1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright IBM Corp. 2007
5 *
6 * Authors: Hollis Blanchard <[email protected]>
7 * Christian Ehrhardt <[email protected]>
8 */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/of.h>
23 #include <asm/cputable.h>
24 #include <linux/uaccess.h>
25 #include <asm/kvm_ppc.h>
26 #include <asm/cputhreads.h>
27 #include <asm/irqflags.h>
28 #include <asm/iommu.h>
29 #include <asm/switch_to.h>
30 #include <asm/xive.h>
31 #ifdef CONFIG_PPC_PSERIES
32 #include <asm/hvcall.h>
33 #include <asm/plpar_wrappers.h>
34 #endif
35 #include <asm/ultravisor.h>
36 #include <asm/setup.h>
37
38 #include "timing.h"
39 #include "../mm/mmu_decl.h"
40
41 #define CREATE_TRACE_POINTS
42 #include "trace.h"
43
44 struct kvmppc_ops *kvmppc_hv_ops;
45 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
46 struct kvmppc_ops *kvmppc_pr_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
48
49
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)50 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
51 {
52 return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
53 }
54
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)55 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
56 {
57 return kvm_arch_vcpu_runnable(vcpu);
58 }
59
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)60 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
61 {
62 return false;
63 }
64
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)65 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
66 {
67 return 1;
68 }
69
70 /*
71 * Common checks before entering the guest world. Call with interrupts
72 * disabled.
73 *
74 * returns:
75 *
76 * == 1 if we're ready to go into guest state
77 * <= 0 if we need to go back to the host with return value
78 */
kvmppc_prepare_to_enter(struct kvm_vcpu * vcpu)79 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
80 {
81 int r;
82
83 WARN_ON(irqs_disabled());
84 hard_irq_disable();
85
86 while (true) {
87 if (need_resched()) {
88 local_irq_enable();
89 cond_resched();
90 hard_irq_disable();
91 continue;
92 }
93
94 if (signal_pending(current)) {
95 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
96 vcpu->run->exit_reason = KVM_EXIT_INTR;
97 r = -EINTR;
98 break;
99 }
100
101 vcpu->mode = IN_GUEST_MODE;
102
103 /*
104 * Reading vcpu->requests must happen after setting vcpu->mode,
105 * so we don't miss a request because the requester sees
106 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
107 * before next entering the guest (and thus doesn't IPI).
108 * This also orders the write to mode from any reads
109 * to the page tables done while the VCPU is running.
110 * Please see the comment in kvm_flush_remote_tlbs.
111 */
112 smp_mb();
113
114 if (kvm_request_pending(vcpu)) {
115 /* Make sure we process requests preemptable */
116 local_irq_enable();
117 trace_kvm_check_requests(vcpu);
118 r = kvmppc_core_check_requests(vcpu);
119 hard_irq_disable();
120 if (r > 0)
121 continue;
122 break;
123 }
124
125 if (kvmppc_core_prepare_to_enter(vcpu)) {
126 /* interrupts got enabled in between, so we
127 are back at square 1 */
128 continue;
129 }
130
131 guest_enter_irqoff();
132 return 1;
133 }
134
135 /* return to host */
136 local_irq_enable();
137 return r;
138 }
139 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
140
141 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
kvmppc_swab_shared(struct kvm_vcpu * vcpu)142 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
143 {
144 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
145 int i;
146
147 shared->sprg0 = swab64(shared->sprg0);
148 shared->sprg1 = swab64(shared->sprg1);
149 shared->sprg2 = swab64(shared->sprg2);
150 shared->sprg3 = swab64(shared->sprg3);
151 shared->srr0 = swab64(shared->srr0);
152 shared->srr1 = swab64(shared->srr1);
153 shared->dar = swab64(shared->dar);
154 shared->msr = swab64(shared->msr);
155 shared->dsisr = swab32(shared->dsisr);
156 shared->int_pending = swab32(shared->int_pending);
157 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
158 shared->sr[i] = swab32(shared->sr[i]);
159 }
160 #endif
161
kvmppc_kvm_pv(struct kvm_vcpu * vcpu)162 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
163 {
164 int nr = kvmppc_get_gpr(vcpu, 11);
165 int r;
166 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
167 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
168 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
169 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
170 unsigned long r2 = 0;
171
172 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
173 /* 32 bit mode */
174 param1 &= 0xffffffff;
175 param2 &= 0xffffffff;
176 param3 &= 0xffffffff;
177 param4 &= 0xffffffff;
178 }
179
180 switch (nr) {
181 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
182 {
183 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
184 /* Book3S can be little endian, find it out here */
185 int shared_big_endian = true;
186 if (vcpu->arch.intr_msr & MSR_LE)
187 shared_big_endian = false;
188 if (shared_big_endian != vcpu->arch.shared_big_endian)
189 kvmppc_swab_shared(vcpu);
190 vcpu->arch.shared_big_endian = shared_big_endian;
191 #endif
192
193 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
194 /*
195 * Older versions of the Linux magic page code had
196 * a bug where they would map their trampoline code
197 * NX. If that's the case, remove !PR NX capability.
198 */
199 vcpu->arch.disable_kernel_nx = true;
200 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
201 }
202
203 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
204 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
205
206 #ifdef CONFIG_PPC_64K_PAGES
207 /*
208 * Make sure our 4k magic page is in the same window of a 64k
209 * page within the guest and within the host's page.
210 */
211 if ((vcpu->arch.magic_page_pa & 0xf000) !=
212 ((ulong)vcpu->arch.shared & 0xf000)) {
213 void *old_shared = vcpu->arch.shared;
214 ulong shared = (ulong)vcpu->arch.shared;
215 void *new_shared;
216
217 shared &= PAGE_MASK;
218 shared |= vcpu->arch.magic_page_pa & 0xf000;
219 new_shared = (void*)shared;
220 memcpy(new_shared, old_shared, 0x1000);
221 vcpu->arch.shared = new_shared;
222 }
223 #endif
224
225 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
226
227 r = EV_SUCCESS;
228 break;
229 }
230 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
231 r = EV_SUCCESS;
232 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
233 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
234 #endif
235
236 /* Second return value is in r4 */
237 break;
238 case EV_HCALL_TOKEN(EV_IDLE):
239 r = EV_SUCCESS;
240 kvm_vcpu_halt(vcpu);
241 break;
242 default:
243 r = EV_UNIMPLEMENTED;
244 break;
245 }
246
247 kvmppc_set_gpr(vcpu, 4, r2);
248
249 return r;
250 }
251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252
kvmppc_sanity_check(struct kvm_vcpu * vcpu)253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254 {
255 int r = false;
256
257 /* We have to know what CPU to virtualize */
258 if (!vcpu->arch.pvr)
259 goto out;
260
261 /* PAPR only works with book3s_64 */
262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263 goto out;
264
265 /* HV KVM can only do PAPR mode for now */
266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267 goto out;
268
269 #ifdef CONFIG_KVM_BOOKE_HV
270 if (!cpu_has_feature(CPU_FTR_EMB_HV))
271 goto out;
272 #endif
273
274 r = true;
275
276 out:
277 vcpu->arch.sane = r;
278 return r ? 0 : -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281
kvmppc_emulate_mmio(struct kvm_vcpu * vcpu)282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
283 {
284 enum emulation_result er;
285 int r;
286
287 er = kvmppc_emulate_loadstore(vcpu);
288 switch (er) {
289 case EMULATE_DONE:
290 /* Future optimization: only reload non-volatiles if they were
291 * actually modified. */
292 r = RESUME_GUEST_NV;
293 break;
294 case EMULATE_AGAIN:
295 r = RESUME_GUEST;
296 break;
297 case EMULATE_DO_MMIO:
298 vcpu->run->exit_reason = KVM_EXIT_MMIO;
299 /* We must reload nonvolatiles because "update" load/store
300 * instructions modify register state. */
301 /* Future optimization: only reload non-volatiles if they were
302 * actually modified. */
303 r = RESUME_HOST_NV;
304 break;
305 case EMULATE_FAIL:
306 {
307 ppc_inst_t last_inst;
308
309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310 kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n",
311 ppc_inst_val(last_inst));
312
313 /*
314 * Injecting a Data Storage here is a bit more
315 * accurate since the instruction that caused the
316 * access could still be a valid one.
317 */
318 if (!IS_ENABLED(CONFIG_BOOKE)) {
319 ulong dsisr = DSISR_BADACCESS;
320
321 if (vcpu->mmio_is_write)
322 dsisr |= DSISR_ISSTORE;
323
324 kvmppc_core_queue_data_storage(vcpu,
325 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
326 vcpu->arch.vaddr_accessed, dsisr);
327 } else {
328 /*
329 * BookE does not send a SIGBUS on a bad
330 * fault, so use a Program interrupt instead
331 * to avoid a fault loop.
