1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <linux/memremap.h>
10 #include <linux/pkeys.h>
11 #include <linux/debugfs.h>
12 #include <linux/proc_fs.h>
13 #include <misc/cxl-base.h>
14 
15 #include <asm/pgalloc.h>
16 #include <asm/tlb.h>
17 #include <asm/trace.h>
18 #include <asm/powernv.h>
19 #include <asm/firmware.h>
20 #include <asm/ultravisor.h>
21 #include <asm/kexec.h>
22 
23 #include <mm/mmu_decl.h>
24 #include <trace/events/thp.h>
25 
26 #include "internal.h"
27 
28 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
29 EXPORT_SYMBOL_GPL(mmu_psize_defs);
30 
31 #ifdef CONFIG_SPARSEMEM_VMEMMAP
32 int mmu_vmemmap_psize = MMU_PAGE_4K;
33 #endif
34 
35 unsigned long __pmd_frag_nr;
36 EXPORT_SYMBOL(__pmd_frag_nr);
37 unsigned long __pmd_frag_size_shift;
38 EXPORT_SYMBOL(__pmd_frag_size_shift);
39 
40 #ifdef CONFIG_KFENCE
41 extern bool kfence_early_init;
parse_kfence_early_init(char * arg)42 static int __init parse_kfence_early_init(char *arg)
43 {
44 	int val;
45 
46 	if (get_option(&arg, &val))
47 		kfence_early_init = !!val;
48 	return 0;
49 }
50 early_param("kfence.sample_interval", parse_kfence_early_init);
51 #endif
52 
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
54 /*
55  * This is called when relaxing access to a hugepage. It's also called in the page
56  * fault path when we don't hit any of the major fault cases, ie, a minor
57  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
58  * handled those two for us, we additionally deal with missing execute
59  * permission here on some processors
60  */
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)61 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
62 			  pmd_t *pmdp, pmd_t entry, int dirty)
63 {
64 	int changed;
65 #ifdef CONFIG_DEBUG_VM
66 	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
67 	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
68 #endif
69 	changed = !pmd_same(*(pmdp), entry);
70 	if (changed) {
71 		/*
72 		 * We can use MMU_PAGE_2M here, because only radix
73 		 * path look at the psize.
74 		 */
75 		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
76 					pmd_pte(entry), address, MMU_PAGE_2M);
77 	}
78 	return changed;
79 }
80 
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)81 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
82 			  pud_t *pudp, pud_t entry, int dirty)
83 {
84 	int changed;
85 #ifdef CONFIG_DEBUG_VM
86 	WARN_ON(!pud_devmap(*pudp));
87 	assert_spin_locked(pud_lockptr(vma->vm_mm, pudp));
88 #endif
89 	changed = !pud_same(*(pudp), entry);
90 	if (changed) {
91 		/*
92 		 * We can use MMU_PAGE_1G here, because only radix
93 		 * path look at the psize.
94 		 */
95 		__ptep_set_access_flags(vma, pudp_ptep(pudp),
96 					pud_pte(entry), address, MMU_PAGE_1G);
97 	}
98 	return changed;
99 }
100 
101 
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)102 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
103 			      unsigned long address, pmd_t *pmdp)
104 {
105 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
106 }
107 
pudp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pud_t * pudp)108 int pudp_test_and_clear_young(struct vm_area_struct *vma,
109 			      unsigned long address, pud_t *pudp)
110 {
111 	return __pudp_test_and_clear_young(vma->vm_mm, address, pudp);
112 }
113 
114 /*
115  * set a new huge pmd. We should not be called for updating
116  * an existing pmd entry. That should go via pmd_hugepage_update.
117  */
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)118 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
119 		pmd_t *pmdp, pmd_t pmd)
120 {
121 #ifdef CONFIG_DEBUG_VM
122 	/*
123 	 * Make sure hardware valid bit is not set. We don't do
124 	 * tlb flush for this update.
125 	 */
126 
127 	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
128 	assert_spin_locked(pmd_lockptr(mm, pmdp));
129 	WARN_ON(!(pmd_leaf(pmd)));
130 #endif
131 	trace_hugepage_set_pmd(addr, pmd_val(pmd));
132 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
133 }
134 
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)135 void set_pud_at(struct mm_struct *mm, unsigned long addr,
136 		pud_t *pudp, pud_t pud)
137 {
138 #ifdef CONFIG_DEBUG_VM
139 	/*
140 	 * Make sure hardware valid bit is not set. We don't do
141 	 * tlb flush for this update.
