1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
4 *
5 * Created by: Nicolas Pitre, March 2012
6 * Copyright: (C) 2012-2013 Linaro Limited
7 */
8
9 #include <linux/atomic.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched/signal.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/interrupt.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/kthread.h>
20 #include <linux/wait.h>
21 #include <linux/time.h>
22 #include <linux/clockchips.h>
23 #include <linux/hrtimer.h>
24 #include <linux/tick.h>
25 #include <linux/notifier.h>
26 #include <linux/mm.h>
27 #include <linux/mutex.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/string.h>
31 #include <linux/sysfs.h>
32 #include <linux/irqchip/arm-gic.h>
33 #include <linux/moduleparam.h>
34
35 #include <asm/smp_plat.h>
36 #include <asm/cputype.h>
37 #include <asm/suspend.h>
38 #include <asm/mcpm.h>
39 #include <asm/bL_switcher.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/power_cpu_migrate.h>
43
44
45 /*
46 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
47 * __attribute_const__ and we don't want the compiler to assume any
48 * constness here as the value _does_ change along some code paths.
49 */
50
read_mpidr(void)51 static int read_mpidr(void)
52 {
53 unsigned int id;
54 asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
55 return id & MPIDR_HWID_BITMASK;
56 }
57
58 /*
59 * bL switcher core code.
60 */
61
bL_do_switch(void * _arg)62 static void bL_do_switch(void *_arg)
63 {
64 unsigned ib_mpidr, ib_cpu, ib_cluster;
65 long volatile handshake, **handshake_ptr = _arg;
66
67 pr_debug("%s\n", __func__);
68
69 ib_mpidr = cpu_logical_map(smp_processor_id());
70 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
71 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
72
73 /* Advertise our handshake location */
74 if (handshake_ptr) {
75 handshake = 0;
76 *handshake_ptr = &handshake;
77 } else
78 handshake = -1;
79
80 /*
81 * Our state has been saved at this point. Let's release our
82 * inbound CPU.
83 */
84 mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
85 sev();
86
87 /*
88 * From this point, we must assume that our counterpart CPU might
89 * have taken over in its parallel world already, as if execution
90 * just returned from cpu_suspend(). It is therefore important to
91 * be very careful not to make any change the other guy is not
92 * expecting. This is why we need stack isolation.
93 *
94 * Fancy under cover tasks could be performed here. For now
95 * we have none.
96 */
97
98 /*
99 * Let's wait until our inbound is alive.
100 */
101 while (!handshake) {
102 wfe();
103 smp_mb();
104 }
105
106 /* Let's put ourself down. */
107 mcpm_cpu_power_down();
108
109 /* should never get here */
110 BUG();
111 }
112
113 /*
114 * Stack isolation. To ensure 'current' remains valid, we just use another
115 * piece of our thread's stack space which should be fairly lightly used.
116 * The selected area starts just above the thread_info structure located
117 * at the very bottom of the stack, aligned to a cache line, and indexed
118 * with the cluster number.
119 */
120 #define STACK_SIZE 512
121 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
bL_switchpoint(unsigned long _arg)122 static int bL_switchpoint(unsigned long _arg)
123 {
124 unsigned int mpidr = read_mpidr();
125 unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
126 void *stack = current_thread_info() + 1;
127 stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
128 stack += clusterid * STACK_SIZE + STACK_SIZE;
129 call_with_stack(bL_do_switch, (void *)_arg, stack);
130 BUG();
131 }
132
133 /*
134 * Generic switcher interface
135 */
136
137 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
138 static int bL_switcher_cpu_pairing[NR_CPUS];
139
140 /*
141 * bL_switch_to - Switch to a specific cluster for the current CPU
142 * @new_cluster_id: the ID of the cluster to switch to.
143 *
144 * This function must be called on the CPU to be switched.
145 * Returns 0 on success, else a negative status code.
