1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance event support - powerpc architecture code
4  *
5  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6  */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <asm/reg.h>
15 #include <asm/pmc.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/text-patching.h>
20 #include <asm/hw_irq.h>
21 #include <asm/interrupt.h>
22 
23 #ifdef CONFIG_PPC64
24 #include "internal.h"
25 #endif
26 
27 #define BHRB_MAX_ENTRIES	32
28 #define BHRB_TARGET		0x0000000000000002
29 #define BHRB_PREDICTION		0x0000000000000001
30 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
31 
32 struct cpu_hw_events {
33 	int n_events;
34 	int n_percpu;
35 	int disabled;
36 	int n_added;
37 	int n_limited;
38 	u8  pmcs_enabled;
39 	struct perf_event *event[MAX_HWEVENTS];
40 	u64 events[MAX_HWEVENTS];
41 	unsigned int flags[MAX_HWEVENTS];
42 	struct mmcr_regs mmcr;
43 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
44 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
45 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
46 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
47 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48 
49 	unsigned int txn_flags;
50 	int n_txn_start;
51 
52 	/* BHRB bits */
53 	u64				bhrb_filter;	/* BHRB HW branch filter */
54 	unsigned int			bhrb_users;
55 	void				*bhrb_context;
56 	struct	perf_branch_stack	bhrb_stack;
57 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
58 	u64				ic_init;
59 
60 	/* Store the PMC values */
61 	unsigned long pmcs[MAX_HWEVENTS];
62 };
63 
64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
65 
66 static struct power_pmu *ppmu;
67 
68 /*
69  * Normally, to ignore kernel events we set the FCS (freeze counters
70  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
71  * hypervisor bit set in the MSR, or if we are running on a processor
72  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
73  * then we need to use the FCHV bit to ignore kernel events.
74  */
75 static unsigned int freeze_events_kernel = MMCR0_FCS;
76 
77 /*
78  * 32-bit doesn't have MMCRA but does have an MMCR2,
79  * and a few other names are different.
80  * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
81  * Define them as zero knowing that any code path accessing
82  * these registers (via mtspr/mfspr) are done under ppmu flag
83  * check for PPMU_ARCH_31 and we will not enter that code path
84  * for 32-bit.
85  */
86 #ifdef CONFIG_PPC32
87 
88 #define MMCR0_FCHV		0
89 #define MMCR0_PMCjCE		MMCR0_PMCnCE
90 #define MMCR0_FC56		0
91 #define MMCR0_PMAO		0
92 #define MMCR0_EBE		0
93 #define MMCR0_BHRBA		0
94 #define MMCR0_PMCC		0
95 #define MMCR0_PMCC_U6		0
96 
97 #define SPRN_MMCRA		SPRN_MMCR2
98 #define SPRN_MMCR3		0
99 #define SPRN_SIER2		0
100 #define SPRN_SIER3		0
101 #define MMCRA_SAMPLE_ENABLE	0
102 #define MMCRA_BHRB_DISABLE     0
103 #define MMCR0_PMCCEXT		0
104 
perf_ip_adjust(struct pt_regs * regs)105 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
106 {
107 	return 0;
108 }
perf_get_data_addr(struct perf_event * event,struct pt_regs * regs,u64 * addrp)109 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
perf_get_misc_flags(struct pt_regs * regs)110 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
111 {
112 	return 0;
113 }
perf_read_regs(struct pt_regs * regs)114 static inline void perf_read_regs(struct pt_regs *regs)
115 {
116 	regs->result = 0;
117 }
118 
siar_valid(struct pt_regs * regs)119 static inline int siar_valid(struct pt_regs *regs)
120 {
121 	return 1;
122 }
123 
is_ebb_event(struct perf_event * event)124 static bool is_ebb_event(struct perf_event *event) { return false; }
ebb_event_check(struct perf_event * event)125 static int ebb_event_check(struct perf_event *event) { return 0; }
ebb_event_add(struct perf_event * event)126 static void ebb_event_add(struct perf_event *event) { }
ebb_switch_out(unsigned long mmcr0)127 static void ebb_switch_out(unsigned long mmcr0) { }
ebb_switch_in(bool ebb,struct cpu_hw_events * cpuhw)128 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
129 {
130 	return cpuhw->mmcr.mmcr0;
131 }
132 
power_pmu_bhrb_enable(struct perf_event * event)133 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
power_pmu_bhrb_disable(struct perf_event * event)134 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
power_pmu_sched_task(struct perf_event_pmu_context * pmu_ctx,struct task_struct * task,bool sched_in)135 static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
136 				 struct task_struct *task, bool sched_in)
137 {
138 }
power_pmu_bhrb_read(struct perf_event * event,struct cpu_hw_events * cpuhw)139 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
pmao_restore_workaround(bool ebb)140 static void pmao_restore_workaround(bool ebb) { }
141 #endif /* CONFIG_PPC32 */
142 
is_sier_available(void)143 bool is_sier_available(void)
144 {
145 	if (!ppmu)
146 		return false;
147 
148 	if (ppmu->flags & PPMU_HAS_SIER)
149 		return true;
150 
151 	return false;
152 }
153 
154 /*
155  * Return PMC value corresponding to the
156  * index passed.
157  */
get_pmcs_ext_regs(int idx)158 unsigned long get_pmcs_ext_regs(int idx)
159 {
160 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
161 
162 	return cpuhw->pmcs[idx];
163 }
164 
regs_use_siar(struct pt_regs * regs)165 static bool regs_use_siar(struct pt_regs *regs)
166 {
167 	/*
168 	 * When we take a performance monitor exception the regs are setup
169 	 * using perf_read_regs() which overloads some fields, in particular
170 	 * regs->result to tell us whether to use SIAR.
171 	 *
172 	 * However if the regs are from another exception, eg. a syscall, then
173 	 * they have not been setup using perf_read_regs() and so regs->result
174 	 * is something random.
175 	 */
176 	return ((TRAP(regs) == INTERRUPT_PERFMON) && regs->result);
177 }
178 
179 /*
180  * Things that are specific to 64-bit implementations.
181  */
182 #ifdef CONFIG_PPC64
183 
perf_ip_adjust(struct pt_regs * regs)184 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
185 {
186 	unsigned long mmcra = regs->dsisr;
187 
188 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
189 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
190 		if (slot > 1)
191 			return 4 * (slot - 1);
192 	}
193 
194 	return 0;
195 }
196 
197 /*
198  * The user wants a data address recorded.
199  * If we're not doing instruction sampling, give them the SDAR
200  * (sampled data address).  If we are doing instruction sampling, then
201  * only give them the SDAR if it corresponds to the instruction
202  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
203  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
204  */
perf_get_data_addr(struct perf_event * event,struct pt_regs * regs,u64 * addrp)205 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
206 {
207 	unsigned long mmcra = regs->dsisr;
208 	bool sdar_valid;
209 
210 	if (ppmu->flags & PPMU_HAS_SIER)
211 		sdar_valid = regs->dar & SIER_SDAR_VALID;
212 	else {
213 		unsigned long sdsync;
214 
215 		if (ppmu->flags & PPMU_SIAR_VALID)
216 			sdsync = POWER7P_MMCRA_SDAR_VALID;
217 		else if (ppmu->flags & PPMU_ALT_SIPR)
218 			sdsync = POWER6_MMCRA_SDSYNC;
219 		else if (ppmu->flags & PPMU_NO_SIAR)
220 			sdsync = MMCRA_SAMPLE_ENABLE;
221 		else
222 			sdsync = MMCRA_SDSYNC;
223 
224 		sdar_valid = mmcra & sdsync;
225 	}
226 
227 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
228 		*addrp = mfspr(SPRN_SDAR);
229 
230 	if (is_kernel_addr(mfspr(SPRN_SDAR)) && event->attr.exclude_kernel)
231 		*addrp = 0;
232 }
233 
regs_sihv(struct pt_regs * regs)234 static bool regs_sihv(struct pt_regs *regs)
235 {
236 	unsigned long sihv = MMCRA_SIHV;
237 
238 	if (ppmu->flags & PPMU_HAS_SIER)
239 		return !!(regs->dar & SIER_SIHV);
240 
241 	if (ppmu->flags & PPMU_ALT_SIPR)
242 		sihv = POWER6_MMCRA_SIHV;
243 
244 	return !!(regs->dsisr & sihv);
245 }
246 
regs_sipr(struct pt_regs * regs)247 static bool regs_sipr(struct pt_regs *regs)
248 {
249 	unsigned long sipr = MMCRA_SIPR;
250 
251 	if (ppmu->flags & PPMU_HAS_SIER)
252 		return !!(regs->dar & SIER_SIPR);
253 
254 	if (ppmu->flags & PPMU_ALT_SIPR)
255 		sipr = POWER6_MMCRA_SIPR;
256 
257 	return !!(regs->dsisr & sipr);
258 }
259 
perf_flags_from_msr(struct pt_regs * regs)260 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
261 {
262 	if (user_mode(regs))
263 		return PERF_RECORD_MISC_USER;
264 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
265 		return PERF_RECORD_MISC_HYPERVISOR;
266 	return PERF_RECORD_MISC_KERNEL;
267 }
268 
perf_get_misc_flags(struct pt_regs * regs)269 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
270 {
271 	bool use_siar = regs_use_siar(regs);
272 	unsigned long siar;
273 	unsigned long addr;
274 
275 	if (!use_siar)
276 		return perf_flags_from_msr(regs);
277 
278 	/*
279 	 * If we don't have flags in MMCRA, rather than using
280 	 * the MSR, we intuit the flags from the address in
281 	 * SIAR which should give slightly more reliable
282 	 * results
283 	 */
284 	if (ppmu->flags & PPMU_NO_SIPR) {
285 		siar = mfspr(SPRN_SIAR);
286 		if (is_kernel_addr(siar))
287 			return PERF_RECORD_MISC_KERNEL;
288 		return PERF_RECORD_MISC_USER;
289 	}
290 
291 	/* PR has priority over HV, so order below is important */
292 	if (regs_sipr(regs)) {
293 		if (!(ppmu->flags & PPMU_P10))
294 			return PERF_RECORD_MISC_USER;
295 	} else if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
296 		return PERF_RECORD_MISC_HYPERVISOR;
297 
298 	/*
299 	 * Check the address in SIAR to identify the
300 	 * privilege levels since the SIER[MSR_HV, MSR_PR]
301 	 * bits are not set correctly in power10 sometimes
302 	 */
303 	if (ppmu->flags & PPMU_P10) {
304 		siar = mfspr(SPRN_SIAR);
305 		addr = siar ? siar : regs->nip;
306 		if (!is_kernel_addr(addr))
307 			return PERF_RECORD_MISC_USER;
308 	}
309 
310 	return PERF_RECORD_MISC_KERNEL;
311 }
312 
313 /*
314  * Overload regs->dsisr to store MMCRA so we only need to read it once
315  * on each interrupt.
316  * Overload regs->dar to store SIER if we have it.
317  * Overload regs->result to specify whether we should use the MSR (result
318  * is zero) or the SIAR (result is non zero).
319  */
perf_read_regs(struct pt_regs * regs)320 static inline void perf_read_regs(struct pt_regs *regs)
321 {
322 	unsigned long mmcra = mfspr(SPRN_MMCRA);
323 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
324 	int use_siar;
325 
326 	regs->dsisr = mmcra;
327 
328 	if (ppmu->flags & PPMU_HAS_SIER)
329 		regs->dar = mfspr(SPRN_SIER);
330 
331 	/*
332 	 * If this isn't a PMU exception (eg a software event) the SIAR is
333 	 * not valid. Use pt_regs.
