1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <[email protected]>
5 *
6 * Derived from arch/arm/kvm/handle_exit.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <[email protected]>
9 */
10
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13
14 #include <asm/esr.h>
15 #include <asm/exception.h>
16 #include <asm/kvm_asm.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_mmu.h>
19 #include <asm/kvm_nested.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/stacktrace/nvhe.h>
22 #include <asm/traps.h>
23
24 #include <kvm/arm_hypercalls.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace_handle_exit.h"
28
29 typedef int (*exit_handle_fn)(struct kvm_vcpu *);
30
kvm_handle_guest_serror(struct kvm_vcpu * vcpu,u64 esr)31 static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr)
32 {
33 if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr))
34 kvm_inject_vabt(vcpu);
35 }
36
handle_hvc(struct kvm_vcpu * vcpu)37 static int handle_hvc(struct kvm_vcpu *vcpu)
38 {
39 trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0),
40 kvm_vcpu_hvc_get_imm(vcpu));
41 vcpu->stat.hvc_exit_stat++;
42
43 /* Forward hvc instructions to the virtual EL2 if the guest has EL2. */
44 if (vcpu_has_nv(vcpu)) {
45 if (vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_HCD)
46 kvm_inject_undefined(vcpu);
47 else
48 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
49
50 return 1;
51 }
52
53 return kvm_smccc_call_handler(vcpu);
54 }
55
handle_smc(struct kvm_vcpu * vcpu)56 static int handle_smc(struct kvm_vcpu *vcpu)
57 {
58 /*
59 * Forward this trapped smc instruction to the virtual EL2 if
60 * the guest has asked for it.
61 */
62 if (forward_smc_trap(vcpu))
63 return 1;
64
65 /*
66 * "If an SMC instruction executed at Non-secure EL1 is
67 * trapped to EL2 because HCR_EL2.TSC is 1, the exception is a
68 * Trap exception, not a Secure Monitor Call exception [...]"
69 *
70 * We need to advance the PC after the trap, as it would
71 * otherwise return to the same address. Furthermore, pre-incrementing
72 * the PC before potentially exiting to userspace maintains the same
73 * abstraction for both SMCs and HVCs.
74 */
75 kvm_incr_pc(vcpu);
76
77 /*
78 * SMCs with a nonzero immediate are reserved according to DEN0028E 2.9
79 * "SMC and HVC immediate value".
80 */
81 if (kvm_vcpu_hvc_get_imm(vcpu)) {
82 vcpu_set_reg(vcpu, 0, ~0UL);
83 return 1;
84 }
85
86 /*
87 * If imm is zero then it is likely an SMCCC call.
88 *
89 * Note that on ARMv8.3, even if EL3 is not implemented, SMC executed
90 * at Non-secure EL1 is trapped to EL2 if HCR_EL2.TSC==1, rather than
91 * being treated as UNDEFINED.
92 */
93 return kvm_smccc_call_handler(vcpu);
94 }
95
96 /*
97 * This handles the cases where the system does not support FP/ASIMD or when
98 * we are running nested virtualization and the guest hypervisor is trapping
99 * FP/ASIMD accesses by its guest guest.
100 *
101 * All other handling of guest vs. host FP/ASIMD register state is handled in
102 * fixup_guest_exit().
103 */
kvm_handle_fpasimd(struct kvm_vcpu * vcpu)104 static int kvm_handle_fpasimd(struct kvm_vcpu *vcpu)
105 {
106 if (guest_hyp_fpsimd_traps_enabled(vcpu))
107 return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
108
109 /* This is the case when the system doesn't support FP/ASIMD. */
110 kvm_inject_undefined(vcpu);
111 return 1;
112 }
113
114 /**
115 * kvm_handle_wfx - handle a wait-for-interrupts or wait-for-event
116 * instruction executed by a guest
117 *
118 * @vcpu: the vcpu pointer
119 *
120 * WFE[T]: Yield the CPU and come back to this vcpu when the scheduler
121 * decides to.
122 * WFI: Simply call kvm_vcpu_halt(), which will halt execution of
123 * world-switches and schedule other host processes until there is an
124 * incoming IRQ or FIQ to the VM.
125 * WFIT: Same as WFI, with a timed wakeup implemented as a background timer
126 *
127 * WF{I,E}T can immediately return if the deadline has already expired.
