_cookie(devhandle, devino);
785 else
786 irq = sun4v_build_sysino(devhandle, devino);
787
788 return irq;
789 }
790
sun4v_build_virq(u32 devhandle,unsigned int devino)791 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
792 {
793 int irq;
794
795 irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
796 if (!irq)
797 goto out;
798
799 /* This is borrowed from the original function.
800 */
801 irq_set_status_flags(irq, IRQ_NOAUTOEN);
802
803 out:
804 return irq;
805 }
806
807 void *hardirq_stack[NR_CPUS];
808 void *softirq_stack[NR_CPUS];
809
handler_irq(int pil,struct pt_regs * regs)810 void __irq_entry handler_irq(int pil, struct pt_regs *regs)
811 {
812 unsigned long pstate, bucket_pa;
813 struct pt_regs *old_regs;
814 void *orig_sp;
815
816 clear_softint(1 << pil);
817
818 old_regs = set_irq_regs(regs);
819 irq_enter();
820
821 /* Grab an atomic snapshot of the pending IVECs. */
822 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
823 "wrpr %0, %3, %%pstate\n\t"
824 "ldx [%2], %1\n\t"
825 "stx %%g0, [%2]\n\t"
826 "wrpr %0, 0x0, %%pstate\n\t"
827 : "=&r" (pstate), "=&r" (bucket_pa)
828 : "r" (irq_work_pa(smp_processor_id())),
829 "i" (PSTATE_IE)
830 : "memory");
831
832 orig_sp = set_hardirq_stack();
833
834 while (bucket_pa) {
835 unsigned long next_pa;
836 unsigned int irq;
837
838 next_pa = bucket_get_chain_pa(bucket_pa);
839 irq = bucket_get_irq(bucket_pa);
840 bucket_clear_chain_pa(bucket_pa);
841
842 generic_handle_irq(irq);
843
844 bucket_pa = next_pa;
845 }
846
847 restore_hardirq_stack(orig_sp);
848
849 irq_exit();
850 set_irq_regs(old_regs);
851 }
852
853 #ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
do_softirq_own_stack(void)854 void do_softirq_own_stack(void)
855 {
856 void *orig_sp, *sp = softirq_stack[smp_processor_id()];
857
858 sp += THREAD_SIZE - 192 - STACK_BIAS;
859
860 __asm__ __volatile__("mov %%sp, %0\n\t"
861 "mov %1, %%sp"
862 : "=&r" (orig_sp)
863 : "r" (sp));
864 __do_softirq();
865 __asm__ __volatile__("mov %0, %%sp"
866 : : "r" (orig_sp));
867 }
868 #endif
869
870 #ifdef CONFIG_HOTPLUG_CPU
fixup_irqs(void)871 void fixup_irqs(void)
872 {
873 unsigned int irq;
874
875 for (irq = 0; irq < NR_IRQS; irq++) {
876 struct irq_desc *desc = irq_to_desc(irq);
877 struct irq_data *data;
878 unsigned long flags;
879
880 if (!desc)
881 continue;
882 data = irq_desc_get_irq_data(desc);
883 raw_spin_lock_irqsave(&desc->lock, flags);
884 if (desc->action && !irqd_is_per_cpu(data)) {
885 if (data->chip->irq_set_affinity)
886 data->chip->irq_set_affinity(data,
887 irq_data_get_affinity_mask(data),
888 false);
889 }
890 raw_spin_unlock_irqrestore(&desc->lock, flags);
891 }
892
893 tick_ops->disable_irq();
894 }
895 #endif
896
897 struct sun5_timer {
898 u64 count0;
899 u64 limit0;
900 u64 count1;
901 u64 limit1;
902 };
903
904 static struct sun5_timer *prom_timers;
905 static u64 prom_limit0, prom_limit1;
906
map_prom_timers(void)907 static void map_prom_timers(void)
908 {
909 struct device_node *dp;
910 const unsigned int *addr;
911
912 /* PROM timer node hangs out in the top level of device siblings... */
913 dp = of_find_node_by_path("/");
914 dp = dp->child;
915 while (dp) {
916 if (of_node_name_eq(dp, "counter-timer"))
917 break;
918 dp = dp->sibling;
919 }
920
921 /* Assume if node is not present, PROM uses different tick mechanism
922 * which we should not care about.