332 */
333 kvmppc_core_queue_program(vcpu, 0);
334 }
335
336 r = RESUME_GUEST;
337 break;
338 }
339 default:
340 WARN_ON(1);
341 r = RESUME_GUEST;
342 }
343
344 return r;
345 }
346 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
347
kvmppc_st(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)348 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
349 bool data)
350 {
351 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
352 struct kvmppc_pte pte;
353 int r = -EINVAL;
354
355 vcpu->stat.st++;
356
357 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
358 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
359 size);
360
361 if ((!r) || (r == -EAGAIN))
362 return r;
363
364 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
365 XLATE_WRITE, &pte);
366 if (r < 0)
367 return r;
368
369 *eaddr = pte.raddr;
370
371 if (!pte.may_write)
372 return -EPERM;
373
374 /* Magic page override */
375 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
376 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
377 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
378 void *magic = vcpu->arch.shared;
379 magic += pte.eaddr & 0xfff;
380 memcpy(magic, ptr, size);
381 return EMULATE_DONE;
382 }
383
384 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
385 return EMULATE_DO_MMIO;
386
387 return EMULATE_DONE;
388 }
389 EXPORT_SYMBOL_GPL(kvmppc_st);
390
kvmppc_ld(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)391 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
392 bool data)
393 {
394 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
395 struct kvmppc_pte pte;
396 int rc = -EINVAL;
397
398 vcpu->stat.ld++;
399
400 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
401 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
402 size);
403
404 if ((!rc) || (rc == -EAGAIN))
405 return rc;
406
407 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
408 XLATE_READ, &pte);
409 if (rc)
410 return rc;
411
412 *eaddr = pte.raddr;
413
414 if (!pte.may_read)
415 return -EPERM;
416
417 if (!data && !pte.may_execute)
418 return -ENOEXEC;
419
420 /* Magic page override */
421 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
422 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
423 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
424 void *magic = vcpu->arch.shared;
425 magic += pte.eaddr & 0xfff;
426 memcpy(ptr, magic, size);
427 return EMULATE_DONE;
428 }
429
430 kvm_vcpu_srcu_read_lock(vcpu);
431 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
432 kvm_vcpu_srcu_read_unlock(vcpu);
433 if (rc)
434 return EMULATE_DO_MMIO;
435
436 return EMULATE_DONE;
437 }
438 EXPORT_SYMBOL_GPL(kvmppc_ld);
439
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)440 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
441 {
442 struct kvmppc_ops *kvm_ops = NULL;
443 int r;
444
445 /*
446 * if we have both HV and PR enabled, default is HV
447 */
448 if (type == 0) {
449 if (kvmppc_hv_ops)
450 kvm_ops = kvmppc_hv_ops;
451 else
452 kvm_ops = kvmppc_pr_ops;
453 if (!kvm_ops)
454 goto err_out;
455 } else if (type == KVM_VM_PPC_HV) {
456 if (!kvmppc_hv_ops)
457 goto err_out;
458 kvm_ops = kvmppc_hv_ops;
459 } else if (type == KVM_VM_PPC_PR) {
460 if (!kvmppc_pr_ops)
461 goto err_out;
462 kvm_ops = kvmppc_pr_ops;
463 } else
464 goto err_out;
465
466 if (!try_module_get(kvm_ops->owner))
467 return -ENOENT;
468
469 kvm->arch.kvm_ops = kvm_ops;
470 r = kvmppc_core_init_vm(kvm);
471 if (r)
472 module_put(kvm_ops->owner);
473 return r;
474 err_out:
475 return -EINVAL;
476 }
477
kvm_arch_destroy_vm(struct kvm * kvm)478 void kvm_arch_destroy_vm(struct kvm *kvm)
479 {
480 #ifdef CONFIG_KVM_XICS
481 /*
482 * We call kick_all_cpus_sync() to ensure that all
483 * CPUs have executed any pending IPIs before we
484 * continue and free VCPUs structures below.
485 */
486 if (is_kvmppc_hv_enabled(kvm))
487 kick_all_cpus_sync();
488 #endif
489
490 kvm_destroy_vcpus(kvm);
491
492 mutex_lock(&kvm->lock);
493
494 kvmppc_core_destroy_vm(kvm);
495
496 mutex_unlock(&kvm->lock);
497
498 /* drop the module reference */
499 module_put(kvm->arch.kvm_ops->owner);
500 }
501
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)502 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
503 {
504 int r;
505 /* Assume we're using HV mode when the HV module is loaded */
506 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
507
508 if (kvm) {
509 /*
510 * Hooray - we know which VM type we're running on. Depend on
511 * that rather than the guess above.
512 */
513 hv_enabled = is_kvmppc_hv_enabled(kvm);
514 }
515
516 switch (ext) {
517 #ifdef CONFIG_BOOKE
518 case KVM_CAP_PPC_BOOKE_SREGS:
519 case KVM_CAP_PPC_BOOKE_WATCHDOG:
520 case KVM_CAP_PPC_EPR:
521 #else
522 case KVM_CAP_PPC_SEGSTATE:
523 case KVM_CAP_PPC_HIOR:
524 case KVM_CAP_PPC_PAPR:
525 #endif
526 case KVM_CAP_PPC_UNSET_IRQ:
527 case KVM_CAP_PPC_IRQ_LEVEL:
528 case KVM_CAP_ENABLE_CAP:
529 case KVM_CAP_ONE_REG:
530 case KVM_CAP_IOEVENTFD:
531 case KVM_CAP_IMMEDIATE_EXIT:
532 case KVM_CAP_SET_GUEST_DEBUG:
533 r = 1;
534 break;
535 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
536 case KVM_CAP_PPC_PAIRED_SINGLES:
537 case KVM_CAP_PPC_OSI:
538 case KVM_CAP_PPC_GET_PVINFO:
539 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
540 case KVM_CAP_SW_TLB:
541 #endif
542 /* We support this only for PR */
543 r = !hv_enabled;
544 break;
545 #ifdef CONFIG_KVM_MPIC
546 case KVM_CAP_IRQ_MPIC:
547 r = 1;
548 break;
549 #endif
550
551 #ifdef CONFIG_PPC_BOOK3S_64
552 case KVM_CAP_SPAPR_TCE:
553 fallthrough;
554 case KVM_CAP_SPAPR_TCE_64:
555 case KVM_CAP_SPAPR_TCE_VFIO:
556 case KVM_CAP_PPC_RTAS:
557 case KVM_CAP_PPC_FIXUP_HCALL:
558 case KVM_CAP_PPC_ENABLE_HCALL:
559 #ifdef CONFIG_KVM_XICS
560 case KVM_CAP_IRQ_XICS:
561 #endif
562 case KVM_CAP_PPC_GET_CPU_CHAR:
563 r = 1;
564 break;
565 #ifdef CONFIG_KVM_XIVE
566 case KVM_CAP_PPC_IRQ_XIVE:
567 /*
568 * We need XIVE to be enabled on the platform (implies
569 * a POWER9 processor) and the PowerNV platform, as
570 * nested is not yet supported.
571 */
572 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
573 kvmppc_xive_native_supported();
574 break;
575 #endif
576
577 #ifdef CONFIG_HAVE_KVM_IRQCHIP
578 case KVM_CAP_IRQFD_RESAMPLE:
579 r = !xive_enabled();
580 break;
581 #endif
582
583 case KVM_CAP_PPC_ALLOC_HTAB:
584 r = hv_enabled;
585 break;
586 #endif /* CONFIG_PPC_BOOK3S_64 */
587 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
588 case KVM_CAP_PPC_SMT:
589 r = 0;
590 if (kvm) {
591 if (kvm->arch.emul_smt_mode > 1)
592 r = kvm->arch.emul_smt_mode;
593 else
594 r = kvm->arch.smt_mode;
595 } else if (hv_enabled) {
596 if (cpu_has_feature(CPU_FTR_ARCH_300))
597 r = 1;
598 else
599 r = threads_per_subcore;
600 }
601 break;
602 case KVM_CAP_PPC_SMT_POSSIBLE:
603 r = 1;
604 if (hv_enabled) {
605 if (!cpu_has_feature(CPU_FTR_ARCH_300))
606 r = ((threads_per_subcore << 1) - 1);
607 else
608 /* P9 can emulate dbells, so allow any mode */
609 r = 8 | 4 | 2 | 1;
610 }
611 break;
612 case KVM_CAP_PPC_HWRNG:
613 r = kvmppc_hwrng_present();
614 break;
615 case KVM_CAP_PPC_MMU_RADIX:
616 r = !!(hv_enabled && radix_enabled());
617 break;
618 case KVM_CAP_PPC_MMU_HASH_V3:
619 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
620 kvmppc_hv_ops->hash_v3_possible());
621 break;
622 case KVM_CAP_PPC_NESTED_HV:
623 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
624 !kvmppc_hv_ops->enable_nested(NULL));
625 break;
626 #endif
627 case KVM_CAP_SYNC_MMU:
628 BUILD_BUG_ON(!IS_ENABLED(CONFIG_KVM_GENERIC_MMU_NOTIFIER));
629 r = 1;
630 break;
631 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
632 case KVM_CAP_PPC_HTAB_FD:
633 r = hv_enabled;
634 break;
635 #endif
636 case KVM_CAP_NR_VCPUS:
637 /*
638 * Recommending a number of CPUs is somewhat arbitrary; we
639 * return the number of present CPUs for -HV (since a host
640 * will have secondary threads "offline"), and for other KVM
641 * implementations just count online CPUs.