334 	 *
335 	 * If it is a marked event use the SIAR.
336 	 *
337 	 * If the PMU doesn't update the SIAR for non marked events use
338 	 * pt_regs.
339 	 *
340 	 * If regs is a kernel interrupt, always use SIAR. Some PMUs have an
341 	 * issue with regs_sipr not being in synch with SIAR in interrupt entry
342 	 * and return sequences, which can result in regs_sipr being true for
343 	 * kernel interrupts and SIAR, which has the effect of causing samples
344 	 * to pile up at mtmsrd MSR[EE] 0->1 or pending irq replay around
345 	 * interrupt entry/exit.
346 	 *
347 	 * If the PMU has HV/PR flags then check to see if they
348 	 * place the exception in userspace. If so, use pt_regs. In
349 	 * continuous sampling mode the SIAR and the PMU exception are
350 	 * not synchronised, so they may be many instructions apart.
351 	 * This can result in confusing backtraces. We still want
352 	 * hypervisor samples as well as samples in the kernel with
353 	 * interrupts off hence the userspace check.
354 	 */
355 	if (TRAP(regs) != INTERRUPT_PERFMON)
356 		use_siar = 0;
357 	else if ((ppmu->flags & PPMU_NO_SIAR))
358 		use_siar = 0;
359 	else if (marked)
360 		use_siar = 1;
361 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
362 		use_siar = 0;
363 	else if (!user_mode(regs))
364 		use_siar = 1;
365 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
366 		use_siar = 0;
367 	else
368 		use_siar = 1;
369 
370 	regs->result = use_siar;
371 }
372 
373 /*
374  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
375  * must be sampled only if the SIAR-valid bit is set.
376  *
377  * For unmarked instructions and for processors that don't have the SIAR-Valid
378  * bit, assume that SIAR is valid.
379  */
siar_valid(struct pt_regs * regs)380 static inline int siar_valid(struct pt_regs *regs)
381 {
382 	unsigned long mmcra = regs->dsisr;
383 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
384 
385 	if (marked) {
386 		/*
387 		 * SIER[SIAR_VALID] is not set for some
388 		 * marked events on power10 DD1, so drop
389 		 * the check for SIER[SIAR_VALID] and return true.
390 		 */
391 		if (ppmu->flags & PPMU_P10_DD1)
392 			return 0x1;
393 		else if (ppmu->flags & PPMU_HAS_SIER)
394 			return regs->dar & SIER_SIAR_VALID;
395 
396 		if (ppmu->flags & PPMU_SIAR_VALID)
397 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
398 	}
399 
400 	return 1;
401 }
402 
403 
404 /* Reset all possible BHRB entries */
power_pmu_bhrb_reset(void)405 static void power_pmu_bhrb_reset(void)
406 {
407 	asm volatile(PPC_CLRBHRB);
408 }
409 
power_pmu_bhrb_enable(struct perf_event * event)410 static void power_pmu_bhrb_enable(struct perf_event *event)
411 {
412 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
413 
414 	if (!ppmu->bhrb_nr)
415 		return;
416 
417 	/* Clear BHRB if we changed task context to avoid data leaks */
418 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
419 		power_pmu_bhrb_reset();
420 		cpuhw->bhrb_context = event->ctx;
421 	}
422 	cpuhw->bhrb_users++;
423 	perf_sched_cb_inc(event->pmu);
424 }
425 
power_pmu_bhrb_disable(struct perf_event * event)426 static void power_pmu_bhrb_disable(struct perf_event *event)
427 {
428 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
429 
430 	if (!ppmu->bhrb_nr)
431 		return;
432 
433 	WARN_ON_ONCE(!cpuhw->bhrb_users);
434 	cpuhw->bhrb_users--;
435 	perf_sched_cb_dec(event->pmu);
436 
437 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
438 		/* BHRB cannot be turned off when other
439 		 * events are active on the PMU.
440 		 */
441 
442 		/* avoid stale pointer */
443 		cpuhw->bhrb_context = NULL;
444 	}
445 }
446 
447 /* Called from ctxsw to prevent one process's branch entries to
448  * mingle with the other process's entries during context switch.
449  */
power_pmu_sched_task(struct perf_event_pmu_context * pmu_ctx,struct task_struct * task,bool sched_in)450 static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
451 				 struct task_struct *task, bool sched_in)
452 {
453 	if (!ppmu->bhrb_nr)
454 		return;
455 
456 	if (sched_in)
457 		power_pmu_bhrb_reset();
458 }
459 /* Calculate the to address for a branch */
power_pmu_bhrb_to(u64 addr)460 static __u64 power_pmu_bhrb_to(u64 addr)
461 {
462 	unsigned int instr;
463 	__u64 target;
464 
465 	if (is_kernel_addr(addr)) {
466 		if (copy_from_kernel_nofault(&instr, (void *)addr,
467 				sizeof(instr)))
468 			return 0;
469 
470 		return branch_target(&instr);
471 	}
472 
473 	/* Userspace: need copy instruction here then translate it */
474 	if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
475 			sizeof(instr)))
476 		return 0;
477 
478 	target = branch_target(&instr);
479 	if ((!target) || (instr & BRANCH_ABSOLUTE))
480 		return target;
481 
482 	/* Translate relative branch target from kernel to user address */
483 	return target - (unsigned long)&instr + addr;
484 }
485 
486 /* Processing BHRB entries */
power_pmu_bhrb_read(struct perf_event * event,struct cpu_hw_events * cpuhw)487 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
488 {
489 	u64 val;
490 	u64 addr;
491 	int r_index, u_index, pred;
492 
493 	r_index = 0;
494 	u_index = 0;
495 	while (r_index < ppmu->bhrb_nr) {
496 		/* Assembly read function */
497 		val = read_bhrb(r_index++);
498 		if (!val)
499 			/* Terminal marker: End of valid BHRB entries */
500 			break;
501 		else {
502 			addr = val & BHRB_EA;
503 			pred = val & BHRB_PREDICTION;
504 
505 			if (!addr)
506 				/* invalid entry */
507 				continue;
508 
509 			/*
510 			 * BHRB rolling buffer could very much contain the kernel
511 			 * addresses at this point. Check the privileges before
512 			 * exporting it to userspace (avoid exposure of regions
513 			 * where we could have speculative execution)
514 			 * Incase of ISA v3.1, BHRB will capture only user-space
515 			 * addresses, hence include a check before filtering code
516 			 */
517 			if (!(ppmu->flags & PPMU_ARCH_31) &&
518 			    is_kernel_addr(addr) && event->attr.exclude_kernel)
519 				continue;
520 
521 			/* Branches are read most recent first (ie. mfbhrb 0 is
522 			 * the most recent branch).
523 			 * There are two types of valid entries:
524 			 * 1) a target entry which is the to address of a
525 			 *    computed goto like a blr,bctr,btar.  The next
526 			 *    entry read from the bhrb will be branch
527 			 *    corresponding to this target (ie. the actual
528 			 *    blr/bctr/btar instruction).
529 			 * 2) a from address which is an actual branch.  If a
530 			 *    target entry proceeds this, then this is the
531 			 *    matching branch for that target.  If this is not
532 			 *    following a target entry, then this is a branch
533 			 *    where the target is given as an immediate field
534 			 *    in the instruction (ie. an i or b form branch).
535 			 *    In this case we need to read the instruction from
536 			 *    memory to determine the target/to address.
537 			 */
538 
539 			if (val & BHRB_TARGET) {
540 				/* Target branches use two entries
541 				 * (ie. computed gotos/XL form)
542 				 */
543 				cpuhw->bhrb_entries[u_index].to = addr;
544 				cpuhw->bhrb_entries[u_index].mispred = pred;
545 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
546 
547 				/* Get from address in next entry */
548 				val = read_bhrb(r_index++);
549 				addr = val & BHRB_EA;
550 				if (val & BHRB_TARGET) {
551 					/* Shouldn't have two targets in a
552 					   row.. Reset index and try again */
553 					r_index--;
554 					addr = 0;
555 				}
556 				cpuhw->bhrb_entries[u_index].from = addr;
557 			} else {
558 				/* Branches to immediate field
559 				   (ie I or B form) */
560 				cpuhw->bhrb_entries[u_index].from = addr;
561 				cpuhw->bhrb_entries[u_index].to =
562 					power_pmu_bhrb_to(addr);
563 				cpuhw->bhrb_entries[u_index].mispred = pred;
564 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
565 			}
566 			u_index++;
567 
568 		}
569 	}
570 	cpuhw->bhrb_stack.nr = u_index;
571 	cpuhw->bhrb_stack.hw_idx = -1ULL;
572 	return;
573 }
574 
is_ebb_event(struct perf_event * event)575 static bool is_ebb_event(struct perf_event *event)
576 {
577 	/*
578 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
579 	 * check that the PMU supports EBB, meaning those that don't can still
580 	 * use bit 63 of the event code for something else if they wish.
581 	 */
582 	return (ppmu->flags & PPMU_ARCH_207S) &&
583 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
584 }
585 
ebb_event_check(struct perf_event * event)586 static int ebb_event_check(struct perf_event *event)
587 {
588 	struct perf_event *leader = event->group_leader;
589 
590 	/* Event and group leader must agree on EBB */
591 	if (is_ebb_event(leader) != is_ebb_event(event))
592 		return -EINVAL;
593 
594 	if (is_ebb_event(event)) {
595 		if (!(event->attach_state & PERF_ATTACH_TASK))
596 			return -EINVAL;
597 
598 		if (!leader->attr.pinned || !leader->attr.exclusive)
599 			return -EINVAL;
600 
601 		if (event->attr.freq ||
602 		    event->attr.inherit ||
603 		    event->attr.sample_type ||
604 		    event->attr.sample_period ||
605 		    event->attr.enable_on_exec)
606 			return -EINVAL;
607 	}
608 
609 	return 0;
610 }
611 
ebb_event_add(struct perf_event * event)612 static void ebb_event_add(struct perf_event *event)
613 {
614 	if (!is_ebb_event(event) || current->thread.used_ebb)
615 		return;
616 
617 	/*
618 	 * IFF this is the first time we've added an EBB event, set
619 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
620 	 * userspace. We need this so that we can context switch while
621 	 * userspace is in the EBB handler (where PMXE is 0).
622 	 */
623 	current->thread.used_ebb = 1;
624 	current->thread.mmcr0 |= MMCR0_PMXE;
625 }
626 
ebb_switch_out(unsigned long mmcr0)627 static void ebb_switch_out(unsigned long mmcr0)
628 {
629 	if (!(mmcr0 & MMCR0_EBE))
630 		return;
631 
632 	current->thread.siar  = mfspr(SPRN_SIAR);
633 	current->thread.sier  = mfspr(SPRN_SIER);
634 	current->thread.sdar  = mfspr(SPRN_SDAR);
635 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
636 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
637 	if (ppmu->flags & PPMU_ARCH_31) {
638 		current->thread.mmcr3 = mfspr(SPRN_MMCR3);
639 		current->thread.sier2 = mfspr(SPRN_SIER2);
640 		current->thread.sier3 = mfspr(SPRN_SIER3);
641 	}
642 }
643 
ebb_switch_in(bool ebb,struct cpu_hw_events * cpuhw)644 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
645 {
646 	unsigned long mmcr0 = cpuhw->mmcr.mmcr0;
647 
648 	if (!ebb)
649 		goto out;
650 
651 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
652 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
653 
654 	/*
655 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
656 	 * with pmao_restore_workaround() because we may add PMAO but we never
657 	 * clear it here.
