1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/vfp/vfpmodule.c
4 *
5 * Copyright (C) 2004 ARM Limited.
6 * Written by Deep Blue Solutions Limited.
7 */
8 #include <linux/types.h>
9 #include <linux/cpu.h>
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/kernel.h>
13 #include <linux/notifier.h>
14 #include <linux/signal.h>
15 #include <linux/sched/signal.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/uaccess.h>
19 #include <linux/user.h>
20 #include <linux/export.h>
21 #include <linux/perf_event.h>
22
23 #include <asm/cp15.h>
24 #include <asm/cputype.h>
25 #include <asm/system_info.h>
26 #include <asm/thread_notify.h>
27 #include <asm/traps.h>
28 #include <asm/vfp.h>
29 #include <asm/neon.h>
30
31 #include "vfpinstr.h"
32 #include "vfp.h"
33
34 static bool have_vfp __ro_after_init;
35
36 /*
37 * Dual-use variable.
38 * Used in startup: set to non-zero if VFP checks fail
39 * After startup, holds VFP architecture
40 */
41 static unsigned int VFP_arch;
42
43 #ifdef CONFIG_CPU_FEROCEON
44 extern unsigned int VFP_arch_feroceon __alias(VFP_arch);
45 #endif
46
47 /*
48 * The pointer to the vfpstate structure of the thread which currently
49 * owns the context held in the VFP hardware, or NULL if the hardware
50 * context is invalid.
51 *
52 * For UP, this is sufficient to tell which thread owns the VFP context.
53 * However, for SMP, we also need to check the CPU number stored in the
54 * saved state too to catch migrations.
55 */
56 union vfp_state *vfp_current_hw_state[NR_CPUS];
57
58 /*
59 * Claim ownership of the VFP unit.
60 *
61 * The caller may change VFP registers until vfp_state_release() is called.
62 *
63 * local_bh_disable() is used to disable preemption and to disable VFP
64 * processing in softirq context. On PREEMPT_RT kernels local_bh_disable() is
65 * not sufficient because it only serializes soft interrupt related sections
66 * via a local lock, but stays preemptible. Disabling preemption is the right
67 * choice here as bottom half processing is always in thread context on RT
68 * kernels so it implicitly prevents bottom half processing as well.
69 */
vfp_state_hold(void)70 static void vfp_state_hold(void)
71 {
72 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
73 local_bh_disable();
74 else
75 preempt_disable();
76 }
77
vfp_state_release(void)78 static void vfp_state_release(void)
79 {
80 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
81 local_bh_enable();
82 else
83 preempt_enable();
84 }
85
86 /*
87 * Is 'thread's most up to date state stored in this CPUs hardware?
88 * Must be called from non-preemptible context.
89 */
vfp_state_in_hw(unsigned int cpu,struct thread_info * thread)90 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
91 {
92 #ifdef CONFIG_SMP
93 if (thread->vfpstate.hard.cpu != cpu)
94 return false;
95 #endif
96 return vfp_current_hw_state[cpu] == &thread->vfpstate;
97 }
98
99 /*
100 * Force a reload of the VFP context from the thread structure. We do
101 * this by ensuring that access to the VFP hardware is disabled, and
102 * clear vfp_current_hw_state. Must be called from non-preemptible context.
103 */
vfp_force_reload(unsigned int cpu,struct thread_info * thread)104 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
105 {
106 if (vfp_state_in_hw(cpu, thread)) {
107 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
108 vfp_current_hw_state[cpu] = NULL;
109 }
110 #ifdef CONFIG_SMP
111 thread->vfpstate.hard.cpu = NR_CPUS;
112 #endif
113 }
114
115 /*
116 * Per-thread VFP initialization.
117 */
vfp_thread_flush(struct thread_info * thread)118 static void vfp_thread_flush(struct thread_info *thread)
119 {
120 union vfp_state *vfp = &thread->vfpstate;
121 unsigned int cpu;
122
123 /*
124 * Disable VFP to ensure we initialize it first. We must ensure
125 * that the modification of vfp_current_hw_state[] and hardware
126 * disable are done for the same CPU and without preemption.
127 *
128 * Do this first to ensure that preemption won't overwrite our
129 * state saving should access to the VFP be enabled at this point.
