1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright IBM Corporation, 2018
4 * Authors Suraj Jitindar Singh <[email protected]>
5 * Paul Mackerras <[email protected]>
6 *
7 * Description: KVM functions specific to running nested KVM-HV guests
8 * on Book3S processors (specifically POWER9 and later).
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/llist.h>
14 #include <linux/pgtable.h>
15
16 #include <asm/kvm_ppc.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/mmu.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pte-walk.h>
21 #include <asm/reg.h>
22 #include <asm/plpar_wrappers.h>
23 #include <asm/firmware.h>
24
25 static struct patb_entry *pseries_partition_tb;
26
27 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
28 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
29
kvmhv_save_hv_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)30 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
31 {
32 struct kvmppc_vcore *vc = vcpu->arch.vcore;
33
34 hr->pcr = vc->pcr | PCR_MASK;
35 hr->dpdes = vcpu->arch.doorbell_request;
36 hr->hfscr = vcpu->arch.hfscr;
37 hr->tb_offset = vc->tb_offset;
38 hr->dawr0 = vcpu->arch.dawr0;
39 hr->dawrx0 = vcpu->arch.dawrx0;
40 hr->ciabr = vcpu->arch.ciabr;
41 hr->purr = vcpu->arch.purr;
42 hr->spurr = vcpu->arch.spurr;
43 hr->ic = vcpu->arch.ic;
44 hr->vtb = vc->vtb;
45 hr->srr0 = vcpu->arch.shregs.srr0;
46 hr->srr1 = vcpu->arch.shregs.srr1;
47 hr->sprg[0] = vcpu->arch.shregs.sprg0;
48 hr->sprg[1] = vcpu->arch.shregs.sprg1;
49 hr->sprg[2] = vcpu->arch.shregs.sprg2;
50 hr->sprg[3] = vcpu->arch.shregs.sprg3;
51 hr->pidr = vcpu->arch.pid;
52 hr->cfar = vcpu->arch.cfar;
53 hr->ppr = vcpu->arch.ppr;
54 hr->dawr1 = vcpu->arch.dawr1;
55 hr->dawrx1 = vcpu->arch.dawrx1;
56 }
57
58 /* Use noinline_for_stack due to https://llvm.org/pr49610 */
byteswap_pt_regs(struct pt_regs * regs)59 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs)
60 {
61 unsigned long *addr = (unsigned long *) regs;
62
63 for (; addr < ((unsigned long *) (regs + 1)); addr++)
64 *addr = swab64(*addr);
65 }
66
byteswap_hv_regs(struct hv_guest_state * hr)67 static void byteswap_hv_regs(struct hv_guest_state *hr)
68 {
69 hr->version = swab64(hr->version);
70 hr->lpid = swab32(hr->lpid);
71 hr->vcpu_token = swab32(hr->vcpu_token);
72 hr->lpcr = swab64(hr->lpcr);
73 hr->pcr = swab64(hr->pcr) | PCR_MASK;
74 hr->amor = swab64(hr->amor);
75 hr->dpdes = swab64(hr->dpdes);
76 hr->hfscr = swab64(hr->hfscr);
77 hr->tb_offset = swab64(hr->tb_offset);
78 hr->dawr0 = swab64(hr->dawr0);
79 hr->dawrx0 = swab64(hr->dawrx0);
80 hr->ciabr = swab64(hr->ciabr);
81 hr->hdec_expiry = swab64(hr->hdec_expiry);
82 hr->purr = swab64(hr->purr);
83 hr->spurr = swab64(hr->spurr);
84 hr->ic = swab64(hr->ic);
85 hr->vtb = swab64(hr->vtb);
86 hr->hdar = swab64(hr->hdar);
87 hr->hdsisr = swab64(hr->hdsisr);
88 hr->heir = swab64(hr->heir);
89 hr->asdr = swab64(hr->asdr);
90 hr->srr0 = swab64(hr->srr0);
91 hr->srr1 = swab64(hr->srr1);
92 hr->sprg[0] = swab64(hr->sprg[0]);
93 hr->sprg[1] = swab64(hr->sprg[1]);
94 hr->sprg[2] = swab64(hr->sprg[2]);
95 hr->sprg[3] = swab64(hr->sprg[3]);
96 hr->pidr = swab64(hr->pidr);
97 hr->cfar = swab64(hr->cfar);
98 hr->ppr = swab64(hr->ppr);
99 hr->dawr1 = swab64(hr->dawr1);
100 hr->dawrx1 = swab64(hr->dawrx1);
101 }
102
save_hv_return_state(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)103 static void save_hv_return_state(struct kvm_vcpu *vcpu,
104 struct hv_guest_state *hr)
105 {
106 struct kvmppc_vcore *vc = vcpu->arch.vcore;
107
108 hr->dpdes = vcpu->arch.doorbell_request;
109 hr->purr = vcpu->arch.purr;
110 hr->spurr = vcpu->arch.spurr;
111 hr->ic = vcpu->arch.ic;
112 hr->vtb = vc->vtb;
113 hr->srr0 = vcpu->arch.shregs.srr0;
114 hr->srr1 = vcpu->arch.shregs.srr1;
115 hr->sprg[0] = vcpu->arch.shregs.sprg0;
116 hr->sprg[1] = vcpu->arch.shregs.sprg1;
117 hr->sprg[2] = vcpu->arch.shregs.sprg2;
118 hr->sprg[3] = vcpu->arch.shregs.sprg3;
119 hr->pidr = vcpu->arch.pid;
120 hr->cfar = vcpu->arch.cfar;
121 hr->ppr = vcpu->arch.ppr;
122 switch (vcpu->arch.trap) {
123 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
124 hr->hdar = vcpu->arch.fault_dar;
125 hr->hdsisr = vcpu->arch.fault_dsisr;
126 hr->asdr = vcpu->arch.fault_gpa;
127 break;
128 case BOOK3S_INTERRUPT_H_INST_STORAGE:
129 hr->asdr = vcpu->arch.fault_gpa;
130 break;
131 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
132 hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) |
133 (HFSCR_INTR_CAUSE & vcpu->arch.hfscr));
134 break;
135 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
136 hr->heir = vcpu->arch.emul_inst;
137 break;
138 }
139 }
140
restore_hv_regs(struct kvm_vcpu * vcpu,const struct hv_guest_state * hr)141 static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr)
142 {
143 struct kvmppc_vcore *vc = vcpu->arch.vcore;
144
145 vc->pcr = hr->pcr | PCR_MASK;
146 vcpu->arch.doorbell_request = hr->dpdes;
147 vcpu->arch.hfscr = hr->hfscr;
148 vcpu->arch.dawr0 = hr->dawr0;
149 vcpu->arch.dawrx0 = hr->dawrx0;
150 vcpu->arch.ciabr = hr->ciabr;
151 vcpu->arch.purr = hr->purr;
152 vcpu->arch.spurr = hr->spurr;
153 vcpu->arch.ic = hr->ic;
154 vc->vtb = hr->vtb;
155 vcpu->arch.shregs.srr0 = hr->srr0;
156 vcpu->arch.shregs.srr1 = hr->srr1;
157 vcpu->arch.shregs.sprg0 = hr->sprg[0];
158 vcpu->arch.shregs.sprg1 = hr->sprg[1];
159 vcpu->arch.shregs.sprg2 = hr->sprg[2];
160 vcpu->arch.shregs.sprg3 = hr->sprg[3];
161 vcpu->arch.pid = hr->pidr;
162 vcpu->arch.cfar = hr->cfar;
163 vcpu->arch.ppr = hr->ppr;
164 vcpu->arch.dawr1 = hr->dawr1;
165 vcpu->arch.dawrx1 = hr->dawrx1;
166 }
167
kvmhv_restore_hv_return_state(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)168 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
169 struct hv_guest_state *hr)
170 {
171 struct kvmppc_vcore *vc = vcpu->arch.vcore;
172
173 /*
174 * This L2 vCPU might have received a doorbell while H_ENTER_NESTED was being handled.
