1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Common boot and setup code for both 32-bit and 64-bit.
4 * Extracted from arch/powerpc/kernel/setup_64.c.
5 *
6 * Copyright (C) 2001 PPC64 Team, IBM Corp
7 */
8
9 #undef DEBUG
10
11 #include <linux/export.h>
12 #include <linux/panic_notifier.h>
13 #include <linux/string.h>
14 #include <linux/sched.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/reboot.h>
18 #include <linux/delay.h>
19 #include <linux/initrd.h>
20 #include <linux/platform_device.h>
21 #include <linux/printk.h>
22 #include <linux/seq_file.h>
23 #include <linux/ioport.h>
24 #include <linux/console.h>
25 #include <linux/root_dev.h>
26 #include <linux/cpu.h>
27 #include <linux/unistd.h>
28 #include <linux/seq_buf.h>
29 #include <linux/serial.h>
30 #include <linux/serial_8250.h>
31 #include <linux/percpu.h>
32 #include <linux/memblock.h>
33 #include <linux/of.h>
34 #include <linux/of_fdt.h>
35 #include <linux/of_irq.h>
36 #include <linux/hugetlb.h>
37 #include <linux/pgtable.h>
38 #include <asm/io.h>
39 #include <asm/paca.h>
40 #include <asm/processor.h>
41 #include <asm/vdso_datapage.h>
42 #include <asm/smp.h>
43 #include <asm/elf.h>
44 #include <asm/machdep.h>
45 #include <asm/time.h>
46 #include <asm/cputable.h>
47 #include <asm/sections.h>
48 #include <asm/firmware.h>
49 #include <asm/btext.h>
50 #include <asm/nvram.h>
51 #include <asm/setup.h>
52 #include <asm/rtas.h>
53 #include <asm/iommu.h>
54 #include <asm/serial.h>
55 #include <asm/cache.h>
56 #include <asm/page.h>
57 #include <asm/mmu.h>
58 #include <asm/xmon.h>
59 #include <asm/cputhreads.h>
60 #include <mm/mmu_decl.h>
61 #include <asm/archrandom.h>
62 #include <asm/fadump.h>
63 #include <asm/udbg.h>
64 #include <asm/hugetlb.h>
65 #include <asm/livepatch.h>
66 #include <asm/mmu_context.h>
67 #include <asm/cpu_has_feature.h>
68 #include <asm/kasan.h>
69 #include <asm/mce.h>
70 #include <asm/systemcfg.h>
71
72 #include "setup.h"
73
74 #ifdef DEBUG
75 #define DBG(fmt...) udbg_printf(fmt)
76 #else
77 #define DBG(fmt...)
78 #endif
79
80 /* The main machine-dep calls structure
81 */
82 struct machdep_calls ppc_md;
83 EXPORT_SYMBOL(ppc_md);
84 struct machdep_calls *machine_id;
85 EXPORT_SYMBOL(machine_id);
86
87 int boot_cpuid = -1;
88 EXPORT_SYMBOL_GPL(boot_cpuid);
89 int __initdata boot_core_hwid = -1;
90
91 #ifdef CONFIG_PPC64
92 int boot_cpu_hwid = -1;
93 #endif
94
95 /*
96 * These are used in binfmt_elf.c to put aux entries on the stack
97 * for each elf executable being started.
98 */
99 int dcache_bsize;
100 int icache_bsize;
101
102 /* Variables required to store legacy IO irq routing */
103 int of_i8042_kbd_irq;
104 EXPORT_SYMBOL_GPL(of_i8042_kbd_irq);
105 int of_i8042_aux_irq;
106 EXPORT_SYMBOL_GPL(of_i8042_aux_irq);
107
108 #ifdef __DO_IRQ_CANON
109 /* XXX should go elsewhere eventually */
110 int ppc_do_canonicalize_irqs;
111 EXPORT_SYMBOL(ppc_do_canonicalize_irqs);
112 #endif
113
114 #ifdef CONFIG_CRASH_DUMP
115 /* This keeps a track of which one is the crashing cpu. */
116 int crashing_cpu = -1;
117 #endif
118
119 /* also used by kexec */
machine_shutdown(void)120 void machine_shutdown(void)
121 {
122 /*
123 * if fadump is active, cleanup the fadump registration before we
124 * shutdown.