146 */
bL_switch_to(unsigned int new_cluster_id)147 static int bL_switch_to(unsigned int new_cluster_id)
148 {
149 unsigned int mpidr, this_cpu, that_cpu;
150 unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
151 struct completion inbound_alive;
152 long volatile *handshake_ptr;
153 int ipi_nr, ret;
154
155 this_cpu = smp_processor_id();
156 ob_mpidr = read_mpidr();
157 ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
158 ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
159 BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
160
161 if (new_cluster_id == ob_cluster)
162 return 0;
163
164 that_cpu = bL_switcher_cpu_pairing[this_cpu];
165 ib_mpidr = cpu_logical_map(that_cpu);
166 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
167 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
168
169 pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
170 this_cpu, ob_mpidr, ib_mpidr);
171
172 this_cpu = smp_processor_id();
173
174 /* Close the gate for our entry vectors */
175 mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
176 mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
177
178 /* Install our "inbound alive" notifier. */
179 init_completion(&inbound_alive);
180 ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
181 ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
182 mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
183
184 /*
185 * Let's wake up the inbound CPU now in case it requires some delay
186 * to come online, but leave it gated in our entry vector code.
187 */
188 ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
189 if (ret) {
190 pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
191 return ret;
192 }
193
194 /*
195 * Raise a SGI on the inbound CPU to make sure it doesn't stall
196 * in a possible WFI, such as in bL_power_down().
197 */
198 gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
199
200 /*
201 * Wait for the inbound to come up. This allows for other
202 * tasks to be scheduled in the mean time.
203 */
204 wait_for_completion(&inbound_alive);
205 mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
206
207 /*
208 * From this point we are entering the switch critical zone
209 * and can't take any interrupts anymore.
210 */
211 local_irq_disable();
212 local_fiq_disable();
213 trace_cpu_migrate_begin(ktime_get_real_ns(), ob_mpidr);
214
215 /* redirect GIC's SGIs to our counterpart */
216 gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
217
218 tick_suspend_local();
219
220 ret = cpu_pm_enter();
221
222 /* we can not tolerate errors at this point */
223 if (ret)
224 panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
225
226 /* Swap the physical CPUs in the logical map for this logical CPU. */
227 cpu_logical_map(this_cpu) = ib_mpidr;
228 cpu_logical_map(that_cpu) = ob_mpidr;
229
230 /* Let's do the actual CPU switch. */
231 ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
232 if (ret > 0)
233 panic("%s: cpu_suspend() returned %d\n", __func__, ret);
234
235 /* We are executing on the inbound CPU at this point */
236 mpidr = read_mpidr();
237 pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
238 BUG_ON(mpidr != ib_mpidr);
239
240 mcpm_cpu_powered_up();
241
242 ret = cpu_pm_exit();
243
244 tick_resume_local();
245
246 trace_cpu_migrate_finish(ktime_get_real_ns(), ib_mpidr);
247 local_fiq_enable();
248 local_irq_enable();
249
250 *handshake_ptr = 1;
251 dsb_sev();
252
253 if (ret)
254 pr_err("%s exiting with error %d\n", __func__, ret);
255 return ret;
256 }
257
258 struct bL_thread {
259 spinlock_t lock;
260 struct task_struct *task;
261 wait_queue_head_t wq;
262 int wanted_cluster;
263 struct completion started;
264 bL_switch_completion_handler completer;
265 void *completer_cookie;
266 };
267
268 static struct bL_thread bL_threads[NR_CPUS];
269
bL_switcher_thread(void * arg)270 static int bL_switcher_thread(void *arg)
271 {
272 struct bL_thread *t = arg;
273 int cluster;
274 bL_switch_completion_handler completer;
275 void *completer_cookie;
276
277 sched_set_fifo_low(current);
278 complete(&t->started);
279
280 do {
281 if (signal_pending(current))
282 flush_signals(current);
283 wait_event_interruptible(t->wq,
284 t->wanted_cluster != -1 ||
285 kthread_should_stop());
286
287 spin_lock(&t->lock);
288 cluster = t->wanted_cluster;
289 completer = t->completer;
290 completer_cookie = t->completer_cookie;
291 t->wanted_cluster = -1;
292 t->completer = NULL;
293 spin_unlock(&t->lock);
294
295 if (cluster != -1) {
296 bL_switch_to(cluster);
297
298 if (completer)
299 completer(completer_cookie);
300 }
301 } while (!kthread_should_stop());
302
303 return 0;
304 }
305
bL_switcher_thread_create(int cpu,void * arg)306 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
307 {
308 struct task_struct *task;
309
310 task = kthread_run_on_cpu(bL_switcher_thread, arg,
311 cpu, "kswitcher_%d");
312 if (IS_ERR(task))
313 pr_err("%s failed for CPU %d\n", __func__, cpu);
314
315 return task;
316 }
317
318 /*
319 * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
320 * with completion notification via a callback
321 *
322 * @cpu: the CPU to switch
323 * @new_cluster_id: the ID of the cluster to switch to.