128 */
kvm_handle_wfx(struct kvm_vcpu * vcpu)129 static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
130 {
131 u64 esr = kvm_vcpu_get_esr(vcpu);
132
133 if (esr & ESR_ELx_WFx_ISS_WFE) {
134 trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true);
135 vcpu->stat.wfe_exit_stat++;
136 } else {
137 trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false);
138 vcpu->stat.wfi_exit_stat++;
139 }
140
141 if (esr & ESR_ELx_WFx_ISS_WFxT) {
142 if (esr & ESR_ELx_WFx_ISS_RV) {
143 u64 val, now;
144
145 now = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_TIMER_CNT);
146 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
147
148 if (now >= val)
149 goto out;
150 } else {
151 /* Treat WFxT as WFx if RN is invalid */
152 esr &= ~ESR_ELx_WFx_ISS_WFxT;
153 }
154 }
155
156 if (esr & ESR_ELx_WFx_ISS_WFE) {
157 kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu));
158 } else {
159 if (esr & ESR_ELx_WFx_ISS_WFxT)
160 vcpu_set_flag(vcpu, IN_WFIT);
161
162 kvm_vcpu_wfi(vcpu);
163 }
164 out:
165 kvm_incr_pc(vcpu);
166
167 return 1;
168 }
169
170 /**
171 * kvm_handle_guest_debug - handle a debug exception instruction
172 *
173 * @vcpu: the vcpu pointer
174 *
175 * We route all debug exceptions through the same handler. If both the
176 * guest and host are using the same debug facilities it will be up to
177 * userspace to re-inject the correct exception for guest delivery.
178 *
179 * @return: 0 (while setting vcpu->run->exit_reason)
180 */
kvm_handle_guest_debug(struct kvm_vcpu * vcpu)181 static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
182 {
183 struct kvm_run *run = vcpu->run;
184 u64 esr = kvm_vcpu_get_esr(vcpu);
185
186 if (!vcpu->guest_debug && forward_debug_exception(vcpu))
187 return 1;
188
189 run->exit_reason = KVM_EXIT_DEBUG;
190 run->debug.arch.hsr = lower_32_bits(esr);
191 run->debug.arch.hsr_high = upper_32_bits(esr);
192 run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID;
193
194 switch (ESR_ELx_EC(esr)) {
195 case ESR_ELx_EC_WATCHPT_LOW:
196 run->debug.arch.far = vcpu->arch.fault.far_el2;
197 break;
198 case ESR_ELx_EC_SOFTSTP_LOW:
199 *vcpu_cpsr(vcpu) |= DBG_SPSR_SS;
200 break;
201 }
202
203 return 0;
204 }
205
kvm_handle_unknown_ec(struct kvm_vcpu * vcpu)206 static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu)
207 {
208 u64 esr = kvm_vcpu_get_esr(vcpu);
209
210 kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n",
211 esr, esr_get_class_string(esr));
212
213 kvm_inject_undefined(vcpu);
214 return 1;
215 }
216
217 /*
218 * Guest access to SVE registers should be routed to this handler only
219 * when the system doesn't support SVE.
220 */
handle_sve(struct kvm_vcpu * vcpu)221 static int handle_sve(struct kvm_vcpu *vcpu)
222 {
223 if (guest_hyp_sve_traps_enabled(vcpu))
224 return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
225
226 kvm_inject_undefined(vcpu);
227 return 1;
228 }
229
230 /*
231 * Two possibilities to handle a trapping ptrauth instruction:
232 *
233 * - Guest usage of a ptrauth instruction (which the guest EL1 did not
234 * turn into a NOP). If we get here, it is because we didn't enable
235 * ptrauth for the guest. This results in an UNDEF, as it isn't
236 * supposed to use ptrauth without being told it could.
237 *
238 * - Running an L2 NV guest while L1 has left HCR_EL2.API==0, and for
239 * which we reinject the exception into L1.
240 *
241 * Anything else is an emulation bug (hence the WARN_ON + UNDEF).
242 */
kvm_handle_ptrauth(struct kvm_vcpu * vcpu)243 static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu)
244 {
245 if (!vcpu_has_ptrauth(vcpu)) {
246 kvm_inject_undefined(vcpu);
247 return 1;
248 }
249
250 if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
251 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
252 return 1;
253 }
254
255 /* Really shouldn't be here! */
256 WARN_ON_ONCE(1);
257 kvm_inject_undefined(vcpu);
258 return 1;
259 }
260
kvm_handle_eret(struct kvm_vcpu * vcpu)261 static int kvm_handle_eret(struct kvm_vcpu *vcpu)
262 {
263 if (esr_iss_is_eretax(kvm_vcpu_get_esr(vcpu)) &&
264 !vcpu_has_ptrauth(vcpu))
265 return kvm_handle_ptrauth(vcpu);
266
267 /*
268 * If we got here, two possibilities:
269 *
270 * - the guest is in EL2, and we need to fully emulate ERET
271 *
272 * - the guest is in EL1, and we need to reinject the
273 * exception into the L1 hypervisor.
