1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Performance event support - powerpc architecture code
4 *
5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <asm/reg.h>
15 #include <asm/pmc.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/text-patching.h>
20 #include <asm/hw_irq.h>
21 #include <asm/interrupt.h>
22
23 #ifdef CONFIG_PPC64
24 #include "internal.h"
25 #endif
26
27 #define BHRB_MAX_ENTRIES 32
28 #define BHRB_TARGET 0x0000000000000002
29 #define BHRB_PREDICTION 0x0000000000000001
30 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
31
32 struct cpu_hw_events {
33 int n_events;
34 int n_percpu;
35 int disabled;
36 int n_added;
37 int n_limited;
38 u8 pmcs_enabled;
39 struct perf_event *event[MAX_HWEVENTS];
40 u64 events[MAX_HWEVENTS];
41 unsigned int flags[MAX_HWEVENTS];
42 struct mmcr_regs mmcr;
43 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
44 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
45 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
46 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
47 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48
49 unsigned int txn_flags;
50 int n_txn_start;
51
52 /* BHRB bits */
53 u64 bhrb_filter; /* BHRB HW branch filter */
54 unsigned int bhrb_users;
55 void *bhrb_context;
56 struct perf_branch_stack bhrb_stack;
57 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
58 u64 ic_init;
59
60 /* Store the PMC values */
61 unsigned long pmcs[MAX_HWEVENTS];
62 };
63
64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
65
66 static struct power_pmu *ppmu;
67
68 /*
69 * Normally, to ignore kernel events we set the FCS (freeze counters
70 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
71 * hypervisor bit set in the MSR, or if we are running on a processor
72 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
73 * then we need to use the FCHV bit to ignore kernel events.
74 */
75 static unsigned int freeze_events_kernel = MMCR0_FCS;
76
77 /*
78 * 32-bit doesn't have MMCRA but does have an MMCR2,
79 * and a few other names are different.
80 * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
81 * Define them as zero knowing that any code path accessing
82 * these registers (via mtspr/mfspr) are done under ppmu flag
83 * check for PPMU_ARCH_31 and we will not enter that code path
84 * for 32-bit.
85 */
86 #ifdef CONFIG_PPC32
87
88 #define MMCR0_FCHV 0
89 #define MMCR0_PMCjCE MMCR0_PMCnCE
90 #define MMCR0_FC56 0
91 #define MMCR0_PMAO 0
92 #define MMCR0_EBE 0
93 #define MMCR0_BHRBA 0
94 #define MMCR0_PMCC 0
95 #define MMCR0_PMCC_U6 0
96
97 #define SPRN_MMCRA SPRN_MMCR2
98 #define SPRN_MMCR3 0
99 #define SPRN_SIER2 0
100 #define SPRN_SIER3 0
101 #define MMCRA_SAMPLE_ENABLE 0
102 #define MMCRA_BHRB_DISABLE 0
103 #define MMCR0_PMCCEXT 0
104
perf_ip_adjust(struct pt_regs * regs)105 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
106 {
107 return 0;
108 }
perf_get_data_addr(struct perf_event * event,struct pt_regs * regs,u64 * addrp)109 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
perf_get_misc_flags(struct pt_regs * regs)110 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
111 {
112 return 0;
113 }
perf_read_regs(struct pt_regs * regs)114 static inline void perf_read_regs(struct pt_regs *regs)
115 {
116 regs->result = 0;
117 }
118
siar_valid(struct pt_regs * regs)119 static inline int siar_valid(struct pt_regs *regs)
120 {
121 return 1;
122 }
123
is_ebb_event(struct perf_event * event)124 static bool is_ebb_event(struct perf_event *event) { return false; }
ebb_event_check(struct perf_event * event)125 static int ebb_event_check(struct perf_event *event) { return 0; }
ebb_event_add(struct perf_event * event)126 static void ebb_event_add(struct perf_event *event) { }
ebb_switch_out(unsigned long mmcr0)127 static void ebb_switch_out(unsigned long mmcr0) { }
ebb_switch_in(bool ebb,struct cpu_hw_events * cpuhw)128 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
129 {
130 return cpuhw->mmcr.mmcr0;
131 }
132
power_pmu_bhrb_enable(struct perf_event * event)133 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
power_pmu_bhrb_disable(struct perf_event * event)134 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
power_pmu_sched_task(struct perf_event_pmu_context * pmu_ctx,struct task_struct * task,bool sched_in)135 static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
136 struct task_struct *task, bool sched_in)
137 {
138 }
power_pmu_bhrb_read(struct perf_event * event,struct cpu_hw_events * cpuhw)139 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
pmao_restore_workaround(bool ebb)140 static void pmao_restore_workaround(bool ebb) { }
141 #endif /* CONFIG_PPC32 */
142
is_sier_available(void)143 bool is_sier_available(void)
144 {
145 if (!ppmu)
146 return false;
147
148 if (ppmu->flags & PPMU_HAS_SIER)
149 return true;
150
151 return false;
152 }
153
154 /*
155 * Return PMC value corresponding to the
156 * index passed.
157 */
get_pmcs_ext_regs(int idx)158 unsigned long get_pmcs_ext_regs(int idx)
159 {
160 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
161
162 return cpuhw->pmcs[idx];
163 }
164
regs_use_siar(struct pt_regs * regs)165 static bool regs_use_siar(struct pt_regs *regs)
166 {
167 /*
168 * When we take a performance monitor exception the regs are setup
169 * using perf_read_regs() which overloads some fields, in particular
170 * regs->result to tell us whether to use SIAR.
171 *
172 * However if the regs are from another exception, eg. a syscall, then
173 * they have not been setup using perf_read_regs() and so regs->result
174 * is something random.
175 */
176 return ((TRAP(regs) == INTERRUPT_PERFMON) && regs->result);
177 }
178
179 /*
180 * Things that are specific to 64-bit implementations.
181 */
182 #ifdef CONFIG_PPC64
183
perf_ip_adjust(struct pt_regs * regs)184 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
185 {
186 unsigned long mmcra = regs->dsisr;
187
188 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
189 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
190 if (slot > 1)
191 return 4 * (slot - 1);
192 }
193
194 return 0;
195 }
196
197 /*
198 * The user wants a data address recorded.
199 * If we're not doing instruction sampling, give them the SDAR
200 * (sampled data address). If we are doing instruction sampling, then
201 * only give them the SDAR if it corresponds to the instruction
202 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
203 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
204 */
perf_get_data_addr(struct perf_event * event,struct pt_regs * regs,u64 * addrp)205 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
206 {
207 unsigned long mmcra = regs->dsisr;
208 bool sdar_valid;
209
210 if (ppmu->flags & PPMU_HAS_SIER)
211 sdar_valid = regs->dar & SIER_SDAR_VALID;
212 else {
213 unsigned long sdsync;
214
215 if (ppmu->flags & PPMU_SIAR_VALID)
216 sdsync = POWER7P_MMCRA_SDAR_VALID;
217 else if (ppmu->flags & PPMU_ALT_SIPR)
218 sdsync = POWER6_MMCRA_SDSYNC;
219 else if (ppmu->flags & PPMU_NO_SIAR)
220 sdsync = MMCRA_SAMPLE_ENABLE;
221 else
222 sdsync = MMCRA_SDSYNC;
223
224 sdar_valid = mmcra & sdsync;
225 }
226
227 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
228 *addrp = mfspr(SPRN_SDAR);
229
230 if (is_kernel_addr(mfspr(SPRN_SDAR)) && event->attr.exclude_kernel)
231 *addrp = 0;
232 }
233
regs_sihv(struct pt_regs * regs)234 static bool regs_sihv(struct pt_regs *regs)
235 {
236 unsigned long sihv = MMCRA_SIHV;
237
238 if (ppmu->flags & PPMU_HAS_SIER)
239 return !!(regs->dar & SIER_SIHV);
240
241 if (ppmu->flags & PPMU_ALT_SIPR)
242 sihv = POWER6_MMCRA_SIHV;
243
244 return !!(regs->dsisr & sihv);
245 }
246
regs_sipr(struct pt_regs * regs)247 static bool regs_sipr(struct pt_regs *regs)
248 {
249 unsigned long sipr = MMCRA_SIPR;
250
251 if (ppmu->flags & PPMU_HAS_SIER)
252 return !!(regs->dar & SIER_SIPR);
253
254 if (ppmu->flags & PPMU_ALT_SIPR)
255 sipr = POWER6_MMCRA_SIPR;
256
257 return !!(regs->dsisr & sipr);
258 }
259
perf_flags_from_msr(struct pt_regs * regs)260 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
261 {
262 if (user_mode(regs))
263 return PERF_RECORD_MISC_USER;
264 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
265 return PERF_RECORD_MISC_HYPERVISOR;
266 return PERF_RECORD_MISC_KERNEL;
267 }
268
perf_get_misc_flags(struct pt_regs * regs)269 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
270 {
271 bool use_siar = regs_use_siar(regs);
272 unsigned long siar;
273 unsigned long addr;
274
275 if (!use_siar)
276 return perf_flags_from_msr(regs);
277
278 /*
279 * If we don't have flags in MMCRA, rather than using
280 * the MSR, we intuit the flags from the address in
281 * SIAR which should give slightly more reliable
282 * results
283 */
284 if (ppmu->flags & PPMU_NO_SIPR) {
285 siar = mfspr(SPRN_SIAR);
286 if (is_kernel_addr(siar))
287 return PERF_RECORD_MISC_KERNEL;
288 return PERF_RECORD_MISC_USER;
289 }
290
291 /* PR has priority over HV, so order below is important */
292 if (regs_sipr(regs)) {
293 if (!(ppmu->flags & PPMU_P10))
294 return PERF_RECORD_MISC_USER;
295 } else if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
296 return PERF_RECORD_MISC_HYPERVISOR;
297
298 /*
299 * Check the address in SIAR to identify the
300 * privilege levels since the SIER[MSR_HV, MSR_PR]
301 * bits are not set correctly in power10 sometimes
302 */
303 if (ppmu->flags & PPMU_P10) {
304 siar = mfspr(SPRN_SIAR);
305 addr = siar ? siar : regs->nip;
306 if (!is_kernel_addr(addr))
307 return PERF_RECORD_MISC_USER;
308 }
309
310 return PERF_RECORD_MISC_KERNEL;
311 }
312
313 /*
314 * Overload regs->dsisr to store MMCRA so we only need to read it once
315 * on each interrupt.
316 * Overload regs->dar to store SIER if we have it.
317 * Overload regs->result to specify whether we should use the MSR (result
318 * is zero) or the SIAR (result is non zero).
319 */
perf_read_regs(struct pt_regs * regs)320 static inline void perf_read_regs(struct pt_regs *regs)
321 {
322 unsigned long mmcra = mfspr(SPRN_MMCRA);
323 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
324 int use_siar;
325
326 regs->dsisr = mmcra;
327
328 if (ppmu->flags & PPMU_HAS_SIER)
329 regs->dar = mfspr(SPRN_SIER);
330
331 /*
332 * If this isn't a PMU exception (eg a software event) the SIAR is
333 * not valid. Use pt_regs.
