1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <linux/memremap.h>
10 #include <linux/pkeys.h>
11 #include <linux/debugfs.h>
12 #include <linux/proc_fs.h>
13 #include <misc/cxl-base.h>
14
15 #include <asm/pgalloc.h>
16 #include <asm/tlb.h>
17 #include <asm/trace.h>
18 #include <asm/powernv.h>
19 #include <asm/firmware.h>
20 #include <asm/ultravisor.h>
21 #include <asm/kexec.h>
22
23 #include <mm/mmu_decl.h>
24 #include <trace/events/thp.h>
25
26 #include "internal.h"
27
28 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
29 EXPORT_SYMBOL_GPL(mmu_psize_defs);
30
31 #ifdef CONFIG_SPARSEMEM_VMEMMAP
32 int mmu_vmemmap_psize = MMU_PAGE_4K;
33 #endif
34
35 unsigned long __pmd_frag_nr;
36 EXPORT_SYMBOL(__pmd_frag_nr);
37 unsigned long __pmd_frag_size_shift;
38 EXPORT_SYMBOL(__pmd_frag_size_shift);
39
40 #ifdef CONFIG_KFENCE
41 extern bool kfence_early_init;
parse_kfence_early_init(char * arg)42 static int __init parse_kfence_early_init(char *arg)
43 {
44 int val;
45
46 if (get_option(&arg, &val))
47 kfence_early_init = !!val;
48 return 0;
49 }
50 early_param("kfence.sample_interval", parse_kfence_early_init);
51 #endif
52
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
54 /*
55 * This is called when relaxing access to a hugepage. It's also called in the page
56 * fault path when we don't hit any of the major fault cases, ie, a minor
57 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
58 * handled those two for us, we additionally deal with missing execute
59 * permission here on some processors
60 */
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)61 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
62 pmd_t *pmdp, pmd_t entry, int dirty)
63 {
64 int changed;
65 #ifdef CONFIG_DEBUG_VM
66 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
67 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
68 #endif
69 changed = !pmd_same(*(pmdp), entry);
70 if (changed) {
71 /*
72 * We can use MMU_PAGE_2M here, because only radix
73 * path look at the psize.
74 */
75 __ptep_set_access_flags(vma, pmdp_ptep(pmdp),
76 pmd_pte(entry), address, MMU_PAGE_2M);
77 }
78 return changed;
79 }
80
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)81 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
82 pud_t *pudp, pud_t entry, int dirty)
83 {
84 int changed;
85 #ifdef CONFIG_DEBUG_VM
86 WARN_ON(!pud_devmap(*pudp));
87 assert_spin_locked(pud_lockptr(vma->vm_mm, pudp));
88 #endif
89 changed = !pud_same(*(pudp), entry);
90 if (changed) {
91 /*
92 * We can use MMU_PAGE_1G here, because only radix
93 * path look at the psize.
94 */
95 __ptep_set_access_flags(vma, pudp_ptep(pudp),
96 pud_pte(entry), address, MMU_PAGE_1G);
97 }
98 return changed;
99 }
100
101
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)102 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
103 unsigned long address, pmd_t *pmdp)
104 {
105 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
106 }
107
pudp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pud_t * pudp)108 int pudp_test_and_clear_young(struct vm_area_struct *vma,
109 unsigned long address, pud_t *pudp)
110 {
111 return __pudp_test_and_clear_young(vma->vm_mm, address, pudp);
112 }
113
114 /*
115 * set a new huge pmd. We should not be called for updating
116 * an existing pmd entry. That should go via pmd_hugepage_update.
117 */
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)118 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
119 pmd_t *pmdp, pmd_t pmd)
120 {
121 #ifdef CONFIG_DEBUG_VM
122 /*
123 * Make sure hardware valid bit is not set. We don't do
124 * tlb flush for this update.
125 */
126
127 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
128 assert_spin_locked(pmd_lockptr(mm, pmdp));
129 WARN_ON(!(pmd_leaf(pmd)));
130 #endif
131 trace_hugepage_set_pmd(addr, pmd_val(pmd));
132 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
133 }
134
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)135 void set_pud_at(struct mm_struct *mm, unsigned long addr,
136 pud_t *pudp, pud_t pud)
137 {
138 #ifdef CONFIG_DEBUG_VM
139 /*
140 * Make sure hardware valid bit is not set. We don't do
141 * tlb flush for this update.