125 */
126 fadump_cleanup();
127
128 if (ppc_md.machine_shutdown)
129 ppc_md.machine_shutdown();
130 }
131
machine_hang(void)132 static void machine_hang(void)
133 {
134 pr_emerg("System Halted, OK to turn off power\n");
135 local_irq_disable();
136 while (1)
137 ;
138 }
139
machine_restart(char * cmd)140 void machine_restart(char *cmd)
141 {
142 machine_shutdown();
143 if (ppc_md.restart)
144 ppc_md.restart(cmd);
145
146 smp_send_stop();
147
148 do_kernel_restart(cmd);
149 mdelay(1000);
150
151 machine_hang();
152 }
153
machine_power_off(void)154 void machine_power_off(void)
155 {
156 machine_shutdown();
157 do_kernel_power_off();
158 smp_send_stop();
159 machine_hang();
160 }
161 /* Used by the G5 thermal driver */
162 EXPORT_SYMBOL_GPL(machine_power_off);
163
164 void (*pm_power_off)(void);
165 EXPORT_SYMBOL_GPL(pm_power_off);
166
arch_get_random_seed_longs(unsigned long * v,size_t max_longs)167 size_t __must_check arch_get_random_seed_longs(unsigned long *v, size_t max_longs)
168 {
169 if (max_longs && ppc_md.get_random_seed && ppc_md.get_random_seed(v))
170 return 1;
171 return 0;
172 }
173 EXPORT_SYMBOL(arch_get_random_seed_longs);
174
machine_halt(void)175 void machine_halt(void)
176 {
177 machine_shutdown();
178 if (ppc_md.halt)
179 ppc_md.halt();
180
181 smp_send_stop();
182 machine_hang();
183 }
184
185 #ifdef CONFIG_SMP
186 DEFINE_PER_CPU(unsigned int, cpu_pvr);
187 #endif
188
show_cpuinfo_summary(struct seq_file * m)189 static void show_cpuinfo_summary(struct seq_file *m)
190 {
191 struct device_node *root;
192 const char *model = NULL;
193 unsigned long bogosum = 0;
194 int i;
195
196 if (IS_ENABLED(CONFIG_SMP) && IS_ENABLED(CONFIG_PPC32)) {
197 for_each_online_cpu(i)
198 bogosum += loops_per_jiffy;
199 seq_printf(m, "total bogomips\t: %lu.%02lu\n",
200 bogosum / (500000 / HZ), bogosum / (5000 / HZ) % 100);
201 }
202 seq_printf(m, "timebase\t: %lu\n", ppc_tb_freq);
203 if (ppc_md.name)
204 seq_printf(m, "platform\t: %s\n", ppc_md.name);
205 root = of_find_node_by_path("/");
206 if (root)
207 model = of_get_property(root, "model", NULL);
208 if (model)
209 seq_printf(m, "model\t\t: %s\n", model);
210 of_node_put(root);
211
212 if (ppc_md.show_cpuinfo != NULL)
213 ppc_md.show_cpuinfo(m);
214
215 /* Display the amount of memory */
216 if (IS_ENABLED(CONFIG_PPC32))
217 seq_printf(m, "Memory\t\t: %d MB\n",
218 (unsigned int)(total_memory / (1024 * 1024)));
219 }
220
show_cpuinfo(struct seq_file * m,void * v)221 static int show_cpuinfo(struct seq_file *m, void *v)
222 {
223 unsigned long cpu_id = (unsigned long)v - 1;
224 unsigned int pvr;
225 unsigned long proc_freq;
226 unsigned short maj;
227 unsigned short min;
228
229 #ifdef CONFIG_SMP
230 pvr = per_cpu(cpu_pvr, cpu_id);
231 #else
232 pvr = mfspr(SPRN_PVR);
233 #endif
234 maj = (pvr >> 8) & 0xFF;
235 min = pvr & 0xFF;
236
237 seq_printf(m, "processor\t: %lu\ncpu\t\t: ", cpu_id);
238
239 if (cur_cpu_spec->pvr_mask && cur_cpu_spec->cpu_name)
240 seq_puts(m, cur_cpu_spec->cpu_name);
241 else
242 seq_printf(m, "unknown (%08x)", pvr);
243
244 if (cpu_has_feature(CPU_FTR_ALTIVEC))
245 seq_puts(m, ", altivec supported");
246
247 seq_putc(m, '\n');
248
249 #ifdef CONFIG_TAU
250 if (cpu_has_feature(CPU_FTR_TAU)) {
251 if (IS_ENABLED(CONFIG_TAU_AVERAGE)) {
252 /* more straightforward, but potentially misleading */
253 seq_printf(m, "temperature \t: %u C (uncalibrated)\n",
254 cpu_temp(cpu_id));
255 } else {
256 /* show the actual temp sensor range */
257 u32 temp;
258 temp = cpu_temp_both(cpu_id);
259 seq_printf(m, "temperature \t: %u-%u C (uncalibrated)\n",
260 temp & 0xff, temp >> 16);
261 }
262 }
263 #endif /* CONFIG_TAU */
264
265 /*
266 * Platforms that have variable clock rates, should implement
267 * the method ppc_md.get_proc_freq() that reports the clock
268 * rate of a given cpu. The rest can use ppc_proc_freq to
269 * report the clock rate that is same across all cpus.