324 * @completer: switch completion callback. if non-NULL,
325 * @completer(@completer_cookie) will be called on completion of
326 * the switch, in non-atomic context.
327 * @completer_cookie: opaque context argument for @completer.
328 *
329 * This function causes a cluster switch on the given CPU by waking up
330 * the appropriate switcher thread. This function may or may not return
331 * before the switch has occurred.
332 *
333 * If a @completer callback function is supplied, it will be called when
334 * the switch is complete. This can be used to determine asynchronously
335 * when the switch is complete, regardless of when bL_switch_request()
336 * returns. When @completer is supplied, no new switch request is permitted
337 * for the affected CPU until after the switch is complete, and @completer
338 * has returned.
339 */
bL_switch_request_cb(unsigned int cpu,unsigned int new_cluster_id,bL_switch_completion_handler completer,void * completer_cookie)340 int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
341 bL_switch_completion_handler completer,
342 void *completer_cookie)
343 {
344 struct bL_thread *t;
345
346 if (cpu >= ARRAY_SIZE(bL_threads)) {
347 pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
348 return -EINVAL;
349 }
350
351 t = &bL_threads[cpu];
352
353 if (IS_ERR(t->task))
354 return PTR_ERR(t->task);
355 if (!t->task)
356 return -ESRCH;
357
358 spin_lock(&t->lock);
359 if (t->completer) {
360 spin_unlock(&t->lock);
361 return -EBUSY;
362 }
363 t->completer = completer;
364 t->completer_cookie = completer_cookie;
365 t->wanted_cluster = new_cluster_id;
366 spin_unlock(&t->lock);
367 wake_up(&t->wq);
368 return 0;
369 }
370 EXPORT_SYMBOL_GPL(bL_switch_request_cb);
371
372 /*
373 * Activation and configuration code.
374 */
375
376 static DEFINE_MUTEX(bL_switcher_activation_lock);
377 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
378 static unsigned int bL_switcher_active;
379 static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
380 static cpumask_t bL_switcher_removed_logical_cpus;
381
bL_switcher_register_notifier(struct notifier_block * nb)382 int bL_switcher_register_notifier(struct notifier_block *nb)
383 {
384 return blocking_notifier_chain_register(&bL_activation_notifier, nb);
385 }
386 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
387
bL_switcher_unregister_notifier(struct notifier_block * nb)388 int bL_switcher_unregister_notifier(struct notifier_block *nb)
389 {
390 return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
391 }
392 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
393
bL_activation_notify(unsigned long val)394 static int bL_activation_notify(unsigned long val)
395 {
396 int ret;
397
398 ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
399 if (ret & NOTIFY_STOP_MASK)
400 pr_err("%s: notifier chain failed with status 0x%x\n",
401 __func__, ret);
402 return notifier_to_errno(ret);
403 }
404
bL_switcher_restore_cpus(void)405 static void bL_switcher_restore_cpus(void)
406 {
407 int i;
408
409 for_each_cpu(i, &bL_switcher_removed_logical_cpus) {
410 struct device *cpu_dev = get_cpu_device(i);
411 int ret = device_online(cpu_dev);
412 if (ret)
413 dev_err(cpu_dev, "switcher: unable to restore CPU\n");
414 }
415 }
416
bL_switcher_halve_cpus(void)417 static int bL_switcher_halve_cpus(void)
418 {
419 int i, j, cluster_0, gic_id, ret;
420 unsigned int cpu, cluster, mask;
421 cpumask_t available_cpus;
422
423 /* First pass to validate what we have */
424 mask = 0;
425 for_each_online_cpu(i) {
426 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
427 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
428 if (cluster >= 2) {
429 pr_err("%s: only dual cluster systems are supported\n", __func__);
430 return -EINVAL;
431 }
432 if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
433 return -EINVAL;
434 mask |= (1 << cluster);
435 }
436 if (mask != 3) {
437 pr_err("%s: no CPU pairing possible\n", __func__);
438 return -EINVAL;
439 }
440
441 /*
442 * Now let's do the pairing. We match each CPU with another CPU
443 * from a different cluster. To get a uniform scheduling behavior
444 * without fiddling with CPU topology and compute capacity data,
445 * we'll use logical CPUs initially belonging to the same cluster.