658 	 */
659 	mmcr0 |= current->thread.mmcr0;
660 
661 	/*
662 	 * Be careful not to set PMXE if userspace had it cleared. This is also
663 	 * compatible with pmao_restore_workaround() because it has already
664 	 * cleared PMXE and we leave PMAO alone.
665 	 */
666 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
667 		mmcr0 &= ~MMCR0_PMXE;
668 
669 	mtspr(SPRN_SIAR, current->thread.siar);
670 	mtspr(SPRN_SIER, current->thread.sier);
671 	mtspr(SPRN_SDAR, current->thread.sdar);
672 
673 	/*
674 	 * Merge the kernel & user values of MMCR2. The semantics we implement
675 	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
676 	 * but not clear bits. If a task wants to be able to clear bits, ie.
677 	 * unfreeze counters, it should not set exclude_xxx in its events and
678 	 * instead manage the MMCR2 entirely by itself.
679 	 */
680 	mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);
681 
682 	if (ppmu->flags & PPMU_ARCH_31) {
683 		mtspr(SPRN_MMCR3, current->thread.mmcr3);
684 		mtspr(SPRN_SIER2, current->thread.sier2);
685 		mtspr(SPRN_SIER3, current->thread.sier3);
686 	}
687 out:
688 	return mmcr0;
689 }
690 
pmao_restore_workaround(bool ebb)691 static void pmao_restore_workaround(bool ebb)
692 {
693 	unsigned pmcs[6];
694 
695 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
696 		return;
697 
698 	/*
699 	 * On POWER8E there is a hardware defect which affects the PMU context
700 	 * switch logic, ie. power_pmu_disable/enable().
701 	 *
702 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
703 	 * by the hardware. Sometime later the actual PMU exception is
704 	 * delivered.
705 	 *
706 	 * If we context switch, or simply disable/enable, the PMU prior to the
707 	 * exception arriving, the exception will be lost when we clear PMAO.
708 	 *
709 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
710 	 * set, and this _should_ generate an exception. However because of the
711 	 * defect no exception is generated when we write PMAO, and we get
712 	 * stuck with no counters counting but no exception delivered.
713 	 *
714 	 * The workaround is to detect this case and tweak the hardware to
715 	 * create another pending PMU exception.
716 	 *
717 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
718 	 * enabling the PMU. That causes a new exception to be generated in the
719 	 * chip, but we don't take it yet because we have interrupts hard
720 	 * disabled. We then write back the PMU state as we want it to be seen
721 	 * by the exception handler. When we reenable interrupts the exception
722 	 * handler will be called and see the correct state.
723 	 *
724 	 * The logic is the same for EBB, except that the exception is gated by
725 	 * us having interrupts hard disabled as well as the fact that we are
726 	 * not in userspace. The exception is finally delivered when we return
727 	 * to userspace.
728 	 */
729 
730 	/* Only if PMAO is set and PMAO_SYNC is clear */
731 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
732 		return;
733 
734 	/* If we're doing EBB, only if BESCR[GE] is set */
735 	if (ebb && !(current->thread.bescr & BESCR_GE))
736 		return;
737 
738 	/*
739 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
740 	 * disable to actually prevent the PMU exception from firing.
741 	 */
742 	hard_irq_disable();
743 
744 	/*
745 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
746 	 * Using read/write_pmc() in a for loop adds 12 function calls and
747 	 * almost doubles our code size.
748 	 */
749 	pmcs[0] = mfspr(SPRN_PMC1);
750 	pmcs[1] = mfspr(SPRN_PMC2);
751 	pmcs[2] = mfspr(SPRN_PMC3);
752 	pmcs[3] = mfspr(SPRN_PMC4);
753 	pmcs[4] = mfspr(SPRN_PMC5);
754 	pmcs[5] = mfspr(SPRN_PMC6);
755 
756 	/* Ensure all freeze bits are unset */
757 	mtspr(SPRN_MMCR2, 0);
758 
759 	/* Set up PMC6 to overflow in one cycle */
760 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
761 
762 	/* Enable exceptions and unfreeze PMC6 */
763 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
764 
765 	/* Now we need to refreeze and restore the PMCs */
766 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
767 
768 	mtspr(SPRN_PMC1, pmcs[0]);
769 	mtspr(SPRN_PMC2, pmcs[1]);
770 	mtspr(SPRN_PMC3, pmcs[2]);
771 	mtspr(SPRN_PMC4, pmcs[3]);
772 	mtspr(SPRN_PMC5, pmcs[4]);
773 	mtspr(SPRN_PMC6, pmcs[5]);
774 }
775 
776 /*
777  * If the perf subsystem wants performance monitor interrupts as soon as
778  * possible (e.g., to sample the instruction address and stack chain),
779  * this should return true. The IRQ masking code can then enable MSR[EE]
780  * in some places (e.g., interrupt handlers) that allows PMI interrupts
781  * through to improve accuracy of profiles, at the cost of some performance.
782  *
783  * The PMU counters can be enabled by other means (e.g., sysfs raw SPR
784  * access), but in that case there is no need for prompt PMI handling.
785  *
786  * This currently returns true if any perf counter is being used. It
787  * could possibly return false if only events are being counted rather than
788  * samples being taken, but for now this is good enough.
789  */
power_pmu_wants_prompt_pmi(void)790 bool power_pmu_wants_prompt_pmi(void)
791 {
792 	struct cpu_hw_events *cpuhw;
793 
794 	/*
795 	 * This could simply test local_paca->pmcregs_in_use if that were not
796 	 * under ifdef KVM.
797 	 */
798 	if (!ppmu)
799 		return false;
800 
801 	cpuhw = this_cpu_ptr(&cpu_hw_events);
802 	return cpuhw->n_events;
803 }
804 #endif /* CONFIG_PPC64 */
805 
806 static void perf_event_interrupt(struct pt_regs *regs);
807 
808 /*
809  * Read one performance monitor counter (PMC).
810  */
read_pmc(int idx)811 static unsigned long read_pmc(int idx)
812 {
813 	unsigned long val;
814 
815 	switch (idx) {
816 	case 1:
817 		val = mfspr(SPRN_PMC1);
818 		break;
819 	case 2:
820 		val = mfspr(SPRN_PMC2);
821 		break;
822 	case 3:
823 		val = mfspr(SPRN_PMC3);
824 		break;
825 	case 4:
826 		val = mfspr(SPRN_PMC4);
827 		break;
828 	case 5:
829 		val = mfspr(SPRN_PMC5);
830 		break;
831 	case 6:
832 		val = mfspr(SPRN_PMC6);
833 		break;
834 #ifdef CONFIG_PPC64
835 	case 7:
836 		val = mfspr(SPRN_PMC7);
837 		break;
838 	case 8:
839 		val = mfspr(SPRN_PMC8);
840 		break;
841 #endif /* CONFIG_PPC64 */
842 	default:
843 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
844 		val = 0;
845 	}
846 	return val;
847 }
848 
849 /*
850  * Write one PMC.
851  */
write_pmc(int idx,unsigned long val)852 static void write_pmc(int idx, unsigned long val)
853 {
854 	switch (idx) {
855 	case 1:
856 		mtspr(SPRN_PMC1, val);
857 		break;
858 	case 2:
859 		mtspr(SPRN_PMC2, val);
860 		break;
861 	case 3:
862 		mtspr(SPRN_PMC3, val);
863 		break;
864 	case 4:
865 		mtspr(SPRN_PMC4, val);
866 		break;
867 	case 5:
868 		mtspr(SPRN_PMC5, val);
869 		break;
870 	case 6:
871 		mtspr(SPRN_PMC6, val);
872 		break;
873 #ifdef CONFIG_PPC64
874 	case 7:
875 		mtspr(SPRN_PMC7, val);
876 		break;
877 	case 8:
878 		mtspr(SPRN_PMC8, val);
879 		break;
880 #endif /* CONFIG_PPC64 */
881 	default:
882 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
883 	}
884 }
885 
any_pmc_overflown(struct cpu_hw_events * cpuhw)886 static int any_pmc_overflown(struct cpu_hw_events *cpuhw)
887 {
888 	int i, idx;
889 
890 	for (i = 0; i < cpuhw->n_events; i++) {
891 		idx = cpuhw->event[i]->hw.idx;
892 		if ((idx) && ((int)read_pmc(idx) < 0))
893 			return idx;
894 	}
895 
896 	return 0;
897 }
898 
899 /* Called from sysrq_handle_showregs() */
perf_event_print_debug(void)900 void perf_event_print_debug(void)
901 {
902 	unsigned long sdar, sier, flags;
903 	u32 pmcs[MAX_HWEVENTS];
904 	int i;
905 
906 	if (!ppmu) {
907 		pr_info("Performance monitor hardware not registered.\n");
908 		return;
909 	}
910 
911 	if (!ppmu->n_counter)
912 		return;
913 
914 	local_irq_save(flags);
915 
916 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
917 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
918 
919 	for (i = 0; i < ppmu->n_counter; i++)
920 		pmcs[i] = read_pmc(i + 1);
921 
922 	for (; i < MAX_HWEVENTS; i++)
923 		pmcs[i] = 0xdeadbeef;
924 
925 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
926 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
927 
928 	if (ppmu->n_counter > 4)
929 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
930 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
931 
932 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
933 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
934 
935 	sdar = sier = 0;
936 #ifdef CONFIG_PPC64
937 	sdar = mfspr(SPRN_SDAR);
938 
939 	if (ppmu->flags & PPMU_HAS_SIER)
940 		sier = mfspr(SPRN_SIER);
941 
942 	if (ppmu->flags & PPMU_ARCH_207S) {
943 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
944 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
945 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
946 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
947 	}
948 
949 	if (ppmu->flags & PPMU_ARCH_31) {
950 		pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
951 			mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
952 	}
953 #endif
954 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
955 		mfspr(SPRN_SIAR), sdar, sier);
956 
957 	local_irq_restore(flags);
958 }
959 
960 /*
961  * Check if a set of events can all go on the PMU at once.
962  * If they can't, this will look at alternative codes for the events
963  * and see if any combination of alternative codes is feasible.
964  * The feasible set is returned in event_id[].