175 * Make sure we preserve the doorbell if it was either:
176 * a) Sent after H_ENTER_NESTED was called on this vCPU (arch.doorbell_request would be 1)
177 * b) Doorbell was not handled and L2 exited for some other reason (hr->dpdes would be 1)
178 */
179 vcpu->arch.doorbell_request = vcpu->arch.doorbell_request | hr->dpdes;
180 vcpu->arch.hfscr = hr->hfscr;
181 vcpu->arch.purr = hr->purr;
182 vcpu->arch.spurr = hr->spurr;
183 vcpu->arch.ic = hr->ic;
184 vc->vtb = hr->vtb;
185 vcpu->arch.fault_dar = hr->hdar;
186 vcpu->arch.fault_dsisr = hr->hdsisr;
187 vcpu->arch.fault_gpa = hr->asdr;
188 vcpu->arch.emul_inst = hr->heir;
189 vcpu->arch.shregs.srr0 = hr->srr0;
190 vcpu->arch.shregs.srr1 = hr->srr1;
191 vcpu->arch.shregs.sprg0 = hr->sprg[0];
192 vcpu->arch.shregs.sprg1 = hr->sprg[1];
193 vcpu->arch.shregs.sprg2 = hr->sprg[2];
194 vcpu->arch.shregs.sprg3 = hr->sprg[3];
195 vcpu->arch.pid = hr->pidr;
196 vcpu->arch.cfar = hr->cfar;
197 vcpu->arch.ppr = hr->ppr;
198 }
199
kvmhv_nested_mmio_needed(struct kvm_vcpu * vcpu,u64 regs_ptr)200 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr)
201 {
202 /* No need to reflect the page fault to L1, we've handled it */
203 vcpu->arch.trap = 0;
204
205 /*
206 * Since the L2 gprs have already been written back into L1 memory when
207 * we complete the mmio, store the L1 memory location of the L2 gpr
208 * being loaded into by the mmio so that the loaded value can be
209 * written there in kvmppc_complete_mmio_load()
210 */
211 if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR)
212 && (vcpu->mmio_is_write == 0)) {
213 vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr +
214 offsetof(struct pt_regs,
215 gpr[vcpu->arch.io_gpr]);
216 vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR;
217 }
218 }
219
kvmhv_read_guest_state_and_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * l2_hv,struct pt_regs * l2_regs,u64 hv_ptr,u64 regs_ptr)220 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu,
221 struct hv_guest_state *l2_hv,
222 struct pt_regs *l2_regs,
223 u64 hv_ptr, u64 regs_ptr)
224 {
225 int size;
226
227 if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version,
228 sizeof(l2_hv->version)))
229 return -1;
230
231 if (kvmppc_need_byteswap(vcpu))
232 l2_hv->version = swab64(l2_hv->version);
233
234 size = hv_guest_state_size(l2_hv->version);
235 if (size < 0)
236 return -1;
237
238 return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) ||
239 kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs,
240 sizeof(struct pt_regs));
241 }
242
kvmhv_write_guest_state_and_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * l2_hv,struct pt_regs * l2_regs,u64 hv_ptr,u64 regs_ptr)243 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu,
244 struct hv_guest_state *l2_hv,
245 struct pt_regs *l2_regs,
246 u64 hv_ptr, u64 regs_ptr)
247 {
248 int size;
249
250 size = hv_guest_state_size(l2_hv->version);
251 if (size < 0)
252 return -1;
253
254 return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) ||
255 kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs,
256 sizeof(struct pt_regs));
257 }
258
load_l2_hv_regs(struct kvm_vcpu * vcpu,const struct hv_guest_state * l2_hv,const struct hv_guest_state * l1_hv,u64 * lpcr)259 static void load_l2_hv_regs(struct kvm_vcpu *vcpu,
260 const struct hv_guest_state *l2_hv,
261 const struct hv_guest_state *l1_hv, u64 *lpcr)
262 {
263 struct kvmppc_vcore *vc = vcpu->arch.vcore;
264 u64 mask;
265
266 restore_hv_regs(vcpu, l2_hv);
267
268 /*
269 * Don't let L1 change LPCR bits for the L2 except these:
270 */
271 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | LPCR_MER;
272
273 /*
274 * Additional filtering is required depending on hardware
275 * and configuration.
276 */
277 *lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm,
278 (vc->lpcr & ~mask) | (*lpcr & mask));
279
280 /*
281 * Don't let L1 enable features for L2 which we don't allow for L1,
282 * but preserve the interrupt cause field.
283 */
284 vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted);
285
286 /* Don't let data address watchpoint match in hypervisor state */
287 vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP;
288 vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP;
289
290 /* Don't let completed instruction address breakpt match in HV state */
291 if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
292 vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV;
293 }
294
kvmhv_enter_nested_guest(struct kvm_vcpu * vcpu)295 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
296 {
297 long int err, r;
298 struct kvm_nested_guest *l2;
299 struct pt_regs l2_regs, saved_l1_regs;
300 struct hv_guest_state l2_hv = {0}, saved_l1_hv;
301 struct kvmppc_vcore *vc = vcpu->arch.vcore;
302 u64 hv_ptr, regs_ptr;
303 u64 hdec_exp, lpcr;
304 s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
305
306 if (vcpu->kvm->arch.l1_ptcr == 0)
307 return H_NOT_AVAILABLE;
308
309 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
310 return H_BAD_MODE;
311
312 /* copy parameters in */
313 hv_ptr = kvmppc_get_gpr(vcpu, 4);
314 regs_ptr = kvmppc_get_gpr(vcpu, 5);
315 kvm_vcpu_srcu_read_lock(vcpu);
316 err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
317 hv_ptr, regs_ptr);
318 kvm_vcpu_srcu_read_unlock(vcpu);
319 if (err)
320 return H_PARAMETER;
321
322 if (kvmppc_need_byteswap(vcpu))
323 byteswap_hv_regs(&l2_hv);
324 if (l2_hv.version > HV_GUEST_STATE_VERSION)
325 return H_P2;
326
327 if (kvmppc_need_byteswap(vcpu))
328 byteswap_pt_regs(&l2_regs);
329 if (l2_hv.vcpu_token >= NR_CPUS)
330 return H_PARAMETER;
331
332 /*
333 * L1 must have set up a suspended state to enter the L2 in a
334 * transactional state, and only in that case. These have to be
335 * filtered out here to prevent causing a TM Bad Thing in the
336 * host HRFID. We could synthesize a TM Bad Thing back to the L1
337 * here but there doesn't seem like much point.