642 */
643 if (hv_enabled)
644 r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS);
645 else
646 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
647 break;
648 case KVM_CAP_MAX_VCPUS:
649 r = KVM_MAX_VCPUS;
650 break;
651 case KVM_CAP_MAX_VCPU_ID:
652 r = KVM_MAX_VCPU_IDS;
653 break;
654 #ifdef CONFIG_PPC_BOOK3S_64
655 case KVM_CAP_PPC_GET_SMMU_INFO:
656 r = 1;
657 break;
658 case KVM_CAP_SPAPR_MULTITCE:
659 r = 1;
660 break;
661 case KVM_CAP_SPAPR_RESIZE_HPT:
662 r = !!hv_enabled;
663 break;
664 #endif
665 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
666 case KVM_CAP_PPC_FWNMI:
667 r = hv_enabled;
668 break;
669 #endif
670 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
671 case KVM_CAP_PPC_HTM:
672 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
673 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
674 break;
675 #endif
676 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
677 case KVM_CAP_PPC_SECURE_GUEST:
678 r = hv_enabled && kvmppc_hv_ops->enable_svm &&
679 !kvmppc_hv_ops->enable_svm(NULL);
680 break;
681 case KVM_CAP_PPC_DAWR1:
682 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
683 !kvmppc_hv_ops->enable_dawr1(NULL));
684 break;
685 case KVM_CAP_PPC_RPT_INVALIDATE:
686 r = 1;
687 break;
688 #endif
689 case KVM_CAP_PPC_AIL_MODE_3:
690 r = 0;
691 /*
692 * KVM PR, POWER7, and some POWER9s don't support AIL=3 mode.
693 * The POWER9s can support it if the guest runs in hash mode,
694 * but QEMU doesn't necessarily query the capability in time.
695 */
696 if (hv_enabled) {
697 if (kvmhv_on_pseries()) {
698 if (pseries_reloc_on_exception())
699 r = 1;
700 } else if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
701 !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
702 r = 1;
703 }
704 }
705 break;
706 default:
707 r = 0;
708 break;
709 }
710 return r;
711
712 }
713
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)714 long kvm_arch_dev_ioctl(struct file *filp,
715 unsigned int ioctl, unsigned long arg)
716 {
717 return -EINVAL;
718 }
719
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)720 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
721 {
722 kvmppc_core_free_memslot(kvm, slot);
723 }
724
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)725 int kvm_arch_prepare_memory_region(struct kvm *kvm,
726 const struct kvm_memory_slot *old,
727 struct kvm_memory_slot *new,
728 enum kvm_mr_change change)
729 {
730 return kvmppc_core_prepare_memory_region(kvm, old, new, change);
731 }
732
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)733 void kvm_arch_commit_memory_region(struct kvm *kvm,
734 struct kvm_memory_slot *old,
735 const struct kvm_memory_slot *new,
736 enum kvm_mr_change change)
737 {
738 kvmppc_core_commit_memory_region(kvm, old, new, change);
739 }
740
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)741 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
742 struct kvm_memory_slot *slot)
743 {
744 kvmppc_core_flush_memslot(kvm, slot);
745 }
746
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)747 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
748 {
749 return 0;
750 }
751
kvmppc_decrementer_wakeup(struct hrtimer * timer)752 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
753 {
754 struct kvm_vcpu *vcpu;
755
756 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
757 kvmppc_decrementer_func(vcpu);
758
759 return HRTIMER_NORESTART;
760 }
761
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)762 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
763 {
764 int err;
765
766 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
767 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
768
769 #ifdef CONFIG_KVM_EXIT_TIMING
770 mutex_init(&vcpu->arch.exit_timing_lock);
771 #endif
772 err = kvmppc_subarch_vcpu_init(vcpu);
773 if (err)
774 return err;
775
776 err = kvmppc_core_vcpu_create(vcpu);
777 if (err)
778 goto out_vcpu_uninit;
779
780 rcuwait_init(&vcpu->arch.wait);
781 vcpu->arch.waitp = &vcpu->arch.wait;
782 return 0;
783
784 out_vcpu_uninit:
785 kvmppc_subarch_vcpu_uninit(vcpu);
786 return err;
787 }
788
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)789 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
790 {
791 }
792
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)793 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
794 {
795 /* Make sure we're not using the vcpu anymore */
796 hrtimer_cancel(&vcpu->arch.dec_timer);
797
798 switch (vcpu->arch.irq_type) {
799 case KVMPPC_IRQ_MPIC:
800 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
801 break;
802 case KVMPPC_IRQ_XICS:
803 if (xics_on_xive())
804 kvmppc_xive_cleanup_vcpu(vcpu);
805 else
806 kvmppc_xics_free_icp(vcpu);
807 break;
808 case KVMPPC_IRQ_XIVE:
809 kvmppc_xive_native_cleanup_vcpu(vcpu);
810 break;
811 }
812
813 kvmppc_core_vcpu_free(vcpu);
814
815 kvmppc_subarch_vcpu_uninit(vcpu);
816 }
817
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)818 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
819 {
820 return kvmppc_core_pending_dec(vcpu);
821 }
822
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)823 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
824 {
825 #ifdef CONFIG_BOOKE
826 /*
827 * vrsave (formerly usprg0) isn't used by Linux, but may
828 * be used by the guest.
829 *
830 * On non-booke this is associated with Altivec and
831 * is handled by code in book3s.c.
832 */
833 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
834 #endif
835 kvmppc_core_vcpu_load(vcpu, cpu);
836 }
837
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)838 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
839 {
840 kvmppc_core_vcpu_put(vcpu);
841 #ifdef CONFIG_BOOKE
842 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
843 #endif
844 }
845
846 /*
847 * irq_bypass_add_producer and irq_bypass_del_producer are only
848 * useful if the architecture supports PCI passthrough.
849 * irq_bypass_stop and irq_bypass_start are not needed and so
850 * kvm_ops are not defined for them.
851 */
kvm_arch_has_irq_bypass(void)852 bool kvm_arch_has_irq_bypass(void)
853 {
854 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
855 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
856 }
857
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)858 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
859 struct irq_bypass_producer *prod)
860 {
861 struct kvm_kernel_irqfd *irqfd =
862 container_of(cons, struct kvm_kernel_irqfd, consumer);
863 struct kvm *kvm = irqfd->kvm;
864
865 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
866 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
867
868 return 0;
869 }
870
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)871 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
872 struct irq_bypass_producer *prod)
873 {
874 struct kvm_kernel_irqfd *irqfd =
875 container_of(cons, struct kvm_kernel_irqfd, consumer);
876 struct kvm *kvm = irqfd->kvm;
877
878 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
879 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
880 }
881
882 #ifdef CONFIG_VSX
kvmppc_get_vsr_dword_offset(int index)883 static inline int kvmppc_get_vsr_dword_offset(int index)
884 {
885 int offset;
886
887 if ((index != 0) && (index != 1))
888 return -1;
889
890 #ifdef __BIG_ENDIAN
891 offset = index;
892 #else
893 offset = 1 - index;
894 #endif
895
896 return offset;
897 }
898
kvmppc_get_vsr_word_offset(int index)899 static inline int kvmppc_get_vsr_word_offset(int index)
900 {
901 int offset;
902
903 if ((index > 3) || (index < 0))
904 return -1;
905
906 #ifdef __BIG_ENDIAN
907 offset = index;
908 #else
909 offset = 3 - index;
910 #endif
911 return offset;
912 }
913
kvmppc_set_vsr_dword(struct kvm_vcpu * vcpu,u64 gpr)914 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
915 u64 gpr)
916 {
917 union kvmppc_one_reg val;
918 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
919 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
920
921 if (offset == -1)
922 return;
923
924 if (index >= 32) {
925 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
926 val.vsxval[offset] = gpr;
927 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
928 } else {
929 kvmppc_set_vsx_fpr(vcpu, index, offset, gpr);
930 }
931 }
932
kvmppc_set_vsr_dword_dump(struct kvm_vcpu * vcpu,u64 gpr)933 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
934 u64 gpr)
935 {
936 union kvmppc_one_reg val;
937 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
938
939 if (index >= 32) {
940 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
941 val.vsxval[0] = gpr;
942 val.vsxval[1] = gpr;
943 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
944 } else {
945 kvmppc_set_vsx_fpr(vcpu, index, 0, gpr);
946 kvmppc_set_vsx_fpr(vcpu, index, 1, gpr);
947 }