965  */
power_check_constraints(struct cpu_hw_events * cpuhw,u64 event_id[],unsigned int cflags[],int n_ev,struct perf_event ** event)966 static int power_check_constraints(struct cpu_hw_events *cpuhw,
967 				   u64 event_id[], unsigned int cflags[],
968 				   int n_ev, struct perf_event **event)
969 {
970 	unsigned long mask, value, nv;
971 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
972 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
973 	int i, j;
974 	unsigned long addf = ppmu->add_fields;
975 	unsigned long tadd = ppmu->test_adder;
976 	unsigned long grp_mask = ppmu->group_constraint_mask;
977 	unsigned long grp_val = ppmu->group_constraint_val;
978 
979 	if (n_ev > ppmu->n_counter)
980 		return -1;
981 
982 	/* First see if the events will go on as-is */
983 	for (i = 0; i < n_ev; ++i) {
984 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
985 		    && !ppmu->limited_pmc_event(event_id[i])) {
986 			ppmu->get_alternatives(event_id[i], cflags[i],
987 					       cpuhw->alternatives[i]);
988 			event_id[i] = cpuhw->alternatives[i][0];
989 		}
990 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
991 					 &cpuhw->avalues[i][0], event[i]->attr.config1))
992 			return -1;
993 	}
994 	value = mask = 0;
995 	for (i = 0; i < n_ev; ++i) {
996 		nv = (value | cpuhw->avalues[i][0]) +
997 			(value & cpuhw->avalues[i][0] & addf);
998 
999 		if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
1000 			break;
1001 
1002 		if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
1003 			& (~grp_mask)) != 0)
1004 			break;
1005 
1006 		value = nv;
1007 		mask |= cpuhw->amasks[i][0];
1008 	}
1009 	if (i == n_ev) {
1010 		if ((value & mask & grp_mask) != (mask & grp_val))
1011 			return -1;
1012 		else
1013 			return 0;	/* all OK */
1014 	}
1015 
1016 	/* doesn't work, gather alternatives... */
1017 	if (!ppmu->get_alternatives)
1018 		return -1;
1019 	for (i = 0; i < n_ev; ++i) {
1020 		choice[i] = 0;
1021 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
1022 						  cpuhw->alternatives[i]);
1023 		for (j = 1; j < n_alt[i]; ++j)
1024 			ppmu->get_constraint(cpuhw->alternatives[i][j],
1025 					     &cpuhw->amasks[i][j],
1026 					     &cpuhw->avalues[i][j],
1027 					     event[i]->attr.config1);
1028 	}
1029 
1030 	/* enumerate all possibilities and see if any will work */
1031 	i = 0;
1032 	j = -1;
1033 	value = mask = nv = 0;
1034 	while (i < n_ev) {
1035 		if (j >= 0) {
1036 			/* we're backtracking, restore context */
1037 			value = svalues[i];
1038 			mask = smasks[i];
1039 			j = choice[i];
1040 		}
1041 		/*
1042 		 * See if any alternative k for event_id i,
1043 		 * where k > j, will satisfy the constraints.
1044 		 */
1045 		while (++j < n_alt[i]) {
1046 			nv = (value | cpuhw->avalues[i][j]) +
1047 				(value & cpuhw->avalues[i][j] & addf);
1048 			if ((((nv + tadd) ^ value) & mask) == 0 &&
1049 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
1050 			     & cpuhw->amasks[i][j]) == 0)
1051 				break;
1052 		}
1053 		if (j >= n_alt[i]) {
1054 			/*
1055 			 * No feasible alternative, backtrack
1056 			 * to event_id i-1 and continue enumerating its
1057 			 * alternatives from where we got up to.
1058 			 */
1059 			if (--i < 0)
1060 				return -1;
1061 		} else {
1062 			/*
1063 			 * Found a feasible alternative for event_id i,
1064 			 * remember where we got up to with this event_id,
1065 			 * go on to the next event_id, and start with
1066 			 * the first alternative for it.
1067 			 */
1068 			choice[i] = j;
1069 			svalues[i] = value;
1070 			smasks[i] = mask;
1071 			value = nv;
1072 			mask |= cpuhw->amasks[i][j];
1073 			++i;
1074 			j = -1;
1075 		}
1076 	}
1077 
1078 	/* OK, we have a feasible combination, tell the caller the solution */
1079 	for (i = 0; i < n_ev; ++i)
1080 		event_id[i] = cpuhw->alternatives[i][choice[i]];
1081 	return 0;
1082 }
1083 
1084 /*
1085  * Check if newly-added events have consistent settings for
1086  * exclude_{user,kernel,hv} with each other and any previously
1087  * added events.
1088  */
check_excludes(struct perf_event ** ctrs,unsigned int cflags[],int n_prev,int n_new)1089 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
1090 			  int n_prev, int n_new)
1091 {
1092 	int eu = 0, ek = 0, eh = 0;
1093 	int i, n, first;
1094 	struct perf_event *event;
1095 
1096 	/*
1097 	 * If the PMU we're on supports per event exclude settings then we
1098 	 * don't need to do any of this logic. NB. This assumes no PMU has both
1099 	 * per event exclude and limited PMCs.
1100 	 */
1101 	if (ppmu->flags & PPMU_ARCH_207S)
1102 		return 0;
1103 
1104 	n = n_prev + n_new;
1105 	if (n <= 1)
1106 		return 0;
1107 
1108 	first = 1;
1109 	for (i = 0; i < n; ++i) {
1110 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1111 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1112 			continue;
1113 		}
1114 		event = ctrs[i];
1115 		if (first) {
1116 			eu = event->attr.exclude_user;
1117 			ek = event->attr.exclude_kernel;
1118 			eh = event->attr.exclude_hv;
1119 			first = 0;
1120 		} else if (event->attr.exclude_user != eu ||
1121 			   event->attr.exclude_kernel != ek ||
1122 			   event->attr.exclude_hv != eh) {
1123 			return -EAGAIN;
1124 		}
1125 	}
1126 
1127 	if (eu || ek || eh)
1128 		for (i = 0; i < n; ++i)
1129 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
1130 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
1131 
1132 	return 0;
1133 }
1134 
check_and_compute_delta(u64 prev,u64 val)1135 static u64 check_and_compute_delta(u64 prev, u64 val)
1136 {
1137 	u64 delta = (val - prev) & 0xfffffffful;
1138 
1139 	/*
1140 	 * POWER7 can roll back counter values, if the new value is smaller
1141 	 * than the previous value it will cause the delta and the counter to
1142 	 * have bogus values unless we rolled a counter over.  If a counter is
1143 	 * rolled back, it will be smaller, but within 256, which is the maximum
1144 	 * number of events to rollback at once.  If we detect a rollback
1145 	 * return 0.  This can lead to a small lack of precision in the
1146 	 * counters.
1147 	 */
1148 	if (prev > val && (prev - val) < 256)
1149 		delta = 0;
1150 
1151 	return delta;
1152 }
1153 
power_pmu_read(struct perf_event * event)1154 static void power_pmu_read(struct perf_event *event)
1155 {
1156 	s64 val, delta, prev;
1157 
1158 	if (event->hw.state & PERF_HES_STOPPED)
1159 		return;
1160 
1161 	if (!event->hw.idx)
1162 		return;
1163 
1164 	if (is_ebb_event(event)) {
1165 		val = read_pmc(event->hw.idx);
1166 		local64_set(&event->hw.prev_count, val);
1167 		return;
1168 	}
1169 
1170 	/*
1171 	 * Performance monitor interrupts come even when interrupts
1172 	 * are soft-disabled, as long as interrupts are hard-enabled.
1173 	 * Therefore we treat them like NMIs.
1174 	 */
1175 	do {
1176 		prev = local64_read(&event->hw.prev_count);
1177 		barrier();
1178 		val = read_pmc(event->hw.idx);
1179 		delta = check_and_compute_delta(prev, val);
1180 		if (!delta)
1181 			return;
1182 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1183 
1184 	local64_add(delta, &event->count);
1185 
1186 	/*
1187 	 * A number of places program the PMC with (0x80000000 - period_left).
1188 	 * We never want period_left to be less than 1 because we will program
1189 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1190 	 * roll around to 0 before taking an exception. We have seen this
1191 	 * on POWER8.
1192 	 *
1193 	 * To fix this, clamp the minimum value of period_left to 1.
1194 	 */
1195 	do {
1196 		prev = local64_read(&event->hw.period_left);
1197 		val = prev - delta;
1198 		if (val < 1)
1199 			val = 1;
1200 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1201 }
1202 
1203 /*
1204  * On some machines, PMC5 and PMC6 can't be written, don't respect
1205  * the freeze conditions, and don't generate interrupts.  This tells
1206  * us if `event' is using such a PMC.
1207  */
is_limited_pmc(int pmcnum)1208 static int is_limited_pmc(int pmcnum)
1209 {
1210 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1211 		&& (pmcnum == 5 || pmcnum == 6);
1212 }
1213 
freeze_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)1214 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1215 				    unsigned long pmc5, unsigned long pmc6)
1216 {
1217 	struct perf_event *event;
1218 	u64 val, prev, delta;
1219 	int i;
1220 
1221 	for (i = 0; i < cpuhw->n_limited; ++i) {
1222 		event = cpuhw->limited_counter[i];
1223 		if (!event->hw.idx)
1224 			continue;
1225 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1226 		prev = local64_read(&event->hw.prev_count);
1227 		event->hw.idx = 0;
1228 		delta = check_and_compute_delta(prev, val);
1229 		if (delta)
1230 			local64_add(delta, &event->count);
1231 	}
1232 }
1233 
thaw_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)1234 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1235 				  unsigned long pmc5, unsigned long pmc6)
1236 {
1237 	struct perf_event *event;
1238 	u64 val, prev;
1239 	int i;
1240 
1241 	for (i = 0; i < cpuhw->n_limited; ++i) {
1242 		event = cpuhw->limited_counter[i];
1243 		event->hw.idx = cpuhw->limited_hwidx[i];
1244 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1245 		prev = local64_read(&event->hw.prev_count);
1246 		if (check_and_compute_delta(prev, val))
1247 			local64_set(&event->hw.prev_count, val);
1248 		perf_event_update_userpage(event);
1249 	}
1250 }
1251 
1252 /*
1253  * Since limited events don't respect the freeze conditions, we
1254  * have to read them immediately after freezing or unfreezing the
1255  * other events.  We try to keep the values from the limited
1256  * events as consistent as possible by keeping the delay (in
1257  * cycles and instructions) between freezing/unfreezing and reading
1258  * the limited events as small and consistent as possible.
1259  * Therefore, if any limited events are in use, we read them
1260  * both, and always in the same order, to minimize variability,
1261  * and do it inside the same asm that writes MMCR0.
1262  */
write_mmcr0(struct cpu_hw_events * cpuhw,unsigned long mmcr0)1263 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1264 {
1265 	unsigned long pmc5, pmc6;
1266 
1267 	if (!cpuhw->n_limited) {
1268 		mtspr(SPRN_MMCR0, mmcr0);
1269 		return;
1270 	}
1271 
1272 	/*
1273 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1274 	 * To ensure we don't get a performance monitor interrupt
1275 	 * between writing MMCR0 and freezing/thawing the limited
1276 	 * events, we first write MMCR0 with the event overflow
1277 	 * interrupt enable bits turned off.
1278 	 */
1279 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1280 		     : "=&r" (pmc5), "=&r" (pmc6)
1281 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1282 		       "i" (SPRN_MMCR0),
1283 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1284 
1285 	if (mmcr0 & MMCR0_FC)
1286 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1287 	else
1288 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1289 
1290 	/*
1291 	 * Write the full MMCR0 including the event overflow interrupt
1292 	 * enable bits, if necessary.
1293 	 */
1294 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1295 		mtspr(SPRN_MMCR0, mmcr0);
1296 }
1297 
1298 /*
1299  * Disable all events to prevent PMU interrupts and to allow
1300  * events to be added or removed.
1301  */
power_pmu_disable(struct pmu * pmu)1302 static void power_pmu_disable(struct pmu *pmu)
1303 {
1304 	struct cpu_hw_events *cpuhw;
1305 	unsigned long flags, mmcr0, val, mmcra;
1306 
1307 	if (!ppmu)
1308 		return;
1309 	local_irq_save(flags);
1310 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1311 
1312 	if (!cpuhw->disabled) {
1313 		/*
1314 		 * Check if we ever enabled the PMU on this cpu.
