xref: /btstack/port/stm32-l451-miromico-sx1280/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_ll_tim.c (revision 2fd737d36a1de5d778cacc671d4b4d8c4f3fed82)
1 /**
2   ******************************************************************************
3   * @file    stm32l4xx_ll_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM LL module driver.
6   ******************************************************************************
7   * @attention
8   *
9   * <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
10   * All rights reserved.</center></h2>
11   *
12   * This software component is licensed by ST under BSD 3-Clause license,
13   * the "License"; You may not use this file except in compliance with the
14   * License. You may obtain a copy of the License at:
15   *                        opensource.org/licenses/BSD-3-Clause
16   *
17   ******************************************************************************
18   */
19 #if defined(USE_FULL_LL_DRIVER)
20 
21 /* Includes ------------------------------------------------------------------*/
22 #include "stm32l4xx_ll_tim.h"
23 #include "stm32l4xx_ll_bus.h"
24 
25 #ifdef  USE_FULL_ASSERT
26 #include "stm32_assert.h"
27 #else
28 #define assert_param(expr) ((void)0U)
29 #endif /* USE_FULL_ASSERT */
30 
31 /** @addtogroup STM32L4xx_LL_Driver
32   * @{
33   */
34 
35 #if defined (TIM1) || defined (TIM8) || defined (TIM2) || defined (TIM3) ||  defined (TIM4) || defined (TIM5) || defined (TIM15) || defined (TIM16) || defined (TIM17) || defined (TIM6) || defined (TIM7)
36 
37 /** @addtogroup TIM_LL
38   * @{
39   */
40 
41 /* Private types -------------------------------------------------------------*/
42 /* Private variables ---------------------------------------------------------*/
43 /* Private constants ---------------------------------------------------------*/
44 /* Private macros ------------------------------------------------------------*/
45 /** @addtogroup TIM_LL_Private_Macros
46   * @{
47   */
48 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
49                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
50                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
51                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
52                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
53 
54 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
55                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
56                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
57 
58 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
59                                      || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
60                                      || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
61                                      || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
62                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
63                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
64                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
65                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM2) \
66                                      || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM1) \
67                                      || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \
68                                      || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \
69                                      || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \
70                                      || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM1) \
71                                      || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM2))
72 
73 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
74                                       || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
75 
76 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
77                                          || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
78 
79 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
80                                           || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
81 
82 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
83                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
84                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
85 
86 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
87                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
88                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
89                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
90 
91 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
92                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
93                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
94                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
95                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
96                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
97                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
98                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
99                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
100                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
101                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
102                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
103                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
104                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
105                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
106                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
107 
108 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
109                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
110                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
111 
112 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
113                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
114                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
115 
116 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
117                                                   || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
118 
119 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
120                                          || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
121 
122 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
123                                          || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
124 
125 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
126                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_1)   \
127                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_2)   \
128                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
129 
130 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
131                                           || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
132 
133 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
134                                              || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
135 
136 #define IS_LL_TIM_BREAK_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1)     \
137                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N2)  \
138                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N4)  \
139                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N8)  \
140                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N6)  \
141                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N8)  \
142                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N6)  \
143                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N8)  \
144                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N6)  \
145                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N8)  \
146                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N5) \
147                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N6) \
148                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N8) \
149                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N5) \
150                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N6) \
151                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N8))
152 
153 #define IS_LL_TIM_BREAK2_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_DISABLE) \
154                                            || ((__VALUE__) == LL_TIM_BREAK2_ENABLE))
155 
156 #define IS_LL_TIM_BREAK2_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_POLARITY_LOW) \
157                                               || ((__VALUE__) == LL_TIM_BREAK2_POLARITY_HIGH))
158 
159 #define IS_LL_TIM_BREAK2_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1)    \
160                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N2)  \
161                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N4)  \
162                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N8)  \
163                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N6)  \
164                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N8)  \
165                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N6)  \
166                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N8)  \
167                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N6)  \
168                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N8)  \
169                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N5) \
170                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N6) \
171                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N8) \
172                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N5) \
173                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N6) \
174                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N8))
175 
176 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
177                                                      || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
178 /**
179   * @}
180   */
181 
182 
183 /* Private function prototypes -----------------------------------------------*/
184 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
185   * @{
186   */
187 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
188 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
189 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
190 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
191 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
192 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
193 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
194 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
195 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
196 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
197 /**
198   * @}
199   */
200 
201 /* Exported functions --------------------------------------------------------*/
202 /** @addtogroup TIM_LL_Exported_Functions
203   * @{
204   */
205 
206 /** @addtogroup TIM_LL_EF_Init
207   * @{
208   */
209 
210 /**
211   * @brief  Set TIMx registers to their reset values.