334 *
335 * If it is a marked event use the SIAR.
336 *
337 * If the PMU doesn't update the SIAR for non marked events use
338 * pt_regs.
339 *
340 * If regs is a kernel interrupt, always use SIAR. Some PMUs have an
341 * issue with regs_sipr not being in synch with SIAR in interrupt entry
342 * and return sequences, which can result in regs_sipr being true for
343 * kernel interrupts and SIAR, which has the effect of causing samples
344 * to pile up at mtmsrd MSR[EE] 0->1 or pending irq replay around
345 * interrupt entry/exit.
346 *
347 * If the PMU has HV/PR flags then check to see if they
348 * place the exception in userspace. If so, use pt_regs. In
349 * continuous sampling mode the SIAR and the PMU exception are
350 * not synchronised, so they may be many instructions apart.
351 * This can result in confusing backtraces. We still want
352 * hypervisor samples as well as samples in the kernel with
353 * interrupts off hence the userspace check.
354 */
355 if (TRAP(regs) != INTERRUPT_PERFMON)
356 use_siar = 0;
357 else if ((ppmu->flags & PPMU_NO_SIAR))
358 use_siar = 0;
359 else if (marked)
360 use_siar = 1;
361 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
362 use_siar = 0;
363 else if (!user_mode(regs))
364 use_siar = 1;
365 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
366 use_siar = 0;
367 else
368 use_siar = 1;
369
370 regs->result = use_siar;
371 }
372
373 /*
374 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
375 * must be sampled only if the SIAR-valid bit is set.
376 *
377 * For unmarked instructions and for processors that don't have the SIAR-Valid
378 * bit, assume that SIAR is valid.
379 */
siar_valid(struct pt_regs * regs)380 static inline int siar_valid(struct pt_regs *regs)
381 {
382 unsigned long mmcra = regs->dsisr;
383 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
384
385 if (marked) {
386 /*
387 * SIER[SIAR_VALID] is not set for some
388 * marked events on power10 DD1, so drop
389 * the check for SIER[SIAR_VALID] and return true.
390 */
391 if (ppmu->flags & PPMU_P10_DD1)
392 return 0x1;
393 else if (ppmu->flags & PPMU_HAS_SIER)
394 return regs->dar & SIER_SIAR_VALID;
395
396 if (ppmu->flags & PPMU_SIAR_VALID)
397 return mmcra & POWER7P_MMCRA_SIAR_VALID;
398 }
399
400 return 1;
401 }
402
403
404 /* Reset all possible BHRB entries */
power_pmu_bhrb_reset(void)405 static void power_pmu_bhrb_reset(void)
406 {
407 asm volatile(PPC_CLRBHRB);
408 }
409
power_pmu_bhrb_enable(struct perf_event * event)410 static void power_pmu_bhrb_enable(struct perf_event *event)
411 {
412 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
413
414 if (!ppmu->bhrb_nr)
415 return;
416
417 /* Clear BHRB if we changed task context to avoid data leaks */
418 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
419 power_pmu_bhrb_reset();
420 cpuhw->bhrb_context = event->ctx;
421 }
422 cpuhw->bhrb_users++;
423 perf_sched_cb_inc(event->pmu);
424 }
425
power_pmu_bhrb_disable(struct perf_event * event)426 static void power_pmu_bhrb_disable(struct perf_event *event)
427 {
428 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
429
430 if (!ppmu->bhrb_nr)
431 return;
432
433 WARN_ON_ONCE(!cpuhw->bhrb_users);
434 cpuhw->bhrb_users--;
435 perf_sched_cb_dec(event->pmu);
436
437 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
438 /* BHRB cannot be turned off when other
439 * events are active on the PMU.
440 */
441
442 /* avoid stale pointer */
443 cpuhw->bhrb_context = NULL;
444 }
445 }
446
447 /* Called from ctxsw to prevent one process's branch entries to
448 * mingle with the other process's entries during context switch.
449 */
power_pmu_sched_task(struct perf_event_pmu_context * pmu_ctx,struct task_struct * task,bool sched_in)450 static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
451 struct task_struct *task, bool sched_in)
452 {
453 if (!ppmu->bhrb_nr)
454 return;
455
456 if (sched_in)
457 power_pmu_bhrb_reset();
458 }
459 /* Calculate the to address for a branch */
power_pmu_bhrb_to(u64 addr)460 static __u64 power_pmu_bhrb_to(u64 addr)
461 {
462 unsigned int instr;
463 __u64 target;
464
465 if (is_kernel_addr(addr)) {
466 if (copy_from_kernel_nofault(&instr, (void *)addr,
467 sizeof(instr)))
468 return 0;
469
470 return branch_target(&instr);
471 }
472
473 /* Userspace: need copy instruction here then translate it */
474 if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
475 sizeof(instr)))
476 return 0;
477
478 target = branch_target(&instr);
479 if ((!target) || (instr & BRANCH_ABSOLUTE))
480 return target;
481
482 /* Translate relative branch target from kernel to user address */
483 return target - (unsigned long)&instr + addr;
484 }
485
486 /* Processing BHRB entries */
power_pmu_bhrb_read(struct perf_event * event,struct cpu_hw_events * cpuhw)487 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
488 {
489 u64 val;
490 u64 addr;
491 int r_index, u_index, pred;
492
493 r_index = 0;
494 u_index = 0;
495 while (r_index < ppmu->bhrb_nr) {
496 /* Assembly read function */
497 val = read_bhrb(r_index++);
498 if (!val)
499 /* Terminal marker: End of valid BHRB entries */
500 break;
501 else {
502 addr = val & BHRB_EA;
503 pred = val & BHRB_PREDICTION;
504
505 if (!addr)
506 /* invalid entry */
507 continue;
508
509 /*
510 * BHRB rolling buffer could very much contain the kernel
511 * addresses at this point. Check the privileges before
512 * exporting it to userspace (avoid exposure of regions
513 * where we could have speculative execution)
514 * Incase of ISA v3.1, BHRB will capture only user-space
515 * addresses, hence include a check before filtering code
516 */
517 if (!(ppmu->flags & PPMU_ARCH_31) &&
518 is_kernel_addr(addr) && event->attr.exclude_kernel)
519 continue;
520
521 /* Branches are read most recent first (ie. mfbhrb 0 is
522 * the most recent branch).
523 * There are two types of valid entries:
524 * 1) a target entry which is the to address of a
525 * computed goto like a blr,bctr,btar. The next
526 * entry read from the bhrb will be branch
527 * corresponding to this target (ie. the actual
528 * blr/bctr/btar instruction).
529 * 2) a from address which is an actual branch. If a
530 * target entry proceeds this, then this is the
531 * matching branch for that target. If this is not
532 * following a target entry, then this is a branch
533 * where the target is given as an immediate field
534 * in the instruction (ie. an i or b form branch).
535 * In this case we need to read the instruction from
536 * memory to determine the target/to address.
537 */
538
539 if (val & BHRB_TARGET) {
540 /* Target branches use two entries
541 * (ie. computed gotos/XL form)
542 */
543 cpuhw->bhrb_entries[u_index].to = addr;
544 cpuhw->bhrb_entries[u_index].mispred = pred;
545 cpuhw->bhrb_entries[u_index].predicted = ~pred;
546
547 /* Get from address in next entry */
548 val = read_bhrb(r_index++);
549 addr = val & BHRB_EA;
550 if (val & BHRB_TARGET) {
551 /* Shouldn't have two targets in a
552 row.. Reset index and try again */
553 r_index--;
554 addr = 0;
555 }
556 cpuhw->bhrb_entries[u_index].from = addr;
557 } else {
558 /* Branches to immediate field
559 (ie I or B form) */
560 cpuhw->bhrb_entries[u_index].from = addr;
561 cpuhw->bhrb_entries[u_index].to =
562 power_pmu_bhrb_to(addr);
563 cpuhw->bhrb_entries[u_index].mispred = pred;
564 cpuhw->bhrb_entries[u_index].predicted = ~pred;
565 }
566 u_index++;
567
568 }
569 }
570 cpuhw->bhrb_stack.nr = u_index;
571 cpuhw->bhrb_stack.hw_idx = -1ULL;
572 return;
573 }
574
is_ebb_event(struct perf_event * event)575 static bool is_ebb_event(struct perf_event *event)
576 {
577 /*
578 * This could be a per-PMU callback, but we'd rather avoid the cost. We
579 * check that the PMU supports EBB, meaning those that don't can still
580 * use bit 63 of the event code for something else if they wish.
581 */
582 return (ppmu->flags & PPMU_ARCH_207S) &&
583 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
584 }
585
ebb_event_check(struct perf_event * event)586 static int ebb_event_check(struct perf_event *event)
587 {
588 struct perf_event *leader = event->group_leader;
589
590 /* Event and group leader must agree on EBB */
591 if (is_ebb_event(leader) != is_ebb_event(event))
592 return -EINVAL;
593
594 if (is_ebb_event(event)) {
595 if (!(event->attach_state & PERF_ATTACH_TASK))
596 return -EINVAL;
597
598 if (!leader->attr.pinned || !leader->attr.exclusive)
599 return -EINVAL;
600
601 if (event->attr.freq ||
602 event->attr.inherit ||
603 event->attr.sample_type ||
604 event->attr.sample_period ||
605 event->attr.enable_on_exec)
606 return -EINVAL;
607 }
608
609 return 0;
610 }
611
ebb_event_add(struct perf_event * event)612 static void ebb_event_add(struct perf_event *event)
613 {
614 if (!is_ebb_event(event) || current->thread.used_ebb)
615 return;
616
617 /*
618 * IFF this is the first time we've added an EBB event, set
619 * PMXE in the user MMCR0 so we can detect when it's cleared by
620 * userspace. We need this so that we can context switch while
621 * userspace is in the EBB handler (where PMXE is 0).
622 */
623 current->thread.used_ebb = 1;
624 current->thread.mmcr0 |= MMCR0_PMXE;
625 }
626
ebb_switch_out(unsigned long mmcr0)627 static void ebb_switch_out(unsigned long mmcr0)
628 {
629 if (!(mmcr0 & MMCR0_EBE))
630 return;
631
632 current->thread.siar = mfspr(SPRN_SIAR);
633 current->thread.sier = mfspr(SPRN_SIER);
634 current->thread.sdar = mfspr(SPRN_SDAR);
635 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
636 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
637 if (ppmu->flags & PPMU_ARCH_31) {
638 current->thread.mmcr3 = mfspr(SPRN_MMCR3);
639 current->thread.sier2 = mfspr(SPRN_SIER2);
640 current->thread.sier3 = mfspr(SPRN_SIER3);
641 }
642 }
643
ebb_switch_in(bool ebb,struct cpu_hw_events * cpuhw)644 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
645 {
646 unsigned long mmcr0 = cpuhw->mmcr.mmcr0;
647
648 if (!ebb)
649 goto out;
650
651 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
652 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
653
654 /*
655 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
656 * with pmao_restore_workaround() because we may add PMAO but we never
657 * clear it here.