142 */
143
144 WARN_ON(pte_hw_valid(pud_pte(*pudp)));
145 assert_spin_locked(pud_lockptr(mm, pudp));
146 WARN_ON(!(pud_leaf(pud)));
147 #endif
148 trace_hugepage_set_pud(addr, pud_val(pud));
149 return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud));
150 }
151
do_serialize(void * arg)152 static void do_serialize(void *arg)
153 {
154 /* We've taken the IPI, so try to trim the mask while here */
155 if (radix_enabled()) {
156 struct mm_struct *mm = arg;
157 exit_lazy_flush_tlb(mm, false);
158 }
159 }
160
161 /*
162 * Serialize against __find_linux_pte() which does lock-less
163 * lookup in page tables with local interrupts disabled. For huge pages
164 * it casts pmd_t to pte_t. Since format of pte_t is different from
165 * pmd_t we want to prevent transit from pmd pointing to page table
166 * to pmd pointing to huge page (and back) while interrupts are disabled.
167 * We clear pmd to possibly replace it with page table pointer in
168 * different code paths. So make sure we wait for the parallel
169 * __find_linux_pte() to finish.
170 */
serialize_against_pte_lookup(struct mm_struct * mm)171 void serialize_against_pte_lookup(struct mm_struct *mm)
172 {
173 smp_mb();
174 smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
175 }
176
177 /*
178 * We use this to invalidate a pmdp entry before switching from a
179 * hugepte to regular pmd entry.
180 */
pmdp_invalidate(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)181 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
182 pmd_t *pmdp)
183 {
184 unsigned long old_pmd;
185
186 VM_WARN_ON_ONCE(!pmd_present(*pmdp));
187 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
188 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
189 return __pmd(old_pmd);
190 }
191
pudp_invalidate(struct vm_area_struct * vma,unsigned long address,pud_t * pudp)192 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
193 pud_t *pudp)
194 {
195 unsigned long old_pud;
196
197 VM_WARN_ON_ONCE(!pud_present(*pudp));
198 old_pud = pud_hugepage_update(vma->vm_mm, address, pudp, _PAGE_PRESENT, _PAGE_INVALID);
199 flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE);
200 return __pud(old_pud);
201 }
202
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,int full)203 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
204 unsigned long addr, pmd_t *pmdp, int full)
205 {
206 pmd_t pmd;
207 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
208 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
209 !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
210 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
211 /*
212 * if it not a fullmm flush, then we can possibly end up converting
213 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
214 * Make sure we flush the tlb in this case.
215 */
216 if (!full)
217 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
218 return pmd;
219 }
220
pudp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp,int full)221 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
222 unsigned long addr, pud_t *pudp, int full)
223 {
224 pud_t pud;
225
226 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
227 VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) ||
228 !pud_present(*pudp));
229 pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp);
230 /*
231 * if it not a fullmm flush, then we can possibly end up converting
232 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
233 * Make sure we flush the tlb in this case.