212   * @param  TIMx Timer instance
213   * @retval An ErrorStatus enumeration value:
214   *          - SUCCESS: TIMx registers are de-initialized
215   *          - ERROR: invalid TIMx instance
216   */
LL_TIM_DeInit(TIM_TypeDef * TIMx)217 ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx)
218 {
219   ErrorStatus result = SUCCESS;
220 
221   /* Check the parameters */
222   assert_param(IS_TIM_INSTANCE(TIMx));
223 
224   if (TIMx == TIM1)
225   {
226     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
227     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
228   }
229   else if (TIMx == TIM2)
230   {
231     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
232     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
233   }
234 #if defined(TIM3)
235   else if (TIMx == TIM3)
236   {
237     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
238     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
239   }
240 #endif
241 #if defined(TIM4)
242   else if (TIMx == TIM4)
243   {
244     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4);
245     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4);
246   }
247 #endif
248 #if defined(TIM5)
249   else if (TIMx == TIM5)
250   {
251     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5);
252     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5);
253   }
254 #endif
255   else if (TIMx == TIM6)
256   {
257     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
258     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
259   }
260 #if defined (TIM7)
261   else if (TIMx == TIM7)
262   {
263     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
264     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
265   }
266 #endif
267 #if defined(TIM8)
268   else if (TIMx == TIM8)
269   {
270     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8);
271     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8);
272   }
273 #endif
274   else if (TIMx == TIM15)
275   {
276     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM15);
277     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM15);
278   }
279   else if (TIMx == TIM16)
280   {
281     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM16);
282     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM16);
283   }
284 #if defined(TIM17)
285   else if (TIMx == TIM17)
286   {
287     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM17);
288     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM17);
289   }
290 #endif
291   else
292   {
293     result = ERROR;
294   }
295 
296   return result;
297 }
298 
299 /**
300   * @brief  Set the fields of the time base unit configuration data structure
301   *         to their default values.
302   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
303   * @retval None
304   */
LL_TIM_StructInit(LL_TIM_InitTypeDef * TIM_InitStruct)305 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
306 {
307   /* Set the default configuration */
308   TIM_InitStruct->Prescaler         = (uint16_t)0x0000;
309   TIM_InitStruct->CounterMode       = LL_TIM_COUNTERMODE_UP;
310   TIM_InitStruct->Autoreload        = 0xFFFFFFFFU;
311   TIM_InitStruct->ClockDivision     = LL_TIM_CLOCKDIVISION_DIV1;
312   TIM_InitStruct->RepetitionCounter = (uint8_t)0x00;
313 }
314 
315 /**
316   * @brief  Configure the TIMx time base unit.
317   * @param  TIMx Timer Instance
318   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (TIMx time base unit configuration data structure)
319   * @retval An ErrorStatus enumeration value:
320   *          - SUCCESS: TIMx registers are de-initialized
321   *          - ERROR: not applicable
322   */
LL_TIM_Init(TIM_TypeDef * TIMx,LL_TIM_InitTypeDef * TIM_InitStruct)323 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct)
324 {
325   uint32_t tmpcr1;
326 
327   /* Check the parameters */
328   assert_param(IS_TIM_INSTANCE(TIMx));
329   assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
330   assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
331 
332   tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
333 
334   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
335   {
336     /* Select the Counter Mode */
337     MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
338   }
339 
340   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
341   {
342     /* Set the clock division */
343     MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
344   }
345 
346   /* Write to TIMx CR1 */
347   LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
348 
349   /* Set the Autoreload value */
350   LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
351 
352   /* Set the Prescaler value */
353   LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
354 
355   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
356   {
357     /* Set the Repetition Counter value */
358     LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
359   }
360 
361   /* Generate an update event to reload the Prescaler
362      and the repetition counter value (if applicable) immediately */
363   LL_TIM_GenerateEvent_UPDATE(TIMx);
364 
365   return SUCCESS;
366 }
367 
368 /**
369   * @brief  Set the fields of the TIMx output channel configuration data
370   *         structure to their default values.
371   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (the output channel configuration data structure)
372   * @retval None
373   */
LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)374 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
375 {
376   /* Set the default configuration */
377   TIM_OC_InitStruct->OCMode       = LL_TIM_OCMODE_FROZEN;
378   TIM_OC_InitStruct->OCState      = LL_TIM_OCSTATE_DISABLE;
379   TIM_OC_InitStruct->OCNState     = LL_TIM_OCSTATE_DISABLE;
380   TIM_OC_InitStruct->CompareValue = 0x00000000U;
381   TIM_OC_InitStruct->OCPolarity   = LL_TIM_OCPOLARITY_HIGH;
382   TIM_OC_InitStruct->OCNPolarity  = LL_TIM_OCPOLARITY_HIGH;
383   TIM_OC_InitStruct->OCIdleState  = LL_TIM_OCIDLESTATE_LOW;
384   TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
385 }
386 
387 /**
388   * @brief  Configure the TIMx output channel.
