1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance event support for s390x - CPU-measurement Counter Facility
4  *
5  *  Copyright IBM Corp. 2012, 2023
6  *  Author(s): Hendrik Brueckner <[email protected]>
7  *	       Thomas Richter <[email protected]>
8  */
9 #define KMSG_COMPONENT	"cpum_cf"
10 #define pr_fmt(fmt)	KMSG_COMPONENT ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/percpu.h>
15 #include <linux/notifier.h>
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/miscdevice.h>
19 #include <linux/perf_event.h>
20 
21 #include <asm/cpu_mf.h>
22 #include <asm/hwctrset.h>
23 #include <asm/debug.h>
24 
25 /* Perf PMU definitions for the counter facility */
26 #define PERF_CPUM_CF_MAX_CTR		0xffffUL  /* Max ctr for ECCTR */
27 #define PERF_EVENT_CPUM_CF_DIAG		0xBC000UL /* Event: Counter sets */
28 
29 enum cpumf_ctr_set {
30 	CPUMF_CTR_SET_BASIC   = 0,    /* Basic Counter Set */
31 	CPUMF_CTR_SET_USER    = 1,    /* Problem-State Counter Set */
32 	CPUMF_CTR_SET_CRYPTO  = 2,    /* Crypto-Activity Counter Set */
33 	CPUMF_CTR_SET_EXT     = 3,    /* Extended Counter Set */
34 	CPUMF_CTR_SET_MT_DIAG = 4,    /* MT-diagnostic Counter Set */
35 
36 	/* Maximum number of counter sets */
37 	CPUMF_CTR_SET_MAX,
38 };
39 
40 #define CPUMF_LCCTL_ENABLE_SHIFT    16
41 #define CPUMF_LCCTL_ACTCTL_SHIFT     0
42 
ctr_set_enable(u64 * state,u64 ctrsets)43 static inline void ctr_set_enable(u64 *state, u64 ctrsets)
44 {
45 	*state |= ctrsets << CPUMF_LCCTL_ENABLE_SHIFT;
46 }
47 
ctr_set_disable(u64 * state,u64 ctrsets)48 static inline void ctr_set_disable(u64 *state, u64 ctrsets)
49 {
50 	*state &= ~(ctrsets << CPUMF_LCCTL_ENABLE_SHIFT);
51 }
52 
ctr_set_start(u64 * state,u64 ctrsets)53 static inline void ctr_set_start(u64 *state, u64 ctrsets)
54 {
55 	*state |= ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT;
56 }
57 
ctr_set_stop(u64 * state,u64 ctrsets)58 static inline void ctr_set_stop(u64 *state, u64 ctrsets)
59 {
60 	*state &= ~(ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT);
61 }
62 
ctr_stcctm(enum cpumf_ctr_set set,u64 range,u64 * dest)63 static inline int ctr_stcctm(enum cpumf_ctr_set set, u64 range, u64 *dest)
64 {
65 	switch (set) {
66 	case CPUMF_CTR_SET_BASIC:
67 		return stcctm(BASIC, range, dest);
68 	case CPUMF_CTR_SET_USER:
69 		return stcctm(PROBLEM_STATE, range, dest);
70 	case CPUMF_CTR_SET_CRYPTO:
71 		return stcctm(CRYPTO_ACTIVITY, range, dest);
72 	case CPUMF_CTR_SET_EXT:
73 		return stcctm(EXTENDED, range, dest);
74 	case CPUMF_CTR_SET_MT_DIAG:
75 		return stcctm(MT_DIAG_CLEARING, range, dest);
76 	case CPUMF_CTR_SET_MAX:
77 		return 3;
78 	}
79 	return 3;
80 }
81 
82 struct cpu_cf_events {
83 	refcount_t refcnt;		/* Reference count */
84 	atomic_t		ctr_set[CPUMF_CTR_SET_MAX];
85 	u64			state;		/* For perf_event_open SVC */
86 	u64			dev_state;	/* For /dev/hwctr */
87 	unsigned int		flags;
88 	size_t used;			/* Bytes used in data */
89 	size_t usedss;			/* Bytes used in start/stop */
90 	unsigned char start[PAGE_SIZE];	/* Counter set at event add */
91 	unsigned char stop[PAGE_SIZE];	/* Counter set at event delete */
92 	unsigned char data[PAGE_SIZE];	/* Counter set at /dev/hwctr */
93 	unsigned int sets;		/* # Counter set saved in memory */
94 };
95 
96 static unsigned int cfdiag_cpu_speed;	/* CPU speed for CF_DIAG trailer */
97 static debug_info_t *cf_dbg;
98 
99 /*
100  * The CPU Measurement query counter information instruction contains
101  * information which varies per machine generation, but is constant and
102  * does not change when running on a particular machine, such as counter
103  * first and second version number. This is needed to determine the size
104  * of counter sets. Extract this information at device driver initialization.
105  */
106 static struct cpumf_ctr_info	cpumf_ctr_info;
107 
108 struct cpu_cf_ptr {
109 	struct cpu_cf_events *cpucf;
110 };
111 
112 static struct cpu_cf_root {		/* Anchor to per CPU data */
113 	refcount_t refcnt;		/* Overall active events */
114 	struct cpu_cf_ptr __percpu *cfptr;
115 } cpu_cf_root;
116 
117 /*
118  * Serialize event initialization and event removal. Both are called from
119  * user space in task context with perf_event_open() and close()
120  * system calls.
121  *
122  * This mutex serializes functions cpum_cf_alloc_cpu() called at event
123  * initialization via cpumf_pmu_event_init() and function cpum_cf_free_cpu()
124  * called at event removal via call back function hw_perf_event_destroy()
125  * when the event is deleted. They are serialized to enforce correct
126  * bookkeeping of pointer and reference counts anchored by
127  * struct cpu_cf_root and the access to cpu_cf_root::refcnt and the
128  * per CPU pointers stored in cpu_cf_root::cfptr.
129  */
130 static DEFINE_MUTEX(pmc_reserve_mutex);
131 
132 /*
133  * Get pointer to per-cpu structure.
134  *
135  * Function get_cpu_cfhw() is called from
136  * - cfset_copy_all(): This function is protected by cpus_read_lock(), so
137  *   CPU hot plug remove can not happen. Event removal requires a close()
138  *   first.
139  *
140  * Function this_cpu_cfhw() is called from perf common code functions:
141  * - pmu_{en|dis}able(), pmu_{add|del}()and pmu_{start|stop}():
142  *   All functions execute with interrupts disabled on that particular CPU.
143  * - cfset_ioctl_{on|off}, cfset_cpu_read(): see comment cfset_copy_all().
144  *
145  * Therefore it is safe to access the CPU specific pointer to the event.
146  */
get_cpu_cfhw(int cpu)147 static struct cpu_cf_events *get_cpu_cfhw(int cpu)
148 {
149 	struct cpu_cf_ptr __percpu *p = cpu_cf_root.cfptr;
150 
151 	if (p) {
152 		struct cpu_cf_ptr *q = per_cpu_ptr(p, cpu);
153 
154 		return q->cpucf;
155 	}
156 	return NULL;
157 }
158 
this_cpu_cfhw(void)159 static struct cpu_cf_events *this_cpu_cfhw(void)
160 {
161 	return get_cpu_cfhw(smp_processor_id());
162 }
163 
164 /* Disable counter sets on dedicated CPU */
cpum_cf_reset_cpu(void * flags)165 static void cpum_cf_reset_cpu(void *flags)
166 {
167 	lcctl(0);
168 }
169 
170 /* Free per CPU data when the last event is removed. */
cpum_cf_free_root(void)171 static void cpum_cf_free_root(void)
172 {
173 	if (!refcount_dec_and_test(&cpu_cf_root.refcnt))
174 		return;
175 	free_percpu(cpu_cf_root.cfptr);
176 	cpu_cf_root.cfptr = NULL;
177 	irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
178 	on_each_cpu(cpum_cf_reset_cpu, NULL, 1);
179 	debug_sprintf_event(cf_dbg, 4, "%s root.refcnt %u cfptr %d\n",
180 			    __func__, refcount_read(&cpu_cf_root.refcnt),
181 			    !cpu_cf_root.cfptr);
182 }
183 
184 /*
185  * On initialization of first event also allocate per CPU data dynamically.
186  * Start with an array of pointers, the array size is the maximum number of
187  * CPUs possible, which might be larger than the number of CPUs currently
188  * online.
189  */
cpum_cf_alloc_root(void)190 static int cpum_cf_alloc_root(void)
191 {
192 	int rc = 0;
193 
194 	if (refcount_inc_not_zero(&cpu_cf_root.refcnt))
195 		return rc;
196 
197 	/* The memory is already zeroed. */
198 	cpu_cf_root.cfptr = alloc_percpu(struct cpu_cf_ptr);
199 	if (cpu_cf_root.cfptr) {
200 		refcount_set(&cpu_cf_root.refcnt, 1);
201 		on_each_cpu(cpum_cf_reset_cpu, NULL, 1);
202 		irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
203 	} else {
204 		rc = -ENOMEM;
205 	}
206 
207 	return rc;
208 }
209 
210 /* Free CPU counter data structure for a PMU */
cpum_cf_free_cpu(int cpu)211 static void cpum_cf_free_cpu(int cpu)
212 {
213 	struct cpu_cf_events *cpuhw;
214 	struct cpu_cf_ptr *p;
215 
216 	mutex_lock(&pmc_reserve_mutex);
217 	/*
218 	 * When invoked via CPU hotplug handler, there might be no events
219 	 * installed or that particular CPU might not have an
220 	 * event installed. This anchor pointer can be NULL!
221 	 */
222 	if (!cpu_cf_root.cfptr)
223 		goto out;
224 	p = per_cpu_ptr(cpu_cf_root.cfptr, cpu);
225 	cpuhw = p->cpucf;
226 	/*
227 	 * Might be zero when called from CPU hotplug handler and no event
228 	 * installed on that CPU, but on different CPUs.