270 */
271 if (ppc_md.get_proc_freq)
272 proc_freq = ppc_md.get_proc_freq(cpu_id);
273 else
274 proc_freq = ppc_proc_freq;
275
276 if (proc_freq)
277 seq_printf(m, "clock\t\t: %lu.%06luMHz\n",
278 proc_freq / 1000000, proc_freq % 1000000);
279
280 /* If we are a Freescale core do a simple check so
281 * we don't have to keep adding cases in the future */
282 if (PVR_VER(pvr) & 0x8000) {
283 switch (PVR_VER(pvr)) {
284 case 0x8000: /* 7441/7450/7451, Voyager */
285 case 0x8001: /* 7445/7455, Apollo 6 */
286 case 0x8002: /* 7447/7457, Apollo 7 */
287 case 0x8003: /* 7447A, Apollo 7 PM */
288 case 0x8004: /* 7448, Apollo 8 */
289 case 0x800c: /* 7410, Nitro */
290 maj = ((pvr >> 8) & 0xF);
291 min = PVR_MIN(pvr);
292 break;
293 default: /* e500/book-e */
294 maj = PVR_MAJ(pvr);
295 min = PVR_MIN(pvr);
296 break;
297 }
298 } else {
299 switch (PVR_VER(pvr)) {
300 case 0x1008: /* 740P/750P ?? */
301 maj = ((pvr >> 8) & 0xFF) - 1;
302 min = pvr & 0xFF;
303 break;
304 case 0x004e: /* POWER9 bits 12-15 give chip type */
305 case 0x0080: /* POWER10 bit 12 gives SMT8/4 */
306 maj = (pvr >> 8) & 0x0F;
307 min = pvr & 0xFF;
308 break;
309 default:
310 maj = (pvr >> 8) & 0xFF;
311 min = pvr & 0xFF;
312 break;
313 }
314 }
315
316 seq_printf(m, "revision\t: %hd.%hd (pvr %04x %04x)\n",
317 maj, min, PVR_VER(pvr), PVR_REV(pvr));
318
319 if (IS_ENABLED(CONFIG_PPC32))
320 seq_printf(m, "bogomips\t: %lu.%02lu\n", loops_per_jiffy / (500000 / HZ),
321 (loops_per_jiffy / (5000 / HZ)) % 100);
322
323 seq_putc(m, '\n');
324
325 /* If this is the last cpu, print the summary */
326 if (cpumask_next(cpu_id, cpu_online_mask) >= nr_cpu_ids)
327 show_cpuinfo_summary(m);
328
329 return 0;
330 }
331
c_start(struct seq_file * m,loff_t * pos)332 static void *c_start(struct seq_file *m, loff_t *pos)
333 {
334 if (*pos == 0) /* just in case, cpu 0 is not the first */
335 *pos = cpumask_first(cpu_online_mask);
336 else
337 *pos = cpumask_next(*pos - 1, cpu_online_mask);
338 if ((*pos) < nr_cpu_ids)
339 return (void *)(unsigned long)(*pos + 1);
340 return NULL;
341 }
342
c_next(struct seq_file * m,void * v,loff_t * pos)343 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
344 {
345 (*pos)++;
346 return c_start(m, pos);
347 }
348
c_stop(struct seq_file * m,void * v)349 static void c_stop(struct seq_file *m, void *v)
350 {
351 }
352
353 const struct seq_operations cpuinfo_op = {
354 .start = c_start,
355 .next = c_next,
356 .stop = c_stop,
357 .show = show_cpuinfo,
358 };
359
check_for_initrd(void)360 void __init check_for_initrd(void)
361 {
362 #ifdef CONFIG_BLK_DEV_INITRD
363 DBG(" -> check_for_initrd() initrd_start=0x%lx initrd_end=0x%lx\n",
364 initrd_start, initrd_end);
365
366 /* If we were passed an initrd, set the ROOT_DEV properly if the values
367 * look sensible. If not, clear initrd reference.