1315 		 */
1316 		if (!cpuhw->pmcs_enabled) {
1317 			ppc_enable_pmcs();
1318 			cpuhw->pmcs_enabled = 1;
1319 		}
1320 
1321 		/*
1322 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1323 		 * Also clear PMXE to disable PMI's getting triggered in some
1324 		 * corner cases during PMU disable.
1325 		 */
1326 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1327 		val |= MMCR0_FC;
1328 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1329 			 MMCR0_PMXE | MMCR0_FC56);
1330 		/* Set mmcr0 PMCCEXT for p10 */
1331 		if (ppmu->flags & PPMU_ARCH_31)
1332 			val |= MMCR0_PMCCEXT;
1333 
1334 		/*
1335 		 * The barrier is to make sure the mtspr has been
1336 		 * executed and the PMU has frozen the events etc.
1337 		 * before we return.
1338 		 */
1339 		write_mmcr0(cpuhw, val);
1340 		mb();
1341 		isync();
1342 
1343 		/*
1344 		 * Some corner cases could clear the PMU counter overflow
1345 		 * while a masked PMI is pending. One such case is when
1346 		 * a PMI happens during interrupt replay and perf counter
1347 		 * values are cleared by PMU callbacks before replay.
1348 		 *
1349 		 * Disable the interrupt by clearing the paca bit for PMI
1350 		 * since we are disabling the PMU now. Otherwise provide a
1351 		 * warning if there is PMI pending, but no counter is found
1352 		 * overflown.
1353 		 *
1354 		 * Since power_pmu_disable runs under local_irq_save, it
1355 		 * could happen that code hits a PMC overflow without PMI
1356 		 * pending in paca. Hence only clear PMI pending if it was
1357 		 * set.
1358 		 *
1359 		 * If a PMI is pending, then MSR[EE] must be disabled (because
1360 		 * the masked PMI handler disabling EE). So it is safe to
1361 		 * call clear_pmi_irq_pending().
1362 		 */
1363 		if (pmi_irq_pending())
1364 			clear_pmi_irq_pending();
1365 
1366 		val = mmcra = cpuhw->mmcr.mmcra;
1367 
1368 		/*
1369 		 * Disable instruction sampling if it was enabled
1370 		 */
1371 		val &= ~MMCRA_SAMPLE_ENABLE;
1372 
1373 		/* Disable BHRB via mmcra (BHRBRD) for p10 */
1374 		if (ppmu->flags & PPMU_ARCH_31)
1375 			val |= MMCRA_BHRB_DISABLE;
1376 
1377 		/*
1378 		 * Write SPRN_MMCRA if mmcra has either disabled
1379 		 * instruction sampling or BHRB.
1380 		 */
1381 		if (val != mmcra) {
1382 			mtspr(SPRN_MMCRA, val);
1383 			mb();
1384 			isync();
1385 		}
1386 
1387 		cpuhw->disabled = 1;
1388 		cpuhw->n_added = 0;
1389 
1390 		ebb_switch_out(mmcr0);
1391 
1392 #ifdef CONFIG_PPC64
1393 		/*
1394 		 * These are readable by userspace, may contain kernel
1395 		 * addresses and are not switched by context switch, so clear
1396 		 * them now to avoid leaking anything to userspace in general
1397 		 * including to another process.
1398 		 */
1399 		if (ppmu->flags & PPMU_ARCH_207S) {
1400 			mtspr(SPRN_SDAR, 0);
1401 			mtspr(SPRN_SIAR, 0);
1402 		}
1403 #endif
1404 	}
1405 
1406 	local_irq_restore(flags);
1407 }
1408 
1409 /*
1410  * Re-enable all events if disable == 0.
1411  * If we were previously disabled and events were added, then
1412  * put the new config on the PMU.
1413  */
power_pmu_enable(struct pmu * pmu)1414 static void power_pmu_enable(struct pmu *pmu)
1415 {
1416 	struct perf_event *event;
1417 	struct cpu_hw_events *cpuhw;
1418 	unsigned long flags;
1419 	long i;
1420 	unsigned long val, mmcr0;
1421 	s64 left;
1422 	unsigned int hwc_index[MAX_HWEVENTS];
1423 	int n_lim;
1424 	int idx;
1425 	bool ebb;
1426 
1427 	if (!ppmu)
1428 		return;
1429 	local_irq_save(flags);
1430 
1431 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1432 	if (!cpuhw->disabled)
1433 		goto out;
1434 
1435 	if (cpuhw->n_events == 0) {
1436 		ppc_set_pmu_inuse(0);
1437 		goto out;
1438 	}
1439 
1440 	cpuhw->disabled = 0;
1441 
1442 	/*
1443 	 * EBB requires an exclusive group and all events must have the EBB
1444 	 * flag set, or not set, so we can just check a single event. Also we
1445 	 * know we have at least one event.
1446 	 */
1447 	ebb = is_ebb_event(cpuhw->event[0]);
1448 
1449 	/*
1450 	 * If we didn't change anything, or only removed events,
1451 	 * no need to recalculate MMCR* settings and reset the PMCs.
1452 	 * Just reenable the PMU with the current MMCR* settings
1453 	 * (possibly updated for removal of events).
1454 	 */
1455 	if (!cpuhw->n_added) {
1456 		/*
1457 		 * If there is any active event with an overflown PMC
1458 		 * value, set back PACA_IRQ_PMI which would have been
1459 		 * cleared in power_pmu_disable().
1460 		 */
1461 		hard_irq_disable();
1462 		if (any_pmc_overflown(cpuhw))
1463 			set_pmi_irq_pending();
1464 
1465 		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1466 		mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1467 		if (ppmu->flags & PPMU_ARCH_31)
1468 			mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1469 		goto out_enable;
1470 	}
1471 
1472 	/*
1473 	 * Clear all MMCR settings and recompute them for the new set of events.
1474 	 */
1475 	memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1476 
1477 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1478 			       &cpuhw->mmcr, cpuhw->event, ppmu->flags)) {
1479 		/* shouldn't ever get here */
1480 		printk(KERN_ERR "oops compute_mmcr failed\n");
1481 		goto out;
1482 	}
1483 
1484 	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1485 		/*
1486 		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1487 		 * bits for the first event. We have already checked that all
1488 		 * events have the same value for these bits as the first event.
1489 		 */
1490 		event = cpuhw->event[0];
1491 		if (event->attr.exclude_user)
1492 			cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
1493 		if (event->attr.exclude_kernel)
1494 			cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
1495 		if (event->attr.exclude_hv)
1496 			cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
1497 	}
1498 
1499 	/*
1500 	 * Write the new configuration to MMCR* with the freeze
1501 	 * bit set and set the hardware events to their initial values.
1502 	 * Then unfreeze the events.
1503 	 */
1504 	ppc_set_pmu_inuse(1);
1505 	mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1506 	mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1507 	mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1508 				| MMCR0_FC);
1509 	if (ppmu->flags & PPMU_ARCH_207S)
1510 		mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);
1511 
1512 	if (ppmu->flags & PPMU_ARCH_31)
1513 		mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1514 
1515 	/*
1516 	 * Read off any pre-existing events that need to move
1517 	 * to another PMC.
1518 	 */
1519 	for (i = 0; i < cpuhw->n_events; ++i) {
1520 		event = cpuhw->event[i];
1521 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1522 			power_pmu_read(event);
1523 			write_pmc(event->hw.idx, 0);
1524 			event->hw.idx = 0;
1525 		}
1526 	}
1527 
1528 	/*
1529 	 * Initialize the PMCs for all the new and moved events.
1530 	 */
1531 	cpuhw->n_limited = n_lim = 0;
1532 	for (i = 0; i < cpuhw->n_events; ++i) {
1533 		event = cpuhw->event[i];
1534 		if (event->hw.idx)
1535 			continue;
1536 		idx = hwc_index[i] + 1;
1537 		if (is_limited_pmc(idx)) {
1538 			cpuhw->limited_counter[n_lim] = event;
1539 			cpuhw->limited_hwidx[n_lim] = idx;
1540 			++n_lim;
1541 			continue;
1542 		}
1543 
1544 		if (ebb)
1545 			val = local64_read(&event->hw.prev_count);
1546 		else {
1547 			val = 0;
1548 			if (event->hw.sample_period) {
1549 				left = local64_read(&event->hw.period_left);
1550 				if (left < 0x80000000L)
1551 					val = 0x80000000L - left;
1552 			}
1553 			local64_set(&event->hw.prev_count, val);
1554 		}
1555 
1556 		event->hw.idx = idx;
1557 		if (event->hw.state & PERF_HES_STOPPED)
1558 			val = 0;
1559 		write_pmc(idx, val);
1560 
1561 		perf_event_update_userpage(event);
1562 	}
1563 	cpuhw->n_limited = n_lim;
1564 	cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;
1565 
1566  out_enable:
1567 	pmao_restore_workaround(ebb);
1568 
1569 	mmcr0 = ebb_switch_in(ebb, cpuhw);
1570 
1571 	mb();
1572 	if (cpuhw->bhrb_users)
1573 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1574 
1575 	write_mmcr0(cpuhw, mmcr0);
1576 
1577 	/*
1578 	 * Enable instruction sampling if necessary
1579 	 */
1580 	if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
1581 		mb();
1582 		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
1583 	}
1584 
1585  out:
1586 
1587 	local_irq_restore(flags);
1588 }
1589 
collect_events(struct perf_event * group,int max_count,struct perf_event * ctrs[],u64 * events,unsigned int * flags)1590 static int collect_events(struct perf_event *group, int max_count,
1591 			  struct perf_event *ctrs[], u64 *events,
1592 			  unsigned int *flags)
1593 {
1594 	int n = 0;
1595 	struct perf_event *event;
1596 
1597 	if (group->pmu->task_ctx_nr == perf_hw_context) {
1598 		if (n >= max_count)
1599 			return -1;
1600 		ctrs[n] = group;
1601 		flags[n] = group->hw.event_base;
1602 		events[n++] = group->hw.config;
1603 	}
1604 	for_each_sibling_event(event, group) {
1605 		if (event->pmu->task_ctx_nr == perf_hw_context &&
1606 		    event->state != PERF_EVENT_STATE_OFF) {
1607 			if (n >= max_count)
1608 				return -1;
1609 			ctrs[n] = event;
1610 			flags[n] = event->hw.event_base;
1611 			events[n++] = event->hw.config;
1612 		}
1613 	}
1614 	return n;
1615 }
1616 
1617 /*
1618  * Add an event to the PMU.
1619  * If all events are not already frozen, then we disable and
1620  * re-enable the PMU in order to get hw_perf_enable to do the
1621  * actual work of reconfiguring the PMU.
1622  */
power_pmu_add(struct perf_event * event,int ef_flags)1623 static int power_pmu_add(struct perf_event *event, int ef_flags)
1624 {
1625 	struct cpu_hw_events *cpuhw;
1626 	unsigned long flags;
1627 	int n0;
1628 	int ret = -EAGAIN;
1629 
1630 	local_irq_save(flags);
1631 	perf_pmu_disable(event->pmu);
1632 
1633 	/*
1634 	 * Add the event to the list (if there is room)
1635 	 * and check whether the total set is still feasible.
1636 	 */
1637 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1638 	n0 = cpuhw->n_events;
1639 	if (n0 >= ppmu->n_counter)
1640 		goto out;
1641 	cpuhw->event[n0] = event;
1642 	cpuhw->events[n0] = event->hw.config;
1643 	cpuhw->flags[n0] = event->hw.event_base;
1644 
1645 	/*
1646 	 * This event may have been disabled/stopped in record_and_restart()
1647 	 * because we exceeded the ->event_limit. If re-starting the event,
1648 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1649 	 * notification is re-enabled.