229 	 */
230 	if (!cpuhw)
231 		goto out;
232 
233 	if (refcount_dec_and_test(&cpuhw->refcnt)) {
234 		kfree(cpuhw);
235 		p->cpucf = NULL;
236 	}
237 	cpum_cf_free_root();
238 out:
239 	mutex_unlock(&pmc_reserve_mutex);
240 }
241 
242 /* Allocate CPU counter data structure for a PMU. Called under mutex lock. */
cpum_cf_alloc_cpu(int cpu)243 static int cpum_cf_alloc_cpu(int cpu)
244 {
245 	struct cpu_cf_events *cpuhw;
246 	struct cpu_cf_ptr *p;
247 	int rc;
248 
249 	mutex_lock(&pmc_reserve_mutex);
250 	rc = cpum_cf_alloc_root();
251 	if (rc)
252 		goto unlock;
253 	p = per_cpu_ptr(cpu_cf_root.cfptr, cpu);
254 	cpuhw = p->cpucf;
255 
256 	if (!cpuhw) {
257 		cpuhw = kzalloc(sizeof(*cpuhw), GFP_KERNEL);
258 		if (cpuhw) {
259 			p->cpucf = cpuhw;
260 			refcount_set(&cpuhw->refcnt, 1);
261 		} else {
262 			rc = -ENOMEM;
263 		}
264 	} else {
265 		refcount_inc(&cpuhw->refcnt);
266 	}
267 	if (rc) {
268 		/*
269 		 * Error in allocation of event, decrement anchor. Since
270 		 * cpu_cf_event in not created, its destroy() function is not
271 		 * invoked. Adjust the reference counter for the anchor.
272 		 */
273 		cpum_cf_free_root();
274 	}
275 unlock:
276 	mutex_unlock(&pmc_reserve_mutex);
277 	return rc;
278 }
279 
280 /*
281  * Create/delete per CPU data structures for /dev/hwctr interface and events
282  * created by perf_event_open().
283  * If cpu is -1, track task on all available CPUs. This requires
284  * allocation of hardware data structures for all CPUs. This setup handles
285  * perf_event_open() with task context and /dev/hwctr interface.
286  * If cpu is non-zero install event on this CPU only. This setup handles
287  * perf_event_open() with CPU context.
288  */
cpum_cf_alloc(int cpu)289 static int cpum_cf_alloc(int cpu)
290 {
291 	cpumask_var_t mask;
292 	int rc;
293 
294 	if (cpu == -1) {
295 		if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
296 			return -ENOMEM;
297 		for_each_online_cpu(cpu) {
298 			rc = cpum_cf_alloc_cpu(cpu);
299 			if (rc) {
300 				for_each_cpu(cpu, mask)
301 					cpum_cf_free_cpu(cpu);
302 				break;
303 			}
304 			cpumask_set_cpu(cpu, mask);
305 		}
306 		free_cpumask_var(mask);
307 	} else {
308 		rc = cpum_cf_alloc_cpu(cpu);
309 	}
310 	return rc;
311 }
312 
cpum_cf_free(int cpu)313 static void cpum_cf_free(int cpu)
314 {
315 	if (cpu == -1) {
316 		for_each_online_cpu(cpu)
317 			cpum_cf_free_cpu(cpu);
318 	} else {
319 		cpum_cf_free_cpu(cpu);
320 	}
321 }
322 
323 #define	CF_DIAG_CTRSET_DEF		0xfeef	/* Counter set header mark */
324 						/* interval in seconds */
325 
326 /* Counter sets are stored as data stream in a page sized memory buffer and
327  * exported to user space via raw data attached to the event sample data.
328  * Each counter set starts with an eight byte header consisting of:
329  * - a two byte eye catcher (0xfeef)
330  * - a one byte counter set number
331  * - a two byte counter set size (indicates the number of counters in this set)
332  * - a three byte reserved value (must be zero) to make the header the same
333  *   size as a counter value.
334  * All counter values are eight byte in size.
335  *
336  * All counter sets are followed by a 64 byte trailer.
337  * The trailer consists of a:
338  * - flag field indicating valid fields when corresponding bit set
339  * - the counter facility first and second version number
340  * - the CPU speed if nonzero
341  * - the time stamp the counter sets have been collected
342  * - the time of day (TOD) base value
343  * - the machine type.
344  *
345  * The counter sets are saved when the process is prepared to be executed on a
346  * CPU and saved again when the process is going to be removed from a CPU.
347  * The difference of both counter sets are calculated and stored in the event
348  * sample data area.
349  */
350 struct cf_ctrset_entry {	/* CPU-M CF counter set entry (8 byte) */
351 	unsigned int def:16;	/* 0-15  Data Entry Format */
352 	unsigned int set:16;	/* 16-31 Counter set identifier */
353 	unsigned int ctr:16;	/* 32-47 Number of stored counters */
354 	unsigned int res1:16;	/* 48-63 Reserved */
355 };
356 
357 struct cf_trailer_entry {	/* CPU-M CF_DIAG trailer (64 byte) */
358 	/* 0 - 7 */
359 	union {
360 		struct {
361 			unsigned int clock_base:1;	/* TOD clock base set */
362 			unsigned int speed:1;		/* CPU speed set */
363 			/* Measurement alerts */
364 			unsigned int mtda:1;	/* Loss of MT ctr. data alert */
365 			unsigned int caca:1;	/* Counter auth. change alert */
366 			unsigned int lcda:1;	/* Loss of counter data alert */
367 		};
368 		unsigned long flags;	/* 0-63    All indicators */
369 	};
370 	/* 8 - 15 */
371 	unsigned int cfvn:16;			/* 64-79   Ctr First Version */
372 	unsigned int csvn:16;			/* 80-95   Ctr Second Version */
373 	unsigned int cpu_speed:32;		/* 96-127  CPU speed */
374 	/* 16 - 23 */
375 	unsigned long timestamp;		/* 128-191 Timestamp (TOD) */
376 	/* 24 - 55 */
377 	union {
378 		struct {
379 			unsigned long progusage1;
380 			unsigned long progusage2;
381 			unsigned long progusage3;
382 			unsigned long tod_base;
383 		};
384 		unsigned long progusage[4];
385 	};
386 	/* 56 - 63 */
387 	unsigned int mach_type:16;		/* Machine type */
388 	unsigned int res1:16;			/* Reserved */
389 	unsigned int res2:32;			/* Reserved */
390 };
391 
392 /* Create the trailer data at the end of a page. */
cfdiag_trailer(struct cf_trailer_entry * te)393 static void cfdiag_trailer(struct cf_trailer_entry *te)
394 {
395 	struct cpuid cpuid;
396 
397 	te->cfvn = cpumf_ctr_info.cfvn;		/* Counter version numbers */
398 	te->csvn = cpumf_ctr_info.csvn;
399 
400 	get_cpu_id(&cpuid);			/* Machine type */
401 	te->mach_type = cpuid.machine;
402 	te->cpu_speed = cfdiag_cpu_speed;
403 	if (te->cpu_speed)
404 		te->speed = 1;
405 	te->clock_base = 1;			/* Save clock base */
406 	te->tod_base = tod_clock_base.tod;
407 	te->timestamp = get_tod_clock_fast();
408 }
409 
410 /*
411  * The number of counters per counter set varies between machine generations,
412  * but is constant when running on a particular machine generation.
413  * Determine each counter set size at device driver initialization and
414  * retrieve it later.
415  */
416 static size_t cpumf_ctr_setsizes[CPUMF_CTR_SET_MAX];
cpum_cf_make_setsize(enum cpumf_ctr_set ctrset)417 static void cpum_cf_make_setsize(enum cpumf_ctr_set ctrset)
418 {
419 	size_t ctrset_size = 0;
420 
421 	switch (ctrset) {
422 	case CPUMF_CTR_SET_BASIC:
423 		if (cpumf_ctr_info.cfvn >= 1)
424 			ctrset_size = 6;
425 		break;
426 	case CPUMF_CTR_SET_USER:
427 		if (cpumf_ctr_info.cfvn == 1)
428 			ctrset_size = 6;
429 		else if (cpumf_ctr_info.cfvn >= 3)
430 			ctrset_size = 2;
431 		break;
432 	case CPUMF_CTR_SET_CRYPTO:
433 		if (cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5)
434 			ctrset_size = 16;
435 		else if (cpumf_ctr_info.csvn >= 6)
436 			ctrset_size = 20;
437 		break;
438 	case CPUMF_CTR_SET_EXT:
439 		if (cpumf_ctr_info.csvn == 1)
440 			ctrset_size = 32;
441 		else if (cpumf_ctr_info.csvn == 2)
442 			ctrset_size = 48;
443 		else if (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5)
444 			ctrset_size = 128;
445 		else if (cpumf_ctr_info.csvn == 6 || cpumf_ctr_info.csvn == 7)
446 			ctrset_size = 160;
447 		break;
448 	case CPUMF_CTR_SET_MT_DIAG:
449 		if (cpumf_ctr_info.csvn > 3)
450 			ctrset_size = 48;
451 		break;
452 	case CPUMF_CTR_SET_MAX:
453 		break;
454 	}
455 	cpumf_ctr_setsizes[ctrset] = ctrset_size;
456 }
457 
458 /*
459  * Return the maximum possible counter set size (in number of 8 byte counters)
460  * depending on type and model number.
461  */
cpum_cf_read_setsize(enum cpumf_ctr_set ctrset)462 static size_t cpum_cf_read_setsize(enum cpumf_ctr_set ctrset)
463 {
464 	return cpumf_ctr_setsizes[ctrset];
465 }
466 
467 /* Read a counter set. The counter set number determines the counter set and
468  * the CPUM-CF first and second version number determine the number of
469  * available counters in each counter set.
470  * Each counter set starts with header containing the counter set number and
471  * the number of eight byte counters.
472  *
473  * The functions returns the number of bytes occupied by this counter set
474  * including the header.
475  * If there is no counter in the counter set, this counter set is useless and
476  * zero is returned on this case.
477  *
478  * Note that the counter sets may not be enabled or active and the stcctm
479  * instruction might return error 3. Depending on error_ok value this is ok,
480  * for example when called from cpumf_pmu_start() call back function.