130 */
131 cpu = get_cpu();
132 if (vfp_current_hw_state[cpu] == vfp)
133 vfp_current_hw_state[cpu] = NULL;
134 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
135 put_cpu();
136
137 memset(vfp, 0, sizeof(union vfp_state));
138
139 vfp->hard.fpexc = FPEXC_EN;
140 vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
141 #ifdef CONFIG_SMP
142 vfp->hard.cpu = NR_CPUS;
143 #endif
144 }
145
vfp_thread_exit(struct thread_info * thread)146 static void vfp_thread_exit(struct thread_info *thread)
147 {
148 /* release case: Per-thread VFP cleanup. */
149 union vfp_state *vfp = &thread->vfpstate;
150 unsigned int cpu = get_cpu();
151
152 if (vfp_current_hw_state[cpu] == vfp)
153 vfp_current_hw_state[cpu] = NULL;
154 put_cpu();
155 }
156
vfp_thread_copy(struct thread_info * thread)157 static void vfp_thread_copy(struct thread_info *thread)
158 {
159 struct thread_info *parent = current_thread_info();
160
161 vfp_sync_hwstate(parent);
162 thread->vfpstate = parent->vfpstate;
163 #ifdef CONFIG_SMP
164 thread->vfpstate.hard.cpu = NR_CPUS;
165 #endif
166 }
167
168 /*
169 * When this function is called with the following 'cmd's, the following
170 * is true while this function is being run:
171 * THREAD_NOTIFY_SWITCH:
172 * - the previously running thread will not be scheduled onto another CPU.
173 * - the next thread to be run (v) will not be running on another CPU.
174 * - thread->cpu is the local CPU number
175 * - not preemptible as we're called in the middle of a thread switch
176 * THREAD_NOTIFY_FLUSH:
177 * - the thread (v) will be running on the local CPU, so
178 * v === current_thread_info()
179 * - thread->cpu is the local CPU number at the time it is accessed,
180 * but may change at any time.
181 * - we could be preempted if tree preempt rcu is enabled, so
182 * it is unsafe to use thread->cpu.
183 * THREAD_NOTIFY_EXIT
184 * - we could be preempted if tree preempt rcu is enabled, so
185 * it is unsafe to use thread->cpu.
186 */
vfp_notifier(struct notifier_block * self,unsigned long cmd,void * v)187 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
188 {
189 struct thread_info *thread = v;
190 u32 fpexc;
191 #ifdef CONFIG_SMP
192 unsigned int cpu;
193 #endif
194
195 switch (cmd) {
196 case THREAD_NOTIFY_SWITCH:
197 fpexc = fmrx(FPEXC);
198
199 #ifdef CONFIG_SMP
200 cpu = thread->cpu;
201
202 /*
203 * On SMP, if VFP is enabled, save the old state in
204 * case the thread migrates to a different CPU. The
205 * restoring is done lazily.
206 */
207 if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
208 vfp_save_state(vfp_current_hw_state[cpu], fpexc);
209 #endif
210
211 /*
212 * Always disable VFP so we can lazily save/restore the
213 * old state.
214 */
215 fmxr(FPEXC, fpexc & ~FPEXC_EN);
216 break;
217
218 case THREAD_NOTIFY_FLUSH:
219 vfp_thread_flush(thread);
220 break;
221
222 case THREAD_NOTIFY_EXIT:
223 vfp_thread_exit(thread);
224 break;
225
226 case THREAD_NOTIFY_COPY:
227 vfp_thread_copy(thread);
228 break;
229 }
230
231 return NOTIFY_DONE;
232 }
233
234 static struct notifier_block vfp_notifier_block = {
235 .notifier_call = vfp_notifier,
236 };
237
238 /*
239 * Raise a SIGFPE for the current process.
240 * sicode describes the signal being raised.
241 */
vfp_raise_sigfpe(unsigned int sicode,struct pt_regs * regs)242 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
243 {
244 /*
245 * This is the same as NWFPE, because it's not clear what
246 * this is used for
247 */
248 current->thread.error_code = 0;
249 current->thread.trap_no = 6;
250
251 send_sig_fault(SIGFPE, sicode,
252 (void __user *)(instruction_pointer(regs) - 4),
253 current);
254 }
255
vfp_panic(char * reason,u32 inst)256 static void vfp_panic(char *reason, u32 inst)
257 {
258 int i;
259
260 pr_err("VFP: Error: %s\n", reason);
261 pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
262 fmrx(FPEXC), fmrx(FPSCR), inst);
263 for (i = 0; i < 32; i += 2)
264 pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
265 i, vfp_get_float(i), i+1, vfp_get_float(i+1));
266 }
267
268 /*
269 * Process bitmask of exception conditions.