1650 	 */
1651 	if (!(ef_flags & PERF_EF_START))
1652 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1653 	else
1654 		event->hw.state = 0;
1655 
1656 	/*
1657 	 * If group events scheduling transaction was started,
1658 	 * skip the schedulability test here, it will be performed
1659 	 * at commit time(->commit_txn) as a whole
1660 	 */
1661 	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1662 		goto nocheck;
1663 
1664 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1665 		goto out;
1666 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1, cpuhw->event))
1667 		goto out;
1668 	event->hw.config = cpuhw->events[n0];
1669 
1670 nocheck:
1671 	ebb_event_add(event);
1672 
1673 	++cpuhw->n_events;
1674 	++cpuhw->n_added;
1675 
1676 	ret = 0;
1677  out:
1678 	if (has_branch_stack(event)) {
1679 		u64 bhrb_filter = -1;
1680 
1681 		if (ppmu->bhrb_filter_map)
1682 			bhrb_filter = ppmu->bhrb_filter_map(
1683 				event->attr.branch_sample_type);
1684 
1685 		if (bhrb_filter != -1) {
1686 			cpuhw->bhrb_filter = bhrb_filter;
1687 			power_pmu_bhrb_enable(event);
1688 		}
1689 	}
1690 
1691 	perf_pmu_enable(event->pmu);
1692 	local_irq_restore(flags);
1693 	return ret;
1694 }
1695 
1696 /*
1697  * Remove an event from the PMU.
1698  */
power_pmu_del(struct perf_event * event,int ef_flags)1699 static void power_pmu_del(struct perf_event *event, int ef_flags)
1700 {
1701 	struct cpu_hw_events *cpuhw;
1702 	long i;
1703 	unsigned long flags;
1704 
1705 	local_irq_save(flags);
1706 	perf_pmu_disable(event->pmu);
1707 
1708 	power_pmu_read(event);
1709 
1710 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1711 	for (i = 0; i < cpuhw->n_events; ++i) {
1712 		if (event == cpuhw->event[i]) {
1713 			while (++i < cpuhw->n_events) {
1714 				cpuhw->event[i-1] = cpuhw->event[i];
1715 				cpuhw->events[i-1] = cpuhw->events[i];
1716 				cpuhw->flags[i-1] = cpuhw->flags[i];
1717 			}
1718 			--cpuhw->n_events;
1719 			ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
1720 			if (event->hw.idx) {
1721 				write_pmc(event->hw.idx, 0);
1722 				event->hw.idx = 0;
1723 			}
1724 			perf_event_update_userpage(event);
1725 			break;
1726 		}
1727 	}
1728 	for (i = 0; i < cpuhw->n_limited; ++i)
1729 		if (event == cpuhw->limited_counter[i])
1730 			break;
1731 	if (i < cpuhw->n_limited) {
1732 		while (++i < cpuhw->n_limited) {
1733 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1734 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1735 		}
1736 		--cpuhw->n_limited;
1737 	}
1738 	if (cpuhw->n_events == 0) {
1739 		/* disable exceptions if no events are running */
1740 		cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
1741 	}
1742 
1743 	if (has_branch_stack(event))
1744 		power_pmu_bhrb_disable(event);
1745 
1746 	perf_pmu_enable(event->pmu);
1747 	local_irq_restore(flags);
1748 }
1749 
1750 /*
1751  * POWER-PMU does not support disabling individual counters, hence
1752  * program their cycle counter to their max value and ignore the interrupts.
1753  */
1754 
power_pmu_start(struct perf_event * event,int ef_flags)1755 static void power_pmu_start(struct perf_event *event, int ef_flags)
1756 {
1757 	unsigned long flags;
1758 	s64 left;
1759 	unsigned long val;
1760 
1761 	if (!event->hw.idx || !event->hw.sample_period)
1762 		return;
1763 
1764 	if (!(event->hw.state & PERF_HES_STOPPED))
1765 		return;
1766 
1767 	if (ef_flags & PERF_EF_RELOAD)
1768 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1769 
1770 	local_irq_save(flags);
1771 	perf_pmu_disable(event->pmu);
1772 
1773 	event->hw.state = 0;
1774 	left = local64_read(&event->hw.period_left);
1775 
1776 	val = 0;
1777 	if (left < 0x80000000L)
1778 		val = 0x80000000L - left;
1779 
1780 	write_pmc(event->hw.idx, val);
1781 
1782 	perf_event_update_userpage(event);
1783 	perf_pmu_enable(event->pmu);
1784 	local_irq_restore(flags);
1785 }
1786 
power_pmu_stop(struct perf_event * event,int ef_flags)1787 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1788 {
1789 	unsigned long flags;
1790 
1791 	if (!event->hw.idx || !event->hw.sample_period)
1792 		return;
1793 
1794 	if (event->hw.state & PERF_HES_STOPPED)
1795 		return;
1796 
1797 	local_irq_save(flags);
1798 	perf_pmu_disable(event->pmu);
1799 
1800 	power_pmu_read(event);
1801 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1802 	write_pmc(event->hw.idx, 0);
1803 
1804 	perf_event_update_userpage(event);
1805 	perf_pmu_enable(event->pmu);
1806 	local_irq_restore(flags);
1807 }
1808 
1809 /*
1810  * Start group events scheduling transaction
1811  * Set the flag to make pmu::enable() not perform the
1812  * schedulability test, it will be performed at commit time
1813  *
1814  * We only support PERF_PMU_TXN_ADD transactions. Save the
1815  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1816  * transactions.
1817  */
power_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1818 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1819 {
1820 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1821 
1822 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1823 
1824 	cpuhw->txn_flags = txn_flags;
1825 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1826 		return;
1827 
1828 	perf_pmu_disable(pmu);
1829 	cpuhw->n_txn_start = cpuhw->n_events;
1830 }
1831 
1832 /*
1833  * Stop group events scheduling transaction
1834  * Clear the flag and pmu::enable() will perform the
1835  * schedulability test.
1836  */
power_pmu_cancel_txn(struct pmu * pmu)1837 static void power_pmu_cancel_txn(struct pmu *pmu)
1838 {
1839 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1840 	unsigned int txn_flags;
1841 
1842 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1843 
1844 	txn_flags = cpuhw->txn_flags;
1845 	cpuhw->txn_flags = 0;
1846 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1847 		return;
1848 
1849 	perf_pmu_enable(pmu);
1850 }
1851 
1852 /*
1853  * Commit group events scheduling transaction
1854  * Perform the group schedulability test as a whole
1855  * Return 0 if success
1856  */
power_pmu_commit_txn(struct pmu * pmu)1857 static int power_pmu_commit_txn(struct pmu *pmu)
1858 {
1859 	struct cpu_hw_events *cpuhw;
1860 	long i, n;
1861 
1862 	if (!ppmu)
1863 		return -EAGAIN;
1864 
1865 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1866 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1867 
1868 	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1869 		cpuhw->txn_flags = 0;
1870 		return 0;
1871 	}
1872 
1873 	n = cpuhw->n_events;
1874 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1875 		return -EAGAIN;
1876 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n, cpuhw->event);
1877 	if (i < 0)
1878 		return -EAGAIN;
1879 
1880 	for (i = cpuhw->n_txn_start; i < n; ++i)
1881 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1882 
1883 	cpuhw->txn_flags = 0;
1884 	perf_pmu_enable(pmu);
1885 	return 0;
1886 }
1887 
1888 /*
1889  * Return 1 if we might be able to put event on a limited PMC,
1890  * or 0 if not.
1891  * An event can only go on a limited PMC if it counts something
1892  * that a limited PMC can count, doesn't require interrupts, and
1893  * doesn't exclude any processor mode.
1894  */
can_go_on_limited_pmc(struct perf_event * event,u64 ev,unsigned int flags)1895 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1896 				 unsigned int flags)
1897 {
1898 	int n;
1899 	u64 alt[MAX_EVENT_ALTERNATIVES];
1900 
1901 	if (event->attr.exclude_user
1902 	    || event->attr.exclude_kernel
1903 	    || event->attr.exclude_hv
1904 	    || event->attr.sample_period)
1905 		return 0;
1906 
1907 	if (ppmu->limited_pmc_event(ev))
1908 		return 1;
1909 
1910 	/*
1911 	 * The requested event_id isn't on a limited PMC already;
1912 	 * see if any alternative code goes on a limited PMC.
1913 	 */
1914 	if (!ppmu->get_alternatives)
1915 		return 0;
1916 
1917 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1918 	n = ppmu->get_alternatives(ev, flags, alt);
1919 
1920 	return n > 0;
1921 }
1922 
1923 /*
1924  * Find an alternative event_id that goes on a normal PMC, if possible,
1925  * and return the event_id code, or 0 if there is no such alternative.
1926  * (Note: event_id code 0 is "don't count" on all machines.)
1927  */
normal_pmc_alternative(u64 ev,unsigned long flags)1928 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1929 {
1930 	u64 alt[MAX_EVENT_ALTERNATIVES];
1931 	int n;
1932 
1933 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1934 	n = ppmu->get_alternatives(ev, flags, alt);
1935 	if (!n)
1936 		return 0;
1937 	return alt[0];
1938 }
1939 
1940 /* Number of perf_events counting hardware events */
1941 static atomic_t num_events;
1942 /* Used to avoid races in calling reserve/release_pmc_hardware */
1943 static DEFINE_MUTEX(pmc_reserve_mutex);
1944 
1945 /*
1946  * Release the PMU if this is the last perf_event.
1947  */
hw_perf_event_destroy(struct perf_event * event)1948 static void hw_perf_event_destroy(struct perf_event *event)
1949 {
1950 	if (!atomic_add_unless(&num_events, -1, 1)) {
1951 		mutex_lock(&pmc_reserve_mutex);
1952 		if (atomic_dec_return(&num_events) == 0)
1953 			release_pmc_hardware();
1954 		mutex_unlock(&pmc_reserve_mutex);
1955 	}
1956 }
1957 
1958 /*
1959  * Translate a generic cache event_id config to a raw event_id code.