446 */
447 memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
448 cpumask_copy(&available_cpus, cpu_online_mask);
449 cluster_0 = -1;
450 for_each_cpu(i, &available_cpus) {
451 int match = -1;
452 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
453 if (cluster_0 == -1)
454 cluster_0 = cluster;
455 if (cluster != cluster_0)
456 continue;
457 cpumask_clear_cpu(i, &available_cpus);
458 for_each_cpu(j, &available_cpus) {
459 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
460 /*
461 * Let's remember the last match to create "odd"
462 * pairings on purpose in order for other code not
463 * to assume any relation between physical and
464 * logical CPU numbers.
465 */
466 if (cluster != cluster_0)
467 match = j;
468 }
469 if (match != -1) {
470 bL_switcher_cpu_pairing[i] = match;
471 cpumask_clear_cpu(match, &available_cpus);
472 pr_info("CPU%d paired with CPU%d\n", i, match);
473 }
474 }
475
476 /*
477 * Now we disable the unwanted CPUs i.e. everything that has no
478 * pairing information (that includes the pairing counterparts).
479 */
480 cpumask_clear(&bL_switcher_removed_logical_cpus);
481 for_each_online_cpu(i) {
482 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
483 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
484
485 /* Let's take note of the GIC ID for this CPU */
486 gic_id = gic_get_cpu_id(i);
487 if (gic_id < 0) {
488 pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
489 bL_switcher_restore_cpus();
490 return -EINVAL;
491 }
492 bL_gic_id[cpu][cluster] = gic_id;
493 pr_info("GIC ID for CPU %u cluster %u is %u\n",
494 cpu, cluster, gic_id);
495
496 if (bL_switcher_cpu_pairing[i] != -1) {
497 bL_switcher_cpu_original_cluster[i] = cluster;
498 continue;
499 }
500
501 ret = device_offline(get_cpu_device(i));
502 if (ret) {
503 bL_switcher_restore_cpus();
504 return ret;
505 }
506 cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
507 }
508
509 return 0;
510 }
511
512 /* Determine the logical CPU a given physical CPU is grouped on. */
bL_switcher_get_logical_index(u32 mpidr)513 int bL_switcher_get_logical_index(u32 mpidr)
514 {
515 int cpu;
516
517 if (!bL_switcher_active)
518 return -EUNATCH;
519
520 mpidr &= MPIDR_HWID_BITMASK;
521 for_each_online_cpu(cpu) {
522 int pairing = bL_switcher_cpu_pairing[cpu];
523 if (pairing == -1)
524 continue;
525 if ((mpidr == cpu_logical_map(cpu)) ||
526 (mpidr == cpu_logical_map(pairing)))
527 return cpu;
528 }
529 return -EINVAL;
530 }
531
bL_switcher_trace_trigger_cpu(void * __always_unused info)532 static void bL_switcher_trace_trigger_cpu(void *__always_unused info)
533 {
534 trace_cpu_migrate_current(ktime_get_real_ns(), read_mpidr());
535 }
536
bL_switcher_trace_trigger(void)537 int bL_switcher_trace_trigger(void)
538 {
539 preempt_disable();
540
541 bL_switcher_trace_trigger_cpu(NULL);
542 smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true);
543
544 preempt_enable();
545
546 return 0;
547 }
548 EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger);
549
bL_switcher_enable(void)550 static int bL_switcher_enable(void)
551 {
552 int cpu, ret;
553
554 mutex_lock(&bL_switcher_activation_lock);
555 lock_device_hotplug();
556 if (bL_switcher_active) {
557 unlock_device_hotplug();
558 mutex_unlock(&bL_switcher_activation_lock);
559 return 0;
560 }
561
562 pr_info("big.LITTLE switcher initializing\n");
563