338 */
339 if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) {
340 if (!MSR_TM_ACTIVE(l2_regs.msr))
341 return H_BAD_MODE;
342 } else {
343 if (l2_regs.msr & MSR_TS_MASK)
344 return H_BAD_MODE;
345 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK))
346 return H_BAD_MODE;
347 }
348
349 /* translate lpid */
350 l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
351 if (!l2)
352 return H_PARAMETER;
353 if (!l2->l1_gr_to_hr) {
354 mutex_lock(&l2->tlb_lock);
355 kvmhv_update_ptbl_cache(l2);
356 mutex_unlock(&l2->tlb_lock);
357 }
358
359 /* save l1 values of things */
360 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
361 saved_l1_regs = vcpu->arch.regs;
362 kvmhv_save_hv_regs(vcpu, &saved_l1_hv);
363
364 /* convert TB values/offsets to host (L0) values */
365 hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
366 vc->tb_offset += l2_hv.tb_offset;
367 vcpu->arch.dec_expires += l2_hv.tb_offset;
368
369 /* set L1 state to L2 state */
370 vcpu->arch.nested = l2;
371 vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
372 vcpu->arch.nested_hfscr = l2_hv.hfscr;
373 vcpu->arch.regs = l2_regs;
374
375 /* Guest must always run with ME enabled, HV disabled. */
376 vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV;
377
378 lpcr = l2_hv.lpcr;
379 load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr);
380
381 vcpu->arch.ret = RESUME_GUEST;
382 vcpu->arch.trap = 0;
383 do {
384 r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr);
385 } while (is_kvmppc_resume_guest(r));
386
387 /* save L2 state for return */
388 l2_regs = vcpu->arch.regs;
389 l2_regs.msr = vcpu->arch.shregs.msr;
390 delta_purr = vcpu->arch.purr - l2_hv.purr;
391 delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
392 delta_ic = vcpu->arch.ic - l2_hv.ic;
393 delta_vtb = vc->vtb - l2_hv.vtb;
394 save_hv_return_state(vcpu, &l2_hv);
395
396 /* restore L1 state */
397 vcpu->arch.nested = NULL;
398 vcpu->arch.regs = saved_l1_regs;
399 vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
400 /* set L1 MSR TS field according to L2 transaction state */
401 if (l2_regs.msr & MSR_TS_MASK)
402 vcpu->arch.shregs.msr |= MSR_TS_S;
403 vc->tb_offset = saved_l1_hv.tb_offset;
404 /* XXX: is this always the same delta as saved_l1_hv.tb_offset? */
405 vcpu->arch.dec_expires -= l2_hv.tb_offset;
406 restore_hv_regs(vcpu, &saved_l1_hv);
407 vcpu->arch.purr += delta_purr;
408 vcpu->arch.spurr += delta_spurr;
409 vcpu->arch.ic += delta_ic;
410 vc->vtb += delta_vtb;
411
412 kvmhv_put_nested(l2);
413
414 /* copy l2_hv_state and regs back to guest */
415 if (kvmppc_need_byteswap(vcpu)) {
416 byteswap_hv_regs(&l2_hv);
417 byteswap_pt_regs(&l2_regs);
418 }
419 kvm_vcpu_srcu_read_lock(vcpu);
420 err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
421 hv_ptr, regs_ptr);
422 kvm_vcpu_srcu_read_unlock(vcpu);
423 if (err)
424 return H_AUTHORITY;
425
426 if (r == -EINTR)
427 return H_INTERRUPT;
428
429 if (vcpu->mmio_needed) {
430 kvmhv_nested_mmio_needed(vcpu, regs_ptr);
431 return H_TOO_HARD;
432 }
433
434 return vcpu->arch.trap;
435 }
436
437 unsigned long nested_capabilities;
438
kvmhv_nested_init(void)439 long kvmhv_nested_init(void)
440 {
441 long int ptb_order;
442 unsigned long ptcr, host_capabilities;
443 long rc;
444
445 if (!kvmhv_on_pseries())
446 return 0;
447 if (!radix_enabled())
448 return -ENODEV;
449
450 rc = plpar_guest_get_capabilities(0, &host_capabilities);
451 if (rc == H_SUCCESS) {
452 unsigned long capabilities = 0;
453
454 if (cpu_has_feature(CPU_FTR_P11_PVR))
455 capabilities |= H_GUEST_CAP_POWER11;
456 if (cpu_has_feature(CPU_FTR_ARCH_31))
457 capabilities |= H_GUEST_CAP_POWER10;
458 if (cpu_has_feature(CPU_FTR_ARCH_300))
459 capabilities |= H_GUEST_CAP_POWER9;
460
461 nested_capabilities = capabilities & host_capabilities;
462 rc = plpar_guest_set_capabilities(0, nested_capabilities);
463 if (rc != H_SUCCESS) {
464 pr_err("kvm-hv: Could not configure parent hypervisor capabilities (rc=%ld)",
465 rc);
466 return -ENODEV;
467 }
468
469 static_branch_enable(&__kvmhv_is_nestedv2);
470 return 0;
471 }
472
473 pr_info("kvm-hv: nestedv2 get capabilities hcall failed, falling back to nestedv1 (rc=%ld)\n",
474 rc);
475 /* Partition table entry is 1<<4 bytes in size, hence the 4. */
476 ptb_order = KVM_MAX_NESTED_GUESTS_SHIFT + 4;
477 /* Minimum partition table size is 1<<12 bytes */
478 if (ptb_order < 12)
479 ptb_order = 12;
480 pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
481 GFP_KERNEL);
482 if (!pseries_partition_tb) {
483 pr_err("kvm-hv: failed to allocated nested partition table\n");
484 return -ENOMEM;
485 }
486
487 ptcr = __pa(pseries_partition_tb) | (ptb_order - 12);
488 rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
489 if (rc != H_SUCCESS) {
490 pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
491 rc);
492 kfree(pseries_partition_tb);
493 pseries_partition_tb = NULL;
494 return -ENODEV;
495 }
496
497 return 0;
498 }
499
kvmhv_nested_exit(void)500 void kvmhv_nested_exit(void)
501 {
502 /*
503 * N.B. the kvmhv_on_pseries() test is there because it enables
504 * the compiler to remove the call to plpar_hcall_norets()
505 * when CONFIG_PPC_PSERIES=n.
506 */
507 if (kvmhv_on_pseries() && pseries_partition_tb) {
508 plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
509 kfree(pseries_partition_tb);
510 pseries_partition_tb = NULL;
511 }
512 }
513
kvmhv_flush_lpid(u64 lpid)514 void kvmhv_flush_lpid(u64 lpid)
515 {
516 long rc;
517
518 if (!kvmhv_on_pseries()) {
519 radix__flush_all_lpid(lpid);
520 return;
521 }
522
523 if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
524 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
525 lpid, TLBIEL_INVAL_SET_LPID);
526 else
527 rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
528 H_RPTI_TYPE_NESTED |
529 H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
530 H_RPTI_TYPE_PAT,
531 H_RPTI_PAGE_ALL, 0, -1UL);
532 if (rc)
533 pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
534 }
535
kvmhv_set_ptbl_entry(u64 lpid,u64 dw0,u64 dw1)536 void kvmhv_set_ptbl_entry(u64 lpid, u64 dw0, u64 dw1)
537 {
538 if (!kvmhv_on_pseries()) {
539 mmu_partition_table_set_entry(lpid, dw0, dw1, true);
540 return;
541 }
542
543 if (kvmhv_is_nestedv1()) {
544 pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
545 pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
546 /* L0 will do the necessary barriers */
547 kvmhv_flush_lpid(lpid);
548 }
549
550 if (kvmhv_is_nestedv2())
551 kvmhv_nestedv2_set_ptbl_entry(lpid, dw0, dw1);
552 }
553
kvmhv_set_nested_ptbl(struct kvm_nested_guest * gp)554 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
555 {
556 unsigned long dw0;
557
558 dw0 = PATB_HR | radix__get_tree_size() |
559 __pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
560 kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
561 }
562
563 /*
564 * Handle the H_SET_PARTITION_TABLE hcall.
565 * r4 = guest real address of partition table + log_2(size) - 12
566 * (formatted as for the PTCR).
567 */
kvmhv_set_partition_table(struct kvm_vcpu * vcpu)568 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
569 {
570 struct kvm *kvm = vcpu->kvm;
571 unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
572 int srcu_idx;
573 long ret = H_SUCCESS;
574
575 srcu_idx = srcu_read_lock(&kvm->srcu);
576 /* Check partition size and base address. */
577 if ((ptcr & PRTS_MASK) + 12 - 4 > KVM_MAX_NESTED_GUESTS_SHIFT ||
578 !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
579 ret = H_PARAMETER;
580 srcu_read_unlock(&kvm->srcu, srcu_idx);
581 if (ret == H_SUCCESS)
582 kvm->arch.l1_ptcr = ptcr;
583
584 return ret;
585 }
586
587 /*
588 * Handle the H_COPY_TOFROM_GUEST hcall.