368 */
369 if (is_kernel_addr(initrd_start) && is_kernel_addr(initrd_end) &&
370 initrd_end > initrd_start)
371 ROOT_DEV = Root_RAM0;
372 else
373 initrd_start = initrd_end = 0;
374
375 if (initrd_start)
376 pr_info("Found initrd at 0x%lx:0x%lx\n", initrd_start, initrd_end);
377
378 DBG(" <- check_for_initrd()\n");
379 #endif /* CONFIG_BLK_DEV_INITRD */
380 }
381
382 #ifdef CONFIG_SMP
383
384 int threads_per_core, threads_per_subcore, threads_shift __read_mostly;
385 cpumask_t threads_core_mask __read_mostly;
386 EXPORT_SYMBOL_GPL(threads_per_core);
387 EXPORT_SYMBOL_GPL(threads_per_subcore);
388 EXPORT_SYMBOL_GPL(threads_shift);
389 EXPORT_SYMBOL_GPL(threads_core_mask);
390
cpu_init_thread_core_maps(int tpc)391 static void __init cpu_init_thread_core_maps(int tpc)
392 {
393 int i;
394
395 threads_per_core = tpc;
396 threads_per_subcore = tpc;
397 cpumask_clear(&threads_core_mask);
398
399 /* This implementation only supports power of 2 number of threads
400 * for simplicity and performance
401 */
402 threads_shift = ilog2(tpc);
403 BUG_ON(tpc != (1 << threads_shift));
404
405 for (i = 0; i < tpc; i++)
406 cpumask_set_cpu(i, &threads_core_mask);
407
408 printk(KERN_INFO "CPU maps initialized for %d thread%s per core\n",
409 tpc, str_plural(tpc));
410 printk(KERN_DEBUG " (thread shift is %d)\n", threads_shift);
411 }
412
413
414 u32 *cpu_to_phys_id = NULL;
415
assign_threads(unsigned int cpu,unsigned int nthreads,bool present,const __be32 * hw_ids)416 static int assign_threads(unsigned int cpu, unsigned int nthreads, bool present,
417 const __be32 *hw_ids)
418 {
419 for (int i = 0; i < nthreads && cpu < nr_cpu_ids; i++) {
420 __be32 hwid;
421
422 hwid = be32_to_cpu(hw_ids[i]);
423
424 DBG(" thread %d -> cpu %d (hard id %d)\n", i, cpu, hwid);
425
426 set_cpu_present(cpu, present);
427 set_cpu_possible(cpu, true);
428 cpu_to_phys_id[cpu] = hwid;
429 cpu++;
430 }
431
432 return cpu;
433 }
434
435 /**
436 * setup_cpu_maps - initialize the following cpu maps:
437 * cpu_possible_mask
438 * cpu_present_mask
439 *
440 * Having the possible map set up early allows us to restrict allocations
441 * of things like irqstacks to nr_cpu_ids rather than NR_CPUS.
442 *
443 * We do not initialize the online map here; cpus set their own bits in
444 * cpu_online_mask as they come up.
445 *
446 * This function is valid only for Open Firmware systems. finish_device_tree
447 * must be called before using this.
448 *
449 * While we're here, we may as well set the "physical" cpu ids in the paca.
450 *
451 * NOTE: This must match the parsing done in early_init_dt_scan_cpus.
452 */
smp_setup_cpu_maps(void)453 void __init smp_setup_cpu_maps(void)
454 {
455 struct device_node *dn;
456 int cpu = 0;
457 int nthreads = 1;
458
459 DBG("smp_setup_cpu_maps()\n");
460
461 cpu_to_phys_id = memblock_alloc_or_panic(nr_cpu_ids * sizeof(u32),
462 __alignof__(u32));
463
464 for_each_node_by_type(dn, "cpu") {
465 const __be32 *intserv;
466 __be32 cpu_be;
467 int len;
468
469 DBG(" * %pOF...\n", dn);
470
471 intserv = of_get_property(dn, "ibm,ppc-interrupt-server#s",
472 &len);
473 if (intserv) {
474 DBG(" ibm,ppc-interrupt-server#s -> %lu threads\n",
475 (len / sizeof(int)));
476 } else {
477 DBG(" no ibm,ppc-interrupt-server#s -> 1 thread\n");
478 intserv = of_get_property(dn, "reg", &len);
479 if (!intserv) {
480 cpu_be = cpu_to_be32(cpu);
481 /* XXX: what is this? uninitialized?? */
482 intserv = &cpu_be; /* assume logical == phys */
483 len = 4;
484 }
485 }
486
487 nthreads = len / sizeof(int);
488
489 bool avail = of_device_is_available(dn);
490 if (!avail)
491 avail = !of_property_match_string(dn,
492 "enable-method", "spin-table");
493
494 if (boot_core_hwid >= 0) {
495 if (cpu == 0) {
496 pr_info("Skipping CPU node %pOF to allow for boot core.\n", dn);
497 cpu = nthreads;
498 continue;
499 }
500
501 if (be32_to_cpu(intserv[0]) == boot_core_hwid) {
502 pr_info("Renumbered boot core %pOF to logical 0\n", dn);
503 assign_threads(0, nthreads, avail, intserv);
504 of_node_put(dn);
505 break;
506 }
507 } else if (cpu >= nr_cpu_ids) {
508 of_node_put(dn);
509 break;
510 }
511
512 if (cpu < nr_cpu_ids)
513 cpu = assign_threads(cpu, nthreads, avail, intserv);
514 }
515
516 /* If no SMT supported, nthreads is forced to 1 */
517 if (!cpu_has_feature(CPU_FTR_SMT)) {
518 DBG(" SMT disabled ! nthreads forced to 1\n");
519 nthreads = 1;
520 }
521
522 #ifdef CONFIG_PPC64
523 /*
524 * On pSeries LPAR, we need to know how many cpus
525 * could possibly be added to this partition.