564 ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
565 if (ret)
566 goto error;
567
568 ret = bL_switcher_halve_cpus();
569 if (ret)
570 goto error;
571
572 bL_switcher_trace_trigger();
573
574 for_each_online_cpu(cpu) {
575 struct bL_thread *t = &bL_threads[cpu];
576 spin_lock_init(&t->lock);
577 init_waitqueue_head(&t->wq);
578 init_completion(&t->started);
579 t->wanted_cluster = -1;
580 t->task = bL_switcher_thread_create(cpu, t);
581 }
582
583 bL_switcher_active = 1;
584 bL_activation_notify(BL_NOTIFY_POST_ENABLE);
585 pr_info("big.LITTLE switcher initialized\n");
586 goto out;
587
588 error:
589 pr_warn("big.LITTLE switcher initialization failed\n");
590 bL_activation_notify(BL_NOTIFY_POST_DISABLE);
591
592 out:
593 unlock_device_hotplug();
594 mutex_unlock(&bL_switcher_activation_lock);
595 return ret;
596 }
597
598 #ifdef CONFIG_SYSFS
599
bL_switcher_disable(void)600 static void bL_switcher_disable(void)
601 {
602 unsigned int cpu, cluster;
603 struct bL_thread *t;
604 struct task_struct *task;
605
606 mutex_lock(&bL_switcher_activation_lock);
607 lock_device_hotplug();
608
609 if (!bL_switcher_active)
610 goto out;
611
612 if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
613 bL_activation_notify(BL_NOTIFY_POST_ENABLE);
614 goto out;
615 }
616
617 bL_switcher_active = 0;
618
619 /*
620 * To deactivate the switcher, we must shut down the switcher
621 * threads to prevent any other requests from being accepted.
622 * Then, if the final cluster for given logical CPU is not the
623 * same as the original one, we'll recreate a switcher thread
624 * just for the purpose of switching the CPU back without any
625 * possibility for interference from external requests.
626 */
627 for_each_online_cpu(cpu) {
628 t = &bL_threads[cpu];
629 task = t->task;
630 t->task = NULL;
631 if (!task || IS_ERR(task))
632 continue;
633 kthread_stop(task);
634 /* no more switch may happen on this CPU at this point */
635 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
636 if (cluster == bL_switcher_cpu_original_cluster[cpu])
637 continue;
638 init_completion(&t->started);
639 t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
640 task = bL_switcher_thread_create(cpu, t);
641 if (!IS_ERR(task)) {
642 wait_for_completion(&t->started);
643 kthread_stop(task);
644 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
645 if (cluster == bL_switcher_cpu_original_cluster[cpu])
646 continue;
647 }
648 /* If execution gets here, we're in trouble. */
649 pr_crit("%s: unable to restore original cluster for CPU %d\n",
650 __func__, cpu);
651 pr_crit("%s: CPU %d can't be restored\n",
652 __func__, bL_switcher_cpu_pairing[cpu]);
653 cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
654 &bL_switcher_removed_logical_cpus);
655 }
656
657 bL_switcher_restore_cpus();
658 bL_switcher_trace_trigger();
659
660 bL_activation_notify(BL_NOTIFY_POST_DISABLE);
661
662 out:
663 unlock_device_hotplug();
664 mutex_unlock(&bL_switcher_activation_lock);
665 }
666
bL_switcher_active_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)667 static ssize_t bL_switcher_active_show(struct kobject *kobj,
668 struct kobj_attribute *attr, char *buf)
669 {
670 return sprintf(buf, "%u\n", bL_switcher_active);
671 }
672
bL_switcher_active_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)673 static ssize_t bL_switcher_active_store(struct kobject *kobj,