270 */
vfp_raise_exceptions(u32 exceptions,u32 inst,u32 fpscr)271 static int vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr)
272 {
273 int si_code = 0;
274
275 pr_debug("VFP: raising exceptions %08x\n", exceptions);
276
277 if (exceptions == VFP_EXCEPTION_ERROR) {
278 vfp_panic("unhandled bounce", inst);
279 return FPE_FLTINV;
280 }
281
282 /*
283 * If any of the status flags are set, update the FPSCR.
284 * Comparison instructions always return at least one of
285 * these flags set.
286 */
287 if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
288 fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
289
290 fpscr |= exceptions;
291
292 fmxr(FPSCR, fpscr);
293
294 #define RAISE(stat,en,sig) \
295 if (exceptions & stat && fpscr & en) \
296 si_code = sig;
297
298 /*
299 * These are arranged in priority order, least to highest.
300 */
301 RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
302 RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
303 RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
304 RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
305 RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
306
307 return si_code;
308 }
309
310 /*
311 * Emulate a VFP instruction.
312 */
vfp_emulate_instruction(u32 inst,u32 fpscr,struct pt_regs * regs)313 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
314 {
315 u32 exceptions = VFP_EXCEPTION_ERROR;
316
317 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
318
319 if (INST_CPRTDO(inst)) {
320 if (!INST_CPRT(inst)) {
321 /*
322 * CPDO
323 */
324 if (vfp_single(inst)) {
325 exceptions = vfp_single_cpdo(inst, fpscr);
326 } else {
327 exceptions = vfp_double_cpdo(inst, fpscr);
328 }
329 } else {
330 /*
331 * A CPRT instruction can not appear in FPINST2, nor
332 * can it cause an exception. Therefore, we do not
333 * have to emulate it.
334 */
335 }
336 } else {
337 /*
338 * A CPDT instruction can not appear in FPINST2, nor can
339 * it cause an exception. Therefore, we do not have to
340 * emulate it.
341 */
342 }
343 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, regs->ARM_pc);
344 return exceptions & ~VFP_NAN_FLAG;
345 }
346
347 /*
348 * Package up a bounce condition.
349 */
VFP_bounce(u32 trigger,u32 fpexc,struct pt_regs * regs)350 static void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
351 {
352 u32 fpscr, orig_fpscr, fpsid, exceptions;
353 int si_code2 = 0;
354 int si_code = 0;
355
356 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
357
358 /*
359 * At this point, FPEXC can have the following configuration:
360 *
361 * EX DEX IXE
362 * 0 1 x - synchronous exception
363 * 1 x 0 - asynchronous exception
364 * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
365 * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
366 * implementation), undefined otherwise
367 *
368 * Clear various bits and enable access to the VFP so we can
369 * handle the bounce.
370 */
371 fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
372
373 fpsid = fmrx(FPSID);
374 orig_fpscr = fpscr = fmrx(FPSCR);
375
376 /*
377 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
378 */
379 if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
380 && (fpscr & FPSCR_IXE)) {
381 /*
382 * Synchronous exception, emulate the trigger instruction
383 */
384 goto emulate;
385 }
386
387 if (fpexc & FPEXC_EX) {
388 /*
389 * Asynchronous exception. The instruction is read from FPINST
390 * and the interrupted instruction has to be restarted.
391 */
392 trigger = fmrx(FPINST);
393 regs->ARM_pc -= 4;
394 } else if (!(fpexc & FPEXC_DEX)) {
395 /*
396 * Illegal combination of bits. It can be caused by an
397 * unallocated VFP instruction but with FPSCR.IXE set and not
398 * on VFP subarch 1.
399 */
400 si_code = vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr);
401 goto exit;
402 }
403
404 /*
405 * Modify fpscr to indicate the number of iterations remaining.
406 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
407 * whether FPEXC.VECITR or FPSCR.LEN is used.
408 */
409 if (fpexc & (FPEXC_EX | FPEXC_VV)) {
410 u32 len;
411
412 len = fpexc + (1 << FPEXC_LENGTH_BIT);
413
414 fpscr &= ~FPSCR_LENGTH_MASK;
415 fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
416 }
417
418 /*
419 * Handle the first FP instruction. We used to take note of the
420 * FPEXC bounce reason, but this appears to be unreliable.