923 */
924 if (!dp) {
925 prom_timers = (struct sun5_timer *) 0;
926 return;
927 }
928
929 /* If PROM is really using this, it must be mapped by him. */
930 addr = of_get_property(dp, "address", NULL);
931 if (!addr) {
932 prom_printf("PROM does not have timer mapped, trying to continue.\n");
933 prom_timers = (struct sun5_timer *) 0;
934 return;
935 }
936 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
937 }
938
kill_prom_timer(void)939 static void kill_prom_timer(void)
940 {
941 if (!prom_timers)
942 return;
943
944 /* Save them away for later. */
945 prom_limit0 = prom_timers->limit0;
946 prom_limit1 = prom_timers->limit1;
947
948 /* Just as in sun4c PROM uses timer which ticks at IRQ 14.
949 * We turn both off here just to be paranoid.
950 */
951 prom_timers->limit0 = 0;
952 prom_timers->limit1 = 0;
953
954 /* Wheee, eat the interrupt packet too... */
955 __asm__ __volatile__(
956 " mov 0x40, %%g2\n"
957 " ldxa [%%g0] %0, %%g1\n"
958 " ldxa [%%g2] %1, %%g1\n"
959 " stxa %%g0, [%%g0] %0\n"
960 " membar #Sync\n"
961 : /* no outputs */
962 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
963 : "g1", "g2");
964 }
965
init_irqwork_curcpu(void)966 void notrace init_irqwork_curcpu(void)
967 {
968 int cpu = hard_smp_processor_id();
969
970 trap_block[cpu].irq_worklist_pa = 0UL;
971 }
972
973 /* Please be very careful with register_one_mondo() and
974 * sun4v_register_mondo_queues().
975 *
976 * On SMP this gets invoked from the CPU trampoline before
977 * the cpu has fully taken over the trap table from OBP,
978 * and its kernel stack + %g6 thread register state is
979 * not fully cooked yet.
980 *
981 * Therefore you cannot make any OBP calls, not even prom_printf,
982 * from these two routines.
983 */
register_one_mondo(unsigned long paddr,unsigned long type,unsigned long qmask)984 static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
985 unsigned long qmask)
986 {
987 unsigned long num_entries = (qmask + 1) / 64;
988 unsigned long status;
989
990 status = sun4v_cpu_qconf(type, paddr, num_entries);
991 if (status != HV_EOK) {
992 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
993 "err %lu\n", type, paddr, num_entries, status);
994 prom_halt();
995 }
996 }
997
sun4v_register_mondo_queues(int this_cpu)998 void notrace sun4v_register_mondo_queues(int this_cpu)
999 {
1000 struct trap_per_cpu *tb = &trap_block[this_cpu];
1001
1002 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1003 tb->cpu_mondo_qmask);
1004 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1005 tb->dev_mondo_qmask);
1006 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1007 tb->resum_qmask);
1008 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1009 tb->nonresum_qmask);
1010 }
1011
1012 /* Each queue region must be a power of 2 multiple of 64 bytes in
1013 * size. The base real address must be aligned to the size of the
1014 * region. Thus, an 8KB queue must be 8KB aligned, for example.