1960  */
hw_perf_cache_event(u64 config,u64 * eventp)1961 static int hw_perf_cache_event(u64 config, u64 *eventp)
1962 {
1963 	unsigned long type, op, result;
1964 	u64 ev;
1965 
1966 	if (!ppmu->cache_events)
1967 		return -EINVAL;
1968 
1969 	/* unpack config */
1970 	type = config & 0xff;
1971 	op = (config >> 8) & 0xff;
1972 	result = (config >> 16) & 0xff;
1973 
1974 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1975 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1976 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1977 		return -EINVAL;
1978 
1979 	ev = (*ppmu->cache_events)[type][op][result];
1980 	if (ev == 0)
1981 		return -EOPNOTSUPP;
1982 	if (ev == -1)
1983 		return -EINVAL;
1984 	*eventp = ev;
1985 	return 0;
1986 }
1987 
is_event_blacklisted(u64 ev)1988 static bool is_event_blacklisted(u64 ev)
1989 {
1990 	int i;
1991 
1992 	for (i=0; i < ppmu->n_blacklist_ev; i++) {
1993 		if (ppmu->blacklist_ev[i] == ev)
1994 			return true;
1995 	}
1996 
1997 	return false;
1998 }
1999 
power_pmu_event_init(struct perf_event * event)2000 static int power_pmu_event_init(struct perf_event *event)
2001 {
2002 	u64 ev;
2003 	unsigned long flags, irq_flags;
2004 	struct perf_event *ctrs[MAX_HWEVENTS];
2005 	u64 events[MAX_HWEVENTS];
2006 	unsigned int cflags[MAX_HWEVENTS];
2007 	int n;
2008 	int err;
2009 	struct cpu_hw_events *cpuhw;
2010 
2011 	if (!ppmu)
2012 		return -ENOENT;
2013 
2014 	if (has_branch_stack(event)) {
2015 	        /* PMU has BHRB enabled */
2016 		if (!(ppmu->flags & PPMU_ARCH_207S))
2017 			return -EOPNOTSUPP;
2018 	}
2019 
2020 	switch (event->attr.type) {
2021 	case PERF_TYPE_HARDWARE:
2022 		ev = event->attr.config;
2023 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
2024 			return -EOPNOTSUPP;
2025 
2026 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2027 			return -EINVAL;
2028 		ev = ppmu->generic_events[ev];
2029 		break;
2030 	case PERF_TYPE_HW_CACHE:
2031 		err = hw_perf_cache_event(event->attr.config, &ev);
2032 		if (err)
2033 			return err;
2034 
2035 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2036 			return -EINVAL;
2037 		break;
2038 	case PERF_TYPE_RAW:
2039 		ev = event->attr.config;
2040 
2041 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2042 			return -EINVAL;
2043 		break;
2044 	default:
2045 		return -ENOENT;
2046 	}
2047 
2048 	/*
2049 	 * PMU config registers have fields that are
2050 	 * reserved and some specific values for bit fields are reserved.
2051 	 * For ex., MMCRA[61:62] is Random Sampling Mode (SM)
2052 	 * and value of 0b11 to this field is reserved.
2053 	 * Check for invalid values in attr.config.
2054 	 */
2055 	if (ppmu->check_attr_config &&
2056 	    ppmu->check_attr_config(event))
2057 		return -EINVAL;
2058 
2059 	event->hw.config_base = ev;
2060 	event->hw.idx = 0;
2061 
2062 	/*
2063 	 * If we are not running on a hypervisor, force the
2064 	 * exclude_hv bit to 0 so that we don't care what
2065 	 * the user set it to.
2066 	 */
2067 	if (!firmware_has_feature(FW_FEATURE_LPAR))
2068 		event->attr.exclude_hv = 0;
2069 
2070 	/*
2071 	 * If this is a per-task event, then we can use
2072 	 * PM_RUN_* events interchangeably with their non RUN_*
2073 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
2074 	 * XXX we should check if the task is an idle task.
2075 	 */
2076 	flags = 0;
2077 	if (event->attach_state & PERF_ATTACH_TASK)
2078 		flags |= PPMU_ONLY_COUNT_RUN;
2079 
2080 	/*
2081 	 * If this machine has limited events, check whether this
2082 	 * event_id could go on a limited event.
2083 	 */
2084 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
2085 		if (can_go_on_limited_pmc(event, ev, flags)) {
2086 			flags |= PPMU_LIMITED_PMC_OK;
2087 		} else if (ppmu->limited_pmc_event(ev)) {
2088 			/*
2089 			 * The requested event_id is on a limited PMC,
2090 			 * but we can't use a limited PMC; see if any
2091 			 * alternative goes on a normal PMC.
2092 			 */
2093 			ev = normal_pmc_alternative(ev, flags);
2094 			if (!ev)
2095 				return -EINVAL;
2096 		}
2097 	}
2098 
2099 	/* Extra checks for EBB */
2100 	err = ebb_event_check(event);
2101 	if (err)
2102 		return err;
2103 
2104 	/*
2105 	 * If this is in a group, check if it can go on with all the
2106 	 * other hardware events in the group.  We assume the event
2107 	 * hasn't been linked into its leader's sibling list at this point.
2108 	 */
2109 	n = 0;
2110 	if (event->group_leader != event) {
2111 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
2112 				   ctrs, events, cflags);
2113 		if (n < 0)
2114 			return -EINVAL;
2115 	}
2116 	events[n] = ev;
2117 	ctrs[n] = event;
2118 	cflags[n] = flags;
2119 	if (check_excludes(ctrs, cflags, n, 1))
2120 		return -EINVAL;
2121 
2122 	local_irq_save(irq_flags);
2123 	cpuhw = this_cpu_ptr(&cpu_hw_events);
2124 
2125 	err = power_check_constraints(cpuhw, events, cflags, n + 1, ctrs);
2126 
2127 	if (has_branch_stack(event)) {
2128 		u64 bhrb_filter = -1;
2129 
2130 		/*
2131 		 * Currently no PMU supports having multiple branch filters
2132 		 * at the same time. Branch filters are set via MMCRA IFM[32:33]
2133 		 * bits for Power8 and above. Return EOPNOTSUPP when multiple
2134 		 * branch filters are requested in the event attr.
2135 		 *
2136 		 * When opening event via perf_event_open(), branch_sample_type
2137 		 * gets adjusted in perf_copy_attr(). Kernel will automatically
2138 		 * adjust the branch_sample_type based on the event modifier
2139 		 * settings to include PERF_SAMPLE_BRANCH_PLM_ALL. Hence drop
2140 		 * the check for PERF_SAMPLE_BRANCH_PLM_ALL.
2141 		 */
2142 		if (hweight64(event->attr.branch_sample_type & ~PERF_SAMPLE_BRANCH_PLM_ALL) > 1) {
2143 			local_irq_restore(irq_flags);
2144 			return -EOPNOTSUPP;
2145 		}
2146 
2147 		if (ppmu->bhrb_filter_map)
2148 			bhrb_filter = ppmu->bhrb_filter_map(
2149 					event->attr.branch_sample_type);
2150 
2151 		if (bhrb_filter == -1) {
2152 			local_irq_restore(irq_flags);
2153 			return -EOPNOTSUPP;
2154 		}
2155 		cpuhw->bhrb_filter = bhrb_filter;
2156 	}
2157 
2158 	local_irq_restore(irq_flags);
2159 	if (err)
2160 		return -EINVAL;
2161 
2162 	event->hw.config = events[n];
2163 	event->hw.event_base = cflags[n];
2164 	event->hw.last_period = event->hw.sample_period;
2165 	local64_set(&event->hw.period_left, event->hw.last_period);
2166 
2167 	/*
2168 	 * For EBB events we just context switch the PMC value, we don't do any
2169 	 * of the sample_period logic. We use hw.prev_count for this.
2170 	 */
2171 	if (is_ebb_event(event))
2172 		local64_set(&event->hw.prev_count, 0);
2173 
2174 	/*
2175 	 * See if we need to reserve the PMU.
2176 	 * If no events are currently in use, then we have to take a
2177 	 * mutex to ensure that we don't race with another task doing
2178 	 * reserve_pmc_hardware or release_pmc_hardware.
2179 	 */
2180 	err = 0;
2181 	if (!atomic_inc_not_zero(&num_events)) {
2182 		mutex_lock(&pmc_reserve_mutex);
2183 		if (atomic_read(&num_events) == 0 &&
2184 		    reserve_pmc_hardware(perf_event_interrupt))
2185 			err = -EBUSY;
2186 		else
2187 			atomic_inc(&num_events);
2188 		mutex_unlock(&pmc_reserve_mutex);
2189 	}
2190 	event->destroy = hw_perf_event_destroy;
2191 
2192 	return err;
2193 }
2194 
power_pmu_event_idx(struct perf_event * event)2195 static int power_pmu_event_idx(struct perf_event *event)
2196 {
2197 	return event->hw.idx;
2198 }
2199 
power_events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)2200 ssize_t power_events_sysfs_show(struct device *dev,
2201 				struct device_attribute *attr, char *page)
2202 {
2203 	struct perf_pmu_events_attr *pmu_attr;
2204 
2205 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2206 
2207 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2208 }
2209 
2210 static struct pmu power_pmu = {
2211 	.pmu_enable	= power_pmu_enable,
2212 	.pmu_disable	= power_pmu_disable,
2213 	.event_init	= power_pmu_event_init,
2214 	.add		= power_pmu_add,
2215 	.del		= power_pmu_del,
2216 	.start		= power_pmu_start,
2217 	.stop		= power_pmu_stop,
2218 	.read		= power_pmu_read,
2219 	.start_txn	= power_pmu_start_txn,
2220 	.cancel_txn	= power_pmu_cancel_txn,
2221 	.commit_txn	= power_pmu_commit_txn,
2222 	.event_idx	= power_pmu_event_idx,
2223 	.sched_task	= power_pmu_sched_task,
2224 };
2225 
2226 #define PERF_SAMPLE_ADDR_TYPE  (PERF_SAMPLE_ADDR |		\
2227 				PERF_SAMPLE_PHYS_ADDR |		\
2228 				PERF_SAMPLE_DATA_PAGE_SIZE)
2229 /*
2230  * A counter has overflowed; update its count and record
2231  * things if requested.  Note that interrupts are hard-disabled
2232  * here so there is no possibility of being interrupted.
2233  */
record_and_restart(struct perf_event * event,unsigned long val,struct pt_regs * regs)2234 static void record_and_restart(struct perf_event *event, unsigned long val,
2235 			       struct pt_regs *regs)
2236 {
2237 	u64 period = event->hw.sample_period;
2238 	s64 prev, delta, left;
2239 	int record = 0;
2240 
2241 	if (event->hw.state & PERF_HES_STOPPED) {
2242 		write_pmc(event->hw.idx, 0);
2243 		return;
2244 	}
2245 
2246 	/* we don't have to worry about interrupts here */
2247 	prev = local64_read(&event->hw.prev_count);
2248 	delta = check_and_compute_delta(prev, val);
2249 	local64_add(delta, &event->count);
2250 
2251 	/*
2252 	 * See if the total period for this event has expired,
2253 	 * and update for the next period.
2254 	 */
2255 	val = 0;
2256 	left = local64_read(&event->hw.period_left) - delta;
2257 	if (delta == 0)
2258 		left++;
2259 	if (period) {
2260 		if (left <= 0) {
2261 			left += period;
2262 			if (left <= 0)
2263 				left = period;
2264 
2265 			/*
2266 			 * If address is not requested in the sample via
2267 			 * PERF_SAMPLE_IP, just record that sample irrespective
2268 			 * of SIAR valid check.
2269 			 */
2270 			if (event->attr.sample_type & PERF_SAMPLE_IP)
2271 				record = siar_valid(regs);
2272 			else
2273 				record = 1;
2274 
2275 			event->hw.last_period = event->hw.sample_period;
2276 		}
2277 		if (left < 0x80000000LL)
2278 			val = 0x80000000LL - left;
2279 	}
2280 
2281 	write_pmc(event->hw.idx, val);
2282 	local64_set(&event->hw.prev_count, val);
2283 	local64_set(&event->hw.period_left, left);
2284 	perf_event_update_userpage(event);
2285 
2286 	/*
2287 	 * Due to hardware limitation, sometimes SIAR could sample a kernel
2288 	 * address even when freeze on supervisor state (kernel) is set in
2289 	 * MMCR2. Check attr.exclude_kernel and address to drop the sample in
2290 	 * these cases.
2291 	 */
2292 	if (event->attr.exclude_kernel &&
2293 	    (event->attr.sample_type & PERF_SAMPLE_IP) &&
2294 	    is_kernel_addr(mfspr(SPRN_SIAR)))
2295 		record = 0;
2296 
2297 	/*
2298 	 * Finally record data if requested.