481  */
cfdiag_getctrset(struct cf_ctrset_entry * ctrdata,int ctrset,size_t room,bool error_ok)482 static size_t cfdiag_getctrset(struct cf_ctrset_entry *ctrdata, int ctrset,
483 			       size_t room, bool error_ok)
484 {
485 	size_t ctrset_size, need = 0;
486 	int rc = 3;				/* Assume write failure */
487 
488 	ctrdata->def = CF_DIAG_CTRSET_DEF;
489 	ctrdata->set = ctrset;
490 	ctrdata->res1 = 0;
491 	ctrset_size = cpum_cf_read_setsize(ctrset);
492 
493 	if (ctrset_size) {			/* Save data */
494 		need = ctrset_size * sizeof(u64) + sizeof(*ctrdata);
495 		if (need <= room) {
496 			rc = ctr_stcctm(ctrset, ctrset_size,
497 					(u64 *)(ctrdata + 1));
498 		}
499 		if (rc != 3 || error_ok)
500 			ctrdata->ctr = ctrset_size;
501 		else
502 			need = 0;
503 	}
504 
505 	return need;
506 }
507 
508 static const u64 cpumf_ctr_ctl[CPUMF_CTR_SET_MAX] = {
509 	[CPUMF_CTR_SET_BASIC]	= 0x02,
510 	[CPUMF_CTR_SET_USER]	= 0x04,
511 	[CPUMF_CTR_SET_CRYPTO]	= 0x08,
512 	[CPUMF_CTR_SET_EXT]	= 0x01,
513 	[CPUMF_CTR_SET_MT_DIAG] = 0x20,
514 };
515 
516 /* Read out all counter sets and save them in the provided data buffer.
517  * The last 64 byte host an artificial trailer entry.
518  */
cfdiag_getctr(void * data,size_t sz,unsigned long auth,bool error_ok)519 static size_t cfdiag_getctr(void *data, size_t sz, unsigned long auth,
520 			    bool error_ok)
521 {
522 	struct cf_trailer_entry *trailer;
523 	size_t offset = 0, done;
524 	int i;
525 
526 	memset(data, 0, sz);
527 	sz -= sizeof(*trailer);		/* Always room for trailer */
528 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
529 		struct cf_ctrset_entry *ctrdata = data + offset;
530 
531 		if (!(auth & cpumf_ctr_ctl[i]))
532 			continue;	/* Counter set not authorized */
533 
534 		done = cfdiag_getctrset(ctrdata, i, sz - offset, error_ok);
535 		offset += done;
536 	}
537 	trailer = data + offset;
538 	cfdiag_trailer(trailer);
539 	return offset + sizeof(*trailer);
540 }
541 
542 /* Calculate the difference for each counter in a counter set. */
cfdiag_diffctrset(u64 * pstart,u64 * pstop,int counters)543 static void cfdiag_diffctrset(u64 *pstart, u64 *pstop, int counters)
544 {
545 	for (; --counters >= 0; ++pstart, ++pstop)
546 		if (*pstop >= *pstart)
547 			*pstop -= *pstart;
548 		else
549 			*pstop = *pstart - *pstop + 1;
550 }
551 
552 /* Scan the counter sets and calculate the difference of each counter
553  * in each set. The result is the increment of each counter during the
554  * period the counter set has been activated.
555  *
556  * Return true on success.
557  */
cfdiag_diffctr(struct cpu_cf_events * cpuhw,unsigned long auth)558 static int cfdiag_diffctr(struct cpu_cf_events *cpuhw, unsigned long auth)
559 {
560 	struct cf_trailer_entry *trailer_start, *trailer_stop;
561 	struct cf_ctrset_entry *ctrstart, *ctrstop;
562 	size_t offset = 0;
563 	int i;
564 
565 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
566 		ctrstart = (struct cf_ctrset_entry *)(cpuhw->start + offset);
567 		ctrstop = (struct cf_ctrset_entry *)(cpuhw->stop + offset);
568 
569 		/* Counter set not authorized */
570 		if (!(auth & cpumf_ctr_ctl[i]))
571 			continue;
572 		/* Counter set size zero was not saved */
573 		if (!cpum_cf_read_setsize(i))
574 			continue;
575 
576 		if (memcmp(ctrstop, ctrstart, sizeof(*ctrstop))) {
577 			pr_err_once("cpum_cf_diag counter set compare error "
578 				    "in set %i\n", ctrstart->set);
579 			return 0;
580 		}
581 		if (ctrstart->def == CF_DIAG_CTRSET_DEF) {
582 			cfdiag_diffctrset((u64 *)(ctrstart + 1),
583 					  (u64 *)(ctrstop + 1), ctrstart->ctr);
584 			offset += ctrstart->ctr * sizeof(u64) +
585 							sizeof(*ctrstart);
586 		}
587 	}
588 
589 	/* Save time_stamp from start of event in stop's trailer */
590 	trailer_start = (struct cf_trailer_entry *)(cpuhw->start + offset);
591 	trailer_stop = (struct cf_trailer_entry *)(cpuhw->stop + offset);
592 	trailer_stop->progusage[0] = trailer_start->timestamp;
593 
594 	return 1;
595 }
596 
get_counter_set(u64 event)597 static enum cpumf_ctr_set get_counter_set(u64 event)
598 {
599 	int set = CPUMF_CTR_SET_MAX;
600 
601 	if (event < 32)
602 		set = CPUMF_CTR_SET_BASIC;
603 	else if (event < 64)
604 		set = CPUMF_CTR_SET_USER;
605 	else if (event < 128)
606 		set = CPUMF_CTR_SET_CRYPTO;
607 	else if (event < 288)
608 		set = CPUMF_CTR_SET_EXT;
609 	else if (event >= 448 && event < 496)
610 		set = CPUMF_CTR_SET_MT_DIAG;
611 
612 	return set;
613 }
614 
validate_ctr_version(const u64 config,enum cpumf_ctr_set set)615 static int validate_ctr_version(const u64 config, enum cpumf_ctr_set set)
616 {
617 	u16 mtdiag_ctl;
618 	int err = 0;
619 
620 	/* check required version for counter sets */
621 	switch (set) {
622 	case CPUMF_CTR_SET_BASIC:
623 	case CPUMF_CTR_SET_USER:
624 		if (cpumf_ctr_info.cfvn < 1)
625 			err = -EOPNOTSUPP;
626 		break;
627 	case CPUMF_CTR_SET_CRYPTO:
628 		if ((cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5 &&
629 		     config > 79) || (cpumf_ctr_info.csvn >= 6 && config > 83))
630 			err = -EOPNOTSUPP;
631 		break;
632 	case CPUMF_CTR_SET_EXT:
633 		if (cpumf_ctr_info.csvn < 1)
634 			err = -EOPNOTSUPP;
635 		if ((cpumf_ctr_info.csvn == 1 && config > 159) ||
636 		    (cpumf_ctr_info.csvn == 2 && config > 175) ||
637 		    (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5 &&
638 		     config > 255) ||
639 		    (cpumf_ctr_info.csvn >= 6 && config > 287))
640 			err = -EOPNOTSUPP;
641 		break;
642 	case CPUMF_CTR_SET_MT_DIAG:
643 		if (cpumf_ctr_info.csvn <= 3)
644 			err = -EOPNOTSUPP;
645 		/*
646 		 * MT-diagnostic counters are read-only.  The counter set
647 		 * is automatically enabled and activated on all CPUs with
648 		 * multithreading (SMT).  Deactivation of multithreading
649 		 * also disables the counter set.  State changes are ignored
650 		 * by lcctl().	Because Linux controls SMT enablement through
651 		 * a kernel parameter only, the counter set is either disabled
652 		 * or enabled and active.
653 		 *
654 		 * Thus, the counters can only be used if SMT is on and the
655 		 * counter set is enabled and active.
656 		 */
657 		mtdiag_ctl = cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG];
658 		if (!((cpumf_ctr_info.auth_ctl & mtdiag_ctl) &&
659 		      (cpumf_ctr_info.enable_ctl & mtdiag_ctl) &&
660 		      (cpumf_ctr_info.act_ctl & mtdiag_ctl)))
661 			err = -EOPNOTSUPP;
662 		break;
663 	case CPUMF_CTR_SET_MAX:
664 		err = -EOPNOTSUPP;
665 	}
666 
667 	return err;
668 }
669 
670 /*
671  * Change the CPUMF state to active.
672  * Enable and activate the CPU-counter sets according
673  * to the per-cpu control state.
674  */
cpumf_pmu_enable(struct pmu * pmu)675 static void cpumf_pmu_enable(struct pmu *pmu)
676 {
677 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
678 	int err;
679 
680 	if (!cpuhw || (cpuhw->flags & PMU_F_ENABLED))
681 		return;
682 
683 	err = lcctl(cpuhw->state | cpuhw->dev_state);
684 	if (err)
685 		pr_err("Enabling the performance measuring unit failed with rc=%x\n", err);
686 	else
687 		cpuhw->flags |= PMU_F_ENABLED;
688 }
689 
690 /*
691  * Change the CPUMF state to inactive.
692  * Disable and enable (inactive) the CPU-counter sets according
693  * to the per-cpu control state.