658 */
659 mmcr0 |= current->thread.mmcr0;
660
661 /*
662 * Be careful not to set PMXE if userspace had it cleared. This is also
663 * compatible with pmao_restore_workaround() because it has already
664 * cleared PMXE and we leave PMAO alone.
665 */
666 if (!(current->thread.mmcr0 & MMCR0_PMXE))
667 mmcr0 &= ~MMCR0_PMXE;
668
669 mtspr(SPRN_SIAR, current->thread.siar);
670 mtspr(SPRN_SIER, current->thread.sier);
671 mtspr(SPRN_SDAR, current->thread.sdar);
672
673 /*
674 * Merge the kernel & user values of MMCR2. The semantics we implement
675 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
676 * but not clear bits. If a task wants to be able to clear bits, ie.
677 * unfreeze counters, it should not set exclude_xxx in its events and
678 * instead manage the MMCR2 entirely by itself.
679 */
680 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);
681
682 if (ppmu->flags & PPMU_ARCH_31) {
683 mtspr(SPRN_MMCR3, current->thread.mmcr3);
684 mtspr(SPRN_SIER2, current->thread.sier2);
685 mtspr(SPRN_SIER3, current->thread.sier3);
686 }
687 out:
688 return mmcr0;
689 }
690
pmao_restore_workaround(bool ebb)691 static void pmao_restore_workaround(bool ebb)
692 {
693 unsigned pmcs[6];
694
695 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
696 return;
697
698 /*
699 * On POWER8E there is a hardware defect which affects the PMU context
700 * switch logic, ie. power_pmu_disable/enable().
701 *
702 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
703 * by the hardware. Sometime later the actual PMU exception is
704 * delivered.
705 *
706 * If we context switch, or simply disable/enable, the PMU prior to the
707 * exception arriving, the exception will be lost when we clear PMAO.
708 *
709 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
710 * set, and this _should_ generate an exception. However because of the
711 * defect no exception is generated when we write PMAO, and we get
712 * stuck with no counters counting but no exception delivered.
713 *
714 * The workaround is to detect this case and tweak the hardware to
715 * create another pending PMU exception.
716 *
717 * We do that by setting up PMC6 (cycles) for an imminent overflow and
718 * enabling the PMU. That causes a new exception to be generated in the
719 * chip, but we don't take it yet because we have interrupts hard
720 * disabled. We then write back the PMU state as we want it to be seen
721 * by the exception handler. When we reenable interrupts the exception
722 * handler will be called and see the correct state.
723 *
724 * The logic is the same for EBB, except that the exception is gated by
725 * us having interrupts hard disabled as well as the fact that we are
726 * not in userspace. The exception is finally delivered when we return
727 * to userspace.
728 */
729
730 /* Only if PMAO is set and PMAO_SYNC is clear */
731 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
732 return;
733
734 /* If we're doing EBB, only if BESCR[GE] is set */
735 if (ebb && !(current->thread.bescr & BESCR_GE))
736 return;
737
738 /*
739 * We are already soft-disabled in power_pmu_enable(). We need to hard
740 * disable to actually prevent the PMU exception from firing.
741 */
742 hard_irq_disable();
743
744 /*
745 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
746 * Using read/write_pmc() in a for loop adds 12 function calls and
747 * almost doubles our code size.
748 */
749 pmcs[0] = mfspr(SPRN_PMC1);
750 pmcs[1] = mfspr(SPRN_PMC2);
751 pmcs[2] = mfspr(SPRN_PMC3);
752 pmcs[3] = mfspr(SPRN_PMC4);
753 pmcs[4] = mfspr(SPRN_PMC5);
754 pmcs[5] = mfspr(SPRN_PMC6);
755
756 /* Ensure all freeze bits are unset */
757 mtspr(SPRN_MMCR2, 0);
758
759 /* Set up PMC6 to overflow in one cycle */
760 mtspr(SPRN_PMC6, 0x7FFFFFFE);
761
762 /* Enable exceptions and unfreeze PMC6 */
763 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
764
765 /* Now we need to refreeze and restore the PMCs */
766 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
767
768 mtspr(SPRN_PMC1, pmcs[0]);
769 mtspr(SPRN_PMC2, pmcs[1]);
770 mtspr(SPRN_PMC3, pmcs[2]);
771 mtspr(SPRN_PMC4, pmcs[3]);
772 mtspr(SPRN_PMC5, pmcs[4]);
773 mtspr(SPRN_PMC6, pmcs[5]);
774 }
775
776 /*
777 * If the perf subsystem wants performance monitor interrupts as soon as
778 * possible (e.g., to sample the instruction address and stack chain),
779 * this should return true. The IRQ masking code can then enable MSR[EE]
780 * in some places (e.g., interrupt handlers) that allows PMI interrupts
781 * through to improve accuracy of profiles, at the cost of some performance.
782 *
783 * The PMU counters can be enabled by other means (e.g., sysfs raw SPR
784 * access), but in that case there is no need for prompt PMI handling.
785 *
786 * This currently returns true if any perf counter is being used. It
787 * could possibly return false if only events are being counted rather than
788 * samples being taken, but for now this is good enough.
789 */
power_pmu_wants_prompt_pmi(void)790 bool power_pmu_wants_prompt_pmi(void)
791 {
792 struct cpu_hw_events *cpuhw;
793
794 /*
795 * This could simply test local_paca->pmcregs_in_use if that were not
796 * under ifdef KVM.
797 */
798 if (!ppmu)
799 return false;
800
801 cpuhw = this_cpu_ptr(&cpu_hw_events);
802 return cpuhw->n_events;
803 }
804 #endif /* CONFIG_PPC64 */
805
806 static void perf_event_interrupt(struct pt_regs *regs);
807
808 /*
809 * Read one performance monitor counter (PMC).
810 */
read_pmc(int idx)811 static unsigned long read_pmc(int idx)
812 {
813 unsigned long val;
814
815 switch (idx) {
816 case 1:
817 val = mfspr(SPRN_PMC1);
818 break;
819 case 2:
820 val = mfspr(SPRN_PMC2);
821 break;
822 case 3:
823 val = mfspr(SPRN_PMC3);
824 break;
825 case 4:
826 val = mfspr(SPRN_PMC4);
827 break;
828 case 5:
829 val = mfspr(SPRN_PMC5);
830 break;
831 case 6:
832 val = mfspr(SPRN_PMC6);
833 break;
834 #ifdef CONFIG_PPC64
835 case 7:
836 val = mfspr(SPRN_PMC7);
837 break;
838 case 8:
839 val = mfspr(SPRN_PMC8);
840 break;
841 #endif /* CONFIG_PPC64 */
842 default:
843 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
844 val = 0;
845 }
846 return val;
847 }
848
849 /*
850 * Write one PMC.
851 */
write_pmc(int idx,unsigned long val)852 static void write_pmc(int idx, unsigned long val)
853 {
854 switch (idx) {
855 case 1:
856 mtspr(SPRN_PMC1, val);
857 break;
858 case 2:
859 mtspr(SPRN_PMC2, val);
860 break;
861 case 3:
862 mtspr(SPRN_PMC3, val);
863 break;
864 case 4:
865 mtspr(SPRN_PMC4, val);
866 break;
867 case 5:
868 mtspr(SPRN_PMC5, val);
869 break;
870 case 6:
871 mtspr(SPRN_PMC6, val);
872 break;
873 #ifdef CONFIG_PPC64
874 case 7:
875 mtspr(SPRN_PMC7, val);
876 break;
877 case 8:
878 mtspr(SPRN_PMC8, val);
879 break;
880 #endif /* CONFIG_PPC64 */
881 default:
882 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
883 }
884 }
885
any_pmc_overflown(struct cpu_hw_events * cpuhw)886 static int any_pmc_overflown(struct cpu_hw_events *cpuhw)
887 {
888 int i, idx;
889
890 for (i = 0; i < cpuhw->n_events; i++) {
891 idx = cpuhw->event[i]->hw.idx;
892 if ((idx) && ((int)read_pmc(idx) < 0))
893 return idx;
894 }
895
896 return 0;
897 }
898
899 /* Called from sysrq_handle_showregs() */
perf_event_print_debug(void)900 void perf_event_print_debug(void)
901 {
902 unsigned long sdar, sier, flags;
903 u32 pmcs[MAX_HWEVENTS];
904 int i;
905
906 if (!ppmu) {
907 pr_info("Performance monitor hardware not registered.\n");
908 return;
909 }
910
911 if (!ppmu->n_counter)
912 return;
913
914 local_irq_save(flags);
915
916 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
917 smp_processor_id(), ppmu->name, ppmu->n_counter);
918
919 for (i = 0; i < ppmu->n_counter; i++)
920 pmcs[i] = read_pmc(i + 1);
921
922 for (; i < MAX_HWEVENTS; i++)
923 pmcs[i] = 0xdeadbeef;
924
925 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
926 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
927
928 if (ppmu->n_counter > 4)
929 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
930 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
931
932 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
933 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
934
935 sdar = sier = 0;
936 #ifdef CONFIG_PPC64
937 sdar = mfspr(SPRN_SDAR);
938
939 if (ppmu->flags & PPMU_HAS_SIER)
940 sier = mfspr(SPRN_SIER);
941
942 if (ppmu->flags & PPMU_ARCH_207S) {
943 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
944 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
945 pr_info("EBBRR: %016lx BESCR: %016lx\n",
946 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
947 }
948
949 if (ppmu->flags & PPMU_ARCH_31) {
950 pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
951 mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
952 }
953 #endif
954 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
955 mfspr(SPRN_SIAR), sdar, sier);
956
957 local_irq_restore(flags);
958 }
959
960 /*
961 * Check if a set of events can all go on the PMU at once.
962 * If they can't, this will look at alternative codes for the events
963 * and see if any combination of alternative codes is feasible.
964 * The feasible set is returned in event_id[].