234 */
235 if (!full)
236 flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE);
237 return pud;
238 }
239
pmd_set_protbits(pmd_t pmd,pgprot_t pgprot)240 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
241 {
242 return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
243 }
244
pud_set_protbits(pud_t pud,pgprot_t pgprot)245 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot)
246 {
247 return __pud(pud_val(pud) | pgprot_val(pgprot));
248 }
249
250 /*
251 * At some point we should be able to get rid of
252 * pmd_mkhuge() and mk_huge_pmd() when we update all the
253 * other archs to mark the pmd huge in pfn_pmd()
254 */
pfn_pmd(unsigned long pfn,pgprot_t pgprot)255 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
256 {
257 unsigned long pmdv;
258
259 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
260
261 return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
262 }
263
pfn_pud(unsigned long pfn,pgprot_t pgprot)264 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot)
265 {
266 unsigned long pudv;
267
268 pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
269
270 return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot));
271 }
272
mk_pmd(struct page * page,pgprot_t pgprot)273 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
274 {
275 return pfn_pmd(page_to_pfn(page), pgprot);
276 }
277
pmd_modify(pmd_t pmd,pgprot_t newprot)278 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
279 {
280 unsigned long pmdv;
281
282 pmdv = pmd_val(pmd);
283 pmdv &= _HPAGE_CHG_MASK;
284 return pmd_set_protbits(__pmd(pmdv), newprot);
285 }
286
pud_modify(pud_t pud,pgprot_t newprot)287 pud_t pud_modify(pud_t pud, pgprot_t newprot)
288 {
289 unsigned long pudv;
290
291 pudv = pud_val(pud);
292 pudv &= _HPAGE_CHG_MASK;
293 return pud_set_protbits(__pud(pudv), newprot);
294 }
295 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
296
297 /* For use by kexec, called with MMU off */
mmu_cleanup_all(void)298 notrace void mmu_cleanup_all(void)
299 {
300 if (radix_enabled())
301 radix__mmu_cleanup_all();
302 else if (mmu_hash_ops.hpte_clear_all)
303 mmu_hash_ops.hpte_clear_all();
304
305 reset_sprs();
306 }
307
308 #ifdef CONFIG_MEMORY_HOTPLUG
create_section_mapping(unsigned long start,unsigned long end,int nid,pgprot_t prot)309 int __meminit create_section_mapping(unsigned long start, unsigned long end,
310 int nid, pgprot_t prot)
311 {
312 if (radix_enabled())
313 return radix__create_section_mapping(start, end, nid, prot);
314
315 return hash__create_section_mapping(start, end, nid, prot);
316 }
317
remove_section_mapping(unsigned long start,unsigned long end)318 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
319 {
320 if (radix_enabled())
321 return radix__remove_section_mapping(start, end);
322
323 return hash__remove_section_mapping(start, end);
324 }
325 #endif /* CONFIG_MEMORY_HOTPLUG */
326
mmu_partition_table_init(void)327 void __init mmu_partition_table_init(void)
328 {
329 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
330 unsigned long ptcr;
331
332 /* Initialize the Partition Table with no entries */
333 partition_tb = memblock_alloc_or_panic(patb_size, patb_size);
334 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
335 set_ptcr_when_no_uv(ptcr);
336 powernv_set_nmmu_ptcr(ptcr);
337 }
338
flush_partition(unsigned int lpid,bool radix)339 static void flush_partition(unsigned int lpid, bool radix)
340 {
341 if (radix) {
342 radix__flush_all_lpid(lpid);
343 radix__flush_all_lpid_guest(lpid);
344 } else {
345 asm volatile("ptesync" : : : "memory");
346 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
347 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
348 /* do we need fixup here ?*/
349 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
350 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
351 }
352 }
353
mmu_partition_table_set_entry(unsigned int lpid,unsigned long dw0,unsigned long dw1,bool flush)354 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
355 unsigned long dw1, bool flush)
356 {
357 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
358
359 /*
360 * When ultravisor is enabled, the partition table is stored in secure
361 * memory and can only be accessed doing an ultravisor call. However, we
362 * maintain a copy of the partition table in normal memory to allow Nest
363 * MMU translations to occur (for normal VMs).
364 *
365 * Therefore, here we always update partition_tb, regardless of whether
366 * we are running under an ultravisor or not.
367 */
368 partition_tb[lpid].patb0 = cpu_to_be64(dw0);
369 partition_tb[lpid].patb1 = cpu_to_be64(dw1);
370
371 /*
372 * If ultravisor is enabled, we do an ultravisor call to register the
373 * partition table entry (PATE), which also do a global flush of TLBs
374 * and partition table caches for the lpid. Otherwise, just do the
375 * flush. The type of flush (hash or radix) depends on what the previous
376 * use of the partition ID was, not the new use.
377 */
378 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
379 uv_register_pate(lpid, dw0, dw1);
380 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
381 dw0, dw1);
382 } else if (flush) {
383 /*
384 * Boot does not need to flush, because MMU is off and each
385 * CPU does a tlbiel_all() before switching them on, which
386 * flushes everything.