421 * Emulate the bounced instruction instead.
422 */
423 exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
424 if (exceptions)
425 si_code2 = vfp_raise_exceptions(exceptions, trigger, orig_fpscr);
426
427 /*
428 * If there isn't a second FP instruction, exit now. Note that
429 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
430 */
431 if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
432 goto exit;
433
434 /*
435 * The barrier() here prevents fpinst2 being read
436 * before the condition above.
437 */
438 barrier();
439 trigger = fmrx(FPINST2);
440
441 emulate:
442 exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
443 if (exceptions)
444 si_code = vfp_raise_exceptions(exceptions, trigger, orig_fpscr);
445 exit:
446 vfp_state_release();
447 if (si_code2)
448 vfp_raise_sigfpe(si_code2, regs);
449 if (si_code)
450 vfp_raise_sigfpe(si_code, regs);
451 }
452
vfp_enable(void * unused)453 static void vfp_enable(void *unused)
454 {
455 u32 access;
456
457 BUG_ON(preemptible());
458 access = get_copro_access();
459
460 /*
461 * Enable full access to VFP (cp10 and cp11)
462 */
463 set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
464 }
465
466 /* Called by platforms on which we want to disable VFP because it may not be
467 * present on all CPUs within a SMP complex. Needs to be called prior to
468 * vfp_init().
469 */
vfp_disable(void)470 void __init vfp_disable(void)
471 {
472 if (VFP_arch) {
473 pr_debug("%s: should be called prior to vfp_init\n", __func__);
474 return;
475 }
476 VFP_arch = 1;
477 }
478
479 #ifdef CONFIG_CPU_PM
vfp_pm_suspend(void)480 static int vfp_pm_suspend(void)
481 {
482 struct thread_info *ti = current_thread_info();
483 u32 fpexc = fmrx(FPEXC);
484
485 /* if vfp is on, then save state for resumption */
486 if (fpexc & FPEXC_EN) {
487 pr_debug("%s: saving vfp state\n", __func__);
488 vfp_save_state(&ti->vfpstate, fpexc);
489
490 /* disable, just in case */
491 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
492 } else if (vfp_current_hw_state[ti->cpu]) {
493 #ifndef CONFIG_SMP
494 fmxr(FPEXC, fpexc | FPEXC_EN);
495 vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
496 fmxr(FPEXC, fpexc);
497 #endif
498 }
499
500 /* clear any information we had about last context state */
501 vfp_current_hw_state[ti->cpu] = NULL;
502
503 return 0;
504 }
505
vfp_pm_resume(void)506 static void vfp_pm_resume(void)
507 {
508 /* ensure we have access to the vfp */
509 vfp_enable(NULL);
510
511 /* and disable it to ensure the next usage restores the state */
512 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
513 }
514
vfp_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)515 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
516 void *v)
517 {
518 switch (cmd) {
519 case CPU_PM_ENTER:
520 vfp_pm_suspend();
521 break;
522 case CPU_PM_ENTER_FAILED:
523 case CPU_PM_EXIT:
524 vfp_pm_resume();
525 break;
526 }
527 return NOTIFY_OK;
528 }
529
530 static struct notifier_block vfp_cpu_pm_notifier_block = {
531 .notifier_call = vfp_cpu_pm_notifier,
532 };
533
vfp_pm_init(void)534 static void vfp_pm_init(void)
535 {
536 cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
537 }
538
539 #else
vfp_pm_init(void)540 static inline void vfp_pm_init(void) { }
541 #endif /* CONFIG_CPU_PM */
542
543 /*
544 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
545 * with the hardware state.
546 */
vfp_sync_hwstate(struct thread_info * thread)547 void vfp_sync_hwstate(struct thread_info *thread)
548 {
549 vfp_state_hold();
550
551 if (vfp_state_in_hw(raw_smp_processor_id(), thread)) {
552 u32 fpexc = fmrx(FPEXC);
553
554 /*
555 * Save the last VFP state on this CPU.