674 struct kobj_attribute *attr, const char *buf, size_t count)
675 {
676 int ret;
677
678 switch (buf[0]) {
679 case '0':
680 bL_switcher_disable();
681 ret = 0;
682 break;
683 case '1':
684 ret = bL_switcher_enable();
685 break;
686 default:
687 ret = -EINVAL;
688 }
689
690 return (ret >= 0) ? count : ret;
691 }
692
bL_switcher_trace_trigger_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)693 static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj,
694 struct kobj_attribute *attr, const char *buf, size_t count)
695 {
696 int ret = bL_switcher_trace_trigger();
697
698 return ret ? ret : count;
699 }
700
701 static struct kobj_attribute bL_switcher_active_attr =
702 __ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
703
704 static struct kobj_attribute bL_switcher_trace_trigger_attr =
705 __ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store);
706
707 static struct attribute *bL_switcher_attrs[] = {
708 &bL_switcher_active_attr.attr,
709 &bL_switcher_trace_trigger_attr.attr,
710 NULL,
711 };
712
713 static struct attribute_group bL_switcher_attr_group = {
714 .attrs = bL_switcher_attrs,
715 };
716
717 static struct kobject *bL_switcher_kobj;
718
bL_switcher_sysfs_init(void)719 static int __init bL_switcher_sysfs_init(void)
720 {
721 int ret;
722
723 bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
724 if (!bL_switcher_kobj)
725 return -ENOMEM;
726 ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
727 if (ret)
728 kobject_put(bL_switcher_kobj);
729 return ret;
730 }
731
732 #endif /* CONFIG_SYSFS */
733
bL_switcher_get_enabled(void)734 bool bL_switcher_get_enabled(void)
735 {
736 mutex_lock(&bL_switcher_activation_lock);
737
738 return bL_switcher_active;
739 }
740 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
741
bL_switcher_put_enabled(void)742 void bL_switcher_put_enabled(void)
743 {
744 mutex_unlock(&bL_switcher_activation_lock);
745 }
746 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
747
748 /*
749 * Veto any CPU hotplug operation on those CPUs we've removed
750 * while the switcher is active.
751 * We're just not ready to deal with that given the trickery involved.
752 */
bL_switcher_cpu_pre(unsigned int cpu)753 static int bL_switcher_cpu_pre(unsigned int cpu)
754 {
755 int pairing;
756
757 if (!bL_switcher_active)
758 return 0;
759
760 pairing = bL_switcher_cpu_pairing[cpu];
761
762 if (pairing == -1)
763 return -EINVAL;
764 return 0;
765 }
766
767 static bool no_bL_switcher;
768 core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
769
bL_switcher_init(void)770 static int __init bL_switcher_init(void)
771 {
772 int ret;
773
774 if (!mcpm_is_available())
775 return -ENODEV;
776
777 cpuhp_setup_state_nocalls(CPUHP_ARM_BL_PREPARE, "arm/bl:prepare",
778 bL_switcher_cpu_pre, NULL);
779 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "arm/bl:predown",
780 NULL, bL_switcher_cpu_pre);
781 if (ret < 0) {
782 cpuhp_remove_state_nocalls(CPUHP_ARM_BL_PREPARE);
783 pr_err("bL_switcher: Failed to allocate a hotplug state\n");
784 return ret;
785 }
786 if (!no_bL_switcher) {
787 ret = bL_switcher_enable();
788 if (ret)
789 return ret;
790 }
791
792 #ifdef CONFIG_SYSFS
793 ret = bL_switcher_sysfs_init();
794 if (ret)
795 pr_err("%s: unable to create sysfs entry\n", __func__);
796 #endif
797
798 return 0;
799 }
800
801 late_initcall(bL_switcher_init);
802