589 * r4 = L1 lpid of nested guest
590 * r5 = pid
591 * r6 = eaddr to access
592 * r7 = to buffer (L1 gpa)
593 * r8 = from buffer (L1 gpa)
594 * r9 = n bytes to copy
595 */
kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu * vcpu)596 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu)
597 {
598 struct kvm_nested_guest *gp;
599 int l1_lpid = kvmppc_get_gpr(vcpu, 4);
600 int pid = kvmppc_get_gpr(vcpu, 5);
601 gva_t eaddr = kvmppc_get_gpr(vcpu, 6);
602 gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7);
603 gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8);
604 void *buf;
605 unsigned long n = kvmppc_get_gpr(vcpu, 9);
606 bool is_load = !!gp_to;
607 long rc;
608
609 if (gp_to && gp_from) /* One must be NULL to determine the direction */
610 return H_PARAMETER;
611
612 if (eaddr & (0xFFFUL << 52))
613 return H_PARAMETER;
614
615 buf = kzalloc(n, GFP_KERNEL | __GFP_NOWARN);
616 if (!buf)
617 return H_NO_MEM;
618
619 gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false);
620 if (!gp) {
621 rc = H_PARAMETER;
622 goto out_free;
623 }
624
625 mutex_lock(&gp->tlb_lock);
626
627 if (is_load) {
628 /* Load from the nested guest into our buffer */
629 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
630 eaddr, buf, NULL, n);
631 if (rc)
632 goto not_found;
633
634 /* Write what was loaded into our buffer back to the L1 guest */
635 kvm_vcpu_srcu_read_lock(vcpu);
636 rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n);
637 kvm_vcpu_srcu_read_unlock(vcpu);
638 if (rc)
639 goto not_found;
640 } else {
641 /* Load the data to be stored from the L1 guest into our buf */
642 kvm_vcpu_srcu_read_lock(vcpu);
643 rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n);
644 kvm_vcpu_srcu_read_unlock(vcpu);
645 if (rc)
646 goto not_found;
647
648 /* Store from our buffer into the nested guest */
649 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
650 eaddr, NULL, buf, n);
651 if (rc)
652 goto not_found;
653 }
654
655 out_unlock:
656 mutex_unlock(&gp->tlb_lock);
657 kvmhv_put_nested(gp);
658 out_free:
659 kfree(buf);
660 return rc;
661 not_found:
662 rc = H_NOT_FOUND;
663 goto out_unlock;
664 }
665
666 /*
667 * Reload the partition table entry for a guest.
668 * Caller must hold gp->tlb_lock.
669 */
kvmhv_update_ptbl_cache(struct kvm_nested_guest * gp)670 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
671 {
672 int ret;
673 struct patb_entry ptbl_entry;
674 unsigned long ptbl_addr;
675 struct kvm *kvm = gp->l1_host;
676
677 ret = -EFAULT;
678 ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
679 if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) {
680 int srcu_idx = srcu_read_lock(&kvm->srcu);
681 ret = kvm_read_guest(kvm, ptbl_addr,
682 &ptbl_entry, sizeof(ptbl_entry));
683 srcu_read_unlock(&kvm->srcu, srcu_idx);
684 }
685 if (ret) {
686 gp->l1_gr_to_hr = 0;
687 gp->process_table = 0;
688 } else {
689 gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
690 gp->process_table = be64_to_cpu(ptbl_entry.patb1);
691 }
692 kvmhv_set_nested_ptbl(gp);
693 }
694
kvmhv_vm_nested_init(struct kvm * kvm)695 void kvmhv_vm_nested_init(struct kvm *kvm)
696 {
697 idr_init(&kvm->arch.kvm_nested_guest_idr);
698 }
699
__find_nested(struct kvm * kvm,int lpid)700 static struct kvm_nested_guest *__find_nested(struct kvm *kvm, int lpid)
701 {
702 return idr_find(&kvm->arch.kvm_nested_guest_idr, lpid);
703 }
704
__prealloc_nested(struct kvm * kvm,int lpid)705 static bool __prealloc_nested(struct kvm *kvm, int lpid)
706 {
707 if (idr_alloc(&kvm->arch.kvm_nested_guest_idr,
708 NULL, lpid, lpid + 1, GFP_KERNEL) != lpid)
709 return false;
710 return true;
711 }
712
__add_nested(struct kvm * kvm,int lpid,struct kvm_nested_guest * gp)713 static void __add_nested(struct kvm *kvm, int lpid, struct kvm_nested_guest *gp)
714 {
715 if (idr_replace(&kvm->arch.kvm_nested_guest_idr, gp, lpid))
716 WARN_ON(1);
717 }
718
__remove_nested(struct kvm * kvm,int lpid)719 static void __remove_nested(struct kvm *kvm, int lpid)
720 {
721 idr_remove(&kvm->arch.kvm_nested_guest_idr, lpid);
722 }
723
kvmhv_alloc_nested(struct kvm * kvm,unsigned int lpid)724 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
725 {
726 struct kvm_nested_guest *gp;
727 long shadow_lpid;
728
729 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
730 if (!gp)
731 return NULL;
732 gp->l1_host = kvm;
733 gp->l1_lpid = lpid;
734 mutex_init(&gp->tlb_lock);
735 gp->shadow_pgtable = pgd_alloc(kvm->mm);
736 if (!gp->shadow_pgtable)
737 goto out_free;
738 shadow_lpid = kvmppc_alloc_lpid();
739 if (shadow_lpid < 0)
740 goto out_free2;
741 gp->shadow_lpid = shadow_lpid;
742 gp->radix = 1;
743
744 memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));
745
746 return gp;
747
748 out_free2:
749 pgd_free(kvm->mm, gp->shadow_pgtable);
750 out_free:
751 kfree(gp);
752 return NULL;
753 }
754
755 /*
756 * Free up any resources allocated for a nested guest.
757 */
kvmhv_release_nested(struct kvm_nested_guest * gp)758 static void kvmhv_release_nested(struct kvm_nested_guest *gp)
759 {
760 struct kvm *kvm = gp->l1_host;
761
762 if (gp->shadow_pgtable) {
763 /*
764 * No vcpu is using this struct and no call to
765 * kvmhv_get_nested can find this struct,
766 * so we don't need to hold kvm->mmu_lock.
767 */
768 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
769 gp->shadow_lpid);
770 pgd_free(kvm->mm, gp->shadow_pgtable);
771 }
772 kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
773 kvmppc_free_lpid(gp->shadow_lpid);
774 kfree(gp);
775 }
776
kvmhv_remove_nested(struct kvm_nested_guest * gp)777 static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
778 {
779 struct kvm *kvm = gp->l1_host;
780 int lpid = gp->l1_lpid;
781 long ref;
782
783 spin_lock(&kvm->mmu_lock);
784 if (gp == __find_nested(kvm, lpid)) {
785 __remove_nested(kvm, lpid);
786 --gp->refcnt;
787 }
788 ref = gp->refcnt;
789 spin_unlock(&kvm->mmu_lock);
790 if (ref == 0)
791 kvmhv_release_nested(gp);
792 }
793
794 /*
795 * Free up all nested resources allocated for this guest.
796 * This is called with no vcpus of the guest running, when
797 * switching the guest to HPT mode or when destroying the
798 * guest.