142 	 */
143 
144 	WARN_ON(pte_hw_valid(pud_pte(*pudp)));
145 	assert_spin_locked(pud_lockptr(mm, pudp));
146 	WARN_ON(!(pud_leaf(pud)));
147 #endif
148 	trace_hugepage_set_pud(addr, pud_val(pud));
149 	return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud));
150 }
151 
do_serialize(void * arg)152 static void do_serialize(void *arg)
153 {
154 	/* We've taken the IPI, so try to trim the mask while here */
155 	if (radix_enabled()) {
156 		struct mm_struct *mm = arg;
157 		exit_lazy_flush_tlb(mm, false);
158 	}
159 }
160 
161 /*
162  * Serialize against __find_linux_pte() which does lock-less
163  * lookup in page tables with local interrupts disabled. For huge pages
164  * it casts pmd_t to pte_t. Since format of pte_t is different from
165  * pmd_t we want to prevent transit from pmd pointing to page table
166  * to pmd pointing to huge page (and back) while interrupts are disabled.
167  * We clear pmd to possibly replace it with page table pointer in
168  * different code paths. So make sure we wait for the parallel
169  * __find_linux_pte() to finish.
170  */
serialize_against_pte_lookup(struct mm_struct * mm)171 void serialize_against_pte_lookup(struct mm_struct *mm)
172 {
173 	smp_mb();
174 	smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
175 }
176 
177 /*
178  * We use this to invalidate a pmdp entry before switching from a
179  * hugepte to regular pmd entry.
180  */
pmdp_invalidate(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)181 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
182 		     pmd_t *pmdp)
183 {
184 	unsigned long old_pmd;
185 
186 	VM_WARN_ON_ONCE(!pmd_present(*pmdp));
187 	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
188 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
189 	return __pmd(old_pmd);
190 }
191 
pudp_invalidate(struct vm_area_struct * vma,unsigned long address,pud_t * pudp)192 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
193 		      pud_t *pudp)
194 {
195 	unsigned long old_pud;
196 
197 	VM_WARN_ON_ONCE(!pud_present(*pudp));
198 	old_pud = pud_hugepage_update(vma->vm_mm, address, pudp, _PAGE_PRESENT, _PAGE_INVALID);
199 	flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE);
200 	return __pud(old_pud);
201 }
202 
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,int full)203 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
204 				   unsigned long addr, pmd_t *pmdp, int full)
205 {
206 	pmd_t pmd;
207 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
208 	VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
209 		   !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
210 	pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
211 	/*
212 	 * if it not a fullmm flush, then we can possibly end up converting
213 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
214 	 * Make sure we flush the tlb in this case.
215 	 */
216 	if (!full)
217 		flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
218 	return pmd;
219 }
220 
pudp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp,int full)221 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
222 				   unsigned long addr, pud_t *pudp, int full)
223 {
224 	pud_t pud;
225 
226 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
227 	VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) ||
228 		  !pud_present(*pudp));
229 	pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp);
230 	/*
231 	 * if it not a fullmm flush, then we can possibly end up converting
232 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
233 	 * Make sure we flush the tlb in this case.