556 */
557 fmxr(FPEXC, fpexc | FPEXC_EN);
558 vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
559 fmxr(FPEXC, fpexc);
560 }
561
562 vfp_state_release();
563 }
564
565 /* Ensure that the thread reloads the hardware VFP state on the next use. */
vfp_flush_hwstate(struct thread_info * thread)566 void vfp_flush_hwstate(struct thread_info *thread)
567 {
568 unsigned int cpu = get_cpu();
569
570 vfp_force_reload(cpu, thread);
571
572 put_cpu();
573 }
574
575 /*
576 * Save the current VFP state into the provided structures and prepare
577 * for entry into a new function (signal handler).
578 */
vfp_preserve_user_clear_hwstate(struct user_vfp * ufp,struct user_vfp_exc * ufp_exc)579 int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp,
580 struct user_vfp_exc *ufp_exc)
581 {
582 struct thread_info *thread = current_thread_info();
583 struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
584
585 /* Ensure that the saved hwstate is up-to-date. */
586 vfp_sync_hwstate(thread);
587
588 /*
589 * Copy the floating point registers. There can be unused
590 * registers see asm/hwcap.h for details.
591 */
592 memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs));
593
594 /*
595 * Copy the status and control register.
596 */
597 ufp->fpscr = hwstate->fpscr;
598
599 /*
600 * Copy the exception registers.
601 */
602 ufp_exc->fpexc = hwstate->fpexc;
603 ufp_exc->fpinst = hwstate->fpinst;
604 ufp_exc->fpinst2 = hwstate->fpinst2;
605
606 /* Ensure that VFP is disabled. */
607 vfp_flush_hwstate(thread);
608
609 /*
610 * As per the PCS, clear the length and stride bits for function
611 * entry.
612 */
613 hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
614 return 0;
615 }
616
617 /* Sanitise and restore the current VFP state from the provided structures. */
vfp_restore_user_hwstate(struct user_vfp * ufp,struct user_vfp_exc * ufp_exc)618 int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
619 {
620 struct thread_info *thread = current_thread_info();
621 struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
622 unsigned long fpexc;
623
624 /* Disable VFP to avoid corrupting the new thread state. */
625 vfp_flush_hwstate(thread);
626
627 /*
628 * Copy the floating point registers. There can be unused
629 * registers see asm/hwcap.h for details.
630 */
631 memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
632 /*
633 * Copy the status and control register.
634 */
635 hwstate->fpscr = ufp->fpscr;
636
637 /*
638 * Sanitise and restore the exception registers.
639 */
640 fpexc = ufp_exc->fpexc;
641
642 /* Ensure the VFP is enabled. */
643 fpexc |= FPEXC_EN;
644
645 /* Ensure FPINST2 is invalid and the exception flag is cleared. */
646 fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
647 hwstate->fpexc = fpexc;
648
649 hwstate->fpinst = ufp_exc->fpinst;
650 hwstate->fpinst2 = ufp_exc->fpinst2;
651
652 return 0;
653 }
654
655 /*
656 * VFP hardware can lose all context when a CPU goes offline.
657 * As we will be running in SMP mode with CPU hotplug, we will save the
658 * hardware state at every thread switch. We clear our held state when
659 * a CPU has been killed, indicating that the VFP hardware doesn't contain
660 * a threads VFP state. When a CPU starts up, we re-enable access to the
661 * VFP hardware. The callbacks below are called on the CPU which
662 * is being offlined/onlined.
663 */
vfp_dying_cpu(unsigned int cpu)664 static int vfp_dying_cpu(unsigned int cpu)
665 {
666 vfp_current_hw_state[cpu] = NULL;
667 return 0;
668 }
669
vfp_starting_cpu(unsigned int unused)670 static int vfp_starting_cpu(unsigned int unused)
671 {
672 vfp_enable(NULL);
673 return 0;
674 }
675
vfp_kmode_exception(struct pt_regs * regs,unsigned int instr)676 static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr)
677 {
678 /*
679 * If we reach this point, a floating point exception has been raised
680 * while running in kernel mode. If the NEON/VFP unit was enabled at the
681 * time, it means a VFP instruction has been issued that requires
682 * software assistance to complete, something which is not currently
683 * supported in kernel mode.
684 * If the NEON/VFP unit was disabled, and the location pointed to below
685 * is properly preceded by a call to kernel_neon_begin(), something has
686 * caused the task to be scheduled out and back in again. In this case,
687 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
688 * be helpful in localizing the problem.