387 */
388 flush_partition(lpid, (old & PATB_HR));
389 }
390 }
391 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
392
get_pmd_from_cache(struct mm_struct * mm)393 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
394 {
395 void *pmd_frag, *ret;
396
397 if (PMD_FRAG_NR == 1)
398 return NULL;
399
400 spin_lock(&mm->page_table_lock);
401 ret = mm->context.pmd_frag;
402 if (ret) {
403 pmd_frag = ret + PMD_FRAG_SIZE;
404 /*
405 * If we have taken up all the fragments mark PTE page NULL
406 */
407 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
408 pmd_frag = NULL;
409 mm->context.pmd_frag = pmd_frag;
410 }
411 spin_unlock(&mm->page_table_lock);
412 return (pmd_t *)ret;
413 }
414
__alloc_for_pmdcache(struct mm_struct * mm)415 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
416 {
417 void *ret = NULL;
418 struct ptdesc *ptdesc;
419 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
420
421 if (mm == &init_mm)
422 gfp &= ~__GFP_ACCOUNT;
423 ptdesc = pagetable_alloc(gfp, 0);
424 if (!ptdesc)
425 return NULL;
426 if (!pagetable_pmd_ctor(ptdesc)) {
427 pagetable_free(ptdesc);
428 return NULL;
429 }
430
431 atomic_set(&ptdesc->pt_frag_refcount, 1);
432
433 ret = ptdesc_address(ptdesc);
434 /*
435 * if we support only one fragment just return the
436 * allocated page.
437 */
438 if (PMD_FRAG_NR == 1)
439 return ret;
440
441 spin_lock(&mm->page_table_lock);
442 /*
443 * If we find ptdesc_page set, we return
444 * the allocated page with single fragment
445 * count.
446 */
447 if (likely(!mm->context.pmd_frag)) {
448 atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR);
449 mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
450 }
451 spin_unlock(&mm->page_table_lock);
452
453 return (pmd_t *)ret;
454 }
455
pmd_fragment_alloc(struct mm_struct * mm,unsigned long vmaddr)456 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
457 {
458 pmd_t *pmd;
459
460 pmd = get_pmd_from_cache(mm);
461 if (pmd)
462 return pmd;
463
464 return __alloc_for_pmdcache(mm);
465 }
466
pmd_fragment_free(unsigned long * pmd)467 void pmd_fragment_free(unsigned long *pmd)
468 {
469 struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
470
471 if (pagetable_is_reserved(ptdesc))
472 return free_reserved_ptdesc(ptdesc);
473
474 BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0);
475 if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) {
476 pagetable_dtor(ptdesc);
477 pagetable_free(ptdesc);
478 }
479 }
480
pgtable_free(void * table,int index)481 static inline void pgtable_free(void *table, int index)
482 {
483 switch (index) {
484 case PTE_INDEX:
485 pte_fragment_free(table, 0);
486 break;
487 case PMD_INDEX:
488 pmd_fragment_free(table);
489 break;
490 case PUD_INDEX:
491 __pud_free(table);
492 break;
493 /* We don't free pgd table via RCU callback */
494 default:
495 BUG();
496 }
497 }
498
pgtable_free_tlb(struct mmu_gather * tlb,void * table,int index)499 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
500 {
501 unsigned long pgf = (unsigned long)table;
502
503 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
504 pgf |= index;
505 tlb_remove_table(tlb, (void *)pgf);
506 }
507
__tlb_remove_table(void * _table)508 void __tlb_remove_table(void *_table)
509 {
510 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
511 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
512
513 return pgtable_free(table, index);
514 }
515
516 #ifdef CONFIG_PROC_FS
517 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
518
arch_report_meminfo(struct seq_file * m)519 void arch_report_meminfo(struct seq_file *m)
520 {
521 /*
522 * Hash maps the memory with one size mmu_linear_psize.
523 * So don't bother to print these on hash
524 */
525 if (!radix_enabled())
526 return;
527 seq_printf(m, "DirectMap4k: %8lu kB\n",
528 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
529 seq_printf(m, "DirectMap64k: %8lu kB\n",
530 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
531 seq_printf(m, "DirectMap2M: %8lu kB\n",
532 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
533 seq_printf(m, "DirectMap1G: %8lu kB\n",
534 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
535 }
536 #endif /* CONFIG_PROC_FS */
537
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)538 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
539 pte_t *ptep)
540 {
541 unsigned long pte_val;
542
543 /*
544 * Clear the _PAGE_PRESENT so that no hardware parallel update is
545 * possible. Also keep the pte_present true so that we don't take
546 * wrong fault.