799 */
kvmhv_release_all_nested(struct kvm * kvm)800 void kvmhv_release_all_nested(struct kvm *kvm)
801 {
802 int lpid;
803 struct kvm_nested_guest *gp;
804 struct kvm_nested_guest *freelist = NULL;
805 struct kvm_memory_slot *memslot;
806 int srcu_idx, bkt;
807
808 spin_lock(&kvm->mmu_lock);
809 idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
810 __remove_nested(kvm, lpid);
811 if (--gp->refcnt == 0) {
812 gp->next = freelist;
813 freelist = gp;
814 }
815 }
816 idr_destroy(&kvm->arch.kvm_nested_guest_idr);
817 /* idr is empty and may be reused at this point */
818 spin_unlock(&kvm->mmu_lock);
819 while ((gp = freelist) != NULL) {
820 freelist = gp->next;
821 kvmhv_release_nested(gp);
822 }
823
824 srcu_idx = srcu_read_lock(&kvm->srcu);
825 kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
826 kvmhv_free_memslot_nest_rmap(memslot);
827 srcu_read_unlock(&kvm->srcu, srcu_idx);
828 }
829
830 /* caller must hold gp->tlb_lock */
kvmhv_flush_nested(struct kvm_nested_guest * gp)831 static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
832 {
833 struct kvm *kvm = gp->l1_host;
834
835 spin_lock(&kvm->mmu_lock);
836 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
837 spin_unlock(&kvm->mmu_lock);
838 kvmhv_flush_lpid(gp->shadow_lpid);
839 kvmhv_update_ptbl_cache(gp);
840 if (gp->l1_gr_to_hr == 0)
841 kvmhv_remove_nested(gp);
842 }
843
kvmhv_get_nested(struct kvm * kvm,int l1_lpid,bool create)844 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
845 bool create)
846 {
847 struct kvm_nested_guest *gp, *newgp;
848
849 if (l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
850 return NULL;
851
852 spin_lock(&kvm->mmu_lock);
853 gp = __find_nested(kvm, l1_lpid);
854 if (gp)
855 ++gp->refcnt;
856 spin_unlock(&kvm->mmu_lock);
857
858 if (gp || !create)
859 return gp;
860
861 newgp = kvmhv_alloc_nested(kvm, l1_lpid);
862 if (!newgp)
863 return NULL;
864
865 if (!__prealloc_nested(kvm, l1_lpid)) {
866 kvmhv_release_nested(newgp);
867 return NULL;
868 }
869
870 spin_lock(&kvm->mmu_lock);
871 gp = __find_nested(kvm, l1_lpid);
872 if (!gp) {
873 __add_nested(kvm, l1_lpid, newgp);
874 ++newgp->refcnt;
875 gp = newgp;
876 newgp = NULL;
877 }
878 ++gp->refcnt;
879 spin_unlock(&kvm->mmu_lock);
880
881 if (newgp)
882 kvmhv_release_nested(newgp);
883
884 return gp;
885 }
886
kvmhv_put_nested(struct kvm_nested_guest * gp)887 void kvmhv_put_nested(struct kvm_nested_guest *gp)
888 {
889 struct kvm *kvm = gp->l1_host;
890 long ref;
891
892 spin_lock(&kvm->mmu_lock);
893 ref = --gp->refcnt;
894 spin_unlock(&kvm->mmu_lock);
895 if (ref == 0)
896 kvmhv_release_nested(gp);
897 }
898
find_kvm_nested_guest_pte(struct kvm * kvm,unsigned long lpid,unsigned long ea,unsigned * hshift)899 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
900 unsigned long ea, unsigned *hshift)
901 {
902 struct kvm_nested_guest *gp;
903 pte_t *pte;
904
905 gp = __find_nested(kvm, lpid);
906 if (!gp)
907 return NULL;
908
909 VM_WARN(!spin_is_locked(&kvm->mmu_lock),
910 "%s called with kvm mmu_lock not held \n", __func__);
911 pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift);
912
913 return pte;
914 }
915
kvmhv_n_rmap_is_equal(u64 rmap_1,u64 rmap_2)916 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
917 {
918 return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
919 RMAP_NESTED_GPA_MASK));
920 }
921
kvmhv_insert_nest_rmap(struct kvm * kvm,unsigned long * rmapp,struct rmap_nested ** n_rmap)922 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
923 struct rmap_nested **n_rmap)
924 {
925 struct llist_node *entry = ((struct llist_head *) rmapp)->first;
926 struct rmap_nested *cursor;
927 u64 rmap, new_rmap = (*n_rmap)->rmap;
928
929 /* Are there any existing entries? */
930 if (!(*rmapp)) {
931 /* No -> use the rmap as a single entry */
932 *rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
933 return;
934 }
935
936 /* Do any entries match what we're trying to insert? */
937 for_each_nest_rmap_safe(cursor, entry, &rmap) {
938 if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
939 return;
940 }
941
942 /* Do we need to create a list or just add the new entry? */
943 rmap = *rmapp;
944 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
945 *rmapp = 0UL;
946 llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
947 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
948 (*n_rmap)->list.next = (struct llist_node *) rmap;
949
950 /* Set NULL so not freed by caller */
951 *n_rmap = NULL;
952 }
953
kvmhv_update_nest_rmap_rc(struct kvm * kvm,u64 n_rmap,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long mask)954 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap,
955 unsigned long clr, unsigned long set,
956 unsigned long hpa, unsigned long mask)
957 {
958 unsigned long gpa;
959 unsigned int shift, lpid;
960 pte_t *ptep;
961
962 gpa = n_rmap & RMAP_NESTED_GPA_MASK;
963 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
964
965 /* Find the pte */
966 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
967 /*
968 * If the pte is present and the pfn is still the same, update the pte.
969 * If the pfn has changed then this is a stale rmap entry, the nested
970 * gpa actually points somewhere else now, and there is nothing to do.
971 * XXX A future optimisation would be to remove the rmap entry here.
972 */
973 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) {
974 __radix_pte_update(ptep, clr, set);
975 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
976 }
977 }
978
979 /*
980 * For a given list of rmap entries, update the rc bits in all ptes in shadow
981 * page tables for nested guests which are referenced by the rmap list.