965 */
power_check_constraints(struct cpu_hw_events * cpuhw,u64 event_id[],unsigned int cflags[],int n_ev,struct perf_event ** event)966 static int power_check_constraints(struct cpu_hw_events *cpuhw,
967 u64 event_id[], unsigned int cflags[],
968 int n_ev, struct perf_event **event)
969 {
970 unsigned long mask, value, nv;
971 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
972 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
973 int i, j;
974 unsigned long addf = ppmu->add_fields;
975 unsigned long tadd = ppmu->test_adder;
976 unsigned long grp_mask = ppmu->group_constraint_mask;
977 unsigned long grp_val = ppmu->group_constraint_val;
978
979 if (n_ev > ppmu->n_counter)
980 return -1;
981
982 /* First see if the events will go on as-is */
983 for (i = 0; i < n_ev; ++i) {
984 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
985 && !ppmu->limited_pmc_event(event_id[i])) {
986 ppmu->get_alternatives(event_id[i], cflags[i],
987 cpuhw->alternatives[i]);
988 event_id[i] = cpuhw->alternatives[i][0];
989 }
990 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
991 &cpuhw->avalues[i][0], event[i]->attr.config1))
992 return -1;
993 }
994 value = mask = 0;
995 for (i = 0; i < n_ev; ++i) {
996 nv = (value | cpuhw->avalues[i][0]) +
997 (value & cpuhw->avalues[i][0] & addf);
998
999 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
1000 break;
1001
1002 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
1003 & (~grp_mask)) != 0)
1004 break;
1005
1006 value = nv;
1007 mask |= cpuhw->amasks[i][0];
1008 }
1009 if (i == n_ev) {
1010 if ((value & mask & grp_mask) != (mask & grp_val))
1011 return -1;
1012 else
1013 return 0; /* all OK */
1014 }
1015
1016 /* doesn't work, gather alternatives... */
1017 if (!ppmu->get_alternatives)
1018 return -1;
1019 for (i = 0; i < n_ev; ++i) {
1020 choice[i] = 0;
1021 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
1022 cpuhw->alternatives[i]);
1023 for (j = 1; j < n_alt[i]; ++j)
1024 ppmu->get_constraint(cpuhw->alternatives[i][j],
1025 &cpuhw->amasks[i][j],
1026 &cpuhw->avalues[i][j],
1027 event[i]->attr.config1);
1028 }
1029
1030 /* enumerate all possibilities and see if any will work */
1031 i = 0;
1032 j = -1;
1033 value = mask = nv = 0;
1034 while (i < n_ev) {
1035 if (j >= 0) {
1036 /* we're backtracking, restore context */
1037 value = svalues[i];
1038 mask = smasks[i];
1039 j = choice[i];
1040 }
1041 /*
1042 * See if any alternative k for event_id i,
1043 * where k > j, will satisfy the constraints.
1044 */
1045 while (++j < n_alt[i]) {
1046 nv = (value | cpuhw->avalues[i][j]) +
1047 (value & cpuhw->avalues[i][j] & addf);
1048 if ((((nv + tadd) ^ value) & mask) == 0 &&
1049 (((nv + tadd) ^ cpuhw->avalues[i][j])
1050 & cpuhw->amasks[i][j]) == 0)
1051 break;
1052 }
1053 if (j >= n_alt[i]) {
1054 /*
1055 * No feasible alternative, backtrack
1056 * to event_id i-1 and continue enumerating its
1057 * alternatives from where we got up to.
1058 */
1059 if (--i < 0)
1060 return -1;
1061 } else {
1062 /*
1063 * Found a feasible alternative for event_id i,
1064 * remember where we got up to with this event_id,
1065 * go on to the next event_id, and start with
1066 * the first alternative for it.
1067 */
1068 choice[i] = j;
1069 svalues[i] = value;
1070 smasks[i] = mask;
1071 value = nv;
1072 mask |= cpuhw->amasks[i][j];
1073 ++i;
1074 j = -1;
1075 }
1076 }
1077
1078 /* OK, we have a feasible combination, tell the caller the solution */
1079 for (i = 0; i < n_ev; ++i)
1080 event_id[i] = cpuhw->alternatives[i][choice[i]];
1081 return 0;
1082 }
1083
1084 /*
1085 * Check if newly-added events have consistent settings for
1086 * exclude_{user,kernel,hv} with each other and any previously
1087 * added events.
1088 */
check_excludes(struct perf_event ** ctrs,unsigned int cflags[],int n_prev,int n_new)1089 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
1090 int n_prev, int n_new)
1091 {
1092 int eu = 0, ek = 0, eh = 0;
1093 int i, n, first;
1094 struct perf_event *event;
1095
1096 /*
1097 * If the PMU we're on supports per event exclude settings then we
1098 * don't need to do any of this logic. NB. This assumes no PMU has both
1099 * per event exclude and limited PMCs.
1100 */
1101 if (ppmu->flags & PPMU_ARCH_207S)
1102 return 0;
1103
1104 n = n_prev + n_new;
1105 if (n <= 1)
1106 return 0;
1107
1108 first = 1;
1109 for (i = 0; i < n; ++i) {
1110 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1111 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1112 continue;
1113 }
1114 event = ctrs[i];
1115 if (first) {
1116 eu = event->attr.exclude_user;
1117 ek = event->attr.exclude_kernel;
1118 eh = event->attr.exclude_hv;
1119 first = 0;
1120 } else if (event->attr.exclude_user != eu ||
1121 event->attr.exclude_kernel != ek ||
1122 event->attr.exclude_hv != eh) {
1123 return -EAGAIN;
1124 }
1125 }
1126
1127 if (eu || ek || eh)
1128 for (i = 0; i < n; ++i)
1129 if (cflags[i] & PPMU_LIMITED_PMC_OK)
1130 cflags[i] |= PPMU_LIMITED_PMC_REQD;
1131
1132 return 0;
1133 }
1134
check_and_compute_delta(u64 prev,u64 val)1135 static u64 check_and_compute_delta(u64 prev, u64 val)
1136 {
1137 u64 delta = (val - prev) & 0xfffffffful;
1138
1139 /*
1140 * POWER7 can roll back counter values, if the new value is smaller
1141 * than the previous value it will cause the delta and the counter to
1142 * have bogus values unless we rolled a counter over. If a counter is
1143 * rolled back, it will be smaller, but within 256, which is the maximum
1144 * number of events to rollback at once. If we detect a rollback
1145 * return 0. This can lead to a small lack of precision in the
1146 * counters.
1147 */
1148 if (prev > val && (prev - val) < 256)
1149 delta = 0;
1150
1151 return delta;
1152 }
1153
power_pmu_read(struct perf_event * event)1154 static void power_pmu_read(struct perf_event *event)
1155 {
1156 s64 val, delta, prev;
1157
1158 if (event->hw.state & PERF_HES_STOPPED)
1159 return;
1160
1161 if (!event->hw.idx)
1162 return;
1163
1164 if (is_ebb_event(event)) {
1165 val = read_pmc(event->hw.idx);
1166 local64_set(&event->hw.prev_count, val);
1167 return;
1168 }
1169
1170 /*
1171 * Performance monitor interrupts come even when interrupts
1172 * are soft-disabled, as long as interrupts are hard-enabled.
1173 * Therefore we treat them like NMIs.
1174 */
1175 do {
1176 prev = local64_read(&event->hw.prev_count);
1177 barrier();
1178 val = read_pmc(event->hw.idx);
1179 delta = check_and_compute_delta(prev, val);
1180 if (!delta)
1181 return;
1182 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1183
1184 local64_add(delta, &event->count);
1185
1186 /*
1187 * A number of places program the PMC with (0x80000000 - period_left).
1188 * We never want period_left to be less than 1 because we will program
1189 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1190 * roll around to 0 before taking an exception. We have seen this
1191 * on POWER8.
1192 *
1193 * To fix this, clamp the minimum value of period_left to 1.
1194 */
1195 do {
1196 prev = local64_read(&event->hw.period_left);
1197 val = prev - delta;
1198 if (val < 1)
1199 val = 1;
1200 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1201 }
1202
1203 /*
1204 * On some machines, PMC5 and PMC6 can't be written, don't respect
1205 * the freeze conditions, and don't generate interrupts. This tells
1206 * us if `event' is using such a PMC.
1207 */
is_limited_pmc(int pmcnum)1208 static int is_limited_pmc(int pmcnum)
1209 {
1210 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1211 && (pmcnum == 5 || pmcnum == 6);
1212 }
1213
freeze_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)1214 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1215 unsigned long pmc5, unsigned long pmc6)
1216 {
1217 struct perf_event *event;
1218 u64 val, prev, delta;
1219 int i;
1220
1221 for (i = 0; i < cpuhw->n_limited; ++i) {
1222 event = cpuhw->limited_counter[i];
1223 if (!event->hw.idx)
1224 continue;
1225 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1226 prev = local64_read(&event->hw.prev_count);
1227 event->hw.idx = 0;
1228 delta = check_and_compute_delta(prev, val);
1229 if (delta)
1230 local64_add(delta, &event->count);
1231 }
1232 }
1233
thaw_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)1234 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1235 unsigned long pmc5, unsigned long pmc6)
1236 {
1237 struct perf_event *event;
1238 u64 val, prev;
1239 int i;
1240
1241 for (i = 0; i < cpuhw->n_limited; ++i) {
1242 event = cpuhw->limited_counter[i];
1243 event->hw.idx = cpuhw->limited_hwidx[i];
1244 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1245 prev = local64_read(&event->hw.prev_count);
1246 if (check_and_compute_delta(prev, val))
1247 local64_set(&event->hw.prev_count, val);
1248 perf_event_update_userpage(event);
1249 }
1250 }
1251
1252 /*
1253 * Since limited events don't respect the freeze conditions, we
1254 * have to read them immediately after freezing or unfreezing the
1255 * other events. We try to keep the values from the limited
1256 * events as consistent as possible by keeping the delay (in
1257 * cycles and instructions) between freezing/unfreezing and reading
1258 * the limited events as small and consistent as possible.
1259 * Therefore, if any limited events are in use, we read them
1260 * both, and always in the same order, to minimize variability,
1261 * and do it inside the same asm that writes MMCR0.
1262 */
write_mmcr0(struct cpu_hw_events * cpuhw,unsigned long mmcr0)1263 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1264 {
1265 unsigned long pmc5, pmc6;
1266
1267 if (!cpuhw->n_limited) {
1268 mtspr(SPRN_MMCR0, mmcr0);
1269 return;
1270 }
1271
1272 /*
1273 * Write MMCR0, then read PMC5 and PMC6 immediately.
1274 * To ensure we don't get a performance monitor interrupt
1275 * between writing MMCR0 and freezing/thawing the limited
1276 * events, we first write MMCR0 with the event overflow
1277 * interrupt enable bits turned off.
1278 */
1279 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1280 : "=&r" (pmc5), "=&r" (pmc6)
1281 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1282 "i" (SPRN_MMCR0),
1283 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1284
1285 if (mmcr0 & MMCR0_FC)
1286 freeze_limited_counters(cpuhw, pmc5, pmc6);
1287 else
1288 thaw_limited_counters(cpuhw, pmc5, pmc6);
1289
1290 /*
1291 * Write the full MMCR0 including the event overflow interrupt
1292 * enable bits, if necessary.
1293 */
1294 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1295 mtspr(SPRN_MMCR0, mmcr0);
1296 }
1297
1298 /*
1299 * Disable all events to prevent PMU interrupts and to allow
1300 * events to be added or removed.
1301 */
power_pmu_disable(struct pmu * pmu)1302 static void power_pmu_disable(struct pmu *pmu)
1303 {
1304 struct cpu_hw_events *cpuhw;
1305 unsigned long flags, mmcr0, val, mmcra;
1306
1307 if (!ppmu)
1308 return;
1309 local_irq_save(flags);
1310 cpuhw = this_cpu_ptr(&cpu_hw_events);
1311
1312 if (!cpuhw->disabled) {
1313 /*
1314 * Check if we ever enabled the PMU on this cpu.