694  */
cpumf_pmu_disable(struct pmu * pmu)695 static void cpumf_pmu_disable(struct pmu *pmu)
696 {
697 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
698 	u64 inactive;
699 	int err;
700 
701 	if (!cpuhw || !(cpuhw->flags & PMU_F_ENABLED))
702 		return;
703 
704 	inactive = cpuhw->state & ~((1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1);
705 	inactive |= cpuhw->dev_state;
706 	err = lcctl(inactive);
707 	if (err)
708 		pr_err("Disabling the performance measuring unit failed with rc=%x\n", err);
709 	else
710 		cpuhw->flags &= ~PMU_F_ENABLED;
711 }
712 
713 /* Release the PMU if event is the last perf event */
hw_perf_event_destroy(struct perf_event * event)714 static void hw_perf_event_destroy(struct perf_event *event)
715 {
716 	cpum_cf_free(event->cpu);
717 }
718 
719 /* CPUMF <-> perf event mappings for kernel+userspace (basic set) */
720 static const int cpumf_generic_events_basic[] = {
721 	[PERF_COUNT_HW_CPU_CYCLES]	    = 0,
722 	[PERF_COUNT_HW_INSTRUCTIONS]	    = 1,
723 	[PERF_COUNT_HW_CACHE_REFERENCES]    = -1,
724 	[PERF_COUNT_HW_CACHE_MISSES]	    = -1,
725 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1,
726 	[PERF_COUNT_HW_BRANCH_MISSES]	    = -1,
727 	[PERF_COUNT_HW_BUS_CYCLES]	    = -1,
728 };
729 /* CPUMF <-> perf event mappings for userspace (problem-state set) */
730 static const int cpumf_generic_events_user[] = {
731 	[PERF_COUNT_HW_CPU_CYCLES]	    = 32,
732 	[PERF_COUNT_HW_INSTRUCTIONS]	    = 33,
733 	[PERF_COUNT_HW_CACHE_REFERENCES]    = -1,
734 	[PERF_COUNT_HW_CACHE_MISSES]	    = -1,
735 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1,
736 	[PERF_COUNT_HW_BRANCH_MISSES]	    = -1,
737 	[PERF_COUNT_HW_BUS_CYCLES]	    = -1,
738 };
739 
is_userspace_event(u64 ev)740 static int is_userspace_event(u64 ev)
741 {
742 	return cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev ||
743 	       cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev;
744 }
745 
__hw_perf_event_init(struct perf_event * event,unsigned int type)746 static int __hw_perf_event_init(struct perf_event *event, unsigned int type)
747 {
748 	struct perf_event_attr *attr = &event->attr;
749 	struct hw_perf_event *hwc = &event->hw;
750 	enum cpumf_ctr_set set;
751 	u64 ev;
752 
753 	switch (type) {
754 	case PERF_TYPE_RAW:
755 		/* Raw events are used to access counters directly,
756 		 * hence do not permit excludes */
757 		if (attr->exclude_kernel || attr->exclude_user ||
758 		    attr->exclude_hv)
759 			return -EOPNOTSUPP;
760 		ev = attr->config;
761 		break;
762 
763 	case PERF_TYPE_HARDWARE:
764 		if (is_sampling_event(event))	/* No sampling support */
765 			return -ENOENT;
766 		ev = attr->config;
767 		if (!attr->exclude_user && attr->exclude_kernel) {
768 			/*
769 			 * Count user space (problem-state) only
770 			 * Handle events 32 and 33 as 0:u and 1:u
771 			 */
772 			if (!is_userspace_event(ev)) {
773 				if (ev >= ARRAY_SIZE(cpumf_generic_events_user))
774 					return -EOPNOTSUPP;
775 				ev = cpumf_generic_events_user[ev];
776 			}
777 		} else if (!attr->exclude_kernel && attr->exclude_user) {
778 			/* No support for kernel space counters only */
779 			return -EOPNOTSUPP;
780 		} else {
781 			/* Count user and kernel space, incl. events 32 + 33 */
782 			if (!is_userspace_event(ev)) {
783 				if (ev >= ARRAY_SIZE(cpumf_generic_events_basic))
784 					return -EOPNOTSUPP;
785 				ev = cpumf_generic_events_basic[ev];
786 			}
787 		}
788 		break;
789 
790 	default:
791 		return -ENOENT;
792 	}
793 
794 	if (ev == -1)
795 		return -ENOENT;
796 
797 	if (ev > PERF_CPUM_CF_MAX_CTR)
798 		return -ENOENT;
799 
800 	/* Obtain the counter set to which the specified counter belongs */
801 	set = get_counter_set(ev);
802 	switch (set) {
803 	case CPUMF_CTR_SET_BASIC:
804 	case CPUMF_CTR_SET_USER:
805 	case CPUMF_CTR_SET_CRYPTO:
806 	case CPUMF_CTR_SET_EXT:
807 	case CPUMF_CTR_SET_MT_DIAG:
808 		/*
809 		 * Use the hardware perf event structure to store the
810 		 * counter number in the 'config' member and the counter
811 		 * set number in the 'config_base' as bit mask.
812 		 * It is later used to enable/disable the counter(s).
813 		 */
814 		hwc->config = ev;
815 		hwc->config_base = cpumf_ctr_ctl[set];
816 		break;
817 	case CPUMF_CTR_SET_MAX:
818 		/* The counter could not be associated to a counter set */
819 		return -EINVAL;
820 	}
821 
822 	/* Initialize for using the CPU-measurement counter facility */
823 	if (cpum_cf_alloc(event->cpu))
824 		return -ENOMEM;
825 	event->destroy = hw_perf_event_destroy;
826 
827 	/*
828 	 * Finally, validate version and authorization of the counter set.
829 	 * If the particular CPU counter set is not authorized,
830 	 * return with -ENOENT in order to fall back to other
831 	 * PMUs that might suffice the event request.
832 	 */
833 	if (!(hwc->config_base & cpumf_ctr_info.auth_ctl))
834 		return -ENOENT;
835 	return validate_ctr_version(hwc->config, set);
836 }
837 
838 /* Events CPU_CYCLES and INSTRUCTIONS can be submitted with two different
839  * attribute::type values:
840  * - PERF_TYPE_HARDWARE:
841  * - pmu->type:
842  * Handle both type of invocations identical. They address the same hardware.
843  * The result is different when event modifiers exclude_kernel and/or
844  * exclude_user are also set.
845  */
cpumf_pmu_event_type(struct perf_event * event)846 static int cpumf_pmu_event_type(struct perf_event *event)
847 {
848 	u64 ev = event->attr.config;
849 
850 	if (cpumf_generic_events_basic[PERF_COUNT_HW_CPU_CYCLES] == ev ||
851 	    cpumf_generic_events_basic[PERF_COUNT_HW_INSTRUCTIONS] == ev ||
852 	    cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev ||
853 	    cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev)
854 		return PERF_TYPE_HARDWARE;
855 	return PERF_TYPE_RAW;
856 }
857 
cpumf_pmu_event_init(struct perf_event * event)858 static int cpumf_pmu_event_init(struct perf_event *event)
859 {
860 	unsigned int type = event->attr.type;
861 	int err = -ENOENT;
862 
863 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_RAW)
864 		err = __hw_perf_event_init(event, type);
865 	else if (event->pmu->type == type)
866 		/* Registered as unknown PMU */
867 		err = __hw_perf_event_init(event, cpumf_pmu_event_type(event));
868 
869 	return err;
870 }
871 
hw_perf_event_reset(struct perf_event * event)872 static int hw_perf_event_reset(struct perf_event *event)
873 {
874 	u64 prev, new;
875 	int err;
876 
877 	prev = local64_read(&event->hw.prev_count);
878 	do {
879 		err = ecctr(event->hw.config, &new);
880 		if (err) {
881 			if (err != 3)
882 				break;
883 			/* The counter is not (yet) available. This
884 			 * might happen if the counter set to which
885 			 * this counter belongs is in the disabled
886 			 * state.
887 			 */
888 			new = 0;
889 		}
890 	} while (!local64_try_cmpxchg(&event->hw.prev_count, &prev, new));
891 
892 	return err;
893 }
894 
hw_perf_event_update(struct perf_event * event)895 static void hw_perf_event_update(struct perf_event *event)
896 {
897 	u64 prev, new, delta;
898 	int err;
899 
900 	prev = local64_read(&event->hw.prev_count);
901 	do {
902 		err = ecctr(event->hw.config, &new);
903 		if (err)
904 			return;
905 	} while (!local64_try_cmpxchg(&event->hw.prev_count, &prev, new));
906 
907 	delta = (prev <= new) ? new - prev
908 			      : (-1ULL - prev) + new + 1;	 /* overflow */
909 	local64_add(delta, &event->count);
910 }
911 
cpumf_pmu_read(struct perf_event * event)912 static void cpumf_pmu_read(struct perf_event *event)
913 {
914 	if (event->hw.state & PERF_HES_STOPPED)
915 		return;
916 
917 	hw_perf_event_update(event);
918 }
919 
cpumf_pmu_start(struct perf_event * event,int flags)920 static void cpumf_pmu_start(struct perf_event *event, int flags)
921 {
922 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
923 	struct hw_perf_event *hwc = &event->hw;
924 	int i;
925 
926 	if (!(hwc->state & PERF_HES_STOPPED))
927 		return;
928 
929 	hwc->state = 0;
930 
931 	/* (Re-)enable and activate the counter set */
932 	ctr_set_enable(&cpuhw->state, hwc->config_base);
933 	ctr_set_start(&cpuhw->state, hwc->config_base);
934 
935 	/* The counter set to which this counter belongs can be already active.
936 	 * Because all counters in a set are active, the event->hw.prev_count
937 	 * needs to be synchronized.  At this point, the counter set can be in
938 	 * the inactive or disabled state.
939 	 */
940 	if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) {
941 		cpuhw->usedss = cfdiag_getctr(cpuhw->start,
942 					      sizeof(cpuhw->start),
943 					      hwc->config_base, true);
944 	} else {
945 		hw_perf_event_reset(event);
946 	}
947 
948 	/* Increment refcount for counter sets */
949 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i)
950 		if ((hwc->config_base & cpumf_ctr_ctl[i]))
951 			atomic_inc(&cpuhw->ctr_set[i]);
952 }
953 
954 /* Create perf event sample with the counter sets as raw data.	The sample
955  * is then pushed to the event subsystem and the function checks for
956  * possible event overflows. If an event overflow occurs, the PMU is
957  * stopped.
958  *
959  * Return non-zero if an event overflow occurred.
960  */
cfdiag_push_sample(struct perf_event * event,struct cpu_cf_events * cpuhw)961 static int cfdiag_push_sample(struct perf_event *event,
962 			      struct cpu_cf_events *cpuhw)
963 {
964 	struct perf_sample_data data;
965 	struct perf_raw_record raw;
966 	struct pt_regs regs;
967 	int overflow;
968 
969 	/* Setup perf sample */
970 	perf_sample_data_init(&data, 0, event->hw.last_period);
971 	memset(&regs, 0, sizeof(regs));
972 	memset(&raw, 0, sizeof(raw));
973 
974 	if (event->attr.sample_type & PERF_SAMPLE_CPU)
975 		data.cpu_entry.cpu = event->cpu;
976 	if (event->attr.sample_type & PERF_SAMPLE_RAW) {
977 		raw.frag.size = cpuhw->usedss;
978 		raw.frag.data = cpuhw->stop;
979 		perf_sample_save_raw_data(&data, event, &raw);
980 	}
981 
982 	overflow = perf_event_overflow(event, &data, &regs);
983 	if (overflow)
984 		event->pmu->stop(event, 0);
985 
986 	perf_event_update_userpage(event);
987 	return overflow;
988 }
989 
cpumf_pmu_stop(struct perf_event * event,int flags)990 static void cpumf_pmu_stop(struct perf_event *event, int flags)
991 {
992 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
993 	struct hw_perf_event *hwc = &event->hw;
994 	int i;
995 
996 	if (!(hwc->state & PERF_HES_STOPPED)) {
997 		/* Decrement reference count for this counter set and if this
998 		 * is the last used counter in the set, clear activation
999 		 * control and set the counter set state to inactive.