274 *
275 * If KVM ever traps ERET for its own use, we'll have to
276 * revisit this.
277 */
278 if (is_hyp_ctxt(vcpu))
279 kvm_emulate_nested_eret(vcpu);
280 else
281 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
282
283 return 1;
284 }
285
handle_svc(struct kvm_vcpu * vcpu)286 static int handle_svc(struct kvm_vcpu *vcpu)
287 {
288 /*
289 * So far, SVC traps only for NV via HFGITR_EL2. A SVC from a
290 * 32bit guest would be caught by vpcu_mode_is_bad_32bit(), so
291 * we should only have to deal with a 64 bit exception.
292 */
293 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
294 return 1;
295 }
296
297 static exit_handle_fn arm_exit_handlers[] = {
298 [0 ... ESR_ELx_EC_MAX] = kvm_handle_unknown_ec,
299 [ESR_ELx_EC_WFx] = kvm_handle_wfx,
300 [ESR_ELx_EC_CP15_32] = kvm_handle_cp15_32,
301 [ESR_ELx_EC_CP15_64] = kvm_handle_cp15_64,
302 [ESR_ELx_EC_CP14_MR] = kvm_handle_cp14_32,
303 [ESR_ELx_EC_CP14_LS] = kvm_handle_cp14_load_store,
304 [ESR_ELx_EC_CP10_ID] = kvm_handle_cp10_id,
305 [ESR_ELx_EC_CP14_64] = kvm_handle_cp14_64,
306 [ESR_ELx_EC_HVC32] = handle_hvc,
307 [ESR_ELx_EC_SMC32] = handle_smc,
308 [ESR_ELx_EC_HVC64] = handle_hvc,
309 [ESR_ELx_EC_SMC64] = handle_smc,
310 [ESR_ELx_EC_SVC64] = handle_svc,
311 [ESR_ELx_EC_SYS64] = kvm_handle_sys_reg,
312 [ESR_ELx_EC_SVE] = handle_sve,
313 [ESR_ELx_EC_ERET] = kvm_handle_eret,
314 [ESR_ELx_EC_IABT_LOW] = kvm_handle_guest_abort,
315 [ESR_ELx_EC_DABT_LOW] = kvm_handle_guest_abort,
316 [ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug,
317 [ESR_ELx_EC_WATCHPT_LOW]= kvm_handle_guest_debug,
318 [ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug,
319 [ESR_ELx_EC_BKPT32] = kvm_handle_guest_debug,
320 [ESR_ELx_EC_BRK64] = kvm_handle_guest_debug,
321 [ESR_ELx_EC_FP_ASIMD] = kvm_handle_fpasimd,
322 [ESR_ELx_EC_PAC] = kvm_handle_ptrauth,
323 };
324
kvm_get_exit_handler(struct kvm_vcpu * vcpu)325 static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
326 {
327 u64 esr = kvm_vcpu_get_esr(vcpu);
328 u8 esr_ec = ESR_ELx_EC(esr);
329
330 return arm_exit_handlers[esr_ec];
331 }
332
333 /*
334 * We may be single-stepping an emulated instruction. If the emulation
335 * has been completed in the kernel, we can return to userspace with a
336 * KVM_EXIT_DEBUG, otherwise userspace needs to complete its
337 * emulation first.
338 */
handle_trap_exceptions(struct kvm_vcpu * vcpu)339 static int handle_trap_exceptions(struct kvm_vcpu *vcpu)
340 {
341 int handled;
342
343 /*
344 * See ARM ARM B1.14.1: "Hyp traps on instructions
345 * that fail their condition code check"
346 */
347 if (!kvm_condition_valid(vcpu)) {
348 kvm_incr_pc(vcpu);
349 handled = 1;
350 } else {
351 exit_handle_fn exit_handler;
352
353 exit_handler = kvm_get_exit_handler(vcpu);
354 handled = exit_handler(vcpu);
355 }
356
357 return handled;
358 }
359
360 /*
361 * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
362 * proper exit to userspace.
363 */
handle_exit(struct kvm_vcpu * vcpu,int exception_index)364 int handle_exit(struct kvm_vcpu *vcpu, int exception_index)
365 {
366 struct kvm_run *run = vcpu->run;
367
368 if (ARM_SERROR_PENDING(exception_index)) {
369 /*
370 * The SError is handled by handle_exit_early(). If the guest
371 * survives it will re-execute the original instruction.