948 }
949
kvmppc_set_vsr_word_dump(struct kvm_vcpu * vcpu,u32 gpr)950 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
951 u32 gpr)
952 {
953 union kvmppc_one_reg val;
954 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
955
956 if (index >= 32) {
957 val.vsx32val[0] = gpr;
958 val.vsx32val[1] = gpr;
959 val.vsx32val[2] = gpr;
960 val.vsx32val[3] = gpr;
961 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
962 } else {
963 val.vsx32val[0] = gpr;
964 val.vsx32val[1] = gpr;
965 kvmppc_set_vsx_fpr(vcpu, index, 0, val.vsxval[0]);
966 kvmppc_set_vsx_fpr(vcpu, index, 1, val.vsxval[0]);
967 }
968 }
969
kvmppc_set_vsr_word(struct kvm_vcpu * vcpu,u32 gpr32)970 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
971 u32 gpr32)
972 {
973 union kvmppc_one_reg val;
974 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
975 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
976 int dword_offset, word_offset;
977
978 if (offset == -1)
979 return;
980
981 if (index >= 32) {
982 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
983 val.vsx32val[offset] = gpr32;
984 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
985 } else {
986 dword_offset = offset / 2;
987 word_offset = offset % 2;
988 val.vsxval[0] = kvmppc_get_vsx_fpr(vcpu, index, dword_offset);
989 val.vsx32val[word_offset] = gpr32;
990 kvmppc_set_vsx_fpr(vcpu, index, dword_offset, val.vsxval[0]);
991 }
992 }
993 #endif /* CONFIG_VSX */
994
995 #ifdef CONFIG_ALTIVEC
kvmppc_get_vmx_offset_generic(struct kvm_vcpu * vcpu,int index,int element_size)996 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
997 int index, int element_size)
998 {
999 int offset;
1000 int elts = sizeof(vector128)/element_size;
1001
1002 if ((index < 0) || (index >= elts))
1003 return -1;
1004
1005 if (kvmppc_need_byteswap(vcpu))
1006 offset = elts - index - 1;
1007 else
1008 offset = index;
1009
1010 return offset;
1011 }
1012
kvmppc_get_vmx_dword_offset(struct kvm_vcpu * vcpu,int index)1013 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
1014 int index)
1015 {
1016 return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
1017 }
1018
kvmppc_get_vmx_word_offset(struct kvm_vcpu * vcpu,int index)1019 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1020 int index)
1021 {
1022 return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1023 }
1024
kvmppc_get_vmx_hword_offset(struct kvm_vcpu * vcpu,int index)1025 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1026 int index)
1027 {
1028 return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1029 }
1030
kvmppc_get_vmx_byte_offset(struct kvm_vcpu * vcpu,int index)1031 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1032 int index)
1033 {
1034 return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1035 }
1036
1037
kvmppc_set_vmx_dword(struct kvm_vcpu * vcpu,u64 gpr)1038 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1039 u64 gpr)
1040 {
1041 union kvmppc_one_reg val;
1042 int offset = kvmppc_get_vmx_dword_offset(vcpu,
1043 vcpu->arch.mmio_vmx_offset);
1044 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1045
1046 if (offset == -1)
1047 return;
1048
1049 kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1050 val.vsxval[offset] = gpr;
1051 kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1052 }
1053
kvmppc_set_vmx_word(struct kvm_vcpu * vcpu,u32 gpr32)1054 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1055 u32 gpr32)
1056 {
1057 union kvmppc_one_reg val;
1058 int offset = kvmppc_get_vmx_word_offset(vcpu,
1059 vcpu->arch.mmio_vmx_offset);
1060 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1061
1062 if (offset == -1)
1063 return;
1064
1065 kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1066 val.vsx32val[offset] = gpr32;
1067 kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1068 }
1069
kvmppc_set_vmx_hword(struct kvm_vcpu * vcpu,u16 gpr16)1070 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1071 u16 gpr16)
1072 {
1073 union kvmppc_one_reg val;
1074 int offset = kvmppc_get_vmx_hword_offset(vcpu,
1075 vcpu->arch.mmio_vmx_offset);
1076 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1077
1078 if (offset == -1)
1079 return;
1080
1081 kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1082 val.vsx16val[offset] = gpr16;
1083 kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1084 }
1085
kvmppc_set_vmx_byte(struct kvm_vcpu * vcpu,u8 gpr8)1086 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1087 u8 gpr8)
1088 {
1089 union kvmppc_one_reg val;
1090 int offset = kvmppc_get_vmx_byte_offset(vcpu,
1091 vcpu->arch.mmio_vmx_offset);
1092 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1093
1094 if (offset == -1)
1095 return;
1096
1097 kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1098 val.vsx8val[offset] = gpr8;
1099 kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1100 }
1101 #endif /* CONFIG_ALTIVEC */
1102
1103 #ifdef CONFIG_PPC_FPU
sp_to_dp(u32 fprs)1104 static inline u64 sp_to_dp(u32 fprs)
1105 {
1106 u64 fprd;
1107
1108 preempt_disable();
1109 enable_kernel_fp();
1110 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs)
1111 : "fr0");
1112 preempt_enable();
1113 return fprd;
1114 }
1115
dp_to_sp(u64 fprd)1116 static inline u32 dp_to_sp(u64 fprd)
1117 {
1118 u32 fprs;
1119
1120 preempt_disable();
1121 enable_kernel_fp();
1122 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd)
1123 : "fr0");
1124 preempt_enable();
1125 return fprs;
1126 }
1127
1128 #else
1129 #define sp_to_dp(x) (x)
1130 #define dp_to_sp(x) (x)
1131 #endif /* CONFIG_PPC_FPU */
1132
kvmppc_complete_mmio_load(struct kvm_vcpu * vcpu)1133 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1134 {
1135 struct kvm_run *run = vcpu->run;
1136 u64 gpr;
1137
1138 if (run->mmio.len > sizeof(gpr))
1139 return;
1140
1141 if (!vcpu->arch.mmio_host_swabbed) {
1142 switch (run->mmio.len) {
1143 case 8: gpr = *(u64 *)run->mmio.data; break;
1144 case 4: gpr = *(u32 *)run->mmio.data; break;
1145 case 2: gpr = *(u16 *)run->mmio.data; break;
1146 case 1: gpr = *(u8 *)run->mmio.data; break;
1147 }
1148 } else {
1149 switch (run->mmio.len) {
1150 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1151 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1152 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1153 case 1: gpr = *(u8 *)run->mmio.data; break;
1154 }
1155 }
1156
1157 /* conversion between single and double precision */
1158 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1159 gpr = sp_to_dp(gpr);
1160
1161 if (vcpu->arch.mmio_sign_extend) {
1162 switch (run->mmio.len) {
1163 #ifdef CONFIG_PPC64
1164 case 4:
1165 gpr = (s64)(s32)gpr;
1166 break;
1167 #endif
1168 case 2:
1169 gpr = (s64)(s16)gpr;
1170 break;
1171 case 1:
1172 gpr = (s64)(s8)gpr;
1173 break;
1174 }
1175 }
1176
1177 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1178 case KVM_MMIO_REG_GPR:
1179 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1180 break;
1181 case KVM_MMIO_REG_FPR:
1182 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1183 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1184
1185 kvmppc_set_fpr(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK, gpr);
1186 break;
1187 #ifdef CONFIG_PPC_BOOK3S
1188 case KVM_MMIO_REG_QPR:
1189 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1190 break;
1191 case KVM_MMIO_REG_FQPR:
1192 kvmppc_set_fpr(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK, gpr);
1193 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1194 break;
1195 #endif
1196 #ifdef CONFIG_VSX
1197 case KVM_MMIO_REG_VSX:
1198 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1199 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1200
1201 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1202 kvmppc_set_vsr_dword(vcpu, gpr);
1203 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1204 kvmppc_set_vsr_word(vcpu, gpr);
1205 else if (vcpu->arch.mmio_copy_type ==
1206 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1207 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1208 else if (vcpu->arch.mmio_copy_type ==
1209 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1210 kvmppc_set_vsr_word_dump(vcpu, gpr);
1211 break;
1212 #endif
1213 #ifdef CONFIG_ALTIVEC
1214 case KVM_MMIO_REG_VMX:
1215 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1216 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1217
1218 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1219 kvmppc_set_vmx_dword(vcpu, gpr);
1220 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1221 kvmppc_set_vmx_word(vcpu, gpr);
1222 else if (vcpu->arch.mmio_copy_type ==
1223 KVMPPC_VMX_COPY_HWORD)
1224 kvmppc_set_vmx_hword(vcpu, gpr);
1225 else if (vcpu->arch.mmio_copy_type ==
1226 KVMPPC_VMX_COPY_BYTE)
1227 kvmppc_set_vmx_byte(vcpu, gpr);
1228 break;
1229 #endif