526 */
527 if (firmware_has_feature(FW_FEATURE_LPAR) &&
528 (dn = of_find_node_by_path("/rtas"))) {
529 int num_addr_cell, num_size_cell, maxcpus;
530 const __be32 *ireg;
531
532 num_addr_cell = of_n_addr_cells(dn);
533 num_size_cell = of_n_size_cells(dn);
534
535 ireg = of_get_property(dn, "ibm,lrdr-capacity", NULL);
536
537 if (!ireg)
538 goto out;
539
540 maxcpus = be32_to_cpup(ireg + num_addr_cell + num_size_cell);
541
542 /* Double maxcpus for processors which have SMT capability */
543 if (cpu_has_feature(CPU_FTR_SMT))
544 maxcpus *= nthreads;
545
546 if (maxcpus > nr_cpu_ids) {
547 printk(KERN_WARNING
548 "Partition configured for %d cpus, "
549 "operating system maximum is %u.\n",
550 maxcpus, nr_cpu_ids);
551 maxcpus = nr_cpu_ids;
552 } else
553 printk(KERN_INFO "Partition configured for %d cpus.\n",
554 maxcpus);
555
556 for (cpu = 0; cpu < maxcpus; cpu++)
557 set_cpu_possible(cpu, true);
558 out:
559 of_node_put(dn);
560 }
561 #endif
562 #ifdef CONFIG_PPC64_PROC_SYSTEMCFG
563 systemcfg->processorCount = num_present_cpus();
564 #endif /* CONFIG_PPC64 */
565
566 /* Initialize CPU <=> thread mapping/
567 *
568 * WARNING: We assume that the number of threads is the same for
569 * every CPU in the system. If that is not the case, then some code
570 * here will have to be reworked
571 */
572 cpu_init_thread_core_maps(nthreads);
573
574 /* Now that possible cpus are set, set nr_cpu_ids for later use */
575 setup_nr_cpu_ids();
576
577 free_unused_pacas();
578 }
579 #endif /* CONFIG_SMP */
580
581 #ifdef CONFIG_PCSPKR_PLATFORM
add_pcspkr(void)582 static __init int add_pcspkr(void)
583 {
584 struct device_node *np;
585 struct platform_device *pd;
586 int ret;
587
588 np = of_find_compatible_node(NULL, NULL, "pnpPNP,100");
589 of_node_put(np);
590 if (!np)
591 return -ENODEV;
592
593 pd = platform_device_alloc("pcspkr", -1);
594 if (!pd)
595 return -ENOMEM;
596
597 ret = platform_device_add(pd);
598 if (ret)
599 platform_device_put(pd);
600
601 return ret;
602 }
603 device_initcall(add_pcspkr);
604 #endif /* CONFIG_PCSPKR_PLATFORM */
605
606 static char ppc_hw_desc_buf[128] __initdata;
607
608 struct seq_buf ppc_hw_desc __initdata = {
609 .buffer = ppc_hw_desc_buf,
610 .size = sizeof(ppc_hw_desc_buf),
611 .len = 0,
612 };
613
probe_machine(void)614 static __init void probe_machine(void)
615 {
616 extern struct machdep_calls __machine_desc_start;
617 extern struct machdep_calls __machine_desc_end;
618 unsigned int i;
619
620 /*
621 * Iterate all ppc_md structures until we find the proper
622 * one for the current machine type
623 */
624 DBG("Probing machine type ...\n");
625
626 /*
627 * Check ppc_md is empty, if not we have a bug, ie, we setup an
628 * entry before probe_machine() which will be overwritten
629 */
630 for (i = 0; i < (sizeof(ppc_md) / sizeof(void *)); i++) {
631 if (((void **)&ppc_md)[i]) {
632 printk(KERN_ERR "Entry %d in ppc_md non empty before"
633 " machine probe !\n", i);
634 }
635 }
636
637 for (machine_id = &__machine_desc_start;
638 machine_id < &__machine_desc_end;
639 machine_id++) {
640 DBG(" %s ...\n", machine_id->name);
641 if (machine_id->compatible && !of_machine_is_compatible(machine_id->compatible))
642 continue;
643 if (machine_id->compatibles && !of_machine_compatible_match(machine_id->compatibles))
644 continue;
645 memcpy(&ppc_md, machine_id, sizeof(struct machdep_calls));
646 if (ppc_md.probe && !ppc_md.probe())
647 continue;
648 DBG(" %s match !\n", machine_id->name);
649 break;
650 }
651 /* What can we do if we didn't find ? */
652 if (machine_id >= &__machine_desc_end) {
653 pr_err("No suitable machine description found !\n");
654 for (;;);