1000 		 */
1001 		for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1002 			if (!(hwc->config_base & cpumf_ctr_ctl[i]))
1003 				continue;
1004 			if (!atomic_dec_return(&cpuhw->ctr_set[i]))
1005 				ctr_set_stop(&cpuhw->state, cpumf_ctr_ctl[i]);
1006 		}
1007 		hwc->state |= PERF_HES_STOPPED;
1008 	}
1009 
1010 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1011 		if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) {
1012 			local64_inc(&event->count);
1013 			cpuhw->usedss = cfdiag_getctr(cpuhw->stop,
1014 						      sizeof(cpuhw->stop),
1015 						      event->hw.config_base,
1016 						      false);
1017 			if (cfdiag_diffctr(cpuhw, event->hw.config_base))
1018 				cfdiag_push_sample(event, cpuhw);
1019 		} else {
1020 			hw_perf_event_update(event);
1021 		}
1022 		hwc->state |= PERF_HES_UPTODATE;
1023 	}
1024 }
1025 
cpumf_pmu_add(struct perf_event * event,int flags)1026 static int cpumf_pmu_add(struct perf_event *event, int flags)
1027 {
1028 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1029 
1030 	ctr_set_enable(&cpuhw->state, event->hw.config_base);
1031 	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1032 
1033 	if (flags & PERF_EF_START)
1034 		cpumf_pmu_start(event, PERF_EF_RELOAD);
1035 
1036 	return 0;
1037 }
1038 
cpumf_pmu_del(struct perf_event * event,int flags)1039 static void cpumf_pmu_del(struct perf_event *event, int flags)
1040 {
1041 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1042 	int i;
1043 
1044 	cpumf_pmu_stop(event, PERF_EF_UPDATE);
1045 
1046 	/* Check if any counter in the counter set is still used.  If not used,
1047 	 * change the counter set to the disabled state.  This also clears the
1048 	 * content of all counters in the set.
1049 	 *
1050 	 * When a new perf event has been added but not yet started, this can
1051 	 * clear enable control and resets all counters in a set.  Therefore,
1052 	 * cpumf_pmu_start() always has to re-enable a counter set.
1053 	 */
1054 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i)
1055 		if (!atomic_read(&cpuhw->ctr_set[i]))
1056 			ctr_set_disable(&cpuhw->state, cpumf_ctr_ctl[i]);
1057 }
1058 
1059 /* Performance monitoring unit for s390x */
1060 static struct pmu cpumf_pmu = {
1061 	.task_ctx_nr  = perf_sw_context,
1062 	.capabilities = PERF_PMU_CAP_NO_INTERRUPT,
1063 	.pmu_enable   = cpumf_pmu_enable,
1064 	.pmu_disable  = cpumf_pmu_disable,
1065 	.event_init   = cpumf_pmu_event_init,
1066 	.add	      = cpumf_pmu_add,
1067 	.del	      = cpumf_pmu_del,
1068 	.start	      = cpumf_pmu_start,
1069 	.stop	      = cpumf_pmu_stop,
1070 	.read	      = cpumf_pmu_read,
1071 };
1072 
1073 static struct cfset_session {		/* CPUs and counter set bit mask */
1074 	struct list_head head;		/* Head of list of active processes */
1075 } cfset_session = {
1076 	.head = LIST_HEAD_INIT(cfset_session.head)
1077 };
1078 
1079 static refcount_t cfset_opencnt = REFCOUNT_INIT(0);	/* Access count */
1080 /*
1081  * Synchronize access to device /dev/hwc. This mutex protects against
1082  * concurrent access to functions cfset_open() and cfset_release().
1083  * Same for CPU hotplug add and remove events triggering
1084  * cpum_cf_online_cpu() and cpum_cf_offline_cpu().
1085  * It also serializes concurrent device ioctl access from multiple
1086  * processes accessing /dev/hwc.
1087  *
1088  * The mutex protects concurrent access to the /dev/hwctr session management
1089  * struct cfset_session and reference counting variable cfset_opencnt.
1090  */
1091 static DEFINE_MUTEX(cfset_ctrset_mutex);
1092 
1093 /*
1094  * CPU hotplug handles only /dev/hwctr device.
1095  * For perf_event_open() the CPU hotplug handling is done on kernel common
1096  * code:
1097  * - CPU add: Nothing is done since a file descriptor can not be created
1098  *   and returned to the user.
1099  * - CPU delete: Handled by common code via pmu_disable(), pmu_stop() and
1100  *   pmu_delete(). The event itself is removed when the file descriptor is
1101  *   closed.
1102  */
1103 static int cfset_online_cpu(unsigned int cpu);
1104 
cpum_cf_online_cpu(unsigned int cpu)1105 static int cpum_cf_online_cpu(unsigned int cpu)
1106 {
1107 	int rc = 0;
1108 
1109 	/*
1110 	 * Ignore notification for perf_event_open().
1111 	 * Handle only /dev/hwctr device sessions.
1112 	 */
1113 	mutex_lock(&cfset_ctrset_mutex);
1114 	if (refcount_read(&cfset_opencnt)) {
1115 		rc = cpum_cf_alloc_cpu(cpu);
1116 		if (!rc)
1117 			cfset_online_cpu(cpu);
1118 	}
1119 	mutex_unlock(&cfset_ctrset_mutex);
1120 	return rc;
1121 }
1122 
1123 static int cfset_offline_cpu(unsigned int cpu);
1124 
cpum_cf_offline_cpu(unsigned int cpu)1125 static int cpum_cf_offline_cpu(unsigned int cpu)
1126 {
1127 	/*
1128 	 * During task exit processing of grouped perf events triggered by CPU
1129 	 * hotplug processing, pmu_disable() is called as part of perf context
1130 	 * removal process. Therefore do not trigger event removal now for
1131 	 * perf_event_open() created events. Perf common code triggers event
1132 	 * destruction when the event file descriptor is closed.
1133 	 *
1134 	 * Handle only /dev/hwctr device sessions.
1135 	 */
1136 	mutex_lock(&cfset_ctrset_mutex);
1137 	if (refcount_read(&cfset_opencnt)) {
1138 		cfset_offline_cpu(cpu);
1139 		cpum_cf_free_cpu(cpu);
1140 	}
1141 	mutex_unlock(&cfset_ctrset_mutex);
1142 	return 0;
1143 }
1144 
1145 /* Return true if store counter set multiple instruction is available */
stccm_avail(void)1146 static inline int stccm_avail(void)
1147 {
1148 	return test_facility(142);
1149 }
1150 
1151 /* CPU-measurement alerts for the counter facility */
cpumf_measurement_alert(struct ext_code ext_code,unsigned int alert,unsigned long unused)1152 static void cpumf_measurement_alert(struct ext_code ext_code,
1153 				    unsigned int alert, unsigned long unused)
1154 {
1155 	struct cpu_cf_events *cpuhw;
1156 
1157 	if (!(alert & CPU_MF_INT_CF_MASK))
1158 		return;
1159 
1160 	inc_irq_stat(IRQEXT_CMC);
1161 
1162 	/*
1163 	 * Measurement alerts are shared and might happen when the PMU
1164 	 * is not reserved.  Ignore these alerts in this case.
1165 	 */
1166 	cpuhw = this_cpu_cfhw();
1167 	if (!cpuhw)
1168 		return;
1169 
1170 	/* counter authorization change alert */
1171 	if (alert & CPU_MF_INT_CF_CACA)
1172 		qctri(&cpumf_ctr_info);
1173 
1174 	/* loss of counter data alert */
1175 	if (alert & CPU_MF_INT_CF_LCDA)
1176 		pr_err("CPU[%i] Counter data was lost\n", smp_processor_id());
1177 
1178 	/* loss of MT counter data alert */
1179 	if (alert & CPU_MF_INT_CF_MTDA)
1180 		pr_warn("CPU[%i] MT counter data was lost\n",
1181 			smp_processor_id());
1182 }
1183 
1184 static int cfset_init(void);
cpumf_pmu_init(void)1185 static int __init cpumf_pmu_init(void)
1186 {
1187 	int rc;
1188 
1189 	/* Extract counter measurement facility information */
1190 	if (!cpum_cf_avail() || qctri(&cpumf_ctr_info))
1191 		return -ENODEV;
1192 
1193 	/* Determine and store counter set sizes for later reference */
1194 	for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
1195 		cpum_cf_make_setsize(rc);
1196 
1197 	/*
1198 	 * Clear bit 15 of cr0 to unauthorize problem-state to
1199 	 * extract measurement counters
1200 	 */
1201 	system_ctl_clear_bit(0, CR0_CPUMF_EXTRACTION_AUTH_BIT);
1202 
1203 	/* register handler for measurement-alert interruptions */
1204 	rc = register_external_irq(EXT_IRQ_MEASURE_ALERT,
1205 				   cpumf_measurement_alert);
1206 	if (rc) {
1207 		pr_err("Registering for CPU-measurement alerts failed with rc=%i\n", rc);
1208 		return rc;
1209 	}
1210 
1211 	/* Setup s390dbf facility */
1212 	cf_dbg = debug_register(KMSG_COMPONENT, 2, 1, 128);
1213 	if (!cf_dbg) {
1214 		pr_err("Registration of s390dbf(cpum_cf) failed\n");
1215 		rc = -ENOMEM;
1216 		goto out1;
1217 	}
1218 	debug_register_view(cf_dbg, &debug_sprintf_view);
1219 
1220 	cpumf_pmu.attr_groups = cpumf_cf_event_group();
1221 	rc = perf_pmu_register(&cpumf_pmu, "cpum_cf", -1);
1222 	if (rc) {
1223 		pr_err("Registering the cpum_cf PMU failed with rc=%i\n", rc);
1224 		goto out2;
1225 	} else if (stccm_avail()) {	/* Setup counter set device */
1226 		cfset_init();
1227 	}
1228 
1229 	rc = cpuhp_setup_state(CPUHP_AP_PERF_S390_CF_ONLINE,
1230 			       "perf/s390/cf:online",
1231 			       cpum_cf_online_cpu, cpum_cf_offline_cpu);
1232 	return rc;
1233 
1234 out2:
1235 	debug_unregister_view(cf_dbg, &debug_sprintf_view);
1236 	debug_unregister(cf_dbg);
1237 out1:
1238 	unregister_external_irq(EXT_IRQ_MEASURE_ALERT, cpumf_measurement_alert);
1239 	return rc;
1240 }
1241 
1242 /* Support for the CPU Measurement Facility counter set extraction using
1243  * device /dev/hwctr. This allows user space programs to extract complete
1244  * counter set via normal file operations.