1230 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1231 case KVM_MMIO_REG_NESTED_GPR:
1232 if (kvmppc_need_byteswap(vcpu))
1233 gpr = swab64(gpr);
1234 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1235 sizeof(gpr));
1236 break;
1237 #endif
1238 default:
1239 BUG();
1240 }
1241 }
1242
__kvmppc_handle_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int sign_extend)1243 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1244 unsigned int rt, unsigned int bytes,
1245 int is_default_endian, int sign_extend)
1246 {
1247 struct kvm_run *run = vcpu->run;
1248 int idx, ret;
1249 bool host_swabbed;
1250
1251 /* Pity C doesn't have a logical XOR operator */
1252 if (kvmppc_need_byteswap(vcpu)) {
1253 host_swabbed = is_default_endian;
1254 } else {
1255 host_swabbed = !is_default_endian;
1256 }
1257
1258 if (bytes > sizeof(run->mmio.data))
1259 return EMULATE_FAIL;
1260
1261 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1262 run->mmio.len = bytes;
1263 run->mmio.is_write = 0;
1264
1265 vcpu->arch.io_gpr = rt;
1266 vcpu->arch.mmio_host_swabbed = host_swabbed;
1267 vcpu->mmio_needed = 1;
1268 vcpu->mmio_is_write = 0;
1269 vcpu->arch.mmio_sign_extend = sign_extend;
1270
1271 idx = srcu_read_lock(&vcpu->kvm->srcu);
1272
1273 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1274 bytes, &run->mmio.data);
1275
1276 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1277
1278 if (!ret) {
1279 kvmppc_complete_mmio_load(vcpu);
1280 vcpu->mmio_needed = 0;
1281 return EMULATE_DONE;
1282 }
1283
1284 return EMULATE_DO_MMIO;
1285 }
1286
kvmppc_handle_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1287 int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1288 unsigned int rt, unsigned int bytes,
1289 int is_default_endian)
1290 {
1291 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1292 }
1293 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1294
1295 /* Same as above, but sign extends */
kvmppc_handle_loads(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1296 int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1297 unsigned int rt, unsigned int bytes,
1298 int is_default_endian)
1299 {
1300 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1301 }
1302
1303 #ifdef CONFIG_VSX
kvmppc_handle_vsx_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int mmio_sign_extend)1304 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1305 unsigned int rt, unsigned int bytes,
1306 int is_default_endian, int mmio_sign_extend)
1307 {
1308 enum emulation_result emulated = EMULATE_DONE;
1309
1310 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1311 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1312 return EMULATE_FAIL;
1313
1314 while (vcpu->arch.mmio_vsx_copy_nums) {
1315 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1316 is_default_endian, mmio_sign_extend);
1317
1318 if (emulated != EMULATE_DONE)
1319 break;
1320
1321 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1322
1323 vcpu->arch.mmio_vsx_copy_nums--;
1324 vcpu->arch.mmio_vsx_offset++;
1325 }
1326 return emulated;
1327 }
1328 #endif /* CONFIG_VSX */
1329
kvmppc_handle_store(struct kvm_vcpu * vcpu,u64 val,unsigned int bytes,int is_default_endian)1330 int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1331 u64 val, unsigned int bytes, int is_default_endian)
1332 {
1333 struct kvm_run *run = vcpu->run;
1334 void *data = run->mmio.data;
1335 int idx, ret;
1336 bool host_swabbed;
1337
1338 /* Pity C doesn't have a logical XOR operator */
1339 if (kvmppc_need_byteswap(vcpu)) {
1340 host_swabbed = is_default_endian;
1341 } else {
1342 host_swabbed = !is_default_endian;
1343 }
1344
1345 if (bytes > sizeof(run->mmio.data))
1346 return EMULATE_FAIL;
1347
1348 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1349 run->mmio.len = bytes;
1350 run->mmio.is_write = 1;
1351 vcpu->mmio_needed = 1;
1352 vcpu->mmio_is_write = 1;
1353
1354 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1355 val = dp_to_sp(val);
1356
1357 /* Store the value at the lowest bytes in 'data'. */
1358 if (!host_swabbed) {
1359 switch (bytes) {
1360 case 8: *(u64 *)data = val; break;
1361 case 4: *(u32 *)data = val; break;
1362 case 2: *(u16 *)data = val; break;
1363 case 1: *(u8 *)data = val; break;
1364 }
1365 } else {
1366 switch (bytes) {
1367 case 8: *(u64 *)data = swab64(val); break;
1368 case 4: *(u32 *)data = swab32(val); break;
1369 case 2: *(u16 *)data = swab16(val); break;
1370 case 1: *(u8 *)data = val; break;
1371 }
1372 }
1373
1374 idx = srcu_read_lock(&vcpu->kvm->srcu);
1375
1376 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1377 bytes, &run->mmio.data);
1378
1379 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1380
1381 if (!ret) {
1382 vcpu->mmio_needed = 0;
1383 return EMULATE_DONE;
1384 }
1385
1386 return EMULATE_DO_MMIO;
1387 }
1388 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1389
1390 #ifdef CONFIG_VSX
kvmppc_get_vsr_data(struct kvm_vcpu * vcpu,int rs,u64 * val)1391 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1392 {
1393 u32 dword_offset, word_offset;
1394 union kvmppc_one_reg reg;
1395 int vsx_offset = 0;
1396 int copy_type = vcpu->arch.mmio_copy_type;
1397 int result = 0;
1398
1399 switch (copy_type) {
1400 case KVMPPC_VSX_COPY_DWORD:
1401 vsx_offset =
1402 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1403
1404 if (vsx_offset == -1) {
1405 result = -1;
1406 break;
1407 }
1408
1409 if (rs < 32) {
1410 *val = kvmppc_get_vsx_fpr(vcpu, rs, vsx_offset);
1411 } else {
1412 kvmppc_get_vsx_vr(vcpu, rs - 32, ®.vval);
1413 *val = reg.vsxval[vsx_offset];
1414 }
1415 break;
1416
1417 case KVMPPC_VSX_COPY_WORD:
1418 vsx_offset =
1419 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1420
1421 if (vsx_offset == -1) {
1422 result = -1;
1423 break;
1424 }
1425
1426 if (rs < 32) {
1427 dword_offset = vsx_offset / 2;
1428 word_offset = vsx_offset % 2;
1429 reg.vsxval[0] = kvmppc_get_vsx_fpr(vcpu, rs, dword_offset);
1430 *val = reg.vsx32val[word_offset];
1431 } else {
1432 kvmppc_get_vsx_vr(vcpu, rs - 32, ®.vval);
1433 *val = reg.vsx32val[vsx_offset];
1434 }
1435 break;
1436
1437 default:
1438 result = -1;
1439 break;
1440 }
1441
1442 return result;
1443 }
1444
kvmppc_handle_vsx_store(struct kvm_vcpu * vcpu,int rs,unsigned int bytes,int is_default_endian)1445 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1446 int rs, unsigned int bytes, int is_default_endian)
1447 {
1448 u64 val;
1449 enum emulation_result emulated = EMULATE_DONE;
1450
1451 vcpu->arch.io_gpr = rs;
1452
1453 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1454 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1455 return EMULATE_FAIL;
1456
1457 while (vcpu->arch.mmio_vsx_copy_nums) {
1458 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1459 return EMULATE_FAIL;
1460
1461 emulated = kvmppc_handle_store(vcpu,
1462 val, bytes, is_default_endian);
1463
1464 if (emulated != EMULATE_DONE)
1465 break;
1466
1467 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1468
1469 vcpu->arch.mmio_vsx_copy_nums--;
1470 vcpu->arch.mmio_vsx_offset++;
1471 }
1472
1473 return emulated;
1474 }
1475
kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu * vcpu)1476 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1477 {
1478 struct kvm_run *run = vcpu->run;
1479 enum emulation_result emulated = EMULATE_FAIL;
1480 int r;
1481
1482 vcpu->arch.paddr_accessed += run->mmio.len;
1483
1484 if (!vcpu->mmio_is_write) {
1485 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1486 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1487 } else {
1488 emulated = kvmppc_handle_vsx_store(vcpu,
1489 vcpu->arch.io_gpr, run->mmio.len, 1);
1490 }
1491
1492 switch (emulated) {
1493 case EMULATE_DO_MMIO:
1494 run->exit_reason = KVM_EXIT_MMIO;
1495 r = RESUME_HOST;
1496 break;
1497 case EMULATE_FAIL:
1498 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1499 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1500 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1501 r = RESUME_HOST;
1502 break;
1503 default:
1504 r = RESUME_GUEST;
1505 break;
1506 }
1507 return r;
1508 }
1509 #endif /* CONFIG_VSX */
1510
1511 #ifdef CONFIG_ALTIVEC
kvmppc_handle_vmx_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1512 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1513 unsigned int rt, unsigned int bytes, int is_default_endian)
1514 {
1515 enum emulation_result emulated = EMULATE_DONE;
1516
1517 if (vcpu->arch.mmio_vmx_copy_nums > 2)
1518 return EMULATE_FAIL;
1519
1520 while (vcpu->arch.mmio_vmx_copy_nums) {
1521 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1522 is_default_endian, 0);
1523
1524 if (emulated != EMULATE_DONE)
1525 break;
1526
1527 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1528 vcpu->arch.mmio_vmx_copy_nums--;