655 }
656
657 // Append the machine name to other info we've gathered
658 seq_buf_puts(&ppc_hw_desc, ppc_md.name);
659
660 // Set the generic hardware description shown in oopses
661 dump_stack_set_arch_desc(ppc_hw_desc.buffer);
662
663 pr_info("Hardware name: %s\n", ppc_hw_desc.buffer);
664 }
665
666 /* Match a class of boards, not a specific device configuration. */
check_legacy_ioport(unsigned long base_port)667 int check_legacy_ioport(unsigned long base_port)
668 {
669 struct device_node *parent, *np = NULL;
670 int ret = -ENODEV;
671
672 switch(base_port) {
673 case I8042_DATA_REG:
674 if (!(np = of_find_compatible_node(NULL, NULL, "pnpPNP,303")))
675 np = of_find_compatible_node(NULL, NULL, "pnpPNP,f03");
676 if (np) {
677 parent = of_get_parent(np);
678
679 of_i8042_kbd_irq = irq_of_parse_and_map(parent, 0);
680 if (!of_i8042_kbd_irq)
681 of_i8042_kbd_irq = 1;
682
683 of_i8042_aux_irq = irq_of_parse_and_map(parent, 1);
684 if (!of_i8042_aux_irq)
685 of_i8042_aux_irq = 12;
686
687 of_node_put(np);
688 np = parent;
689 break;
690 }
691 np = of_find_node_by_type(NULL, "8042");
692 /* Pegasos has no device_type on its 8042 node, look for the
693 * name instead */
694 if (!np)
695 np = of_find_node_by_name(NULL, "8042");
696 if (np) {
697 of_i8042_kbd_irq = 1;
698 of_i8042_aux_irq = 12;
699 }
700 break;
701 case FDC_BASE: /* FDC1 */
702 np = of_find_node_by_type(NULL, "fdc");
703 break;
704 default:
705 /* ipmi is supposed to fail here */
706 break;
707 }
708 if (!np)
709 return ret;
710 parent = of_get_parent(np);
711 if (parent) {
712 if (of_node_is_type(parent, "isa"))
713 ret = 0;
714 of_node_put(parent);
715 }
716 of_node_put(np);
717 return ret;
718 }
719 EXPORT_SYMBOL(check_legacy_ioport);
720
721 /*
722 * Panic notifiers setup
723 *
724 * We have 3 notifiers for powerpc, each one from a different "nature":
725 *
726 * - ppc_panic_fadump_handler() is a hypervisor notifier, which hard-disables
727 * IRQs and deal with the Firmware-Assisted dump, when it is configured;
728 * should run early in the panic path.
729 *
730 * - dump_kernel_offset() is an informative notifier, just showing the KASLR
731 * offset if we have RANDOMIZE_BASE set.
732 *
733 * - ppc_panic_platform_handler() is a low-level handler that's registered
734 * only if the platform wishes to perform final actions in the panic path,
735 * hence it should run late and might not even return. Currently, only
736 * pseries and ps3 platforms register callbacks.
737 */
ppc_panic_fadump_handler(struct notifier_block * this,unsigned long event,void * ptr)738 static int ppc_panic_fadump_handler(struct notifier_block *this,
739 unsigned long event, void *ptr)
740 {
741 /*
742 * panic does a local_irq_disable, but we really
743 * want interrupts to be hard disabled.
744 */
745 hard_irq_disable();
746
747 /*
748 * If firmware-assisted dump has been registered then trigger
749 * its callback and let the firmware handles everything else.
750 */
751 crash_fadump(NULL, ptr);
752
753 return NOTIFY_DONE;
754 }
755
dump_kernel_offset(struct notifier_block * self,unsigned long v,void * p)756 static int dump_kernel_offset(struct notifier_block *self, unsigned long v,
757 void *p)
758 {
759 pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
760 kaslr_offset(), KERNELBASE);
761
762 return NOTIFY_DONE;
763 }
764
ppc_panic_platform_handler(struct notifier_block * this,unsigned long event,void * ptr)765 static int ppc_panic_platform_handler(struct notifier_block *this,
766 unsigned long event, void *ptr)
767 {
768 /*
769 * This handler is only registered if we have a panic callback
770 * on ppc_md, hence NULL check is not needed.