1245  */
1246 
1247 struct cfset_call_on_cpu_parm {		/* Parm struct for smp_call_on_cpu */
1248 	unsigned int sets;		/* Counter set bit mask */
1249 	atomic_t cpus_ack;		/* # CPUs successfully executed func */
1250 };
1251 
1252 struct cfset_request {			/* CPUs and counter set bit mask */
1253 	unsigned long ctrset;		/* Bit mask of counter set to read */
1254 	cpumask_t mask;			/* CPU mask to read from */
1255 	struct list_head node;		/* Chain to cfset_session.head */
1256 };
1257 
cfset_session_init(void)1258 static void cfset_session_init(void)
1259 {
1260 	INIT_LIST_HEAD(&cfset_session.head);
1261 }
1262 
1263 /* Remove current request from global bookkeeping. Maintain a counter set bit
1264  * mask on a per CPU basis.
1265  * Done in process context under mutex protection.
1266  */
cfset_session_del(struct cfset_request * p)1267 static void cfset_session_del(struct cfset_request *p)
1268 {
1269 	list_del(&p->node);
1270 }
1271 
1272 /* Add current request to global bookkeeping. Maintain a counter set bit mask
1273  * on a per CPU basis.
1274  * Done in process context under mutex protection.
1275  */
cfset_session_add(struct cfset_request * p)1276 static void cfset_session_add(struct cfset_request *p)
1277 {
1278 	list_add(&p->node, &cfset_session.head);
1279 }
1280 
1281 /* The /dev/hwctr device access uses PMU_F_IN_USE to mark the device access
1282  * path is currently used.
1283  * The cpu_cf_events::dev_state is used to denote counter sets in use by this
1284  * interface. It is always or'ed in. If this interface is not active, its
1285  * value is zero and no additional counter sets will be included.
1286  *
1287  * The cpu_cf_events::state is used by the perf_event_open SVC and remains
1288  * unchanged.
1289  *
1290  * perf_pmu_enable() and perf_pmu_enable() and its call backs
1291  * cpumf_pmu_enable() and  cpumf_pmu_disable() are called by the
1292  * performance measurement subsystem to enable per process
1293  * CPU Measurement counter facility.
1294  * The XXX_enable() and XXX_disable functions are used to turn off
1295  * x86 performance monitoring interrupt (PMI) during scheduling.
1296  * s390 uses these calls to temporarily stop and resume the active CPU
1297  * counters sets during scheduling.
1298  *
1299  * We do allow concurrent access of perf_event_open() SVC and /dev/hwctr
1300  * device access.  The perf_event_open() SVC interface makes a lot of effort
1301  * to only run the counters while the calling process is actively scheduled
1302  * to run.
1303  * When /dev/hwctr interface is also used at the same time, the counter sets
1304  * will keep running, even when the process is scheduled off a CPU.
1305  * However this is not a problem and does not lead to wrong counter values
1306  * for the perf_event_open() SVC. The current counter value will be recorded
1307  * during schedule-in. At schedule-out time the current counter value is
1308  * extracted again and the delta is calculated and added to the event.
1309  */
1310 /* Stop all counter sets via ioctl interface */
cfset_ioctl_off(void * parm)1311 static void cfset_ioctl_off(void *parm)
1312 {
1313 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1314 	struct cfset_call_on_cpu_parm *p = parm;
1315 	int rc;
1316 
1317 	/* Check if any counter set used by /dev/hwctr */
1318 	for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
1319 		if ((p->sets & cpumf_ctr_ctl[rc])) {
1320 			if (!atomic_dec_return(&cpuhw->ctr_set[rc])) {
1321 				ctr_set_disable(&cpuhw->dev_state,
1322 						cpumf_ctr_ctl[rc]);
1323 				ctr_set_stop(&cpuhw->dev_state,
1324 					     cpumf_ctr_ctl[rc]);
1325 			}
1326 		}
1327 	/* Keep perf_event_open counter sets */
1328 	rc = lcctl(cpuhw->dev_state | cpuhw->state);
1329 	if (rc)
1330 		pr_err("Counter set stop %#llx of /dev/%s failed rc=%i\n",
1331 		       cpuhw->state, S390_HWCTR_DEVICE, rc);
1332 	if (!cpuhw->dev_state)
1333 		cpuhw->flags &= ~PMU_F_IN_USE;
1334 }
1335 
1336 /* Start counter sets on particular CPU */
cfset_ioctl_on(void * parm)1337 static void cfset_ioctl_on(void *parm)
1338 {
1339 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1340 	struct cfset_call_on_cpu_parm *p = parm;
1341 	int rc;
1342 
1343 	cpuhw->flags |= PMU_F_IN_USE;
1344 	ctr_set_enable(&cpuhw->dev_state, p->sets);
1345 	ctr_set_start(&cpuhw->dev_state, p->sets);
1346 	for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
1347 		if ((p->sets & cpumf_ctr_ctl[rc]))
1348 			atomic_inc(&cpuhw->ctr_set[rc]);
1349 	rc = lcctl(cpuhw->dev_state | cpuhw->state);	/* Start counter sets */
1350 	if (!rc)
1351 		atomic_inc(&p->cpus_ack);
1352 	else
1353 		pr_err("Counter set start %#llx of /dev/%s failed rc=%i\n",
1354 		       cpuhw->dev_state | cpuhw->state, S390_HWCTR_DEVICE, rc);
1355 }
1356 
cfset_release_cpu(void * p)1357 static void cfset_release_cpu(void *p)
1358 {
1359 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1360 	int rc;
1361 
1362 	cpuhw->dev_state = 0;
1363 	rc = lcctl(cpuhw->state);	/* Keep perf_event_open counter sets */
1364 	if (rc)
1365 		pr_err("Counter set release %#llx of /dev/%s failed rc=%i\n",
1366 		       cpuhw->state, S390_HWCTR_DEVICE, rc);
1367 }
1368 
1369 /* This modifies the process CPU mask to adopt it to the currently online
1370  * CPUs. Offline CPUs can not be addresses. This call terminates the access
1371  * and is usually followed by close() or a new iotcl(..., START, ...) which
1372  * creates a new request structure.
1373  */
cfset_all_stop(struct cfset_request * req)1374 static void cfset_all_stop(struct cfset_request *req)
1375 {
1376 	struct cfset_call_on_cpu_parm p = {
1377 		.sets = req->ctrset,
1378 	};
1379 
1380 	cpumask_and(&req->mask, &req->mask, cpu_online_mask);
1381 	on_each_cpu_mask(&req->mask, cfset_ioctl_off, &p, 1);
1382 }
1383 
1384 /* Release function is also called when application gets terminated without
1385  * doing a proper ioctl(..., S390_HWCTR_STOP, ...) command.
1386  */
cfset_release(struct inode * inode,struct file * file)1387 static int cfset_release(struct inode *inode, struct file *file)
1388 {
1389 	mutex_lock(&cfset_ctrset_mutex);
1390 	/* Open followed by close/exit has no private_data */
1391 	if (file->private_data) {
1392 		cfset_all_stop(file->private_data);
1393 		cfset_session_del(file->private_data);
1394 		kfree(file->private_data);
1395 		file->private_data = NULL;
1396 	}
1397 	if (refcount_dec_and_test(&cfset_opencnt)) {	/* Last close */
1398 		on_each_cpu(cfset_release_cpu, NULL, 1);
1399 		cpum_cf_free(-1);
1400 	}
1401 	mutex_unlock(&cfset_ctrset_mutex);
1402 	return 0;
1403 }
1404 
1405 /*
1406  * Open via /dev/hwctr device. Allocate all per CPU resources on the first
1407  * open of the device. The last close releases all per CPU resources.
1408  * Parallel perf_event_open system calls also use per CPU resources.
1409  * These invocations are handled via reference counting on the per CPU data
1410  * structures.
1411  */
cfset_open(struct inode * inode,struct file * file)1412 static int cfset_open(struct inode *inode, struct file *file)
1413 {
1414 	int rc = 0;
1415 
1416 	if (!perfmon_capable())
1417 		return -EPERM;
1418 	file->private_data = NULL;
1419 
1420 	mutex_lock(&cfset_ctrset_mutex);
1421 	if (!refcount_inc_not_zero(&cfset_opencnt)) {	/* First open */
1422 		rc = cpum_cf_alloc(-1);
1423 		if (!rc) {
1424 			cfset_session_init();
1425 			refcount_set(&cfset_opencnt, 1);
1426 		}
1427 	}
1428 	mutex_unlock(&cfset_ctrset_mutex);
1429 
1430 	/* nonseekable_open() never fails */
1431 	return rc ?: nonseekable_open(inode, file);
1432 }
1433 
cfset_all_start(struct cfset_request * req)1434 static int cfset_all_start(struct cfset_request *req)
1435 {
1436 	struct cfset_call_on_cpu_parm p = {
1437 		.sets = req->ctrset,
1438 		.cpus_ack = ATOMIC_INIT(0),
1439 	};
1440 	cpumask_var_t mask;
1441 	int rc = 0;
1442 
1443 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1444 		return -ENOMEM;
1445 	cpumask_and(mask, &req->mask, cpu_online_mask);
1446 	on_each_cpu_mask(mask, cfset_ioctl_on, &p, 1);
1447 	if (atomic_read(&p.cpus_ack) != cpumask_weight(mask)) {
1448 		on_each_cpu_mask(mask, cfset_ioctl_off, &p, 1);
1449 		rc = -EIO;
1450 	}
1451 	free_cpumask_var(mask);
1452 	return rc;
1453 }
1454 
1455 /* Return the maximum required space for all possible CPUs in case one
1456  * CPU will be onlined during the START, READ, STOP cycles.
1457  * To find out the size of the counter sets, any one CPU will do. They
1458  * all have the same counter sets.