1529 vcpu->arch.mmio_vmx_offset++;
1530 }
1531
1532 return emulated;
1533 }
1534
kvmppc_get_vmx_dword(struct kvm_vcpu * vcpu,int index,u64 * val)1535 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1536 {
1537 union kvmppc_one_reg reg;
1538 int vmx_offset = 0;
1539 int result = 0;
1540
1541 vmx_offset =
1542 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1543
1544 if (vmx_offset == -1)
1545 return -1;
1546
1547 kvmppc_get_vsx_vr(vcpu, index, ®.vval);
1548 *val = reg.vsxval[vmx_offset];
1549
1550 return result;
1551 }
1552
kvmppc_get_vmx_word(struct kvm_vcpu * vcpu,int index,u64 * val)1553 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1554 {
1555 union kvmppc_one_reg reg;
1556 int vmx_offset = 0;
1557 int result = 0;
1558
1559 vmx_offset =
1560 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1561
1562 if (vmx_offset == -1)
1563 return -1;
1564
1565 kvmppc_get_vsx_vr(vcpu, index, ®.vval);
1566 *val = reg.vsx32val[vmx_offset];
1567
1568 return result;
1569 }
1570
kvmppc_get_vmx_hword(struct kvm_vcpu * vcpu,int index,u64 * val)1571 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1572 {
1573 union kvmppc_one_reg reg;
1574 int vmx_offset = 0;
1575 int result = 0;
1576
1577 vmx_offset =
1578 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1579
1580 if (vmx_offset == -1)
1581 return -1;
1582
1583 kvmppc_get_vsx_vr(vcpu, index, ®.vval);
1584 *val = reg.vsx16val[vmx_offset];
1585
1586 return result;
1587 }
1588
kvmppc_get_vmx_byte(struct kvm_vcpu * vcpu,int index,u64 * val)1589 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1590 {
1591 union kvmppc_one_reg reg;
1592 int vmx_offset = 0;
1593 int result = 0;
1594
1595 vmx_offset =
1596 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1597
1598 if (vmx_offset == -1)
1599 return -1;
1600
1601 kvmppc_get_vsx_vr(vcpu, index, ®.vval);
1602 *val = reg.vsx8val[vmx_offset];
1603
1604 return result;
1605 }
1606
kvmppc_handle_vmx_store(struct kvm_vcpu * vcpu,unsigned int rs,unsigned int bytes,int is_default_endian)1607 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1608 unsigned int rs, unsigned int bytes, int is_default_endian)
1609 {
1610 u64 val = 0;
1611 unsigned int index = rs & KVM_MMIO_REG_MASK;
1612 enum emulation_result emulated = EMULATE_DONE;
1613
1614 if (vcpu->arch.mmio_vmx_copy_nums > 2)
1615 return EMULATE_FAIL;
1616
1617 vcpu->arch.io_gpr = rs;
1618
1619 while (vcpu->arch.mmio_vmx_copy_nums) {
1620 switch (vcpu->arch.mmio_copy_type) {
1621 case KVMPPC_VMX_COPY_DWORD:
1622 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1623 return EMULATE_FAIL;
1624
1625 break;
1626 case KVMPPC_VMX_COPY_WORD:
1627 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1628 return EMULATE_FAIL;
1629 break;
1630 case KVMPPC_VMX_COPY_HWORD:
1631 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1632 return EMULATE_FAIL;
1633 break;
1634 case KVMPPC_VMX_COPY_BYTE:
1635 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1636 return EMULATE_FAIL;
1637 break;
1638 default:
1639 return EMULATE_FAIL;
1640 }
1641
1642 emulated = kvmppc_handle_store(vcpu, val, bytes,
1643 is_default_endian);
1644 if (emulated != EMULATE_DONE)
1645 break;
1646
1647 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1648 vcpu->arch.mmio_vmx_copy_nums--;
1649 vcpu->arch.mmio_vmx_offset++;
1650 }
1651
1652 return emulated;
1653 }
1654
kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu * vcpu)1655 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1656 {
1657 struct kvm_run *run = vcpu->run;
1658 enum emulation_result emulated = EMULATE_FAIL;
1659 int r;
1660
1661 vcpu->arch.paddr_accessed += run->mmio.len;
1662
1663 if (!vcpu->mmio_is_write) {
1664 emulated = kvmppc_handle_vmx_load(vcpu,
1665 vcpu->arch.io_gpr, run->mmio.len, 1);
1666 } else {
1667 emulated = kvmppc_handle_vmx_store(vcpu,
1668 vcpu->arch.io_gpr, run->mmio.len, 1);
1669 }
1670
1671 switch (emulated) {
1672 case EMULATE_DO_MMIO:
1673 run->exit_reason = KVM_EXIT_MMIO;
1674 r = RESUME_HOST;
1675 break;
1676 case EMULATE_FAIL:
1677 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1678 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1679 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1680 r = RESUME_HOST;
1681 break;
1682 default:
1683 r = RESUME_GUEST;
1684 break;
1685 }
1686 return r;
1687 }
1688 #endif /* CONFIG_ALTIVEC */
1689
kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1690 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1691 {
1692 int r = 0;
1693 union kvmppc_one_reg val;
1694 int size;
1695
1696 size = one_reg_size(reg->id);
1697 if (size > sizeof(val))
1698 return -EINVAL;
1699
1700 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1701 if (r == -EINVAL) {
1702 r = 0;
1703 switch (reg->id) {
1704 #ifdef CONFIG_ALTIVEC
1705 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1706 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1707 r = -ENXIO;
1708 break;
1709 }
1710 kvmppc_get_vsx_vr(vcpu, reg->id - KVM_REG_PPC_VR0, &val.vval);
1711 break;
1712 case KVM_REG_PPC_VSCR:
1713 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1714 r = -ENXIO;
1715 break;
1716 }
1717 val = get_reg_val(reg->id, kvmppc_get_vscr(vcpu));
1718 break;
1719 case KVM_REG_PPC_VRSAVE:
1720 val = get_reg_val(reg->id, kvmppc_get_vrsave(vcpu));
1721 break;
1722 #endif /* CONFIG_ALTIVEC */
1723 default:
1724 r = -EINVAL;
1725 break;
1726 }
1727 }
1728
1729 if (r)
1730 return r;
1731
1732 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1733 r = -EFAULT;
1734
1735 return r;
1736 }
1737
kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1738 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1739 {
1740 int r;
1741 union kvmppc_one_reg val;
1742 int size;
1743
1744 size = one_reg_size(reg->id);
1745 if (size > sizeof(val))
1746 return -EINVAL;
1747
1748 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1749 return -EFAULT;
1750
1751 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1752 if (r == -EINVAL) {
1753 r = 0;
1754 switch (reg->id) {
1755 #ifdef CONFIG_ALTIVEC
1756 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1757 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1758 r = -ENXIO;
1759 break;
1760 }
1761 kvmppc_set_vsx_vr(vcpu, reg->id - KVM_REG_PPC_VR0, &val.vval);
1762 break;
1763 case KVM_REG_PPC_VSCR:
1764 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1765 r = -ENXIO;
1766 break;
1767 }
1768 kvmppc_set_vscr(vcpu, set_reg_val(reg->id, val));
1769 break;
1770 case KVM_REG_PPC_VRSAVE:
1771 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1772 r = -ENXIO;
1773 break;
1774 }
1775 kvmppc_set_vrsave(vcpu, set_reg_val(reg->id, val));
1776 break;
1777 #endif /* CONFIG_ALTIVEC */
1778 default:
1779 r = -EINVAL;
1780 break;
1781 }
1782 }
1783
1784 return r;
1785 }
1786
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)1787 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1788 {
1789 struct kvm_run *run = vcpu->run;
1790 int r;
1791
1792 vcpu_load(vcpu);
1793
1794 if (vcpu->mmio_needed) {
1795 vcpu->mmio_needed = 0;
1796 if (!vcpu->mmio_is_write)
1797 kvmppc_complete_mmio_load(vcpu);
1798 #ifdef CONFIG_VSX
1799 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1800 vcpu->arch.mmio_vsx_copy_nums--;
1801 vcpu->arch.mmio_vsx_offset++;
1802 }
1803
1804 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1805 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1806 if (r == RESUME_HOST) {
1807 vcpu->mmio_needed = 1;
1808 goto out;
1809 }
1810 }
1811 #endif
1812 #ifdef CONFIG_ALTIVEC
1813 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1814 vcpu->arch.mmio_vmx_copy_nums--;
1815 vcpu->arch.mmio_vmx_offset++;
1816 }
1817
1818 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1819 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1820 if (r == RESUME_HOST) {
1821 vcpu->mmio_needed = 1;
1822 goto out;
1823 }
1824 }
1825 #endif
1826 } else if (vcpu->arch.osi_needed) {
1827 u64 *gprs = run->osi.gprs;
1828 int i;
1829
1830 for (i = 0; i < 32; i++)
1831 kvmppc_set_gpr(vcpu, i, gprs[i]);
1832 vcpu->arch.osi_needed = 0;
1833 } else if (vcpu->arch.hcall_needed) {
1834 int i;
1835
1836 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1837 for (i = 0; i < 9; ++i)
1838 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1839 vcpu->arch.hcall_needed = 0;
1840 #ifdef CONFIG_BOOKE
1841 } else if (vcpu->arch.epr_needed) {
1842 kvmppc_set_epr(vcpu, run->epr.epr);
1843 vcpu->arch.epr_needed = 0;
1844 #endif
1845 }
1846
1847 kvm_sigset_activate(vcpu);
1848
1849 if (!vcpu->wants_to_run)
1850 r = -EINTR;
1851 else
1852 r = kvmppc_vcpu_run(vcpu);
1853
1854 kvm_sigset_deactivate(vcpu);
1855
1856 #ifdef CONFIG_ALTIVEC
1857 out:
1858 #endif
1859
1860 /*
1861 * We're already returning to userspace, don't pass the
1862 * RESUME_HOST flags along.