1315 */
1316 if (!cpuhw->pmcs_enabled) {
1317 ppc_enable_pmcs();
1318 cpuhw->pmcs_enabled = 1;
1319 }
1320
1321 /*
1322 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1323 * Also clear PMXE to disable PMI's getting triggered in some
1324 * corner cases during PMU disable.
1325 */
1326 val = mmcr0 = mfspr(SPRN_MMCR0);
1327 val |= MMCR0_FC;
1328 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1329 MMCR0_PMXE | MMCR0_FC56);
1330 /* Set mmcr0 PMCCEXT for p10 */
1331 if (ppmu->flags & PPMU_ARCH_31)
1332 val |= MMCR0_PMCCEXT;
1333
1334 /*
1335 * The barrier is to make sure the mtspr has been
1336 * executed and the PMU has frozen the events etc.
1337 * before we return.
1338 */
1339 write_mmcr0(cpuhw, val);
1340 mb();
1341 isync();
1342
1343 /*
1344 * Some corner cases could clear the PMU counter overflow
1345 * while a masked PMI is pending. One such case is when
1346 * a PMI happens during interrupt replay and perf counter
1347 * values are cleared by PMU callbacks before replay.
1348 *
1349 * Disable the interrupt by clearing the paca bit for PMI
1350 * since we are disabling the PMU now. Otherwise provide a
1351 * warning if there is PMI pending, but no counter is found
1352 * overflown.
1353 *
1354 * Since power_pmu_disable runs under local_irq_save, it
1355 * could happen that code hits a PMC overflow without PMI
1356 * pending in paca. Hence only clear PMI pending if it was
1357 * set.
1358 *
1359 * If a PMI is pending, then MSR[EE] must be disabled (because
1360 * the masked PMI handler disabling EE). So it is safe to
1361 * call clear_pmi_irq_pending().
1362 */
1363 if (pmi_irq_pending())
1364 clear_pmi_irq_pending();
1365
1366 val = mmcra = cpuhw->mmcr.mmcra;
1367
1368 /*
1369 * Disable instruction sampling if it was enabled
1370 */
1371 val &= ~MMCRA_SAMPLE_ENABLE;
1372
1373 /* Disable BHRB via mmcra (BHRBRD) for p10 */
1374 if (ppmu->flags & PPMU_ARCH_31)
1375 val |= MMCRA_BHRB_DISABLE;
1376
1377 /*
1378 * Write SPRN_MMCRA if mmcra has either disabled
1379 * instruction sampling or BHRB.
1380 */
1381 if (val != mmcra) {
1382 mtspr(SPRN_MMCRA, val);
1383 mb();
1384 isync();
1385 }
1386
1387 cpuhw->disabled = 1;
1388 cpuhw->n_added = 0;
1389
1390 ebb_switch_out(mmcr0);
1391
1392 #ifdef CONFIG_PPC64
1393 /*
1394 * These are readable by userspace, may contain kernel
1395 * addresses and are not switched by context switch, so clear
1396 * them now to avoid leaking anything to userspace in general
1397 * including to another process.
1398 */
1399 if (ppmu->flags & PPMU_ARCH_207S) {
1400 mtspr(SPRN_SDAR, 0);
1401 mtspr(SPRN_SIAR, 0);
1402 }
1403 #endif
1404 }
1405
1406 local_irq_restore(flags);
1407 }
1408
1409 /*
1410 * Re-enable all events if disable == 0.
1411 * If we were previously disabled and events were added, then
1412 * put the new config on the PMU.
1413 */
power_pmu_enable(struct pmu * pmu)1414 static void power_pmu_enable(struct pmu *pmu)
1415 {
1416 struct perf_event *event;
1417 struct cpu_hw_events *cpuhw;
1418 unsigned long flags;
1419 long i;
1420 unsigned long val, mmcr0;
1421 s64 left;
1422 unsigned int hwc_index[MAX_HWEVENTS];
1423 int n_lim;
1424 int idx;
1425 bool ebb;
1426
1427 if (!ppmu)
1428 return;
1429 local_irq_save(flags);
1430
1431 cpuhw = this_cpu_ptr(&cpu_hw_events);
1432 if (!cpuhw->disabled)
1433 goto out;
1434
1435 if (cpuhw->n_events == 0) {
1436 ppc_set_pmu_inuse(0);
1437 goto out;
1438 }
1439
1440 cpuhw->disabled = 0;
1441
1442 /*
1443 * EBB requires an exclusive group and all events must have the EBB
1444 * flag set, or not set, so we can just check a single event. Also we
1445 * know we have at least one event.
1446 */
1447 ebb = is_ebb_event(cpuhw->event[0]);
1448
1449 /*
1450 * If we didn't change anything, or only removed events,
1451 * no need to recalculate MMCR* settings and reset the PMCs.
1452 * Just reenable the PMU with the current MMCR* settings
1453 * (possibly updated for removal of events).
1454 */
1455 if (!cpuhw->n_added) {
1456 /*
1457 * If there is any active event with an overflown PMC
1458 * value, set back PACA_IRQ_PMI which would have been
1459 * cleared in power_pmu_disable().
1460 */
1461 hard_irq_disable();
1462 if (any_pmc_overflown(cpuhw))
1463 set_pmi_irq_pending();
1464
1465 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1466 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1467 if (ppmu->flags & PPMU_ARCH_31)
1468 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1469 goto out_enable;
1470 }
1471
1472 /*
1473 * Clear all MMCR settings and recompute them for the new set of events.
1474 */
1475 memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1476
1477 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1478 &cpuhw->mmcr, cpuhw->event, ppmu->flags)) {
1479 /* shouldn't ever get here */
1480 printk(KERN_ERR "oops compute_mmcr failed\n");
1481 goto out;
1482 }
1483
1484 if (!(ppmu->flags & PPMU_ARCH_207S)) {
1485 /*
1486 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1487 * bits for the first event. We have already checked that all
1488 * events have the same value for these bits as the first event.
1489 */
1490 event = cpuhw->event[0];
1491 if (event->attr.exclude_user)
1492 cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
1493 if (event->attr.exclude_kernel)
1494 cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
1495 if (event->attr.exclude_hv)
1496 cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
1497 }
1498
1499 /*
1500 * Write the new configuration to MMCR* with the freeze
1501 * bit set and set the hardware events to their initial values.
1502 * Then unfreeze the events.
1503 */
1504 ppc_set_pmu_inuse(1);
1505 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1506 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1507 mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1508 | MMCR0_FC);
1509 if (ppmu->flags & PPMU_ARCH_207S)
1510 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);
1511
1512 if (ppmu->flags & PPMU_ARCH_31)
1513 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1514
1515 /*
1516 * Read off any pre-existing events that need to move
1517 * to another PMC.
1518 */
1519 for (i = 0; i < cpuhw->n_events; ++i) {
1520 event = cpuhw->event[i];
1521 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1522 power_pmu_read(event);
1523 write_pmc(event->hw.idx, 0);
1524 event->hw.idx = 0;
1525 }
1526 }
1527
1528 /*
1529 * Initialize the PMCs for all the new and moved events.
1530 */
1531 cpuhw->n_limited = n_lim = 0;
1532 for (i = 0; i < cpuhw->n_events; ++i) {
1533 event = cpuhw->event[i];
1534 if (event->hw.idx)
1535 continue;
1536 idx = hwc_index[i] + 1;
1537 if (is_limited_pmc(idx)) {
1538 cpuhw->limited_counter[n_lim] = event;
1539 cpuhw->limited_hwidx[n_lim] = idx;
1540 ++n_lim;
1541 continue;
1542 }
1543
1544 if (ebb)
1545 val = local64_read(&event->hw.prev_count);
1546 else {
1547 val = 0;
1548 if (event->hw.sample_period) {
1549 left = local64_read(&event->hw.period_left);
1550 if (left < 0x80000000L)
1551 val = 0x80000000L - left;
1552 }
1553 local64_set(&event->hw.prev_count, val);
1554 }
1555
1556 event->hw.idx = idx;
1557 if (event->hw.state & PERF_HES_STOPPED)
1558 val = 0;
1559 write_pmc(idx, val);
1560
1561 perf_event_update_userpage(event);
1562 }
1563 cpuhw->n_limited = n_lim;
1564 cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;
1565
1566 out_enable:
1567 pmao_restore_workaround(ebb);
1568
1569 mmcr0 = ebb_switch_in(ebb, cpuhw);
1570
1571 mb();
1572 if (cpuhw->bhrb_users)
1573 ppmu->config_bhrb(cpuhw->bhrb_filter);
1574
1575 write_mmcr0(cpuhw, mmcr0);
1576
1577 /*
1578 * Enable instruction sampling if necessary
1579 */
1580 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
1581 mb();
1582 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
1583 }
1584
1585 out:
1586
1587 local_irq_restore(flags);
1588 }
1589
collect_events(struct perf_event * group,int max_count,struct perf_event * ctrs[],u64 * events,unsigned int * flags)1590 static int collect_events(struct perf_event *group, int max_count,
1591 struct perf_event *ctrs[], u64 *events,
1592 unsigned int *flags)
1593 {
1594 int n = 0;
1595 struct perf_event *event;
1596
1597 if (group->pmu->task_ctx_nr == perf_hw_context) {
1598 if (n >= max_count)
1599 return -1;
1600 ctrs[n] = group;
1601 flags[n] = group->hw.event_base;
1602 events[n++] = group->hw.config;
1603 }
1604 for_each_sibling_event(event, group) {
1605 if (event->pmu->task_ctx_nr == perf_hw_context &&
1606 event->state != PERF_EVENT_STATE_OFF) {
1607 if (n >= max_count)
1608 return -1;
1609 ctrs[n] = event;
1610 flags[n] = event->hw.event_base;
1611 events[n++] = event->hw.config;
1612 }
1613 }
1614 return n;
1615 }
1616
1617 /*
1618 * Add an event to the PMU.
1619 * If all events are not already frozen, then we disable and
1620 * re-enable the PMU in order to get hw_perf_enable to do the
1621 * actual work of reconfiguring the PMU.
1622 */
power_pmu_add(struct perf_event * event,int ef_flags)1623 static int power_pmu_add(struct perf_event *event, int ef_flags)
1624 {
1625 struct cpu_hw_events *cpuhw;
1626 unsigned long flags;
1627 int n0;
1628 int ret = -EAGAIN;
1629
1630 local_irq_save(flags);
1631 perf_pmu_disable(event->pmu);
1632
1633 /*
1634 * Add the event to the list (if there is room)
1635 * and check whether the total set is still feasible.