1459  */
cfset_needspace(unsigned int sets)1460 static size_t cfset_needspace(unsigned int sets)
1461 {
1462 	size_t bytes = 0;
1463 	int i;
1464 
1465 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1466 		if (!(sets & cpumf_ctr_ctl[i]))
1467 			continue;
1468 		bytes += cpum_cf_read_setsize(i) * sizeof(u64) +
1469 			 sizeof(((struct s390_ctrset_setdata *)0)->set) +
1470 			 sizeof(((struct s390_ctrset_setdata *)0)->no_cnts);
1471 	}
1472 	bytes = sizeof(((struct s390_ctrset_read *)0)->no_cpus) + nr_cpu_ids *
1473 		(bytes + sizeof(((struct s390_ctrset_cpudata *)0)->cpu_nr) +
1474 		     sizeof(((struct s390_ctrset_cpudata *)0)->no_sets));
1475 	return bytes;
1476 }
1477 
cfset_all_copy(unsigned long arg,cpumask_t * mask)1478 static int cfset_all_copy(unsigned long arg, cpumask_t *mask)
1479 {
1480 	struct s390_ctrset_read __user *ctrset_read;
1481 	unsigned int cpu, cpus, rc = 0;
1482 	void __user *uptr;
1483 
1484 	ctrset_read = (struct s390_ctrset_read __user *)arg;
1485 	uptr = ctrset_read->data;
1486 	for_each_cpu(cpu, mask) {
1487 		struct cpu_cf_events *cpuhw = get_cpu_cfhw(cpu);
1488 		struct s390_ctrset_cpudata __user *ctrset_cpudata;
1489 
1490 		ctrset_cpudata = uptr;
1491 		rc  = put_user(cpu, &ctrset_cpudata->cpu_nr);
1492 		rc |= put_user(cpuhw->sets, &ctrset_cpudata->no_sets);
1493 		rc |= copy_to_user(ctrset_cpudata->data, cpuhw->data,
1494 				   cpuhw->used);
1495 		if (rc) {
1496 			rc = -EFAULT;
1497 			goto out;
1498 		}
1499 		uptr += sizeof(struct s390_ctrset_cpudata) + cpuhw->used;
1500 		cond_resched();
1501 	}
1502 	cpus = cpumask_weight(mask);
1503 	if (put_user(cpus, &ctrset_read->no_cpus))
1504 		rc = -EFAULT;
1505 out:
1506 	return rc;
1507 }
1508 
cfset_cpuset_read(struct s390_ctrset_setdata * p,int ctrset,int ctrset_size,size_t room)1509 static size_t cfset_cpuset_read(struct s390_ctrset_setdata *p, int ctrset,
1510 				int ctrset_size, size_t room)
1511 {
1512 	size_t need = 0;
1513 	int rc = -1;
1514 
1515 	need = sizeof(*p) + sizeof(u64) * ctrset_size;
1516 	if (need <= room) {
1517 		p->set = cpumf_ctr_ctl[ctrset];
1518 		p->no_cnts = ctrset_size;
1519 		rc = ctr_stcctm(ctrset, ctrset_size, (u64 *)p->cv);
1520 		if (rc == 3)		/* Nothing stored */
1521 			need = 0;
1522 	}
1523 	return need;
1524 }
1525 
1526 /* Read all counter sets. */
cfset_cpu_read(void * parm)1527 static void cfset_cpu_read(void *parm)
1528 {
1529 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1530 	struct cfset_call_on_cpu_parm *p = parm;
1531 	int set, set_size;
1532 	size_t space;
1533 
1534 	/* No data saved yet */
1535 	cpuhw->used = 0;
1536 	cpuhw->sets = 0;
1537 	memset(cpuhw->data, 0, sizeof(cpuhw->data));
1538 
1539 	/* Scan the counter sets */
1540 	for (set = CPUMF_CTR_SET_BASIC; set < CPUMF_CTR_SET_MAX; ++set) {
1541 		struct s390_ctrset_setdata *sp = (void *)cpuhw->data +
1542 						 cpuhw->used;
1543 
1544 		if (!(p->sets & cpumf_ctr_ctl[set]))
1545 			continue;	/* Counter set not in list */
1546 		set_size = cpum_cf_read_setsize(set);
1547 		space = sizeof(cpuhw->data) - cpuhw->used;
1548 		space = cfset_cpuset_read(sp, set, set_size, space);
1549 		if (space) {
1550 			cpuhw->used += space;
1551 			cpuhw->sets += 1;
1552 		}
1553 	}
1554 }
1555 
cfset_all_read(unsigned long arg,struct cfset_request * req)1556 static int cfset_all_read(unsigned long arg, struct cfset_request *req)
1557 {
1558 	struct cfset_call_on_cpu_parm p;
1559 	cpumask_var_t mask;
1560 	int rc;
1561 
1562 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1563 		return -ENOMEM;
1564 
1565 	p.sets = req->ctrset;
1566 	cpumask_and(mask, &req->mask, cpu_online_mask);
1567 	on_each_cpu_mask(mask, cfset_cpu_read, &p, 1);
1568 	rc = cfset_all_copy(arg, mask);
1569 	free_cpumask_var(mask);
1570 	return rc;
1571 }
1572 
cfset_ioctl_read(unsigned long arg,struct cfset_request * req)1573 static long cfset_ioctl_read(unsigned long arg, struct cfset_request *req)
1574 {
1575 	int ret = -ENODATA;
1576 
1577 	if (req && req->ctrset)
1578 		ret = cfset_all_read(arg, req);
1579 	return ret;
1580 }
1581 
cfset_ioctl_stop(struct file * file)1582 static long cfset_ioctl_stop(struct file *file)
1583 {
1584 	struct cfset_request *req = file->private_data;
1585 	int ret = -ENXIO;
1586 
1587 	if (req) {
1588 		cfset_all_stop(req);
1589 		cfset_session_del(req);
1590 		kfree(req);
1591 		file->private_data = NULL;
1592 		ret = 0;
1593 	}
1594 	return ret;
1595 }
1596 
cfset_ioctl_start(unsigned long arg,struct file * file)1597 static long cfset_ioctl_start(unsigned long arg, struct file *file)
1598 {
1599 	struct s390_ctrset_start __user *ustart;
1600 	struct s390_ctrset_start start;
1601 	struct cfset_request *preq;
1602 	void __user *umask;
1603 	unsigned int len;
1604 	int ret = 0;
1605 	size_t need;
1606 
1607 	if (file->private_data)
1608 		return -EBUSY;
1609 	ustart = (struct s390_ctrset_start __user *)arg;
1610 	if (copy_from_user(&start, ustart, sizeof(start)))
1611 		return -EFAULT;
1612 	if (start.version != S390_HWCTR_START_VERSION)
1613 		return -EINVAL;
1614 	if (start.counter_sets & ~(cpumf_ctr_ctl[CPUMF_CTR_SET_BASIC] |
1615 				   cpumf_ctr_ctl[CPUMF_CTR_SET_USER] |
1616 				   cpumf_ctr_ctl[CPUMF_CTR_SET_CRYPTO] |
1617 				   cpumf_ctr_ctl[CPUMF_CTR_SET_EXT] |
1618 				   cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG]))
1619 		return -EINVAL;		/* Invalid counter set */
1620 	if (!start.counter_sets)
1621 		return -EINVAL;		/* No counter set at all? */
1622 
1623 	preq = kzalloc(sizeof(*preq), GFP_KERNEL);
1624 	if (!preq)
1625 		return -ENOMEM;
1626 	cpumask_clear(&preq->mask);
1627 	len = min_t(u64, start.cpumask_len, cpumask_size());
1628 	umask = (void __user *)start.cpumask;
1629 	if (copy_from_user(&preq->mask, umask, len)) {
1630 		kfree(preq);
1631 		return -EFAULT;
1632 	}
1633 	if (cpumask_empty(&preq->mask)) {
1634 		kfree(preq);
1635 		return -EINVAL;
1636 	}
1637 	need = cfset_needspace(start.counter_sets);
1638 	if (put_user(need, &ustart->data_bytes)) {
1639 		kfree(preq);
1640 		return -EFAULT;
1641 	}
1642 	preq->ctrset = start.counter_sets;
1643 	ret = cfset_all_start(preq);
1644 	if (!ret) {
1645 		cfset_session_add(preq);
1646 		file->private_data = preq;
1647 	} else {
1648 		kfree(preq);
1649 	}
1650 	return ret;
1651 }
1652 
1653 /* Entry point to the /dev/hwctr device interface.
1654  * The ioctl system call supports three subcommands:
1655  * S390_HWCTR_START: Start the specified counter sets on a CPU list. The
1656  *    counter set keeps running until explicitly stopped. Returns the number
1657  *    of bytes needed to store the counter values. If another S390_HWCTR_START
1658  *    ioctl subcommand is called without a previous S390_HWCTR_STOP stop
1659  *    command on the same file descriptor, -EBUSY is returned.
1660  * S390_HWCTR_READ: Read the counter set values from specified CPU list given
1661  *    with the S390_HWCTR_START command.
1662  * S390_HWCTR_STOP: Stops the counter sets on the CPU list given with the
1663  *    previous S390_HWCTR_START subcommand.
1664  */
cfset_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1665 static long cfset_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1666 {
1667 	int ret;
1668 
1669 	cpus_read_lock();
1670 	mutex_lock(&cfset_ctrset_mutex);
1671 	switch (cmd) {
1672 	case S390_HWCTR_START:
1673 		ret = cfset_ioctl_start(arg, file);
1674 		break;
1675 	case S390_HWCTR_STOP:
1676 		ret = cfset_ioctl_stop(file);
1677 		break;
1678 	case S390_HWCTR_READ:
1679 		ret = cfset_ioctl_read(arg, file->private_data);
1680 		break;
1681 	default:
1682 		ret = -ENOTTY;
1683 		break;
1684 	}
1685 	mutex_unlock(&cfset_ctrset_mutex);
1686 	cpus_read_unlock();
1687 	return ret;
1688 }
1689 
1690 static const struct file_operations cfset_fops = {
1691 	.owner = THIS_MODULE,
1692 	.open = cfset_open,
1693 	.release = cfset_release,
1694 	.unlocked_ioctl	= cfset_ioctl,
1695 	.compat_ioctl = cfset_ioctl,
1696 };
1697 
1698 static struct miscdevice cfset_dev = {
1699 	.name	= S390_HWCTR_DEVICE,
1700 	.minor	= MISC_DYNAMIC_MINOR,
1701 	.fops	= &cfset_fops,
1702 	.mode	= 0666,
1703 };
1704 
1705 /* Hotplug add of a CPU. Scan through all active processes and add
1706  * that CPU to the list of CPUs supplied with ioctl(..., START, ...).