1863 */
1864 if (r > 0)
1865 r = 0;
1866
1867 vcpu_put(vcpu);
1868 return r;
1869 }
1870
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)1871 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1872 {
1873 if (irq->irq == KVM_INTERRUPT_UNSET) {
1874 kvmppc_core_dequeue_external(vcpu);
1875 return 0;
1876 }
1877
1878 kvmppc_core_queue_external(vcpu, irq);
1879
1880 kvm_vcpu_kick(vcpu);
1881
1882 return 0;
1883 }
1884
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)1885 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1886 struct kvm_enable_cap *cap)
1887 {
1888 int r;
1889
1890 if (cap->flags)
1891 return -EINVAL;
1892
1893 switch (cap->cap) {
1894 case KVM_CAP_PPC_OSI:
1895 r = 0;
1896 vcpu->arch.osi_enabled = true;
1897 break;
1898 case KVM_CAP_PPC_PAPR:
1899 r = 0;
1900 vcpu->arch.papr_enabled = true;
1901 break;
1902 case KVM_CAP_PPC_EPR:
1903 r = 0;
1904 if (cap->args[0])
1905 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1906 else
1907 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1908 break;
1909 #ifdef CONFIG_BOOKE
1910 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1911 r = 0;
1912 vcpu->arch.watchdog_enabled = true;
1913 break;
1914 #endif
1915 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1916 case KVM_CAP_SW_TLB: {
1917 struct kvm_config_tlb cfg;
1918 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1919
1920 r = -EFAULT;
1921 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1922 break;
1923
1924 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1925 break;
1926 }
1927 #endif
1928 #ifdef CONFIG_KVM_MPIC
1929 case KVM_CAP_IRQ_MPIC: {
1930 CLASS(fd, f)(cap->args[0]);
1931 struct kvm_device *dev;
1932
1933 r = -EBADF;
1934 if (fd_empty(f))
1935 break;
1936
1937 r = -EPERM;
1938 dev = kvm_device_from_filp(fd_file(f));
1939 if (dev)
1940 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1941
1942 break;
1943 }
1944 #endif
1945 #ifdef CONFIG_KVM_XICS
1946 case KVM_CAP_IRQ_XICS: {
1947 CLASS(fd, f)(cap->args[0]);
1948 struct kvm_device *dev;
1949
1950 r = -EBADF;
1951 if (fd_empty(f))
1952 break;
1953
1954 r = -EPERM;
1955 dev = kvm_device_from_filp(fd_file(f));
1956 if (dev) {
1957 if (xics_on_xive())
1958 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1959 else
1960 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1961 }
1962 break;
1963 }
1964 #endif /* CONFIG_KVM_XICS */
1965 #ifdef CONFIG_KVM_XIVE
1966 case KVM_CAP_PPC_IRQ_XIVE: {
1967 CLASS(fd, f)(cap->args[0]);
1968 struct kvm_device *dev;
1969
1970 r = -EBADF;
1971 if (fd_empty(f))
1972 break;
1973
1974 r = -ENXIO;
1975 if (!xive_enabled())
1976 break;
1977
1978 r = -EPERM;
1979 dev = kvm_device_from_filp(fd_file(f));
1980 if (dev)
1981 r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1982 cap->args[1]);
1983 break;
1984 }
1985 #endif /* CONFIG_KVM_XIVE */
1986 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1987 case KVM_CAP_PPC_FWNMI:
1988 r = -EINVAL;
1989 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1990 break;
1991 r = 0;
1992 vcpu->kvm->arch.fwnmi_enabled = true;
1993 break;
1994 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1995 default:
1996 r = -EINVAL;
1997 break;
1998 }
1999
2000 if (!r)
2001 r = kvmppc_sanity_check(vcpu);
2002
2003 return r;
2004 }
2005
kvm_arch_intc_initialized(struct kvm * kvm)2006 bool kvm_arch_intc_initialized(struct kvm *kvm)
2007 {
2008 #ifdef CONFIG_KVM_MPIC
2009 if (kvm->arch.mpic)
2010 return true;
2011 #endif
2012 #ifdef CONFIG_KVM_XICS
2013 if (kvm->arch.xics || kvm->arch.xive)
2014 return true;
2015 #endif
2016 return false;
2017 }
2018
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)2019 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2020 struct kvm_mp_state *mp_state)
2021 {
2022 return -EINVAL;
2023 }
2024
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)2025 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2026 struct kvm_mp_state *mp_state)
2027 {
2028 return -EINVAL;
2029 }
2030
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2031 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2032 unsigned int ioctl, unsigned long arg)
2033 {
2034 struct kvm_vcpu *vcpu = filp->private_data;
2035 void __user *argp = (void __user *)arg;
2036
2037 if (ioctl == KVM_INTERRUPT) {
2038 struct kvm_interrupt irq;
2039 if (copy_from_user(&irq, argp, sizeof(irq)))
2040 return -EFAULT;
2041 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2042 }
2043 return -ENOIOCTLCMD;
2044 }
2045
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2046 long kvm_arch_vcpu_ioctl(struct file *filp,
2047 unsigned int ioctl, unsigned long arg)
2048 {
2049 struct kvm_vcpu *vcpu = filp->private_data;
2050 void __user *argp = (void __user *)arg;
2051 long r;
2052
2053 switch (ioctl) {
2054 case KVM_ENABLE_CAP:
2055 {
2056 struct kvm_enable_cap cap;
2057 r = -EFAULT;
2058 if (copy_from_user(&cap, argp, sizeof(cap)))
2059 goto out;
2060 vcpu_load(vcpu);
2061 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2062 vcpu_put(vcpu);
2063 break;
2064 }
2065
2066 case KVM_SET_ONE_REG:
2067 case KVM_GET_ONE_REG:
2068 {
2069 struct kvm_one_reg reg;
2070 r = -EFAULT;
2071 if (copy_from_user(®, argp, sizeof(reg)))
2072 goto out;
2073 if (ioctl == KVM_SET_ONE_REG)
2074 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®);
2075 else
2076 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®);
2077 break;
2078 }
2079
2080 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2081 case KVM_DIRTY_TLB: {
2082 struct kvm_dirty_tlb dirty;
2083 r = -EFAULT;
2084 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2085 goto out;
2086 vcpu_load(vcpu);
2087 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2088 vcpu_put(vcpu);
2089 break;
2090 }
2091 #endif
2092 default:
2093 r = -EINVAL;
2094 }
2095
2096 out:
2097 return r;
2098 }
2099
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)2100 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2101 {
2102 return VM_FAULT_SIGBUS;
2103 }
2104
kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo * pvinfo)2105 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2106 {
2107 u32 inst_nop = 0x60000000;
2108 #ifdef CONFIG_KVM_BOOKE_HV
2109 u32 inst_sc1 = 0x44000022;
2110 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2111 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2112 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2113 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2114 #else
2115 u32 inst_lis = 0x3c000000;
2116 u32 inst_ori = 0x60000000;
2117 u32 inst_sc = 0x44000002;
2118 u32 inst_imm_mask = 0xffff;
2119
2120 /*
2121 * The hypercall to get into KVM from within guest context is as
2122 * follows:
2123 *
2124 * lis r0, r0, KVM_SC_MAGIC_R0@h
2125 * ori r0, KVM_SC_MAGIC_R0@l
2126 * sc
2127 * nop
2128 */
2129 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2130 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2131 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2132 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2133 #endif
2134
2135 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2136
2137 return 0;
2138 }
2139
kvm_arch_irqchip_in_kernel(struct kvm * kvm)2140 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2141 {
2142 int ret = 0;
2143
2144 #ifdef CONFIG_KVM_MPIC
2145 ret = ret || (kvm->arch.mpic != NULL);
2146 #endif
2147 #ifdef CONFIG_KVM_XICS
2148 ret = ret || (kvm->arch.xics != NULL);
2149 ret = ret || (kvm->arch.xive != NULL);
2150 #endif
2151 smp_rmb();
2152 return ret;
2153 }
2154
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)2155 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2156 bool line_status)
2157 {
2158 if (!kvm_arch_irqchip_in_kernel(kvm))
2159 return -ENXIO;
2160
2161 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2162 irq_event->irq, irq_event->level,
2163 line_status);
2164 return 0;
2165 }
2166
2167
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)2168 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2169 struct kvm_enable_cap *cap)
2170 {
2171 int r;
2172
2173 if (cap->flags)
2174 return -EINVAL;
2175
2176 switch (cap->cap) {
2177 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2178 case KVM_CAP_PPC_ENABLE_HCALL: {
2179 unsigned long hcall = cap->args[0];
2180
2181 r = -EINVAL;
2182 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2183 cap->args[1] > 1)
2184 break;
2185 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2186 break;
2187 if (cap->args[1])
2188 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2189 else
2190 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2191 r = 0;
2192 break;
2193 }
2194 case KVM_CAP_PPC_SMT: {
2195 unsigned long mode = cap->args[0];
2196 unsigned long flags = cap->args[1];
2197
2198 r = -EINVAL;
2199 if (kvm->arch.kvm_ops->set_smt_mode)
2200 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2201 break;
2202 }
2203
2204 case KVM_CAP_PPC_NESTED_HV:
2205 r = -EINVAL;
2206 if (!is_kvmppc_hv_enabled(kvm) ||
2207 !kvm->arch.kvm_ops->enable_nested)
2208 break;
2209 r = kvm->arch.kvm_ops->enable_nested(kvm);
2210 break;
2211 #endif
2212 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2213 case KVM_CAP_PPC_SECURE_GUEST:
2214 r = -EINVAL;
2215 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2216 break;
2217 r = kvm->arch.kvm_ops->enable_svm(kvm);
2218 break;
2219 case KVM_CAP_PPC_DAWR1:
2220 r = -EINVAL;
2221 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
2222 break;
2223 r = kvm->arch.kvm_ops->enable_dawr1(kvm);
2224 break;
2225 #endif
2226 default:
2227 r = -EINVAL;
2228 break;
2229 }
2230
2231 return r;
2232 }
2233
2234 #ifdef CONFIG_PPC_BOOK3S_64
2235 /*
2236 * These functions check whether the underlying hardware is safe
2237 * against attacks based on observing the effects of speculatively
2238 * executed instructions, and whether it supplies instructions for
2239 * use in workarounds. The information comes from firmware, either
2240 * via the device tree on powernv platforms or from an hcall on
2241 * pseries platforms.