771 * Also, it may not return, so it runs really late on panic path.
772 */
773 ppc_md.panic(ptr);
774
775 return NOTIFY_DONE;
776 }
777
778 static struct notifier_block ppc_fadump_block = {
779 .notifier_call = ppc_panic_fadump_handler,
780 .priority = INT_MAX, /* run early, to notify the firmware ASAP */
781 };
782
783 static struct notifier_block kernel_offset_notifier = {
784 .notifier_call = dump_kernel_offset,
785 };
786
787 static struct notifier_block ppc_panic_block = {
788 .notifier_call = ppc_panic_platform_handler,
789 .priority = INT_MIN, /* may not return; must be done last */
790 };
791
setup_panic(void)792 void __init setup_panic(void)
793 {
794 /* Hard-disables IRQs + deal with FW-assisted dump (fadump) */
795 atomic_notifier_chain_register(&panic_notifier_list,
796 &ppc_fadump_block);
797
798 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0)
799 atomic_notifier_chain_register(&panic_notifier_list,
800 &kernel_offset_notifier);
801
802 /* Low-level platform-specific routines that should run on panic */
803 if (ppc_md.panic)
804 atomic_notifier_chain_register(&panic_notifier_list,
805 &ppc_panic_block);
806 }
807
808 #ifdef CONFIG_CHECK_CACHE_COHERENCY
809 /*
810 * For platforms that have configurable cache-coherency. This function
811 * checks that the cache coherency setting of the kernel matches the setting
812 * left by the firmware, as indicated in the device tree. Since a mismatch
813 * will eventually result in DMA failures, we print * and error and call
814 * BUG() in that case.
815 */
816
817 #define KERNEL_COHERENCY (!IS_ENABLED(CONFIG_NOT_COHERENT_CACHE))
818
check_cache_coherency(void)819 static int __init check_cache_coherency(void)
820 {
821 struct device_node *np;
822 const void *prop;
823 bool devtree_coherency;
824
825 np = of_find_node_by_path("/");
826 prop = of_get_property(np, "coherency-off", NULL);
827 of_node_put(np);
828
829 devtree_coherency = prop ? false : true;
830
831 if (devtree_coherency != KERNEL_COHERENCY) {
832 printk(KERN_ERR
833 "kernel coherency:%s != device tree_coherency:%s\n",
834 str_on_off(KERNEL_COHERENCY),
835 str_on_off(devtree_coherency));
836 BUG();
837 }
838
839 return 0;
840 }
841
842 late_initcall(check_cache_coherency);
843 #endif /* CONFIG_CHECK_CACHE_COHERENCY */
844
ppc_printk_progress(char * s,unsigned short hex)845 void ppc_printk_progress(char *s, unsigned short hex)
846 {
847 pr_info("%s\n", s);
848 }
849
print_system_info(void)850 static __init void print_system_info(void)
851 {
852 pr_info("-----------------------------------------------------\n");
853 pr_info("phys_mem_size = 0x%llx\n",
854 (unsigned long long)memblock_phys_mem_size());
855
856 pr_info("dcache_bsize = 0x%x\n", dcache_bsize);
857 pr_info("icache_bsize = 0x%x\n", icache_bsize);
858
859 pr_info("cpu_features = 0x%016lx\n", cur_cpu_spec->cpu_features);
860 pr_info(" possible = 0x%016lx\n",
861 (unsigned long)CPU_FTRS_POSSIBLE);
862 pr_info(" always = 0x%016lx\n",
863 (unsigned long)CPU_FTRS_ALWAYS);
864 pr_info("cpu_user_features = 0x%08x 0x%08x\n",
865 cur_cpu_spec->cpu_user_features,
866 cur_cpu_spec->cpu_user_features2);
867 pr_info("mmu_features = 0x%08x\n", cur_cpu_spec->mmu_features);
868 #ifdef CONFIG_PPC64
869 pr_info("firmware_features = 0x%016lx\n", powerpc_firmware_features);
870 #ifdef CONFIG_PPC_BOOK3S
871 pr_info("vmalloc start = 0x%lx\n", KERN_VIRT_START);
872 pr_info("IO start = 0x%lx\n", KERN_IO_START);
873 pr_info("vmemmap start = 0x%lx\n", (unsigned long)vmemmap);
874 #endif
875 #endif
876
877 if (!early_radix_enabled())
878 print_system_hash_info();
879
880 if (PHYSICAL_START > 0)
881 pr_info("physical_start = 0x%llx\n",
882 (unsigned long long)PHYSICAL_START);
883 pr_info("-----------------------------------------------------\n");
884 }
885
886 #ifdef CONFIG_SMP
smp_setup_pacas(void)887 static void __init smp_setup_pacas(void)
888 {
889 int cpu;
890
891 for_each_possible_cpu(cpu) {
892 if (cpu == smp_processor_id())
893 continue;
894 allocate_paca(cpu);
895 set_hard_smp_processor_id(cpu, cpu_to_phys_id[cpu]);
896 }
897
898 memblock_free(cpu_to_phys_id, nr_cpu_ids * sizeof(u32));
899 cpu_to_phys_id = NULL;
900 }
901 #endif
902
903 /*
904 * Called into from start_kernel this initializes memblock, which is used
905 * to manage page allocation until mem_init is called.