982 */
kvmhv_update_nest_rmap_rc_list(struct kvm * kvm,unsigned long * rmapp,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long nbytes)983 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
984 unsigned long clr, unsigned long set,
985 unsigned long hpa, unsigned long nbytes)
986 {
987 struct llist_node *entry = ((struct llist_head *) rmapp)->first;
988 struct rmap_nested *cursor;
989 unsigned long rmap, mask;
990
991 if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED))
992 return;
993
994 mask = PTE_RPN_MASK & ~(nbytes - 1);
995 hpa &= mask;
996
997 for_each_nest_rmap_safe(cursor, entry, &rmap)
998 kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask);
999 }
1000
kvmhv_remove_nest_rmap(struct kvm * kvm,u64 n_rmap,unsigned long hpa,unsigned long mask)1001 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
1002 unsigned long hpa, unsigned long mask)
1003 {
1004 struct kvm_nested_guest *gp;
1005 unsigned long gpa;
1006 unsigned int shift, lpid;
1007 pte_t *ptep;
1008
1009 gpa = n_rmap & RMAP_NESTED_GPA_MASK;
1010 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
1011 gp = __find_nested(kvm, lpid);
1012 if (!gp)
1013 return;
1014
1015 /* Find and invalidate the pte */
1016 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
1017 /* Don't spuriously invalidate ptes if the pfn has changed */
1018 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
1019 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1020 }
1021
kvmhv_remove_nest_rmap_list(struct kvm * kvm,unsigned long * rmapp,unsigned long hpa,unsigned long mask)1022 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
1023 unsigned long hpa, unsigned long mask)
1024 {
1025 struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
1026 struct rmap_nested *cursor;
1027 unsigned long rmap;
1028
1029 for_each_nest_rmap_safe(cursor, entry, &rmap) {
1030 kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
1031 kfree(cursor);
1032 }
1033 }
1034
1035 /* called with kvm->mmu_lock held */
kvmhv_remove_nest_rmap_range(struct kvm * kvm,const struct kvm_memory_slot * memslot,unsigned long gpa,unsigned long hpa,unsigned long nbytes)1036 void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
1037 const struct kvm_memory_slot *memslot,
1038 unsigned long gpa, unsigned long hpa,
1039 unsigned long nbytes)
1040 {
1041 unsigned long gfn, end_gfn;
1042 unsigned long addr_mask;
1043
1044 if (!memslot)
1045 return;
1046 gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
1047 end_gfn = gfn + (nbytes >> PAGE_SHIFT);
1048
1049 addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
1050 hpa &= addr_mask;
1051
1052 for (; gfn < end_gfn; gfn++) {
1053 unsigned long *rmap = &memslot->arch.rmap[gfn];
1054 kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
1055 }
1056 }
1057
kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot * free)1058 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
1059 {
1060 unsigned long page;
1061
1062 for (page = 0; page < free->npages; page++) {
1063 unsigned long rmap, *rmapp = &free->arch.rmap[page];
1064 struct rmap_nested *cursor;
1065 struct llist_node *entry;
1066
1067 entry = llist_del_all((struct llist_head *) rmapp);
1068 for_each_nest_rmap_safe(cursor, entry, &rmap)
1069 kfree(cursor);
1070 }
1071 }
1072
kvmhv_invalidate_shadow_pte(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,long gpa,int * shift_ret)1073 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
1074 struct kvm_nested_guest *gp,
1075 long gpa, int *shift_ret)
1076 {
1077 struct kvm *kvm = vcpu->kvm;
1078 bool ret = false;
1079 pte_t *ptep;
1080 int shift;
1081
1082 spin_lock(&kvm->mmu_lock);
1083 ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift);
1084 if (!shift)
1085 shift = PAGE_SHIFT;
1086 if (ptep && pte_present(*ptep)) {
1087 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1088 ret = true;
1089 }
1090 spin_unlock(&kvm->mmu_lock);
1091
1092 if (shift_ret)
1093 *shift_ret = shift;
1094 return ret;
1095 }
1096
get_ric(unsigned int instr)1097 static inline int get_ric(unsigned int instr)
1098 {
1099 return (instr >> 18) & 0x3;
1100 }
1101
get_prs(unsigned int instr)1102 static inline int get_prs(unsigned int instr)
1103 {
1104 return (instr >> 17) & 0x1;
1105 }
1106
get_r(unsigned int instr)1107 static inline int get_r(unsigned int instr)
1108 {
1109 return (instr >> 16) & 0x1;
1110 }
1111
get_lpid(unsigned long r_val)1112 static inline int get_lpid(unsigned long r_val)
1113 {
1114 return r_val & 0xffffffff;
1115 }
1116
get_is(unsigned long r_val)1117 static inline int get_is(unsigned long r_val)
1118 {
1119 return (r_val >> 10) & 0x3;
1120 }
1121
get_ap(unsigned long r_val)1122 static inline int get_ap(unsigned long r_val)
1123 {
1124 return (r_val >> 5) & 0x7;
1125 }
1126
get_epn(unsigned long r_val)1127 static inline long get_epn(unsigned long r_val)
1128 {
1129 return r_val >> 12;
1130 }
1131
kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu * vcpu,int lpid,int ap,long epn)1132 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
1133 int ap, long epn)
1134 {
1135 struct kvm *kvm = vcpu->kvm;
1136 struct kvm_nested_guest *gp;
1137 long npages;
1138 int shift, shadow_shift;
1139 unsigned long addr;
1140
1141 shift = ap_to_shift(ap);
1142 addr = epn << 12;
1143 if (shift < 0)
1144 /* Invalid ap encoding */
1145 return -EINVAL;
1146
1147 addr &= ~((1UL << shift) - 1);
1148 npages = 1UL << (shift - PAGE_SHIFT);
1149
1150 gp = kvmhv_get_nested(kvm, lpid, false);
1151 if (!gp) /* No such guest -> nothing to do */
1152 return 0;
1153 mutex_lock(&gp->tlb_lock);
1154
1155 /* There may be more than one host page backing this single guest pte */
1156 do {
1157 kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);
1158
1159 npages -= 1UL << (shadow_shift - PAGE_SHIFT);
1160 addr += 1UL << shadow_shift;
1161 } while (npages > 0);
1162
1163 mutex_unlock(&gp->tlb_lock);
1164 kvmhv_put_nested(gp);
1165 return 0;
1166 }
1167
kvmhv_emulate_tlbie_lpid(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,int ric)1168 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
1169 struct kvm_nested_guest *gp, int ric)
1170 {
1171 struct kvm *kvm = vcpu->kvm;
1172
1173 mutex_lock(&gp->tlb_lock);
1174 switch (ric) {
1175 case 0:
1176 /* Invalidate TLB */
1177 spin_lock(&kvm->mmu_lock);
1178 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
1179 gp->shadow_lpid);
1180 kvmhv_flush_lpid(gp->shadow_lpid);
1181 spin_unlock(&kvm->mmu_lock);
1182 break;
1183 case 1:
1184 /*
1185 * Invalidate PWC
1186 * We don't cache this -> nothing to do
1187 */
1188 break;
1189 case 2:
1190 /* Invalidate TLB, PWC and caching of partition table entries */
1191 kvmhv_flush_nested(gp);
1192 break;
1193 default:
1194 break;
1195 }
1196 mutex_unlock(&gp->tlb_lock);
1197 }
1198
kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu * vcpu,int ric)1199 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
1200 {
1201 struct kvm *kvm = vcpu->kvm;
1202 struct kvm_nested_guest *gp;
1203 int lpid;
1204
1205 spin_lock(&kvm->mmu_lock);
1206 idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
1207 spin_unlock(&kvm->mmu_lock);
1208 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1209 spin_lock(&kvm->mmu_lock);
1210 }
1211 spin_unlock(&kvm->mmu_lock);
1212 }
1213
kvmhv_emulate_priv_tlbie(struct kvm_vcpu * vcpu,unsigned int instr,unsigned long rsval,unsigned long rbval)1214 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
1215 unsigned long rsval, unsigned long rbval)
1216 {
1217 struct kvm *kvm = vcpu->kvm;
1218 struct kvm_nested_guest *gp;
1219 int r, ric, prs, is, ap;
1220 int lpid;
1221 long epn;
1222 int ret = 0;
1223
1224 ric = get_ric(instr);
1225 prs = get_prs(instr);
1226 r = get_r(instr);
1227 lpid = get_lpid(rsval);
1228 is = get_is(rbval);
1229
1230 /*
1231 * These cases are invalid and are not handled:
1232 * r != 1 -> Only radix supported
1233 * prs == 1 -> Not HV privileged
1234 * ric == 3 -> No cluster bombs for radix
1235 * is == 1 -> Partition scoped translations not associated with pid
1236 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
1237 */
1238 if ((!r) || (prs) || (ric == 3) || (is == 1) ||
1239 ((!is) && (ric == 1 || ric == 2)))
1240 return -EINVAL;
1241
1242 switch (is) {
1243 case 0:
1244 /*
1245 * We know ric == 0
1246 * Invalidate TLB for a given target address
1247 */
1248 epn = get_epn(rbval);
1249 ap = get_ap(rbval);
1250 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
1251 break;
1252 case 2:
1253 /* Invalidate matching LPID */
1254 gp = kvmhv_get_nested(kvm, lpid, false);
1255 if (gp) {
1256 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1257 kvmhv_put_nested(gp);
1258 }
1259 break;
1260 case 3:
1261 /* Invalidate ALL LPIDs */
1262 kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
1263 break;
1264 default:
1265 ret = -EINVAL;
1266 break;
1267 }
1268
1269 return ret;
1270 }
1271
1272 /*
1273 * This handles the H_TLB_INVALIDATE hcall.