2242 */
2243 #ifdef CONFIG_PPC_PSERIES
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2244 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2245 {
2246 struct h_cpu_char_result c;
2247 unsigned long rc;
2248
2249 if (!machine_is(pseries))
2250 return -ENOTTY;
2251
2252 rc = plpar_get_cpu_characteristics(&c);
2253 if (rc == H_SUCCESS) {
2254 cp->character = c.character;
2255 cp->behaviour = c.behaviour;
2256 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2257 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2258 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2259 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2260 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2261 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2262 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2263 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2264 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2265 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2266 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2267 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2268 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2269 }
2270 return 0;
2271 }
2272 #else
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2273 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2274 {
2275 return -ENOTTY;
2276 }
2277 #endif
2278
have_fw_feat(struct device_node * fw_features,const char * state,const char * name)2279 static inline bool have_fw_feat(struct device_node *fw_features,
2280 const char *state, const char *name)
2281 {
2282 struct device_node *np;
2283 bool r = false;
2284
2285 np = of_get_child_by_name(fw_features, name);
2286 if (np) {
2287 r = of_property_read_bool(np, state);
2288 of_node_put(np);
2289 }
2290 return r;
2291 }
2292
kvmppc_get_cpu_char(struct kvm_ppc_cpu_char * cp)2293 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2294 {
2295 struct device_node *np, *fw_features;
2296 int r;
2297
2298 memset(cp, 0, sizeof(*cp));
2299 r = pseries_get_cpu_char(cp);
2300 if (r != -ENOTTY)
2301 return r;
2302
2303 np = of_find_node_by_name(NULL, "ibm,opal");
2304 if (np) {
2305 fw_features = of_get_child_by_name(np, "fw-features");
2306 of_node_put(np);
2307 if (!fw_features)
2308 return 0;
2309 if (have_fw_feat(fw_features, "enabled",
2310 "inst-spec-barrier-ori31,31,0"))
2311 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2312 if (have_fw_feat(fw_features, "enabled",
2313 "fw-bcctrl-serialized"))
2314 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2315 if (have_fw_feat(fw_features, "enabled",
2316 "inst-l1d-flush-ori30,30,0"))
2317 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2318 if (have_fw_feat(fw_features, "enabled",
2319 "inst-l1d-flush-trig2"))
2320 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2321 if (have_fw_feat(fw_features, "enabled",
2322 "fw-l1d-thread-split"))
2323 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2324 if (have_fw_feat(fw_features, "enabled",
2325 "fw-count-cache-disabled"))
2326 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2327 if (have_fw_feat(fw_features, "enabled",
2328 "fw-count-cache-flush-bcctr2,0,0"))
2329 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2330 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2331 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2332 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2333 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2334 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2335 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2336 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2337
2338 if (have_fw_feat(fw_features, "enabled",
2339 "speculation-policy-favor-security"))
2340 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2341 if (!have_fw_feat(fw_features, "disabled",
2342 "needs-l1d-flush-msr-pr-0-to-1"))
2343 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2344 if (!have_fw_feat(fw_features, "disabled",
2345 "needs-spec-barrier-for-bound-checks"))
2346 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2347 if (have_fw_feat(fw_features, "enabled",
2348 "needs-count-cache-flush-on-context-switch"))
2349 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2350 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2351 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2352 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2353 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2354
2355 of_node_put(fw_features);
2356 }
2357
2358 return 0;
2359 }
2360 #endif
2361
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2362 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
2363 {
2364 struct kvm *kvm __maybe_unused = filp->private_data;
2365 void __user *argp = (void __user *)arg;
2366 int r;
2367
2368 switch (ioctl) {
2369 case KVM_PPC_GET_PVINFO: {
2370 struct kvm_ppc_pvinfo pvinfo;
2371 memset(&pvinfo, 0, sizeof(pvinfo));
2372 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2373 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2374 r = -EFAULT;
2375 goto out;
2376 }
2377
2378 break;
2379 }
2380 #ifdef CONFIG_SPAPR_TCE_IOMMU
2381 case KVM_CREATE_SPAPR_TCE_64: {
2382 struct kvm_create_spapr_tce_64 create_tce_64;
2383
2384 r = -EFAULT;
2385 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2386 goto out;
2387 if (create_tce_64.flags) {
2388 r = -EINVAL;
2389 goto out;
2390 }
2391 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2392 goto out;
2393 }
2394 case KVM_CREATE_SPAPR_TCE: {
2395 struct kvm_create_spapr_tce create_tce;
2396 struct kvm_create_spapr_tce_64 create_tce_64;
2397
2398 r = -EFAULT;
2399 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2400 goto out;
2401
2402 create_tce_64.liobn = create_tce.liobn;
2403 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2404 create_tce_64.offset = 0;
2405 create_tce_64.size = create_tce.window_size >>
2406 IOMMU_PAGE_SHIFT_4K;
2407 create_tce_64.flags = 0;
2408 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2409 goto out;
2410 }
2411 #endif
2412 #ifdef CONFIG_PPC_BOOK3S_64
2413 case KVM_PPC_GET_SMMU_INFO: {
2414 struct kvm_ppc_smmu_info info;
2415 struct kvm *kvm = filp->private_data;
2416
2417 memset(&info, 0, sizeof(info));
2418 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2419 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2420 r = -EFAULT;
2421 break;
2422 }
2423 case KVM_PPC_RTAS_DEFINE_TOKEN: {
2424 struct kvm *kvm = filp->private_data;
2425
2426 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2427 break;
2428 }
2429 case KVM_PPC_CONFIGURE_V3_MMU: {
2430 struct kvm *kvm = filp->private_data;
2431 struct kvm_ppc_mmuv3_cfg cfg;
2432
2433 r = -EINVAL;
2434 if (!kvm->arch.kvm_ops->configure_mmu)
2435 goto out;
2436 r = -EFAULT;
2437 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2438 goto out;
2439 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2440 break;
2441 }
2442 case KVM_PPC_GET_RMMU_INFO: {
2443 struct kvm *kvm = filp->private_data;
2444 struct kvm_ppc_rmmu_info info;
2445
2446 r = -EINVAL;
2447 if (!kvm->arch.kvm_ops->get_rmmu_info)
2448 goto out;
2449 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2450 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2451 r = -EFAULT;
2452 break;
2453 }
2454 case KVM_PPC_GET_CPU_CHAR: {
2455 struct kvm_ppc_cpu_char cpuchar;
2456
2457 r = kvmppc_get_cpu_char(&cpuchar);
2458 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2459 r = -EFAULT;
2460 break;
2461 }
2462 case KVM_PPC_SVM_OFF: {
2463 struct kvm *kvm = filp->private_data;
2464
2465 r = 0;
2466 if (!kvm->arch.kvm_ops->svm_off)
2467 goto out;
2468
2469 r = kvm->arch.kvm_ops->svm_off(kvm);
2470 break;
2471 }
2472 default: {
2473 struct kvm *kvm = filp->private_data;
2474 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2475 }
2476 #else /* CONFIG_PPC_BOOK3S_64 */
2477 default:
2478 r = -ENOTTY;
2479 #endif
2480 }
2481 out:
2482 return r;
2483 }
2484
2485 static DEFINE_IDA(lpid_inuse);
2486 static unsigned long nr_lpids;
2487
kvmppc_alloc_lpid(void)2488 long kvmppc_alloc_lpid(void)
2489 {
2490 int lpid;
2491
2492 /* The host LPID must always be 0 (allocation starts at 1) */
2493 lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL);
2494 if (lpid < 0) {
2495 if (lpid == -ENOMEM)
2496 pr_err("%s: Out of memory\n", __func__);
2497 else
2498 pr_err("%s: No LPIDs free\n", __func__);
2499 return -ENOMEM;
2500 }
2501
2502 return lpid;
2503 }
2504 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2505
kvmppc_free_lpid(long lpid)2506 void kvmppc_free_lpid(long lpid)
2507 {
2508 ida_free(&lpid_inuse, lpid);
2509 }
2510 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2511
2512 /* nr_lpids_param includes the host LPID */
kvmppc_init_lpid(unsigned long nr_lpids_param)2513 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2514 {
2515 nr_lpids = nr_lpids_param;
2516 }
2517 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2518
2519 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2520
kvm_arch_create_vcpu_debugfs(struct kvm_vcpu * vcpu,struct dentry * debugfs_dentry)2521 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2522 {
2523 if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs)
2524 vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry);
2525 }
2526
kvm_arch_create_vm_debugfs(struct kvm * kvm)2527 void kvm_arch_create_vm_debugfs(struct kvm *kvm)
2528 {
2529 if (kvm->arch.kvm_ops->create_vm_debugfs)
2530 kvm->arch.kvm_ops->create_vm_debugfs(kvm);
2531 }
2532