234 	 */
235 	if (!full)
236 		flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE);
237 	return pud;
238 }
239 
pmd_set_protbits(pmd_t pmd,pgprot_t pgprot)240 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
241 {
242 	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
243 }
244 
pud_set_protbits(pud_t pud,pgprot_t pgprot)245 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot)
246 {
247 	return __pud(pud_val(pud) | pgprot_val(pgprot));
248 }
249 
250 /*
251  * At some point we should be able to get rid of
252  * pmd_mkhuge() and mk_huge_pmd() when we update all the
253  * other archs to mark the pmd huge in pfn_pmd()
254  */
pfn_pmd(unsigned long pfn,pgprot_t pgprot)255 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
256 {
257 	unsigned long pmdv;
258 
259 	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
260 
261 	return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
262 }
263 
pfn_pud(unsigned long pfn,pgprot_t pgprot)264 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot)
265 {
266 	unsigned long pudv;
267 
268 	pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
269 
270 	return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot));
271 }
272 
mk_pmd(struct page * page,pgprot_t pgprot)273 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
274 {
275 	return pfn_pmd(page_to_pfn(page), pgprot);
276 }
277 
pmd_modify(pmd_t pmd,pgprot_t newprot)278 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
279 {
280 	unsigned long pmdv;
281 
282 	pmdv = pmd_val(pmd);
283 	pmdv &= _HPAGE_CHG_MASK;
284 	return pmd_set_protbits(__pmd(pmdv), newprot);
285 }
286 
pud_modify(pud_t pud,pgprot_t newprot)287 pud_t pud_modify(pud_t pud, pgprot_t newprot)
288 {
289 	unsigned long pudv;
290 
291 	pudv = pud_val(pud);
292 	pudv &= _HPAGE_CHG_MASK;
293 	return pud_set_protbits(__pud(pudv), newprot);
294 }
295 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
296 
297 /* For use by kexec, called with MMU off */
mmu_cleanup_all(void)298 notrace void mmu_cleanup_all(void)
299 {
300 	if (radix_enabled())
301 		radix__mmu_cleanup_all();
302 	else if (mmu_hash_ops.hpte_clear_all)
303 		mmu_hash_ops.hpte_clear_all();
304 
305 	reset_sprs();
306 }
307 
308 #ifdef CONFIG_MEMORY_HOTPLUG
create_section_mapping(unsigned long start,unsigned long end,int nid,pgprot_t prot)309 int __meminit create_section_mapping(unsigned long start, unsigned long end,
310 				     int nid, pgprot_t prot)
311 {
312 	if (radix_enabled())
313 		return radix__create_section_mapping(start, end, nid, prot);
314 
315 	return hash__create_section_mapping(start, end, nid, prot);
316 }
317 
remove_section_mapping(unsigned long start,unsigned long end)318 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
319 {
320 	if (radix_enabled())
321 		return radix__remove_section_mapping(start, end);
322 
323 	return hash__remove_section_mapping(start, end);
324 }
325 #endif /* CONFIG_MEMORY_HOTPLUG */
326 
mmu_partition_table_init(void)327 void __init mmu_partition_table_init(void)
328 {
329 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
330 	unsigned long ptcr;
331 
332 	/* Initialize the Partition Table with no entries */
333 	partition_tb = memblock_alloc_or_panic(patb_size, patb_size);
334 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
335 	set_ptcr_when_no_uv(ptcr);
336 	powernv_set_nmmu_ptcr(ptcr);
337 }
338 
flush_partition(unsigned int lpid,bool radix)339 static void flush_partition(unsigned int lpid, bool radix)
340 {
341 	if (radix) {
342 		radix__flush_all_lpid(lpid);
343 		radix__flush_all_lpid_guest(lpid);
344 	} else {
345 		asm volatile("ptesync" : : : "memory");
346 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
347 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
348 		/* do we need fixup here ?*/
349 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
350 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
351 	}
352 }
353 
mmu_partition_table_set_entry(unsigned int lpid,unsigned long dw0,unsigned long dw1,bool flush)354 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
355 				  unsigned long dw1, bool flush)
356 {
357 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
358 
359 	/*
360 	 * When ultravisor is enabled, the partition table is stored in secure
361 	 * memory and can only be accessed doing an ultravisor call. However, we
362 	 * maintain a copy of the partition table in normal memory to allow Nest
363 	 * MMU translations to occur (for normal VMs).
364 	 *
365 	 * Therefore, here we always update partition_tb, regardless of whether
366 	 * we are running under an ultravisor or not.
367 	 */
368 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
369 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
370 
371 	/*
372 	 * If ultravisor is enabled, we do an ultravisor call to register the
373 	 * partition table entry (PATE), which also do a global flush of TLBs
374 	 * and partition table caches for the lpid. Otherwise, just do the
375 	 * flush. The type of flush (hash or radix) depends on what the previous
376 	 * use of the partition ID was, not the new use.
377 	 */
378 	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
379 		uv_register_pate(lpid, dw0, dw1);
380 		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
381 			dw0, dw1);
382 	} else if (flush) {
383 		/*
384 		 * Boot does not need to flush, because MMU is off and each
385 		 * CPU does a tlbiel_all() before switching them on, which
386 		 * flushes everything.