689 */
690 if (fmrx(FPEXC) & FPEXC_EN)
691 pr_crit("BUG: unsupported FP instruction in kernel mode\n");
692 else
693 pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
694 pr_crit("FPEXC == 0x%08x\n", fmrx(FPEXC));
695 return 1;
696 }
697
698 /*
699 * vfp_support_entry - Handle VFP exception
700 *
701 * @regs: pt_regs structure holding the register state at exception entry
702 * @trigger: The opcode of the instruction that triggered the exception
703 *
704 * Returns 0 if the exception was handled, or an error code otherwise.
705 */
vfp_support_entry(struct pt_regs * regs,u32 trigger)706 static int vfp_support_entry(struct pt_regs *regs, u32 trigger)
707 {
708 struct thread_info *ti = current_thread_info();
709 u32 fpexc;
710
711 if (unlikely(!have_vfp))
712 return -ENODEV;
713
714 if (!user_mode(regs))
715 return vfp_kmode_exception(regs, trigger);
716
717 vfp_state_hold();
718 fpexc = fmrx(FPEXC);
719
720 /*
721 * If the VFP unit was not enabled yet, we have to check whether the
722 * VFP state in the CPU's registers is the most recent VFP state
723 * associated with the process. On UP systems, we don't save the VFP
724 * state eagerly on a context switch, so we may need to save the
725 * VFP state to memory first, as it may belong to another process.
726 */
727 if (!(fpexc & FPEXC_EN)) {
728 /*
729 * Enable the VFP unit but mask the FP exception flag for the
730 * time being, so we can access all the registers.
731 */
732 fpexc |= FPEXC_EN;
733 fmxr(FPEXC, fpexc & ~FPEXC_EX);
734
735 /*
736 * Check whether or not the VFP state in the CPU's registers is
737 * the most recent VFP state associated with this task. On SMP,
738 * migration may result in multiple CPUs holding VFP states
739 * that belong to the same task, but only the most recent one
740 * is valid.
741 */
742 if (!vfp_state_in_hw(ti->cpu, ti)) {
743 if (!IS_ENABLED(CONFIG_SMP) &&
744 vfp_current_hw_state[ti->cpu] != NULL) {
745 /*
746 * This CPU is currently holding the most
747 * recent VFP state associated with another
748 * task, and we must save that to memory first.
749 */
750 vfp_save_state(vfp_current_hw_state[ti->cpu],
751 fpexc);
752 }
753
754 /*
755 * We can now proceed with loading the task's VFP state
756 * from memory into the CPU registers.
757 */
758 fpexc = vfp_load_state(&ti->vfpstate);
759 vfp_current_hw_state[ti->cpu] = &ti->vfpstate;
760 #ifdef CONFIG_SMP
761 /*
762 * Record that this CPU is now the one holding the most
763 * recent VFP state of the task.
764 */
765 ti->vfpstate.hard.cpu = ti->cpu;
766 #endif
767 }
768
769 if (fpexc & FPEXC_EX)
770 /*
771 * Might as well handle the pending exception before
772 * retrying branch out before setting an FPEXC that
773 * stops us reading stuff.
774 */
775 goto bounce;
776
777 /*
778 * No FP exception is pending: just enable the VFP and
779 * replay the instruction that trapped.
780 */
781 fmxr(FPEXC, fpexc);
782 vfp_state_release();
783 } else {
784 /* Check for synchronous or asynchronous exceptions */
785 if (!(fpexc & (FPEXC_EX | FPEXC_DEX))) {
786 u32 fpscr = fmrx(FPSCR);
787
788 /*
789 * On some implementations of the VFP subarch 1,
790 * setting FPSCR.IXE causes all the CDP instructions to
791 * be bounced synchronously without setting the
792 * FPEXC.EX bit
793 */
794 if (!(fpscr & FPSCR_IXE)) {
795 if (!(fpscr & FPSCR_LENGTH_MASK)) {
796 pr_debug("not VFP\n");
797 vfp_state_release();
798 return -ENOEXEC;
799 }
800 fpexc |= FPEXC_DEX;
801 }
802 }
803 bounce: regs->ARM_pc += 4;
804 /* VFP_bounce() will invoke vfp_state_release() */