372 */
373 return 1;
374 }
375
376 exception_index = ARM_EXCEPTION_CODE(exception_index);
377
378 switch (exception_index) {
379 case ARM_EXCEPTION_IRQ:
380 return 1;
381 case ARM_EXCEPTION_EL1_SERROR:
382 return 1;
383 case ARM_EXCEPTION_TRAP:
384 return handle_trap_exceptions(vcpu);
385 case ARM_EXCEPTION_HYP_GONE:
386 /*
387 * EL2 has been reset to the hyp-stub. This happens when a guest
388 * is pre-emptied by kvm_reboot()'s shutdown call.
389 */
390 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
391 return 0;
392 case ARM_EXCEPTION_IL:
393 /*
394 * We attempted an illegal exception return. Guest state must
395 * have been corrupted somehow. Give up.
396 */
397 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
398 return -EINVAL;
399 default:
400 kvm_pr_unimpl("Unsupported exception type: %d",
401 exception_index);
402 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
403 return 0;
404 }
405 }
406
407 /* For exit types that need handling before we can be preempted */
handle_exit_early(struct kvm_vcpu * vcpu,int exception_index)408 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index)
409 {
410 if (ARM_SERROR_PENDING(exception_index)) {
411 if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) {
412 u64 disr = kvm_vcpu_get_disr(vcpu);
413
414 kvm_handle_guest_serror(vcpu, disr_to_esr(disr));
415 } else {
416 kvm_inject_vabt(vcpu);
417 }
418
419 return;
420 }
421
422 exception_index = ARM_EXCEPTION_CODE(exception_index);
423
424 if (exception_index == ARM_EXCEPTION_EL1_SERROR)
425 kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu));
426 }
427
print_nvhe_hyp_panic(const char * name,u64 panic_addr)428 static void print_nvhe_hyp_panic(const char *name, u64 panic_addr)
429 {
430 kvm_err("nVHE hyp %s at: [<%016llx>] %pB!\n", name, panic_addr,
431 (void *)(panic_addr + kaslr_offset()));
432 }
433
kvm_nvhe_report_cfi_failure(u64 panic_addr)434 static void kvm_nvhe_report_cfi_failure(u64 panic_addr)
435 {
436 print_nvhe_hyp_panic("CFI failure", panic_addr);
437
438 if (IS_ENABLED(CONFIG_CFI_PERMISSIVE))
439 kvm_err(" (CONFIG_CFI_PERMISSIVE ignored for hyp failures)\n");
440 }
441
nvhe_hyp_panic_handler(u64 esr,u64 spsr,u64 elr_virt,u64 elr_phys,u64 par,uintptr_t vcpu,u64 far,u64 hpfar)442 void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr,
443 u64 elr_virt, u64 elr_phys,
444 u64 par, uintptr_t vcpu,
445 u64 far, u64 hpfar) {
446 u64 elr_in_kimg = __phys_to_kimg(elr_phys);
447 u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt;
448 u64 mode = spsr & PSR_MODE_MASK;
449 u64 panic_addr = elr_virt + hyp_offset;
450
451 if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) {
452 kvm_err("Invalid host exception to nVHE hyp!\n");
453 } else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 &&
454 esr_brk_comment(esr) == BUG_BRK_IMM) {
455 const char *file = NULL;
456 unsigned int line = 0;
457
458 /* All hyp bugs, including warnings, are treated as fatal. */
459 if (!is_protected_kvm_enabled() ||
460 IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) {
461 struct bug_entry *bug = find_bug(elr_in_kimg);
462
463 if (bug)
464 bug_get_file_line(bug, &file, &line);
465 }
466
467 if (file)
468 kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line);
469 else
470 print_nvhe_hyp_panic("BUG", panic_addr);
471 } else if (IS_ENABLED(CONFIG_CFI_CLANG) && esr_is_cfi_brk(esr)) {
472 kvm_nvhe_report_cfi_failure(panic_addr);
473 } else {
474 print_nvhe_hyp_panic("panic", panic_addr);
475 }
476
477 /* Dump the nVHE hypervisor backtrace */
478 kvm_nvhe_dump_backtrace(hyp_offset);
479
480 /*
481 * Hyp has panicked and we're going to handle that by panicking the
482 * kernel. The kernel offset will be revealed in the panic so we're
483 * also safe to reveal the hyp offset as a debugging aid for translating
484 * hyp VAs to vmlinux addresses.
485 */
486 kvm_err("Hyp Offset: 0x%llx\n", hyp_offset);
487
488 panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n",
489 spsr, elr_virt, esr, far, hpfar, par, vcpu);
490 }
491