547 */
548 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
549
550 return __pte(pte_val);
551
552 }
553
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)554 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
555 pte_t *ptep, pte_t old_pte, pte_t pte)
556 {
557 if (radix_enabled())
558 return radix__ptep_modify_prot_commit(vma, addr,
559 ptep, old_pte, pte);
560 set_pte_at(vma->vm_mm, addr, ptep, pte);
561 }
562
563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
564 /*
565 * For hash translation mode, we use the deposited table to store hash slot
566 * information and they are stored at PTRS_PER_PMD offset from related pmd
567 * location. Hence a pmd move requires deposit and withdraw.
568 *
569 * For radix translation with split pmd ptl, we store the deposited table in the
570 * pmd page. Hence if we have different pmd page we need to withdraw during pmd
571 * move.
572 *
573 * With hash we use deposited table always irrespective of anon or not.
574 * With radix we use deposited table only for anonymous mapping.
575 */
pmd_move_must_withdraw(struct spinlock * new_pmd_ptl,struct spinlock * old_pmd_ptl,struct vm_area_struct * vma)576 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
577 struct spinlock *old_pmd_ptl,
578 struct vm_area_struct *vma)
579 {
580 if (radix_enabled())
581 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
582
583 return true;
584 }
585 #endif
586
587 /*
588 * Does the CPU support tlbie?
589 */
590 bool tlbie_capable __read_mostly = true;
591 EXPORT_SYMBOL(tlbie_capable);
592
593 /*
594 * Should tlbie be used for management of CPU TLBs, for kernel and process
595 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
596 * guest address spaces.
597 */
598 bool tlbie_enabled __read_mostly = true;
599
setup_disable_tlbie(char * str)600 static int __init setup_disable_tlbie(char *str)
601 {
602 if (!radix_enabled()) {
603 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
604 return 1;
605 }
606
607 tlbie_capable = false;
608 tlbie_enabled = false;
609
610 return 1;
611 }
612 __setup("disable_tlbie", setup_disable_tlbie);
613
pgtable_debugfs_setup(void)614 static int __init pgtable_debugfs_setup(void)
615 {
616 if (!tlbie_capable)
617 return 0;
618
619 /*
620 * There is no locking vs tlb flushing when changing this value.
621 * The tlb flushers will see one value or another, and use either
622 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
623 * invalidated as expected.
624 */
625 debugfs_create_bool("tlbie_enabled", 0600,
626 arch_debugfs_dir,
627 &tlbie_enabled);
628
629 return 0;
630 }
631 arch_initcall(pgtable_debugfs_setup);
632
633 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN)
634 /*
635 * Override the generic version in mm/memremap.c.
636 *
637 * With hash translation, the direct-map range is mapped with just one
638 * page size selected by htab_init_page_sizes(). Consult
639 * mmu_psize_defs[] to determine the minimum page size alignment.
640 */
memremap_compat_align(void)641 unsigned long memremap_compat_align(void)
642 {
643 if (!radix_enabled()) {
644 unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift;
645 return max(SUBSECTION_SIZE, 1UL << shift);
646 }
647
648 return SUBSECTION_SIZE;
649 }
650 EXPORT_SYMBOL_GPL(memremap_compat_align);
651 #endif
652
vm_get_page_prot(unsigned long vm_flags)653 pgprot_t vm_get_page_prot(unsigned long vm_flags)
654 {
655 unsigned long prot;
656
657 /* Radix supports execute-only, but protection_map maps X -> RX */
658 if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC))
659 vm_flags |= VM_READ;
660
661 prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]);
662
663 if (vm_flags & VM_SAO)
664 prot |= _PAGE_SAO;
665
666 #ifdef CONFIG_PPC_MEM_KEYS
667 prot |= vmflag_to_pte_pkey_bits(vm_flags);
668 #endif
669
670 return __pgprot(prot);
671 }
672 EXPORT_SYMBOL(vm_get_page_prot);
673