2299 	 */
2300 	if (record) {
2301 		struct perf_sample_data data;
2302 
2303 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2304 
2305 		if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE)
2306 			perf_get_data_addr(event, regs, &data.addr);
2307 
2308 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2309 			struct cpu_hw_events *cpuhw;
2310 			cpuhw = this_cpu_ptr(&cpu_hw_events);
2311 			power_pmu_bhrb_read(event, cpuhw);
2312 			perf_sample_save_brstack(&data, event, &cpuhw->bhrb_stack, NULL);
2313 		}
2314 
2315 		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2316 						ppmu->get_mem_data_src) {
2317 			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2318 			data.sample_flags |= PERF_SAMPLE_DATA_SRC;
2319 		}
2320 
2321 		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE &&
2322 						ppmu->get_mem_weight) {
2323 			ppmu->get_mem_weight(&data.weight.full, event->attr.sample_type);
2324 			data.sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
2325 		}
2326 		if (perf_event_overflow(event, &data, regs))
2327 			power_pmu_stop(event, 0);
2328 	} else if (period) {
2329 		/* Account for interrupt in case of invalid SIAR */
2330 		if (perf_event_account_interrupt(event))
2331 			power_pmu_stop(event, 0);
2332 	}
2333 }
2334 
2335 /*
2336  * Called from generic code to get the misc flags (i.e. processor mode)
2337  * for an event_id.
2338  */
perf_arch_misc_flags(struct pt_regs * regs)2339 unsigned long perf_arch_misc_flags(struct pt_regs *regs)
2340 {
2341 	u32 flags = perf_get_misc_flags(regs);
2342 
2343 	if (flags)
2344 		return flags;
2345 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2346 		PERF_RECORD_MISC_KERNEL;
2347 }
2348 
2349 /*
2350  * Called from generic code to get the instruction pointer
2351  * for an event_id.
2352  */
perf_arch_instruction_pointer(struct pt_regs * regs)2353 unsigned long perf_arch_instruction_pointer(struct pt_regs *regs)
2354 {
2355 	unsigned long siar = mfspr(SPRN_SIAR);
2356 
2357 	if (regs_use_siar(regs) && siar_valid(regs) && siar)
2358 		return siar + perf_ip_adjust(regs);
2359 	else
2360 		return regs->nip;
2361 }
2362 
pmc_overflow_power7(unsigned long val)2363 static bool pmc_overflow_power7(unsigned long val)
2364 {
2365 	/*
2366 	 * Events on POWER7 can roll back if a speculative event doesn't
2367 	 * eventually complete. Unfortunately in some rare cases they will
2368 	 * raise a performance monitor exception. We need to catch this to
2369 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2370 	 * cycles from overflow.
2371 	 *
2372 	 * We only do this if the first pass fails to find any overflowing
2373 	 * PMCs because a user might set a period of less than 256 and we
2374 	 * don't want to mistakenly reset them.
2375 	 */
2376 	if ((0x80000000 - val) <= 256)
2377 		return true;
2378 
2379 	return false;
2380 }
2381 
pmc_overflow(unsigned long val)2382 static bool pmc_overflow(unsigned long val)
2383 {
2384 	if ((int)val < 0)
2385 		return true;
2386 
2387 	return false;
2388 }
2389 
2390 /*
2391  * Performance monitor interrupt stuff
2392  */
__perf_event_interrupt(struct pt_regs * regs)2393 static void __perf_event_interrupt(struct pt_regs *regs)
2394 {
2395 	int i, j;
2396 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2397 	struct perf_event *event;
2398 	int found, active;
2399 
2400 	if (cpuhw->n_limited)
2401 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2402 					mfspr(SPRN_PMC6));
2403 
2404 	perf_read_regs(regs);
2405 
2406 	/* Read all the PMCs since we'll need them a bunch of times */
2407 	for (i = 0; i < ppmu->n_counter; ++i)
2408 		cpuhw->pmcs[i] = read_pmc(i + 1);
2409 
2410 	/* Try to find what caused the IRQ */
2411 	found = 0;
2412 	for (i = 0; i < ppmu->n_counter; ++i) {
2413 		if (!pmc_overflow(cpuhw->pmcs[i]))
2414 			continue;
2415 		if (is_limited_pmc(i + 1))
2416 			continue; /* these won't generate IRQs */
2417 		/*
2418 		 * We've found one that's overflowed.  For active
2419 		 * counters we need to log this.  For inactive
2420 		 * counters, we need to reset it anyway
2421 		 */
2422 		found = 1;
2423 		active = 0;
2424 		for (j = 0; j < cpuhw->n_events; ++j) {
2425 			event = cpuhw->event[j];
2426 			if (event->hw.idx == (i + 1)) {
2427 				active = 1;
2428 				record_and_restart(event, cpuhw->pmcs[i], regs);
2429 				break;
2430 			}
2431 		}
2432 
2433 		/*
2434 		 * Clear PACA_IRQ_PMI in case it was set by
2435 		 * set_pmi_irq_pending() when PMU was enabled
2436 		 * after accounting for interrupts.
2437 		 */
2438 		clear_pmi_irq_pending();
2439 
2440 		if (!active)
2441 			/* reset non active counters that have overflowed */
2442 			write_pmc(i + 1, 0);
2443 	}
2444 	if (!found && pvr_version_is(PVR_POWER7)) {
2445 		/* check active counters for special buggy p7 overflow */
2446 		for (i = 0; i < cpuhw->n_events; ++i) {
2447 			event = cpuhw->event[i];
2448 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2449 				continue;
2450 			if (pmc_overflow_power7(cpuhw->pmcs[event->hw.idx - 1])) {
2451 				/* event has overflowed in a buggy way*/
2452 				found = 1;
2453 				record_and_restart(event,
2454 						   cpuhw->pmcs[event->hw.idx - 1],
2455 						   regs);
2456 			}
2457 		}
2458 	}
2459 
2460 	/*
2461 	 * During system wide profiling or while specific CPU is monitored for an
2462 	 * event, some corner cases could cause PMC to overflow in idle path. This
2463 	 * will trigger a PMI after waking up from idle. Since counter values are _not_
2464 	 * saved/restored in idle path, can lead to below "Can't find PMC" message.
2465 	 */
2466 	if (unlikely(!found) && !arch_irq_disabled_regs(regs))
2467 		printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n");
2468 
2469 	/*
2470 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2471 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2472 	 * and thus allow interrupts to occur again.
2473 	 * XXX might want to use MSR.PM to keep the events frozen until
2474 	 * we get back out of this interrupt.
2475 	 */
2476 	write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0);
2477 
2478 	/* Clear the cpuhw->pmcs */
2479 	memset(&cpuhw->pmcs, 0, sizeof(cpuhw->pmcs));
2480 
2481 }
2482 
perf_event_interrupt(struct pt_regs * regs)2483 static void perf_event_interrupt(struct pt_regs *regs)
2484 {
2485 	u64 start_clock = sched_clock();
2486 
2487 	__perf_event_interrupt(regs);
2488 	perf_sample_event_took(sched_clock() - start_clock);
2489 }
2490 
power_pmu_prepare_cpu(unsigned int cpu)2491 static int power_pmu_prepare_cpu(unsigned int cpu)
2492 {
2493 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2494 
2495 	if (ppmu) {
2496 		memset(cpuhw, 0, sizeof(*cpuhw));
2497 		cpuhw->mmcr.mmcr0 = MMCR0_FC;
2498 	}
2499 	return 0;
2500 }
2501 
pmu_name_show(struct device * cdev,struct device_attribute * attr,char * buf)2502 static ssize_t pmu_name_show(struct device *cdev,
2503 		struct device_attribute *attr,
2504 		char *buf)
2505 {
2506 	if (ppmu)
2507 		return sysfs_emit(buf, "%s", ppmu->name);
2508 
2509 	return 0;
2510 }
2511 
2512 static DEVICE_ATTR_RO(pmu_name);
2513 
2514 static struct attribute *pmu_caps_attrs[] = {
2515 	&dev_attr_pmu_name.attr,
2516 	NULL
2517 };
2518 
2519 static const struct attribute_group pmu_caps_group = {
2520 	.name  = "caps",
2521 	.attrs = pmu_caps_attrs,
2522 };
2523 
2524 static const struct attribute_group *pmu_caps_groups[] = {
2525 	&pmu_caps_group,
2526 	NULL,
2527 };
2528 
register_power_pmu(struct power_pmu * pmu)2529 int __init register_power_pmu(struct power_pmu *pmu)
2530 {
2531 	if (ppmu)
2532 		return -EBUSY;		/* something's already registered */
2533 
2534 	ppmu = pmu;
2535 	pr_info("%s performance monitor hardware support registered\n",
2536 		pmu->name);
2537 
2538 	power_pmu.attr_groups = ppmu->attr_groups;
2539 
2540 	if (ppmu->flags & PPMU_ARCH_207S)
2541 		power_pmu.attr_update = pmu_caps_groups;
2542 
2543 	power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);
2544 
2545 #ifdef MSR_HV
2546 	/*
2547 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2548 	 */
2549 	if (mfmsr() & MSR_HV)
2550 		freeze_events_kernel = MMCR0_FCHV;
2551 #endif /* CONFIG_PPC64 */
2552 
2553 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2554 	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2555 			  power_pmu_prepare_cpu, NULL);
2556 	return 0;
2557 }
2558 
2559 #ifdef CONFIG_PPC64
2560 static bool pmu_override = false;
2561 static unsigned long pmu_override_val;
do_pmu_override(void * data)2562 static void do_pmu_override(void *data)
2563 {
2564 	ppc_set_pmu_inuse(1);
2565 	if (pmu_override_val)
2566 		mtspr(SPRN_MMCR1, pmu_override_val);
2567 	mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) & ~MMCR0_FC);
2568 }
2569 
init_ppc64_pmu(void)2570 static int __init init_ppc64_pmu(void)
2571 {
2572 	if (cpu_has_feature(CPU_FTR_HVMODE) && pmu_override) {
2573 		pr_warn("disabling perf due to pmu_override= command line option.\n");
2574 		on_each_cpu(do_pmu_override, NULL, 1);
2575 		return 0;
2576 	}
2577 
2578 	/* run through all the pmu drivers one at a time */
2579 	if (!init_power5_pmu())
2580 		return 0;
2581 	else if (!init_power5p_pmu())
2582 		return 0;
2583 	else if (!init_power6_pmu())
2584 		return 0;
2585 	else if (!init_power7_pmu())
2586 		return 0;
2587 	else if (!init_power8_pmu())
2588 		return 0;
2589 	else if (!init_power9_pmu())
2590 		return 0;
2591 	else if (!init_power10_pmu())
2592 		return 0;
2593 	else if (!init_power11_pmu())
2594 		return 0;
2595 	else if (!init_ppc970_pmu())
2596 		return 0;
2597 	else
2598 		return init_generic_compat_pmu();
2599 }
2600 early_initcall(init_ppc64_pmu);
2601 
pmu_setup(char * str)2602 static int __init pmu_setup(char *str)
2603 {
2604 	unsigned long val;
2605 
2606 	if (!early_cpu_has_feature(CPU_FTR_HVMODE))
2607 		return 0;
2608 
2609 	pmu_override = true;
2610 
2611 	if (kstrtoul(str, 0, &val))
2612 		val = 0;
2613 
2614 	pmu_override_val = val;
2615 
2616 	return 1;
2617 }
2618 __setup("pmu_override=", pmu_setup);
2619 
2620 #endif
2621