805 VFP_bounce(trigger, fpexc, regs);
806 }
807
808 return 0;
809 }
810
811 static struct undef_hook neon_support_hook[] = {{
812 .instr_mask = 0xfe000000,
813 .instr_val = 0xf2000000,
814 .cpsr_mask = PSR_T_BIT,
815 .cpsr_val = 0,
816 .fn = vfp_support_entry,
817 }, {
818 .instr_mask = 0xff100000,
819 .instr_val = 0xf4000000,
820 .cpsr_mask = PSR_T_BIT,
821 .cpsr_val = 0,
822 .fn = vfp_support_entry,
823 }, {
824 .instr_mask = 0xef000000,
825 .instr_val = 0xef000000,
826 .cpsr_mask = PSR_T_BIT,
827 .cpsr_val = PSR_T_BIT,
828 .fn = vfp_support_entry,
829 }, {
830 .instr_mask = 0xff100000,
831 .instr_val = 0xf9000000,
832 .cpsr_mask = PSR_T_BIT,
833 .cpsr_val = PSR_T_BIT,
834 .fn = vfp_support_entry,
835 }, {
836 .instr_mask = 0xff000800,
837 .instr_val = 0xfc000800,
838 .cpsr_mask = 0,
839 .cpsr_val = 0,
840 .fn = vfp_support_entry,
841 }, {
842 .instr_mask = 0xff000800,
843 .instr_val = 0xfd000800,
844 .cpsr_mask = 0,
845 .cpsr_val = 0,
846 .fn = vfp_support_entry,
847 }, {
848 .instr_mask = 0xff000800,
849 .instr_val = 0xfe000800,
850 .cpsr_mask = 0,
851 .cpsr_val = 0,
852 .fn = vfp_support_entry,
853 }};
854
855 static struct undef_hook vfp_support_hook = {
856 .instr_mask = 0x0c000e00,
857 .instr_val = 0x0c000a00,
858 .fn = vfp_support_entry,
859 };
860
861 #ifdef CONFIG_KERNEL_MODE_NEON
862
863 /*
864 * Kernel-side NEON support functions
865 */
kernel_neon_begin(void)866 void kernel_neon_begin(void)
867 {
868 struct thread_info *thread = current_thread_info();
869 unsigned int cpu;
870 u32 fpexc;
871
872 vfp_state_hold();
873
874 /*
875 * Kernel mode NEON is only allowed outside of hardirq context with
876 * preemption and softirq processing disabled. This will make sure that
877 * the kernel mode NEON register contents never need to be preserved.
878 */
879 BUG_ON(in_hardirq());
880 cpu = __smp_processor_id();
881
882 fpexc = fmrx(FPEXC) | FPEXC_EN;
883 fmxr(FPEXC, fpexc);
884
885 /*
886 * Save the userland NEON/VFP state. Under UP,
887 * the owner could be a task other than 'current'
888 */
889 if (vfp_state_in_hw(cpu, thread))
890 vfp_save_state(&thread->vfpstate, fpexc);
891 #ifndef CONFIG_SMP
892 else if (vfp_current_hw_state[cpu] != NULL)
893 vfp_save_state(vfp_current_hw_state[cpu], fpexc);
894 #endif
895 vfp_current_hw_state[cpu] = NULL;
896 }
897 EXPORT_SYMBOL(kernel_neon_begin);
898
kernel_neon_end(void)899 void kernel_neon_end(void)
900 {
901 /* Disable the NEON/VFP unit. */
902 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
903 vfp_state_release();
904 }
905 EXPORT_SYMBOL(kernel_neon_end);
906
907 #endif /* CONFIG_KERNEL_MODE_NEON */
908
vfp_detect(struct pt_regs * regs,unsigned int instr)909 static int __init vfp_detect(struct pt_regs *regs, unsigned int instr)
910 {
911 VFP_arch = UINT_MAX; /* mark as not present */
912 regs->ARM_pc += 4;
913 return 0;
914 }
915
916 static struct undef_hook vfp_detect_hook __initdata = {
917 .instr_mask = 0x0c000e00,
918 .instr_val = 0x0c000a00,
919 .cpsr_mask = MODE_MASK,
920 .cpsr_val = SVC_MODE,
921 .fn = vfp_detect,
922 };
923
924 /*
925 * VFP support code initialisation.
926 */
vfp_init(void)927 static int __init vfp_init(void)
928 {
929 unsigned int vfpsid;
930 unsigned int cpu_arch = cpu_architecture();
931 unsigned int isar6;
932
933 /*
934 * Enable the access to the VFP on all online CPUs so the
935 * following test on FPSID will succeed.
936 */
937 if (cpu_arch >= CPU_ARCH_ARMv6)
938 on_each_cpu(vfp_enable, NULL, 1);
939
940 /*
941 * First check that there is a VFP that we can use.