387 		 */
388 		flush_partition(lpid, (old & PATB_HR));
389 	}
390 }
391 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
392 
get_pmd_from_cache(struct mm_struct * mm)393 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
394 {
395 	void *pmd_frag, *ret;
396 
397 	if (PMD_FRAG_NR == 1)
398 		return NULL;
399 
400 	spin_lock(&mm->page_table_lock);
401 	ret = mm->context.pmd_frag;
402 	if (ret) {
403 		pmd_frag = ret + PMD_FRAG_SIZE;
404 		/*
405 		 * If we have taken up all the fragments mark PTE page NULL
406 		 */
407 		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
408 			pmd_frag = NULL;
409 		mm->context.pmd_frag = pmd_frag;
410 	}
411 	spin_unlock(&mm->page_table_lock);
412 	return (pmd_t *)ret;
413 }
414 
__alloc_for_pmdcache(struct mm_struct * mm)415 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
416 {
417 	void *ret = NULL;
418 	struct ptdesc *ptdesc;
419 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
420 
421 	if (mm == &init_mm)
422 		gfp &= ~__GFP_ACCOUNT;
423 	ptdesc = pagetable_alloc(gfp, 0);
424 	if (!ptdesc)
425 		return NULL;
426 	if (!pagetable_pmd_ctor(ptdesc)) {
427 		pagetable_free(ptdesc);
428 		return NULL;
429 	}
430 
431 	atomic_set(&ptdesc->pt_frag_refcount, 1);
432 
433 	ret = ptdesc_address(ptdesc);
434 	/*
435 	 * if we support only one fragment just return the
436 	 * allocated page.
437 	 */
438 	if (PMD_FRAG_NR == 1)
439 		return ret;
440 
441 	spin_lock(&mm->page_table_lock);
442 	/*
443 	 * If we find ptdesc_page set, we return
444 	 * the allocated page with single fragment
445 	 * count.
446 	 */
447 	if (likely(!mm->context.pmd_frag)) {
448 		atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR);
449 		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
450 	}
451 	spin_unlock(&mm->page_table_lock);
452 
453 	return (pmd_t *)ret;
454 }
455 
pmd_fragment_alloc(struct mm_struct * mm,unsigned long vmaddr)456 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
457 {
458 	pmd_t *pmd;
459 
460 	pmd = get_pmd_from_cache(mm);
461 	if (pmd)
462 		return pmd;
463 
464 	return __alloc_for_pmdcache(mm);
465 }
466 
pmd_fragment_free(unsigned long * pmd)467 void pmd_fragment_free(unsigned long *pmd)
468 {
469 	struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
470 
471 	if (pagetable_is_reserved(ptdesc))
472 		return free_reserved_ptdesc(ptdesc);
473 
474 	BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0);
475 	if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) {
476 		pagetable_dtor(ptdesc);
477 		pagetable_free(ptdesc);
478 	}
479 }
480 
pgtable_free(void * table,int index)481 static inline void pgtable_free(void *table, int index)
482 {
483 	switch (index) {
484 	case PTE_INDEX:
485 		pte_fragment_free(table, 0);
486 		break;
487 	case PMD_INDEX:
488 		pmd_fragment_free(table);
489 		break;
490 	case PUD_INDEX:
491 		__pud_free(table);
492 		break;
493 		/* We don't free pgd table via RCU callback */
494 	default:
495 		BUG();
496 	}
497 }
498 
pgtable_free_tlb(struct mmu_gather * tlb,void * table,int index)499 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
500 {
501 	unsigned long pgf = (unsigned long)table;
502 
503 	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
504 	pgf |= index;
505 	tlb_remove_table(tlb, (void *)pgf);
506 }
507 
__tlb_remove_table(void * _table)508 void __tlb_remove_table(void *_table)
509 {
510 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
511 	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
512 
513 	return pgtable_free(table, index);
514 }
515 
516 #ifdef CONFIG_PROC_FS
517 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
518 
arch_report_meminfo(struct seq_file * m)519 void arch_report_meminfo(struct seq_file *m)
520 {
521 	/*
522 	 * Hash maps the memory with one size mmu_linear_psize.
523 	 * So don't bother to print these on hash
524 	 */
525 	if (!radix_enabled())
526 		return;
527 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
528 		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
529 	seq_printf(m, "DirectMap64k:    %8lu kB\n",
530 		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
531 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
532 		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
533 	seq_printf(m, "DirectMap1G:    %8lu kB\n",
534 		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
535 }
536 #endif /* CONFIG_PROC_FS */
537 
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)538 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
539 			     pte_t *ptep)
540 {
541 	unsigned long pte_val;
542 
543 	/*
544 	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
545 	 * possible. Also keep the pte_present true so that we don't take
546 	 * wrong fault.