1636 */
1637 cpuhw = this_cpu_ptr(&cpu_hw_events);
1638 n0 = cpuhw->n_events;
1639 if (n0 >= ppmu->n_counter)
1640 goto out;
1641 cpuhw->event[n0] = event;
1642 cpuhw->events[n0] = event->hw.config;
1643 cpuhw->flags[n0] = event->hw.event_base;
1644
1645 /*
1646 * This event may have been disabled/stopped in record_and_restart()
1647 * because we exceeded the ->event_limit. If re-starting the event,
1648 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1649 * notification is re-enabled.
1650 */
1651 if (!(ef_flags & PERF_EF_START))
1652 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1653 else
1654 event->hw.state = 0;
1655
1656 /*
1657 * If group events scheduling transaction was started,
1658 * skip the schedulability test here, it will be performed
1659 * at commit time(->commit_txn) as a whole
1660 */
1661 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1662 goto nocheck;
1663
1664 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1665 goto out;
1666 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1, cpuhw->event))
1667 goto out;
1668 event->hw.config = cpuhw->events[n0];
1669
1670 nocheck:
1671 ebb_event_add(event);
1672
1673 ++cpuhw->n_events;
1674 ++cpuhw->n_added;
1675
1676 ret = 0;
1677 out:
1678 if (has_branch_stack(event)) {
1679 u64 bhrb_filter = -1;
1680
1681 if (ppmu->bhrb_filter_map)
1682 bhrb_filter = ppmu->bhrb_filter_map(
1683 event->attr.branch_sample_type);
1684
1685 if (bhrb_filter != -1) {
1686 cpuhw->bhrb_filter = bhrb_filter;
1687 power_pmu_bhrb_enable(event);
1688 }
1689 }
1690
1691 perf_pmu_enable(event->pmu);
1692 local_irq_restore(flags);
1693 return ret;
1694 }
1695
1696 /*
1697 * Remove an event from the PMU.
1698 */
power_pmu_del(struct perf_event * event,int ef_flags)1699 static void power_pmu_del(struct perf_event *event, int ef_flags)
1700 {
1701 struct cpu_hw_events *cpuhw;
1702 long i;
1703 unsigned long flags;
1704
1705 local_irq_save(flags);
1706 perf_pmu_disable(event->pmu);
1707
1708 power_pmu_read(event);
1709
1710 cpuhw = this_cpu_ptr(&cpu_hw_events);
1711 for (i = 0; i < cpuhw->n_events; ++i) {
1712 if (event == cpuhw->event[i]) {
1713 while (++i < cpuhw->n_events) {
1714 cpuhw->event[i-1] = cpuhw->event[i];
1715 cpuhw->events[i-1] = cpuhw->events[i];
1716 cpuhw->flags[i-1] = cpuhw->flags[i];
1717 }
1718 --cpuhw->n_events;
1719 ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
1720 if (event->hw.idx) {
1721 write_pmc(event->hw.idx, 0);
1722 event->hw.idx = 0;
1723 }
1724 perf_event_update_userpage(event);
1725 break;
1726 }
1727 }
1728 for (i = 0; i < cpuhw->n_limited; ++i)
1729 if (event == cpuhw->limited_counter[i])
1730 break;
1731 if (i < cpuhw->n_limited) {
1732 while (++i < cpuhw->n_limited) {
1733 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1734 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1735 }
1736 --cpuhw->n_limited;
1737 }
1738 if (cpuhw->n_events == 0) {
1739 /* disable exceptions if no events are running */
1740 cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
1741 }
1742
1743 if (has_branch_stack(event))
1744 power_pmu_bhrb_disable(event);
1745
1746 perf_pmu_enable(event->pmu);
1747 local_irq_restore(flags);
1748 }
1749
1750 /*
1751 * POWER-PMU does not support disabling individual counters, hence
1752 * program their cycle counter to their max value and ignore the interrupts.
1753 */
1754
power_pmu_start(struct perf_event * event,int ef_flags)1755 static void power_pmu_start(struct perf_event *event, int ef_flags)
1756 {
1757 unsigned long flags;
1758 s64 left;
1759 unsigned long val;
1760
1761 if (!event->hw.idx || !event->hw.sample_period)
1762 return;
1763
1764 if (!(event->hw.state & PERF_HES_STOPPED))
1765 return;
1766
1767 if (ef_flags & PERF_EF_RELOAD)
1768 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1769
1770 local_irq_save(flags);
1771 perf_pmu_disable(event->pmu);
1772
1773 event->hw.state = 0;
1774 left = local64_read(&event->hw.period_left);
1775
1776 val = 0;
1777 if (left < 0x80000000L)
1778 val = 0x80000000L - left;
1779
1780 write_pmc(event->hw.idx, val);
1781
1782 perf_event_update_userpage(event);
1783 perf_pmu_enable(event->pmu);
1784 local_irq_restore(flags);
1785 }
1786
power_pmu_stop(struct perf_event * event,int ef_flags)1787 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1788 {
1789 unsigned long flags;
1790
1791 if (!event->hw.idx || !event->hw.sample_period)
1792 return;
1793
1794 if (event->hw.state & PERF_HES_STOPPED)
1795 return;
1796
1797 local_irq_save(flags);
1798 perf_pmu_disable(event->pmu);
1799
1800 power_pmu_read(event);
1801 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1802 write_pmc(event->hw.idx, 0);
1803
1804 perf_event_update_userpage(event);
1805 perf_pmu_enable(event->pmu);
1806 local_irq_restore(flags);
1807 }
1808
1809 /*
1810 * Start group events scheduling transaction
1811 * Set the flag to make pmu::enable() not perform the
1812 * schedulability test, it will be performed at commit time
1813 *
1814 * We only support PERF_PMU_TXN_ADD transactions. Save the
1815 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1816 * transactions.
1817 */
power_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1818 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1819 {
1820 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1821
1822 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1823
1824 cpuhw->txn_flags = txn_flags;
1825 if (txn_flags & ~PERF_PMU_TXN_ADD)
1826 return;
1827
1828 perf_pmu_disable(pmu);
1829 cpuhw->n_txn_start = cpuhw->n_events;
1830 }
1831
1832 /*
1833 * Stop group events scheduling transaction
1834 * Clear the flag and pmu::enable() will perform the
1835 * schedulability test.
1836 */
power_pmu_cancel_txn(struct pmu * pmu)1837 static void power_pmu_cancel_txn(struct pmu *pmu)
1838 {
1839 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1840 unsigned int txn_flags;
1841
1842 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1843
1844 txn_flags = cpuhw->txn_flags;
1845 cpuhw->txn_flags = 0;
1846 if (txn_flags & ~PERF_PMU_TXN_ADD)
1847 return;
1848
1849 perf_pmu_enable(pmu);
1850 }
1851
1852 /*
1853 * Commit group events scheduling transaction
1854 * Perform the group schedulability test as a whole
1855 * Return 0 if success
1856 */
power_pmu_commit_txn(struct pmu * pmu)1857 static int power_pmu_commit_txn(struct pmu *pmu)
1858 {
1859 struct cpu_hw_events *cpuhw;
1860 long i, n;
1861
1862 if (!ppmu)
1863 return -EAGAIN;
1864
1865 cpuhw = this_cpu_ptr(&cpu_hw_events);
1866 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1867
1868 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1869 cpuhw->txn_flags = 0;
1870 return 0;
1871 }
1872
1873 n = cpuhw->n_events;
1874 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1875 return -EAGAIN;
1876 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n, cpuhw->event);
1877 if (i < 0)
1878 return -EAGAIN;
1879
1880 for (i = cpuhw->n_txn_start; i < n; ++i)
1881 cpuhw->event[i]->hw.config = cpuhw->events[i];
1882
1883 cpuhw->txn_flags = 0;
1884 perf_pmu_enable(pmu);
1885 return 0;
1886 }
1887
1888 /*
1889 * Return 1 if we might be able to put event on a limited PMC,
1890 * or 0 if not.
1891 * An event can only go on a limited PMC if it counts something
1892 * that a limited PMC can count, doesn't require interrupts, and
1893 * doesn't exclude any processor mode.
1894 */
can_go_on_limited_pmc(struct perf_event * event,u64 ev,unsigned int flags)1895 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1896 unsigned int flags)
1897 {
1898 int n;
1899 u64 alt[MAX_EVENT_ALTERNATIVES];
1900
1901 if (event->attr.exclude_user
1902 || event->attr.exclude_kernel
1903 || event->attr.exclude_hv
1904 || event->attr.sample_period)
1905 return 0;
1906
1907 if (ppmu->limited_pmc_event(ev))
1908 return 1;
1909
1910 /*
1911 * The requested event_id isn't on a limited PMC already;
1912 * see if any alternative code goes on a limited PMC.
1913 */
1914 if (!ppmu->get_alternatives)
1915 return 0;
1916
1917 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1918 n = ppmu->get_alternatives(ev, flags, alt);
1919
1920 return n > 0;
1921 }
1922
1923 /*
1924 * Find an alternative event_id that goes on a normal PMC, if possible,
1925 * and return the event_id code, or 0 if there is no such alternative.
1926 * (Note: event_id code 0 is "don't count" on all machines.)
1927 */
normal_pmc_alternative(u64 ev,unsigned long flags)1928 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1929 {
1930 u64 alt[MAX_EVENT_ALTERNATIVES];
1931 int n;
1932
1933 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1934 n = ppmu->get_alternatives(ev, flags, alt);
1935 if (!n)
1936 return 0;
1937 return alt[0];
1938 }
1939
1940 /* Number of perf_events counting hardware events */
1941 static atomic_t num_events;
1942 /* Used to avoid races in calling reserve/release_pmc_hardware */
1943 static DEFINE_MUTEX(pmc_reserve_mutex);
1944
1945 /*
1946 * Release the PMU if this is the last perf_event.
1947 */
hw_perf_event_destroy(struct perf_event * event)1948 static void hw_perf_event_destroy(struct perf_event *event)
1949 {
1950 if (!atomic_add_unless(&num_events, -1, 1)) {
1951 mutex_lock(&pmc_reserve_mutex);
1952 if (atomic_dec_return(&num_events) == 0)
1953 release_pmc_hardware();
1954 mutex_unlock(&pmc_reserve_mutex);
1955 }
1956 }
1957
1958 /*
1959 * Translate a generic cache event_id config to a raw event_id code.