942 * The handler is already setup to just log calls, so
943 * we just need to read the VFPSID register.
944 */
945 register_undef_hook(&vfp_detect_hook);
946 barrier();
947 vfpsid = fmrx(FPSID);
948 barrier();
949 unregister_undef_hook(&vfp_detect_hook);
950
951 pr_info("VFP support v0.3: ");
952 if (VFP_arch) {
953 pr_cont("not present\n");
954 return 0;
955 /* Extract the architecture on CPUID scheme */
956 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
957 VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
958 VFP_arch >>= FPSID_ARCH_BIT;
959 /*
960 * Check for the presence of the Advanced SIMD
961 * load/store instructions, integer and single
962 * precision floating point operations. Only check
963 * for NEON if the hardware has the MVFR registers.
964 */
965 if (IS_ENABLED(CONFIG_NEON) &&
966 (fmrx(MVFR1) & 0x000fff00) == 0x00011100) {
967 elf_hwcap |= HWCAP_NEON;
968 for (int i = 0; i < ARRAY_SIZE(neon_support_hook); i++)
969 register_undef_hook(&neon_support_hook[i]);
970 }
971
972 if (IS_ENABLED(CONFIG_VFPv3)) {
973 u32 mvfr0 = fmrx(MVFR0);
974 if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
975 ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
976 elf_hwcap |= HWCAP_VFPv3;
977 /*
978 * Check for VFPv3 D16 and VFPv4 D16. CPUs in
979 * this configuration only have 16 x 64bit
980 * registers.
981 */
982 if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
983 /* also v4-D16 */
984 elf_hwcap |= HWCAP_VFPv3D16;
985 else
986 elf_hwcap |= HWCAP_VFPD32;
987 }
988
989 if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
990 elf_hwcap |= HWCAP_VFPv4;
991 if (((fmrx(MVFR1) & MVFR1_ASIMDHP_MASK) >> MVFR1_ASIMDHP_BIT) == 0x2)
992 elf_hwcap |= HWCAP_ASIMDHP;
993 if (((fmrx(MVFR1) & MVFR1_FPHP_MASK) >> MVFR1_FPHP_BIT) == 0x3)
994 elf_hwcap |= HWCAP_FPHP;
995 }
996
997 /*
998 * Check for the presence of Advanced SIMD Dot Product
999 * instructions.
1000 */
1001 isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
1002 if (cpuid_feature_extract_field(isar6, 4) == 0x1)
1003 elf_hwcap |= HWCAP_ASIMDDP;
1004 /*
1005 * Check for the presence of Advanced SIMD Floating point
1006 * half-precision multiplication instructions.
1007 */
1008 if (cpuid_feature_extract_field(isar6, 8) == 0x1)
1009 elf_hwcap |= HWCAP_ASIMDFHM;
1010 /*
1011 * Check for the presence of Advanced SIMD Bfloat16
1012 * floating point instructions.
1013 */
1014 if (cpuid_feature_extract_field(isar6, 20) == 0x1)
1015 elf_hwcap |= HWCAP_ASIMDBF16;
1016 /*
1017 * Check for the presence of Advanced SIMD and floating point
1018 * Int8 matrix multiplication instructions instructions.
1019 */
1020 if (cpuid_feature_extract_field(isar6, 24) == 0x1)
1021 elf_hwcap |= HWCAP_I8MM;
1022
1023 /* Extract the architecture version on pre-cpuid scheme */
1024 } else {
1025 if (vfpsid & FPSID_NODOUBLE) {
1026 pr_cont("no double precision support\n");
1027 return 0;
1028 }
1029
1030 VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
1031 }
1032
1033 cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
1034 "arm/vfp:starting", vfp_starting_cpu,
1035 vfp_dying_cpu);
1036
1037 have_vfp = true;
1038
1039 register_undef_hook(&vfp_support_hook);
1040 thread_register_notifier(&vfp_notifier_block);
1041 vfp_pm_init();
1042
1043 /*
1044 * We detected VFP, and the support code is
1045 * in place; report VFP support to userspace.
1046 */
1047 elf_hwcap |= HWCAP_VFP;
1048
1049 pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
1050 (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
1051 VFP_arch,
1052 (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
1053 (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
1054 (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
1055
1056 return 0;
1057 }
1058
1059 core_initcall(vfp_init);
1060