906 */
setup_arch(char ** cmdline_p)907 void __init setup_arch(char **cmdline_p)
908 {
909 kasan_init();
910
911 *cmdline_p = boot_command_line;
912
913 /* Set a half-reasonable default so udelay does something sensible */
914 loops_per_jiffy = 500000000 / HZ;
915
916 /* Unflatten the device-tree passed by prom_init or kexec */
917 unflatten_device_tree();
918
919 /*
920 * Initialize cache line/block info from device-tree (on ppc64) or
921 * just cputable (on ppc32).
922 */
923 initialize_cache_info();
924
925 /* Initialize RTAS if available. */
926 rtas_initialize();
927
928 /* Check if we have an initrd provided via the device-tree. */
929 check_for_initrd();
930
931 /* Probe the machine type, establish ppc_md. */
932 probe_machine();
933
934 /* Setup panic notifier if requested by the platform. */
935 setup_panic();
936
937 /*
938 * Configure ppc_md.power_save (ppc32 only, 64-bit machines do
939 * it from their respective probe() function.
940 */
941 setup_power_save();
942
943 /* Discover standard serial ports. */
944 find_legacy_serial_ports();
945
946 /* Register early console with the printk subsystem. */
947 register_early_udbg_console();
948
949 /* Setup the various CPU maps based on the device-tree. */
950 smp_setup_cpu_maps();
951
952 /* Initialize xmon. */
953 xmon_setup();
954
955 /* Check the SMT related command line arguments (ppc64). */
956 check_smt_enabled();
957
958 /* Parse memory topology */
959 mem_topology_setup();
960 /* Set max_mapnr before paging_init() */
961 set_max_mapnr(max_pfn);
962 high_memory = (void *)__va(max_low_pfn * PAGE_SIZE);
963
964 /*
965 * Release secondary cpus out of their spinloops at 0x60 now that
966 * we can map physical -> logical CPU ids.
967 *
968 * Freescale Book3e parts spin in a loop provided by firmware,
969 * so smp_release_cpus() does nothing for them.
970 */
971 #ifdef CONFIG_SMP
972 smp_setup_pacas();
973
974 /* On BookE, setup per-core TLB data structures. */
975 setup_tlb_core_data();
976 #endif
977
978 /* Print various info about the machine that has been gathered so far. */
979 print_system_info();
980
981 klp_init_thread_info(&init_task);
982
983 setup_initial_init_mm(_stext, _etext, _edata, _end);
984 /* sched_init() does the mmgrab(&init_mm) for the primary CPU */
985 VM_WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(&init_mm)));
986 cpumask_set_cpu(smp_processor_id(), mm_cpumask(&init_mm));
987 inc_mm_active_cpus(&init_mm);
988 mm_iommu_init(&init_mm);
989
990 irqstack_early_init();
991 exc_lvl_early_init();
992 emergency_stack_init();
993
994 mce_init();
995 smp_release_cpus();
996
997 initmem_init();
998
999 /*
1000 * Reserve large chunks of memory for use by CMA for fadump, KVM and
1001 * hugetlb. These must be called after initmem_init(), so that
1002 * pageblock_order is initialised.
1003 */
1004 fadump_cma_init();
1005 kvm_cma_reserve();
1006 gigantic_hugetlb_cma_reserve();
1007
1008 early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT);
1009
1010 if (ppc_md.setup_arch)
1011 ppc_md.setup_arch();
1012
1013 setup_barrier_nospec();
1014 setup_spectre_v2();
1015
1016 paging_init();
1017
1018 /* Initialize the MMU context management stuff. */
1019 mmu_context_init();
1020
1021 /* Interrupt code needs to be 64K-aligned. */
1022 if (IS_ENABLED(CONFIG_PPC64) && (unsigned long)_stext & 0xffff)
1023 panic("Kernelbase not 64K-aligned (0x%lx)!\n",
1024 (unsigned long)_stext);
1025 }
1026