1960 */
hw_perf_cache_event(u64 config,u64 * eventp)1961 static int hw_perf_cache_event(u64 config, u64 *eventp)
1962 {
1963 unsigned long type, op, result;
1964 u64 ev;
1965
1966 if (!ppmu->cache_events)
1967 return -EINVAL;
1968
1969 /* unpack config */
1970 type = config & 0xff;
1971 op = (config >> 8) & 0xff;
1972 result = (config >> 16) & 0xff;
1973
1974 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1975 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1976 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1977 return -EINVAL;
1978
1979 ev = (*ppmu->cache_events)[type][op][result];
1980 if (ev == 0)
1981 return -EOPNOTSUPP;
1982 if (ev == -1)
1983 return -EINVAL;
1984 *eventp = ev;
1985 return 0;
1986 }
1987
is_event_blacklisted(u64 ev)1988 static bool is_event_blacklisted(u64 ev)
1989 {
1990 int i;
1991
1992 for (i=0; i < ppmu->n_blacklist_ev; i++) {
1993 if (ppmu->blacklist_ev[i] == ev)
1994 return true;
1995 }
1996
1997 return false;
1998 }
1999
power_pmu_event_init(struct perf_event * event)2000 static int power_pmu_event_init(struct perf_event *event)
2001 {
2002 u64 ev;
2003 unsigned long flags, irq_flags;
2004 struct perf_event *ctrs[MAX_HWEVENTS];
2005 u64 events[MAX_HWEVENTS];
2006 unsigned int cflags[MAX_HWEVENTS];
2007 int n;
2008 int err;
2009 struct cpu_hw_events *cpuhw;
2010
2011 if (!ppmu)
2012 return -ENOENT;
2013
2014 if (has_branch_stack(event)) {
2015 /* PMU has BHRB enabled */
2016 if (!(ppmu->flags & PPMU_ARCH_207S))
2017 return -EOPNOTSUPP;
2018 }
2019
2020 switch (event->attr.type) {
2021 case PERF_TYPE_HARDWARE:
2022 ev = event->attr.config;
2023 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
2024 return -EOPNOTSUPP;
2025
2026 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2027 return -EINVAL;
2028 ev = ppmu->generic_events[ev];
2029 break;
2030 case PERF_TYPE_HW_CACHE:
2031 err = hw_perf_cache_event(event->attr.config, &ev);
2032 if (err)
2033 return err;
2034
2035 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2036 return -EINVAL;
2037 break;
2038 case PERF_TYPE_RAW:
2039 ev = event->attr.config;
2040
2041 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2042 return -EINVAL;
2043 break;
2044 default:
2045 return -ENOENT;
2046 }
2047
2048 /*
2049 * PMU config registers have fields that are
2050 * reserved and some specific values for bit fields are reserved.
2051 * For ex., MMCRA[61:62] is Random Sampling Mode (SM)
2052 * and value of 0b11 to this field is reserved.
2053 * Check for invalid values in attr.config.
2054 */
2055 if (ppmu->check_attr_config &&
2056 ppmu->check_attr_config(event))
2057 return -EINVAL;
2058
2059 event->hw.config_base = ev;
2060 event->hw.idx = 0;
2061
2062 /*
2063 * If we are not running on a hypervisor, force the
2064 * exclude_hv bit to 0 so that we don't care what
2065 * the user set it to.
2066 */
2067 if (!firmware_has_feature(FW_FEATURE_LPAR))
2068 event->attr.exclude_hv = 0;
2069
2070 /*
2071 * If this is a per-task event, then we can use
2072 * PM_RUN_* events interchangeably with their non RUN_*
2073 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
2074 * XXX we should check if the task is an idle task.
2075 */
2076 flags = 0;
2077 if (event->attach_state & PERF_ATTACH_TASK)
2078 flags |= PPMU_ONLY_COUNT_RUN;
2079
2080 /*
2081 * If this machine has limited events, check whether this
2082 * event_id could go on a limited event.
2083 */
2084 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
2085 if (can_go_on_limited_pmc(event, ev, flags)) {
2086 flags |= PPMU_LIMITED_PMC_OK;
2087 } else if (ppmu->limited_pmc_event(ev)) {
2088 /*
2089 * The requested event_id is on a limited PMC,
2090 * but we can't use a limited PMC; see if any
2091 * alternative goes on a normal PMC.
2092 */
2093 ev = normal_pmc_alternative(ev, flags);
2094 if (!ev)
2095 return -EINVAL;
2096 }
2097 }
2098
2099 /* Extra checks for EBB */
2100 err = ebb_event_check(event);
2101 if (err)
2102 return err;
2103
2104 /*
2105 * If this is in a group, check if it can go on with all the
2106 * other hardware events in the group. We assume the event
2107 * hasn't been linked into its leader's sibling list at this point.
2108 */
2109 n = 0;
2110 if (event->group_leader != event) {
2111 n = collect_events(event->group_leader, ppmu->n_counter - 1,
2112 ctrs, events, cflags);
2113 if (n < 0)
2114 return -EINVAL;
2115 }
2116 events[n] = ev;
2117 ctrs[n] = event;
2118 cflags[n] = flags;
2119 if (check_excludes(ctrs, cflags, n, 1))
2120 return -EINVAL;
2121
2122 local_irq_save(irq_flags);
2123 cpuhw = this_cpu_ptr(&cpu_hw_events);
2124
2125 err = power_check_constraints(cpuhw, events, cflags, n + 1, ctrs);
2126
2127 if (has_branch_stack(event)) {
2128 u64 bhrb_filter = -1;
2129
2130 /*
2131 * Currently no PMU supports having multiple branch filters
2132 * at the same time. Branch filters are set via MMCRA IFM[32:33]
2133 * bits for Power8 and above. Return EOPNOTSUPP when multiple
2134 * branch filters are requested in the event attr.
2135 *
2136 * When opening event via perf_event_open(), branch_sample_type
2137 * gets adjusted in perf_copy_attr(). Kernel will automatically
2138 * adjust the branch_sample_type based on the event modifier
2139 * settings to include PERF_SAMPLE_BRANCH_PLM_ALL. Hence drop
2140 * the check for PERF_SAMPLE_BRANCH_PLM_ALL.
2141 */
2142 if (hweight64(event->attr.branch_sample_type & ~PERF_SAMPLE_BRANCH_PLM_ALL) > 1) {
2143 local_irq_restore(irq_flags);
2144 return -EOPNOTSUPP;
2145 }
2146
2147 if (ppmu->bhrb_filter_map)
2148 bhrb_filter = ppmu->bhrb_filter_map(
2149 event->attr.branch_sample_type);
2150
2151 if (bhrb_filter == -1) {
2152 local_irq_restore(irq_flags);
2153 return -EOPNOTSUPP;
2154 }
2155 cpuhw->bhrb_filter = bhrb_filter;
2156 }
2157
2158 local_irq_restore(irq_flags);
2159 if (err)
2160 return -EINVAL;
2161
2162 event->hw.config = events[n];
2163 event->hw.event_base = cflags[n];
2164 event->hw.last_period = event->hw.sample_period;
2165 local64_set(&event->hw.period_left, event->hw.last_period);
2166
2167 /*
2168 * For EBB events we just context switch the PMC value, we don't do any
2169 * of the sample_period logic. We use hw.prev_count for this.
2170 */
2171 if (is_ebb_event(event))
2172 local64_set(&event->hw.prev_count, 0);
2173
2174 /*
2175 * See if we need to reserve the PMU.
2176 * If no events are currently in use, then we have to take a
2177 * mutex to ensure that we don't race with another task doing
2178 * reserve_pmc_hardware or release_pmc_hardware.
2179 */
2180 err = 0;
2181 if (!atomic_inc_not_zero(&num_events)) {
2182 mutex_lock(&pmc_reserve_mutex);
2183 if (atomic_read(&num_events) == 0 &&
2184 reserve_pmc_hardware(perf_event_interrupt))
2185 err = -EBUSY;
2186 else
2187 atomic_inc(&num_events);
2188 mutex_unlock(&pmc_reserve_mutex);
2189 }
2190 event->destroy = hw_perf_event_destroy;
2191
2192 return err;
2193 }
2194
power_pmu_event_idx(struct perf_event * event)2195 static int power_pmu_event_idx(struct perf_event *event)
2196 {
2197 return event->hw.idx;
2198 }
2199
power_events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)2200 ssize_t power_events_sysfs_show(struct device *dev,
2201 struct device_attribute *attr, char *page)
2202 {
2203 struct perf_pmu_events_attr *pmu_attr;
2204
2205 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2206
2207 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2208 }
2209
2210 static struct pmu power_pmu = {
2211 .pmu_enable = power_pmu_enable,
2212 .pmu_disable = power_pmu_disable,
2213 .event_init = power_pmu_event_init,
2214 .add = power_pmu_add,
2215 .del = power_pmu_del,
2216 .start = power_pmu_start,
2217 .stop = power_pmu_stop,
2218 .read = power_pmu_read,
2219 .start_txn = power_pmu_start_txn,
2220 .cancel_txn = power_pmu_cancel_txn,
2221 .commit_txn = power_pmu_commit_txn,
2222 .event_idx = power_pmu_event_idx,
2223 .sched_task = power_pmu_sched_task,
2224 };
2225
2226 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \
2227 PERF_SAMPLE_PHYS_ADDR | \
2228 PERF_SAMPLE_DATA_PAGE_SIZE)
2229 /*
2230 * A counter has overflowed; update its count and record
2231 * things if requested. Note that interrupts are hard-disabled
2232 * here so there is no possibility of being interrupted.
2233 */
record_and_restart(struct perf_event * event,unsigned long val,struct pt_regs * regs)2234 static void record_and_restart(struct perf_event *event, unsigned long val,
2235 struct pt_regs *regs)
2236 {
2237 u64 period = event->hw.sample_period;
2238 s64 prev, delta, left;
2239 int record = 0;
2240
2241 if (event->hw.state & PERF_HES_STOPPED) {
2242 write_pmc(event->hw.idx, 0);
2243 return;
2244 }
2245
2246 /* we don't have to worry about interrupts here */
2247 prev = local64_read(&event->hw.prev_count);
2248 delta = check_and_compute_delta(prev, val);
2249 local64_add(delta, &event->count);
2250
2251 /*
2252 * See if the total period for this event has expired,
2253 * and update for the next period.
2254 */
2255 val = 0;
2256 left = local64_read(&event->hw.period_left) - delta;
2257 if (delta == 0)
2258 left++;
2259 if (period) {
2260 if (left <= 0) {
2261 left += period;
2262 if (left <= 0)
2263 left = period;
2264
2265 /*
2266 * If address is not requested in the sample via
2267 * PERF_SAMPLE_IP, just record that sample irrespective
2268 * of SIAR valid check.
2269 */
2270 if (event->attr.sample_type & PERF_SAMPLE_IP)
2271 record = siar_valid(regs);
2272 else
2273 record = 1;
2274
2275 event->hw.last_period = event->hw.sample_period;
2276 }
2277 if (left < 0x80000000LL)
2278 val = 0x80000000LL - left;
2279 }
2280
2281 write_pmc(event->hw.idx, val);
2282 local64_set(&event->hw.prev_count, val);
2283 local64_set(&event->hw.period_left, left);
2284 perf_event_update_userpage(event);
2285
2286 /*
2287 * Due to hardware limitation, sometimes SIAR could sample a kernel
2288 * address even when freeze on supervisor state (kernel) is set in
2289 * MMCR2. Check attr.exclude_kernel and address to drop the sample in
2290 * these cases.
2291 */
2292 if (event->attr.exclude_kernel &&
2293 (event->attr.sample_type & PERF_SAMPLE_IP) &&
2294 is_kernel_addr(mfspr(SPRN_SIAR)))
2295 record = 0;
2296
2297 /*
2298 * Finally record data if requested.