1015 */
alloc_one_queue(unsigned long * pa_ptr,unsigned long qmask)1016 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1017 {
1018 unsigned long size = PAGE_ALIGN(qmask + 1);
1019 unsigned long order = get_order(size);
1020 unsigned long p;
1021
1022 p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1023 if (!p) {
1024 prom_printf("SUN4V: Error, cannot allocate queue.\n");
1025 prom_halt();
1026 }
1027
1028 *pa_ptr = __pa(p);
1029 }
1030
init_cpu_send_mondo_info(struct trap_per_cpu * tb)1031 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1032 {
1033 #ifdef CONFIG_SMP
1034 unsigned long page;
1035 void *mondo, *p;
1036
1037 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE);
1038
1039 /* Make sure mondo block is 64byte aligned */
1040 p = kzalloc(127, GFP_KERNEL);
1041 if (!p) {
1042 prom_printf("SUN4V: Error, cannot allocate mondo block.\n");
1043 prom_halt();
1044 }
1045 mondo = (void *)(((unsigned long)p + 63) & ~0x3f);
1046 tb->cpu_mondo_block_pa = __pa(mondo);
1047
1048 page = get_zeroed_page(GFP_KERNEL);
1049 if (!page) {
1050 prom_printf("SUN4V: Error, cannot allocate cpu list page.\n");
1051 prom_halt();
1052 }
1053
1054 tb->cpu_list_pa = __pa(page);
1055 #endif
1056 }
1057
1058 /* Allocate mondo and error queues for all possible cpus. */
sun4v_init_mondo_queues(void)1059 static void __init sun4v_init_mondo_queues(void)
1060 {
1061 int cpu;
1062
1063 for_each_possible_cpu(cpu) {
1064 struct trap_per_cpu *tb = &trap_block[cpu];
1065
1066 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1067 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1068 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1069 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1070 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1071 alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1072 tb->nonresum_qmask);
1073 }
1074 }
1075
init_send_mondo_info(void)1076 static void __init init_send_mondo_info(void)
1077 {
1078 int cpu;
1079
1080 for_each_possible_cpu(cpu) {
1081 struct trap_per_cpu *tb = &trap_block[cpu];
1082
1083 init_cpu_send_mondo_info(tb);
1084 }
1085 }
1086
1087 static struct irqaction timer_irq_action = {
1088 .name = "timer",
1089 };
1090
irq_ivector_init(void)1091 static void __init irq_ivector_init(void)
1092 {
1093 unsigned long size, order;
1094 unsigned int ivecs;
1095
1096 /* If we are doing cookie only VIRQs then we do not need the ivector
1097 * table to process interrupts.
1098 */
1099 if (sun4v_cookie_only_virqs())
1100 return;
1101
1102 ivecs = size_nr_ivec();
1103 size = sizeof(struct ino_bucket) * ivecs;
1104 order = get_order(size);
1105 ivector_table = (struct ino_bucket *)
1106 __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1107 if (!ivector_table) {
1108 prom_printf("Fatal error, cannot allocate ivector_table\n");
1109 prom_halt();
1110 }
1111 __flush_dcache_range((unsigned long) ivector_table,
1112 ((unsigned long) ivector_table) + size);
1113
1114 ivector_table_pa = __pa(ivector_table);
1115 }
1116
1117 /* Only invoked on boot processor.*/
init_IRQ(void)1118 void __init init_IRQ(void)
1119 {
1120 irq_init_hv();
1121 irq_ivector_init();
1122 map_prom_timers();
1123 kill_prom_timer();
1124
1125 if (tlb_type == hypervisor)
1126 sun4v_init_mondo_queues();
1127
1128 init_send_mondo_info();
1129
1130 if (tlb_type == hypervisor) {
1131 /* Load up the boot cpu's entries. */
1132 sun4v_register_mondo_queues(hard_smp_processor_id());
1133 }
1134
1135 /* We need to clear any IRQ's pending in the soft interrupt
1136 * registers, a spurious one could be left around from the
1137 * PROM timer which we just disabled.
1138 */
1139 clear_softint(get_softint());
1140
1141 /* Now that ivector table is initialized, it is safe
1142 * to receive IRQ vector traps. We will normally take
1143 * one or two right now, in case some device PROM used
1144 * to boot us wants to speak to us. We just ignore them.
1145 */
1146 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1147 "or %%g1, %0, %%g1\n\t"
1148 "wrpr %%g1, 0x0, %%pstate"
1149 : /* No outputs */
1150 : "i" (PSTATE_IE)
1151 : "g1");
1152
1153 irq_to_desc(0)->action = &timer_irq_action;
1154 }
1155