1274 * Parameters are (r4) tlbie instruction code, (r5) rS contents,
1275 * (r6) rB contents.
1276 */
kvmhv_do_nested_tlbie(struct kvm_vcpu * vcpu)1277 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
1278 {
1279 int ret;
1280
1281 ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
1282 kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
1283 if (ret)
1284 return H_PARAMETER;
1285 return H_SUCCESS;
1286 }
1287
do_tlb_invalidate_nested_all(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long ric)1288 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu,
1289 unsigned long lpid, unsigned long ric)
1290 {
1291 struct kvm *kvm = vcpu->kvm;
1292 struct kvm_nested_guest *gp;
1293
1294 gp = kvmhv_get_nested(kvm, lpid, false);
1295 if (gp) {
1296 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1297 kvmhv_put_nested(gp);
1298 }
1299 return H_SUCCESS;
1300 }
1301
1302 /*
1303 * Number of pages above which we invalidate the entire LPID rather than
1304 * flush individual pages.
1305 */
1306 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33;
1307
do_tlb_invalidate_nested_tlb(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long pg_sizes,unsigned long start,unsigned long end)1308 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu,
1309 unsigned long lpid,
1310 unsigned long pg_sizes,
1311 unsigned long start,
1312 unsigned long end)
1313 {
1314 int ret = H_P4;
1315 unsigned long addr, nr_pages;
1316 struct mmu_psize_def *def;
1317 unsigned long psize, ap, page_size;
1318 bool flush_lpid;
1319
1320 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1321 def = &mmu_psize_defs[psize];
1322 if (!(pg_sizes & def->h_rpt_pgsize))
1323 continue;
1324
1325 nr_pages = (end - start) >> def->shift;
1326 flush_lpid = nr_pages > tlb_range_flush_page_ceiling;
1327 if (flush_lpid)
1328 return do_tlb_invalidate_nested_all(vcpu, lpid,
1329 RIC_FLUSH_TLB);
1330 addr = start;
1331 ap = mmu_get_ap(psize);
1332 page_size = 1UL << def->shift;
1333 do {
1334 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap,
1335 get_epn(addr));
1336 if (ret)
1337 return H_P4;
1338 addr += page_size;
1339 } while (addr < end);
1340 }
1341 return ret;
1342 }
1343
1344 /*
1345 * Performs partition-scoped invalidations for nested guests
1346 * as part of H_RPT_INVALIDATE hcall.
1347 */
do_h_rpt_invalidate_pat(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long type,unsigned long pg_sizes,unsigned long start,unsigned long end)1348 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid,
1349 unsigned long type, unsigned long pg_sizes,
1350 unsigned long start, unsigned long end)
1351 {
1352 /*
1353 * If L2 lpid isn't valid, we need to return H_PARAMETER.
1354 *
1355 * However, nested KVM issues a L2 lpid flush call when creating
1356 * partition table entries for L2. This happens even before the
1357 * corresponding shadow lpid is created in HV which happens in
1358 * H_ENTER_NESTED call. Since we can't differentiate this case from
1359 * the invalid case, we ignore such flush requests and return success.
1360 */
1361 if (!__find_nested(vcpu->kvm, lpid))
1362 return H_SUCCESS;
1363
1364 /*
1365 * A flush all request can be handled by a full lpid flush only.
1366 */
1367 if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL)
1368 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL);
1369
1370 /*
1371 * We don't need to handle a PWC flush like process table here,
1372 * because intermediate partition scoped table in nested guest doesn't
1373 * really have PWC. Only level we have PWC is in L0 and for nested
1374 * invalidate at L0 we always do kvm_flush_lpid() which does
1375 * radix__flush_all_lpid(). For range invalidate at any level, we
1376 * are not removing the higher level page tables and hence there is
1377 * no PWC invalidate needed.
1378 *
1379 * if (type & H_RPTI_TYPE_PWC) {
1380 * ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC);
1381 * if (ret)
1382 * return H_P4;
1383 * }
1384 */
1385
1386 if (start == 0 && end == -1)
1387 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB);
1388
1389 if (type & H_RPTI_TYPE_TLB)
1390 return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes,
1391 start, end);
1392 return H_SUCCESS;
1393 }
1394
1395 /* Used to convert a nested guest real address to a L1 guest real address */
kvmhv_translate_addr_nested(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,unsigned long dsisr,struct kvmppc_pte * gpte_p)1396 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
1397 struct kvm_nested_guest *gp,
1398 unsigned long n_gpa, unsigned long dsisr,
1399 struct kvmppc_pte *gpte_p)
1400 {
1401 u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
1402 int ret;
1403
1404 ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
1405 &fault_addr);
1406
1407 if (ret) {
1408 /* We didn't find a pte */
1409 if (ret == -EINVAL) {
1410 /* Unsupported mmu config */
1411 flags |= DSISR_UNSUPP_MMU;
1412 } else if (ret == -ENOENT) {
1413 /* No translation found */
1414 flags |= DSISR_NOHPTE;
1415 } else if (ret == -EFAULT) {
1416 /* Couldn't access L1 real address */
1417 flags |= DSISR_PRTABLE_FAULT;
1418 vcpu->arch.fault_gpa = fault_addr;
1419 } else {
1420 /* Unknown error */
1421 return ret;
1422 }
1423 goto forward_to_l1;
1424 } else {
1425 /* We found a pte -> check permissions */
1426 if (dsisr & DSISR_ISSTORE) {
1427 /* Can we write? */
1428 if (!gpte_p->may_write) {
1429 flags |= DSISR_PROTFAULT;
1430 goto forward_to_l1;
1431 }
1432 } else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1433 /* Can we execute? */
1434 if (!gpte_p->may_execute) {
1435 flags |= SRR1_ISI_N_G_OR_CIP;
1436 goto forward_to_l1;
1437 }
1438 } else {
1439 /* Can we read? */
1440 if (!gpte_p->may_read && !gpte_p->may_write) {
1441 flags |= DSISR_PROTFAULT;
1442 goto forward_to_l1;
1443 }
1444 }
1445 }
1446
1447 return 0;
1448
1449 forward_to_l1:
1450 vcpu->arch.fault_dsisr = flags;
1451 if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1452 vcpu->arch.shregs.msr &= SRR1_MSR_BITS;
1453 vcpu->arch.shregs.msr |= flags;
1454 }
1455 return RESUME_HOST;
1456 }
1457
kvmhv_handle_nested_set_rc(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,struct kvmppc_pte gpte,unsigned long dsisr)1458 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
1459 struct kvm_nested_guest *gp,
1460 unsigned long n_gpa,
1461 struct kvmppc_pte gpte,
1462 unsigned long dsisr)
1463 {
1464 struct kvm *kvm = vcpu->kvm;
1465 bool writing = !!(dsisr & DSISR_ISSTORE);
1466 u64 pgflags;
1467 long ret;
1468
1469 /* Are the rc bits set in the L1 partition scoped pte? */
1470 pgflags = _PAGE_ACCESSED;
1471 if (writing)
1472 pgflags |= _PAGE_DIRTY;
1473 if (pgflags & ~gpte.rc)
1474 return RESUME_HOST;
1475
1476 spin_lock(&kvm->mmu_lock);
1477 /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
1478 ret = kvmppc_hv_handle_set_rc(kvm, false, writing,
1479 gpte.raddr, kvm->arch.lpid);
1480 if (!ret) {
1481 ret = -EINVAL;
1482 goto out_unlock;
1483 }
1484
1485 /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
1486 ret = kvmppc_hv_handle_set_rc(kvm, true, writing,
1487 n_gpa, gp->l1_lpid);
1488 if (!ret)
1489 ret = -EINVAL;