2299 */
2300 if (record) {
2301 struct perf_sample_data data;
2302
2303 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2304
2305 if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE)
2306 perf_get_data_addr(event, regs, &data.addr);
2307
2308 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2309 struct cpu_hw_events *cpuhw;
2310 cpuhw = this_cpu_ptr(&cpu_hw_events);
2311 power_pmu_bhrb_read(event, cpuhw);
2312 perf_sample_save_brstack(&data, event, &cpuhw->bhrb_stack, NULL);
2313 }
2314
2315 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2316 ppmu->get_mem_data_src) {
2317 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2318 data.sample_flags |= PERF_SAMPLE_DATA_SRC;
2319 }
2320
2321 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE &&
2322 ppmu->get_mem_weight) {
2323 ppmu->get_mem_weight(&data.weight.full, event->attr.sample_type);
2324 data.sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
2325 }
2326 if (perf_event_overflow(event, &data, regs))
2327 power_pmu_stop(event, 0);
2328 } else if (period) {
2329 /* Account for interrupt in case of invalid SIAR */
2330 if (perf_event_account_interrupt(event))
2331 power_pmu_stop(event, 0);
2332 }
2333 }
2334
2335 /*
2336 * Called from generic code to get the misc flags (i.e. processor mode)
2337 * for an event_id.
2338 */
perf_arch_misc_flags(struct pt_regs * regs)2339 unsigned long perf_arch_misc_flags(struct pt_regs *regs)
2340 {
2341 u32 flags = perf_get_misc_flags(regs);
2342
2343 if (flags)
2344 return flags;
2345 return user_mode(regs) ? PERF_RECORD_MISC_USER :
2346 PERF_RECORD_MISC_KERNEL;
2347 }
2348
2349 /*
2350 * Called from generic code to get the instruction pointer
2351 * for an event_id.
2352 */
perf_arch_instruction_pointer(struct pt_regs * regs)2353 unsigned long perf_arch_instruction_pointer(struct pt_regs *regs)
2354 {
2355 unsigned long siar = mfspr(SPRN_SIAR);
2356
2357 if (regs_use_siar(regs) && siar_valid(regs) && siar)
2358 return siar + perf_ip_adjust(regs);
2359 else
2360 return regs->nip;
2361 }
2362
pmc_overflow_power7(unsigned long val)2363 static bool pmc_overflow_power7(unsigned long val)
2364 {
2365 /*
2366 * Events on POWER7 can roll back if a speculative event doesn't
2367 * eventually complete. Unfortunately in some rare cases they will
2368 * raise a performance monitor exception. We need to catch this to
2369 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2370 * cycles from overflow.
2371 *
2372 * We only do this if the first pass fails to find any overflowing
2373 * PMCs because a user might set a period of less than 256 and we
2374 * don't want to mistakenly reset them.
2375 */
2376 if ((0x80000000 - val) <= 256)
2377 return true;
2378
2379 return false;
2380 }
2381
pmc_overflow(unsigned long val)2382 static bool pmc_overflow(unsigned long val)
2383 {
2384 if ((int)val < 0)
2385 return true;
2386
2387 return false;
2388 }
2389
2390 /*
2391 * Performance monitor interrupt stuff
2392 */
__perf_event_interrupt(struct pt_regs * regs)2393 static void __perf_event_interrupt(struct pt_regs *regs)
2394 {
2395 int i, j;
2396 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2397 struct perf_event *event;
2398 int found, active;
2399
2400 if (cpuhw->n_limited)
2401 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2402 mfspr(SPRN_PMC6));
2403
2404 perf_read_regs(regs);
2405
2406 /* Read all the PMCs since we'll need them a bunch of times */
2407 for (i = 0; i < ppmu->n_counter; ++i)
2408 cpuhw->pmcs[i] = read_pmc(i + 1);
2409
2410 /* Try to find what caused the IRQ */
2411 found = 0;
2412 for (i = 0; i < ppmu->n_counter; ++i) {
2413 if (!pmc_overflow(cpuhw->pmcs[i]))
2414 continue;
2415 if (is_limited_pmc(i + 1))
2416 continue; /* these won't generate IRQs */
2417 /*
2418 * We've found one that's overflowed. For active
2419 * counters we need to log this. For inactive
2420 * counters, we need to reset it anyway
2421 */
2422 found = 1;
2423 active = 0;
2424 for (j = 0; j < cpuhw->n_events; ++j) {
2425 event = cpuhw->event[j];
2426 if (event->hw.idx == (i + 1)) {
2427 active = 1;
2428 record_and_restart(event, cpuhw->pmcs[i], regs);
2429 break;
2430 }
2431 }
2432
2433 /*
2434 * Clear PACA_IRQ_PMI in case it was set by
2435 * set_pmi_irq_pending() when PMU was enabled
2436 * after accounting for interrupts.
2437 */
2438 clear_pmi_irq_pending();
2439
2440 if (!active)
2441 /* reset non active counters that have overflowed */
2442 write_pmc(i + 1, 0);
2443 }
2444 if (!found && pvr_version_is(PVR_POWER7)) {
2445 /* check active counters for special buggy p7 overflow */
2446 for (i = 0; i < cpuhw->n_events; ++i) {
2447 event = cpuhw->event[i];
2448 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2449 continue;
2450 if (pmc_overflow_power7(cpuhw->pmcs[event->hw.idx - 1])) {
2451 /* event has overflowed in a buggy way*/
2452 found = 1;
2453 record_and_restart(event,
2454 cpuhw->pmcs[event->hw.idx - 1],
2455 regs);
2456 }
2457 }
2458 }
2459
2460 /*
2461 * During system wide profiling or while specific CPU is monitored for an
2462 * event, some corner cases could cause PMC to overflow in idle path. This
2463 * will trigger a PMI after waking up from idle. Since counter values are _not_
2464 * saved/restored in idle path, can lead to below "Can't find PMC" message.
2465 */
2466 if (unlikely(!found) && !arch_irq_disabled_regs(regs))
2467 printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n");
2468
2469 /*
2470 * Reset MMCR0 to its normal value. This will set PMXE and
2471 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2472 * and thus allow interrupts to occur again.
2473 * XXX might want to use MSR.PM to keep the events frozen until
2474 * we get back out of this interrupt.
2475 */
2476 write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0);
2477
2478 /* Clear the cpuhw->pmcs */
2479 memset(&cpuhw->pmcs, 0, sizeof(cpuhw->pmcs));
2480
2481 }
2482
perf_event_interrupt(struct pt_regs * regs)2483 static void perf_event_interrupt(struct pt_regs *regs)
2484 {
2485 u64 start_clock = sched_clock();
2486
2487 __perf_event_interrupt(regs);
2488 perf_sample_event_took(sched_clock() - start_clock);
2489 }
2490
power_pmu_prepare_cpu(unsigned int cpu)2491 static int power_pmu_prepare_cpu(unsigned int cpu)
2492 {
2493 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2494
2495 if (ppmu) {
2496 memset(cpuhw, 0, sizeof(*cpuhw));
2497 cpuhw->mmcr.mmcr0 = MMCR0_FC;
2498 }
2499 return 0;
2500 }
2501
pmu_name_show(struct device * cdev,struct device_attribute * attr,char * buf)2502 static ssize_t pmu_name_show(struct device *cdev,
2503 struct device_attribute *attr,
2504 char *buf)
2505 {
2506 if (ppmu)
2507 return sysfs_emit(buf, "%s", ppmu->name);
2508
2509 return 0;
2510 }
2511
2512 static DEVICE_ATTR_RO(pmu_name);
2513
2514 static struct attribute *pmu_caps_attrs[] = {
2515 &dev_attr_pmu_name.attr,
2516 NULL
2517 };
2518
2519 static const struct attribute_group pmu_caps_group = {
2520 .name = "caps",
2521 .attrs = pmu_caps_attrs,
2522 };
2523
2524 static const struct attribute_group *pmu_caps_groups[] = {
2525 &pmu_caps_group,
2526 NULL,
2527 };
2528
register_power_pmu(struct power_pmu * pmu)2529 int __init register_power_pmu(struct power_pmu *pmu)
2530 {
2531 if (ppmu)
2532 return -EBUSY; /* something's already registered */
2533
2534 ppmu = pmu;
2535 pr_info("%s performance monitor hardware support registered\n",
2536 pmu->name);
2537
2538 power_pmu.attr_groups = ppmu->attr_groups;
2539
2540 if (ppmu->flags & PPMU_ARCH_207S)
2541 power_pmu.attr_update = pmu_caps_groups;
2542
2543 power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);
2544
2545 #ifdef MSR_HV
2546 /*
2547 * Use FCHV to ignore kernel events if MSR.HV is set.
2548 */
2549 if (mfmsr() & MSR_HV)
2550 freeze_events_kernel = MMCR0_FCHV;
2551 #endif /* CONFIG_PPC64 */
2552
2553 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2554 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2555 power_pmu_prepare_cpu, NULL);
2556 return 0;
2557 }
2558
2559 #ifdef CONFIG_PPC64
2560 static bool pmu_override = false;
2561 static unsigned long pmu_override_val;
do_pmu_override(void * data)2562 static void do_pmu_override(void *data)
2563 {
2564 ppc_set_pmu_inuse(1);
2565 if (pmu_override_val)
2566 mtspr(SPRN_MMCR1, pmu_override_val);
2567 mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) & ~MMCR0_FC);
2568 }
2569
init_ppc64_pmu(void)2570 static int __init init_ppc64_pmu(void)
2571 {
2572 if (cpu_has_feature(CPU_FTR_HVMODE) && pmu_override) {
2573 pr_warn("disabling perf due to pmu_override= command line option.\n");
2574 on_each_cpu(do_pmu_override, NULL, 1);
2575 return 0;
2576 }
2577
2578 /* run through all the pmu drivers one at a time */
2579 if (!init_power5_pmu())
2580 return 0;
2581 else if (!init_power5p_pmu())
2582 return 0;
2583 else if (!init_power6_pmu())
2584 return 0;
2585 else if (!init_power7_pmu())
2586 return 0;
2587 else if (!init_power8_pmu())
2588 return 0;
2589 else if (!init_power9_pmu())
2590 return 0;
2591 else if (!init_power10_pmu())
2592 return 0;
2593 else if (!init_power11_pmu())
2594 return 0;
2595 else if (!init_ppc970_pmu())
2596 return 0;
2597 else
2598 return init_generic_compat_pmu();
2599 }
2600 early_initcall(init_ppc64_pmu);
2601
pmu_setup(char * str)2602 static int __init pmu_setup(char *str)
2603 {
2604 unsigned long val;
2605
2606 if (!early_cpu_has_feature(CPU_FTR_HVMODE))
2607 return 0;
2608
2609 pmu_override = true;
2610
2611 if (kstrtoul(str, 0, &val))
2612 val = 0;
2613
2614 pmu_override_val = val;
2615
2616 return 1;
2617 }
2618 __setup("pmu_override=", pmu_setup);
2619
2620 #endif
2621