1707  */
cfset_online_cpu(unsigned int cpu)1708 static int cfset_online_cpu(unsigned int cpu)
1709 {
1710 	struct cfset_call_on_cpu_parm p;
1711 	struct cfset_request *rp;
1712 
1713 	if (!list_empty(&cfset_session.head)) {
1714 		list_for_each_entry(rp, &cfset_session.head, node) {
1715 			p.sets = rp->ctrset;
1716 			cfset_ioctl_on(&p);
1717 			cpumask_set_cpu(cpu, &rp->mask);
1718 		}
1719 	}
1720 	return 0;
1721 }
1722 
1723 /* Hotplug remove of a CPU. Scan through all active processes and clear
1724  * that CPU from the list of CPUs supplied with ioctl(..., START, ...).
1725  * Adjust reference counts.
1726  */
cfset_offline_cpu(unsigned int cpu)1727 static int cfset_offline_cpu(unsigned int cpu)
1728 {
1729 	struct cfset_call_on_cpu_parm p;
1730 	struct cfset_request *rp;
1731 
1732 	if (!list_empty(&cfset_session.head)) {
1733 		list_for_each_entry(rp, &cfset_session.head, node) {
1734 			p.sets = rp->ctrset;
1735 			cfset_ioctl_off(&p);
1736 			cpumask_clear_cpu(cpu, &rp->mask);
1737 		}
1738 	}
1739 	return 0;
1740 }
1741 
cfdiag_read(struct perf_event * event)1742 static void cfdiag_read(struct perf_event *event)
1743 {
1744 }
1745 
get_authctrsets(void)1746 static int get_authctrsets(void)
1747 {
1748 	unsigned long auth = 0;
1749 	enum cpumf_ctr_set i;
1750 
1751 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1752 		if (cpumf_ctr_info.auth_ctl & cpumf_ctr_ctl[i])
1753 			auth |= cpumf_ctr_ctl[i];
1754 	}
1755 	return auth;
1756 }
1757 
1758 /* Setup the event. Test for authorized counter sets and only include counter
1759  * sets which are authorized at the time of the setup. Including unauthorized
1760  * counter sets result in specification exception (and panic).
1761  */
cfdiag_event_init2(struct perf_event * event)1762 static int cfdiag_event_init2(struct perf_event *event)
1763 {
1764 	struct perf_event_attr *attr = &event->attr;
1765 	int err = 0;
1766 
1767 	/* Set sample_period to indicate sampling */
1768 	event->hw.config = attr->config;
1769 	event->hw.sample_period = attr->sample_period;
1770 	local64_set(&event->hw.period_left, event->hw.sample_period);
1771 	local64_set(&event->count, 0);
1772 	event->hw.last_period = event->hw.sample_period;
1773 
1774 	/* Add all authorized counter sets to config_base. The
1775 	 * the hardware init function is either called per-cpu or just once
1776 	 * for all CPUS (event->cpu == -1).  This depends on the whether
1777 	 * counting is started for all CPUs or on a per workload base where
1778 	 * the perf event moves from one CPU to another CPU.
1779 	 * Checking the authorization on any CPU is fine as the hardware
1780 	 * applies the same authorization settings to all CPUs.
1781 	 */
1782 	event->hw.config_base = get_authctrsets();
1783 
1784 	/* No authorized counter sets, nothing to count/sample */
1785 	if (!event->hw.config_base)
1786 		err = -EINVAL;
1787 
1788 	return err;
1789 }
1790 
cfdiag_event_init(struct perf_event * event)1791 static int cfdiag_event_init(struct perf_event *event)
1792 {
1793 	struct perf_event_attr *attr = &event->attr;
1794 	int err = -ENOENT;
1795 
1796 	if (event->attr.config != PERF_EVENT_CPUM_CF_DIAG ||
1797 	    event->attr.type != event->pmu->type)
1798 		goto out;
1799 
1800 	/* Raw events are used to access counters directly,
1801 	 * hence do not permit excludes.
1802 	 * This event is useless without PERF_SAMPLE_RAW to return counter set
1803 	 * values as raw data.
1804 	 */
1805 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv ||
1806 	    !(attr->sample_type & (PERF_SAMPLE_CPU | PERF_SAMPLE_RAW))) {
1807 		err = -EOPNOTSUPP;
1808 		goto out;
1809 	}
1810 
1811 	/* Initialize for using the CPU-measurement counter facility */
1812 	if (cpum_cf_alloc(event->cpu))
1813 		return -ENOMEM;
1814 	event->destroy = hw_perf_event_destroy;
1815 
1816 	err = cfdiag_event_init2(event);
1817 out:
1818 	return err;
1819 }
1820 
1821 /* Create cf_diag/events/CF_DIAG event sysfs file. This counter is used
1822  * to collect the complete counter sets for a scheduled process. Target
1823  * are complete counter sets attached as raw data to the artificial event.
1824  * This results in complete counter sets available when a process is
1825  * scheduled. Contains the delta of every counter while the process was
1826  * running.
1827  */
1828 CPUMF_EVENT_ATTR(CF_DIAG, CF_DIAG, PERF_EVENT_CPUM_CF_DIAG);
1829 
1830 static struct attribute *cfdiag_events_attr[] = {
1831 	CPUMF_EVENT_PTR(CF_DIAG, CF_DIAG),
1832 	NULL,
1833 };
1834 
1835 PMU_FORMAT_ATTR(event, "config:0-63");
1836 
1837 static struct attribute *cfdiag_format_attr[] = {
1838 	&format_attr_event.attr,
1839 	NULL,
1840 };
1841 
1842 static struct attribute_group cfdiag_events_group = {
1843 	.name = "events",
1844 	.attrs = cfdiag_events_attr,
1845 };
1846 static struct attribute_group cfdiag_format_group = {
1847 	.name = "format",
1848 	.attrs = cfdiag_format_attr,
1849 };
1850 static const struct attribute_group *cfdiag_attr_groups[] = {
1851 	&cfdiag_events_group,
1852 	&cfdiag_format_group,
1853 	NULL,
1854 };
1855 
1856 /* Performance monitoring unit for event CF_DIAG. Since this event
1857  * is also started and stopped via the perf_event_open() system call, use
1858  * the same event enable/disable call back functions. They do not
1859  * have a pointer to the perf_event structure as first parameter.
1860  *
1861  * The functions XXX_add, XXX_del, XXX_start and XXX_stop are also common.
1862  * Reuse them and distinguish the event (always first parameter) via
1863  * 'config' member.
1864  */
1865 static struct pmu cf_diag = {
1866 	.task_ctx_nr  = perf_sw_context,
1867 	.event_init   = cfdiag_event_init,
1868 	.pmu_enable   = cpumf_pmu_enable,
1869 	.pmu_disable  = cpumf_pmu_disable,
1870 	.add	      = cpumf_pmu_add,
1871 	.del	      = cpumf_pmu_del,
1872 	.start	      = cpumf_pmu_start,
1873 	.stop	      = cpumf_pmu_stop,
1874 	.read	      = cfdiag_read,
1875 
1876 	.attr_groups  = cfdiag_attr_groups
1877 };
1878 
1879 /* Calculate memory needed to store all counter sets together with header and
1880  * trailer data. This is independent of the counter set authorization which
1881  * can vary depending on the configuration.
1882  */
cfdiag_maxsize(struct cpumf_ctr_info * info)1883 static size_t cfdiag_maxsize(struct cpumf_ctr_info *info)
1884 {
1885 	size_t max_size = sizeof(struct cf_trailer_entry);
1886 	enum cpumf_ctr_set i;
1887 
1888 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1889 		size_t size = cpum_cf_read_setsize(i);
1890 
1891 		if (size)
1892 			max_size += size * sizeof(u64) +
1893 				    sizeof(struct cf_ctrset_entry);
1894 	}
1895 	return max_size;
1896 }
1897 
1898 /* Get the CPU speed, try sampling facility first and CPU attributes second. */
cfdiag_get_cpu_speed(void)1899 static void cfdiag_get_cpu_speed(void)
1900 {
1901 	unsigned long mhz;
1902 
1903 	if (cpum_sf_avail()) {			/* Sampling facility first */
1904 		struct hws_qsi_info_block si;
1905 
1906 		memset(&si, 0, sizeof(si));
1907 		if (!qsi(&si)) {
1908 			cfdiag_cpu_speed = si.cpu_speed;
1909 			return;
1910 		}
1911 	}
1912 
1913 	/* Fallback: CPU speed extract static part. Used in case
1914 	 * CPU Measurement Sampling Facility is turned off.
1915 	 */
1916 	mhz = __ecag(ECAG_CPU_ATTRIBUTE, 0);
1917 	if (mhz != -1UL)
1918 		cfdiag_cpu_speed = mhz & 0xffffffff;
1919 }
1920 
cfset_init(void)1921 static int cfset_init(void)
1922 {
1923 	size_t need;
1924 	int rc;
1925 
1926 	cfdiag_get_cpu_speed();
1927 	/* Make sure the counter set data fits into predefined buffer. */
1928 	need = cfdiag_maxsize(&cpumf_ctr_info);
1929 	if (need > sizeof(((struct cpu_cf_events *)0)->start)) {
1930 		pr_err("Insufficient memory for PMU(cpum_cf_diag) need=%zu\n",
1931 		       need);
1932 		return -ENOMEM;
1933 	}
1934 
1935 	rc = misc_register(&cfset_dev);
1936 	if (rc) {
1937 		pr_err("Registration of /dev/%s failed rc=%i\n",
1938 		       cfset_dev.name, rc);
1939 		goto out;
1940 	}
1941 
1942 	rc = perf_pmu_register(&cf_diag, "cpum_cf_diag", -1);
1943 	if (rc) {
1944 		misc_deregister(&cfset_dev);
1945 		pr_err("Registration of PMU(cpum_cf_diag) failed with rc=%i\n",
1946 		       rc);
1947 	}
1948 out:
1949 	return rc;
1950 }
1951 
1952 device_initcall(cpumf_pmu_init);
1953