547 	 */
548 	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
549 
550 	return __pte(pte_val);
551 
552 }
553 
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)554 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
555 			     pte_t *ptep, pte_t old_pte, pte_t pte)
556 {
557 	if (radix_enabled())
558 		return radix__ptep_modify_prot_commit(vma, addr,
559 						      ptep, old_pte, pte);
560 	set_pte_at(vma->vm_mm, addr, ptep, pte);
561 }
562 
563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
564 /*
565  * For hash translation mode, we use the deposited table to store hash slot
566  * information and they are stored at PTRS_PER_PMD offset from related pmd
567  * location. Hence a pmd move requires deposit and withdraw.
568  *
569  * For radix translation with split pmd ptl, we store the deposited table in the
570  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
571  * move.
572  *
573  * With hash we use deposited table always irrespective of anon or not.
574  * With radix we use deposited table only for anonymous mapping.
575  */
pmd_move_must_withdraw(struct spinlock * new_pmd_ptl,struct spinlock * old_pmd_ptl,struct vm_area_struct * vma)576 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
577 			   struct spinlock *old_pmd_ptl,
578 			   struct vm_area_struct *vma)
579 {
580 	if (radix_enabled())
581 		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
582 
583 	return true;
584 }
585 #endif
586 
587 /*
588  * Does the CPU support tlbie?
589  */
590 bool tlbie_capable __read_mostly = true;
591 EXPORT_SYMBOL(tlbie_capable);
592 
593 /*
594  * Should tlbie be used for management of CPU TLBs, for kernel and process
595  * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
596  * guest address spaces.
597  */
598 bool tlbie_enabled __read_mostly = true;
599 
setup_disable_tlbie(char * str)600 static int __init setup_disable_tlbie(char *str)
601 {
602 	if (!radix_enabled()) {
603 		pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
604 		return 1;
605 	}
606 
607 	tlbie_capable = false;
608 	tlbie_enabled = false;
609 
610         return 1;
611 }
612 __setup("disable_tlbie", setup_disable_tlbie);
613 
pgtable_debugfs_setup(void)614 static int __init pgtable_debugfs_setup(void)
615 {
616 	if (!tlbie_capable)
617 		return 0;
618 
619 	/*
620 	 * There is no locking vs tlb flushing when changing this value.
621 	 * The tlb flushers will see one value or another, and use either
622 	 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
623 	 * invalidated as expected.
624 	 */
625 	debugfs_create_bool("tlbie_enabled", 0600,
626 			arch_debugfs_dir,
627 			&tlbie_enabled);
628 
629 	return 0;
630 }
631 arch_initcall(pgtable_debugfs_setup);
632 
633 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN)
634 /*
635  * Override the generic version in mm/memremap.c.
636  *
637  * With hash translation, the direct-map range is mapped with just one
638  * page size selected by htab_init_page_sizes(). Consult
639  * mmu_psize_defs[] to determine the minimum page size alignment.
640 */
memremap_compat_align(void)641 unsigned long memremap_compat_align(void)
642 {
643 	if (!radix_enabled()) {
644 		unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift;
645 		return max(SUBSECTION_SIZE, 1UL << shift);
646 	}
647 
648 	return SUBSECTION_SIZE;
649 }
650 EXPORT_SYMBOL_GPL(memremap_compat_align);
651 #endif
652 
vm_get_page_prot(unsigned long vm_flags)653 pgprot_t vm_get_page_prot(unsigned long vm_flags)
654 {
655 	unsigned long prot;
656 
657 	/* Radix supports execute-only, but protection_map maps X -> RX */
658 	if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC))
659 		vm_flags |= VM_READ;
660 
661 	prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]);
662 
663 	if (vm_flags & VM_SAO)
664 		prot |= _PAGE_SAO;
665 
666 #ifdef CONFIG_PPC_MEM_KEYS
667 	prot |= vmflag_to_pte_pkey_bits(vm_flags);
668 #endif
669 
670 	return __pgprot(prot);
671 }
672 EXPORT_SYMBOL(vm_get_page_prot);
673