1490 else
1491 ret = 0;
1492
1493 out_unlock:
1494 spin_unlock(&kvm->mmu_lock);
1495 return ret;
1496 }
1497
kvmppc_radix_level_to_shift(int level)1498 static inline int kvmppc_radix_level_to_shift(int level)
1499 {
1500 switch (level) {
1501 case 2:
1502 return PUD_SHIFT;
1503 case 1:
1504 return PMD_SHIFT;
1505 default:
1506 return PAGE_SHIFT;
1507 }
1508 }
1509
kvmppc_radix_shift_to_level(int shift)1510 static inline int kvmppc_radix_shift_to_level(int shift)
1511 {
1512 if (shift == PUD_SHIFT)
1513 return 2;
1514 if (shift == PMD_SHIFT)
1515 return 1;
1516 if (shift == PAGE_SHIFT)
1517 return 0;
1518 WARN_ON_ONCE(1);
1519 return 0;
1520 }
1521
1522 /* called with gp->tlb_lock held */
__kvmhv_nested_page_fault(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp)1523 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
1524 struct kvm_nested_guest *gp)
1525 {
1526 struct kvm *kvm = vcpu->kvm;
1527 struct kvm_memory_slot *memslot;
1528 struct rmap_nested *n_rmap;
1529 struct kvmppc_pte gpte;
1530 pte_t pte, *pte_p;
1531 unsigned long mmu_seq;
1532 unsigned long dsisr = vcpu->arch.fault_dsisr;
1533 unsigned long ea = vcpu->arch.fault_dar;
1534 unsigned long *rmapp;
1535 unsigned long n_gpa, gpa, gfn, perm = 0UL;
1536 unsigned int shift, l1_shift, level;
1537 bool writing = !!(dsisr & DSISR_ISSTORE);
1538 long int ret;
1539
1540 if (!gp->l1_gr_to_hr) {
1541 kvmhv_update_ptbl_cache(gp);
1542 if (!gp->l1_gr_to_hr)
1543 return RESUME_HOST;
1544 }
1545
1546 /* Convert the nested guest real address into a L1 guest real address */
1547
1548 n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
1549 if (!(dsisr & DSISR_PRTABLE_FAULT))
1550 n_gpa |= ea & 0xFFF;
1551 ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
1552
1553 /*
1554 * If the hardware found a translation but we don't now have a usable
1555 * translation in the l1 partition-scoped tree, remove the shadow pte
1556 * and let the guest retry.
1557 */
1558 if (ret == RESUME_HOST &&
1559 (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
1560 DSISR_BAD_COPYPASTE)))
1561 goto inval;
1562 if (ret)
1563 return ret;
1564
1565 /* Failed to set the reference/change bits */
1566 if (dsisr & DSISR_SET_RC) {
1567 ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
1568 if (ret == RESUME_HOST)
1569 return ret;
1570 if (ret)
1571 goto inval;
1572 dsisr &= ~DSISR_SET_RC;
1573 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1574 DSISR_PROTFAULT)))
1575 return RESUME_GUEST;
1576 }
1577
1578 /*
1579 * We took an HISI or HDSI while we were running a nested guest which
1580 * means we have no partition scoped translation for that. This means
1581 * we need to insert a pte for the mapping into our shadow_pgtable.
1582 */
1583
1584 l1_shift = gpte.page_shift;
1585 if (l1_shift < PAGE_SHIFT) {
1586 /* We don't support l1 using a page size smaller than our own */
1587 pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
1588 l1_shift, PAGE_SHIFT);
1589 return -EINVAL;
1590 }
1591 gpa = gpte.raddr;
1592 gfn = gpa >> PAGE_SHIFT;
1593
1594 /* 1. Get the corresponding host memslot */
1595
1596 memslot = gfn_to_memslot(kvm, gfn);
1597 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
1598 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
1599 /* unusual error -> reflect to the guest as a DSI */
1600 kvmppc_core_queue_data_storage(vcpu,
1601 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1602 ea, dsisr);
1603 return RESUME_GUEST;
1604 }
1605
1606 /* passthrough of emulated MMIO case */
1607 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
1608 }
1609 if (memslot->flags & KVM_MEM_READONLY) {
1610 if (writing) {
1611 /* Give the guest a DSI */
1612 kvmppc_core_queue_data_storage(vcpu,
1613 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1614 ea, DSISR_ISSTORE | DSISR_PROTFAULT);
1615 return RESUME_GUEST;
1616 }
1617 }
1618
1619 /* 2. Find the host pte for this L1 guest real address */
1620
1621 /* Used to check for invalidations in progress */
1622 mmu_seq = kvm->mmu_invalidate_seq;
1623 smp_rmb();
1624
1625 /* See if can find translation in our partition scoped tables for L1 */
1626 pte = __pte(0);
1627 spin_lock(&kvm->mmu_lock);
1628 pte_p = find_kvm_secondary_pte(kvm, gpa, &shift);
1629 if (!shift)
1630 shift = PAGE_SHIFT;
1631 if (pte_p)
1632 pte = *pte_p;
1633 spin_unlock(&kvm->mmu_lock);
1634
1635 if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
1636 /* No suitable pte found -> try to insert a mapping */
1637 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
1638 writing, &pte, &level);
1639 if (ret == -EAGAIN)
1640 return RESUME_GUEST;
1641 else if (ret)
1642 return ret;
1643 shift = kvmppc_radix_level_to_shift(level);
1644 }
1645 /* Align gfn to the start of the page */
1646 gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT;
1647
1648 /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
1649
1650 /* The permissions is the combination of the host and l1 guest ptes */
1651 perm |= gpte.may_read ? 0UL : _PAGE_READ;
1652 perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
1653 perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
1654 /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */
1655 perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED;
1656 perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY;
1657 pte = __pte(pte_val(pte) & ~perm);
1658
1659 /* What size pte can we insert? */
1660 if (shift > l1_shift) {
1661 u64 mask;
1662 unsigned int actual_shift = PAGE_SHIFT;
1663 if (PMD_SHIFT < l1_shift)
1664 actual_shift = PMD_SHIFT;
1665 mask = (1UL << shift) - (1UL << actual_shift);
1666 pte = __pte(pte_val(pte) | (gpa & mask));
1667 shift = actual_shift;
1668 }
1669 level = kvmppc_radix_shift_to_level(shift);
1670 n_gpa &= ~((1UL << shift) - 1);
1671
1672 /* 4. Insert the pte into our shadow_pgtable */
1673
1674 n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
1675 if (!n_rmap)
1676 return RESUME_GUEST; /* Let the guest try again */
1677 n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
1678 (((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
1679 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1680 ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
1681 mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
1682 kfree(n_rmap);
1683 if (ret == -EAGAIN)
1684 ret = RESUME_GUEST; /* Let the guest try again */
1685
1686 return ret;
1687
1688 inval:
1689 kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
1690 return RESUME_GUEST;
1691 }
1692
kvmhv_nested_page_fault(struct kvm_vcpu * vcpu)1693 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
1694 {
1695 struct kvm_nested_guest *gp = vcpu->arch.nested;
1696 long int ret;
1697
1698 mutex_lock(&gp->tlb_lock);
1699 ret = __kvmhv_nested_page_fault(vcpu, gp);
1700 mutex_unlock(&gp->tlb_lock);
1701 return ret;
1702 }
1703
kvmhv_nested_next_lpid(struct kvm * kvm,int lpid)1704 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
1705 {
1706 int ret = lpid + 1;
1707
1708 spin_lock(&kvm->mmu_lock);
1709 if (!idr_get_next(&kvm->arch.kvm_nested_guest_idr, &ret))
1710 ret = -1;
1711 spin_unlock(&kvm->mmu_lock);
1712
1713 return ret;
1714 }
1715