389   * @param  TIMx Timer Instance
390   * @param  Channel This parameter can be one of the following values:
391   *         @arg @ref LL_TIM_CHANNEL_CH1
392   *         @arg @ref LL_TIM_CHANNEL_CH2
393   *         @arg @ref LL_TIM_CHANNEL_CH3
394   *         @arg @ref LL_TIM_CHANNEL_CH4
395   *         @arg @ref LL_TIM_CHANNEL_CH5
396   *         @arg @ref LL_TIM_CHANNEL_CH6
397   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration data structure)
398   * @retval An ErrorStatus enumeration value:
399   *          - SUCCESS: TIMx output channel is initialized
400   *          - ERROR: TIMx output channel is not initialized
401   */
LL_TIM_OC_Init(TIM_TypeDef * TIMx,uint32_t Channel,LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)402 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
403 {
404   ErrorStatus result = ERROR;
405 
406   switch (Channel)
407   {
408     case LL_TIM_CHANNEL_CH1:
409       result = OC1Config(TIMx, TIM_OC_InitStruct);
410       break;
411     case LL_TIM_CHANNEL_CH2:
412       result = OC2Config(TIMx, TIM_OC_InitStruct);
413       break;
414     case LL_TIM_CHANNEL_CH3:
415       result = OC3Config(TIMx, TIM_OC_InitStruct);
416       break;
417     case LL_TIM_CHANNEL_CH4:
418       result = OC4Config(TIMx, TIM_OC_InitStruct);
419       break;
420     case LL_TIM_CHANNEL_CH5:
421       result = OC5Config(TIMx, TIM_OC_InitStruct);
422       break;
423     case LL_TIM_CHANNEL_CH6:
424       result = OC6Config(TIMx, TIM_OC_InitStruct);
425       break;
426     default:
427       break;
428   }
429 
430   return result;
431 }
432 
433 /**
434   * @brief  Set the fields of the TIMx input channel configuration data
435   *         structure to their default values.
436   * @param  TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration data structure)
437   * @retval None
438   */
LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)439 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
440 {
441   /* Set the default configuration */
442   TIM_ICInitStruct->ICPolarity    = LL_TIM_IC_POLARITY_RISING;
443   TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
444   TIM_ICInitStruct->ICPrescaler   = LL_TIM_ICPSC_DIV1;
445   TIM_ICInitStruct->ICFilter      = LL_TIM_IC_FILTER_FDIV1;
446 }
447 
448 /**
449   * @brief  Configure the TIMx input channel.
450   * @param  TIMx Timer Instance
451   * @param  Channel This parameter can be one of the following values:
452   *         @arg @ref LL_TIM_CHANNEL_CH1
453   *         @arg @ref LL_TIM_CHANNEL_CH2
454   *         @arg @ref LL_TIM_CHANNEL_CH3
455   *         @arg @ref LL_TIM_CHANNEL_CH4
456   * @param  TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data structure)
457   * @retval An ErrorStatus enumeration value:
458   *          - SUCCESS: TIMx output channel is initialized
459   *          - ERROR: TIMx output channel is not initialized
460   */
LL_TIM_IC_Init(TIM_TypeDef * TIMx,uint32_t Channel,LL_TIM_IC_InitTypeDef * TIM_IC_InitStruct)461 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
462 {
463   ErrorStatus result = ERROR;
464 
465   switch (Channel)
466   {
467     case LL_TIM_CHANNEL_CH1:
468       result = IC1Config(TIMx, TIM_IC_InitStruct);
469       break;
470     case LL_TIM_CHANNEL_CH2:
471       result = IC2Config(TIMx, TIM_IC_InitStruct);
472       break;
473     case LL_TIM_CHANNEL_CH3:
474       result = IC3Config(TIMx, TIM_IC_InitStruct);
475       break;
476     case LL_TIM_CHANNEL_CH4:
477       result = IC4Config(TIMx, TIM_IC_InitStruct);
478       break;
479     default:
480       break;
481   }
482 
483   return result;
484 }
485 
486 /**
487   * @brief  Fills each TIM_EncoderInitStruct field with its default value
488   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface configuration data structure)
489   * @retval None
490   */
LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)491 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
492 {
493   /* Set the default configuration */
494   TIM_EncoderInitStruct->EncoderMode    = LL_TIM_ENCODERMODE_X2_TI1;
495   TIM_EncoderInitStruct->IC1Polarity    = LL_TIM_IC_POLARITY_RISING;
496   TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
497   TIM_EncoderInitStruct->IC1Prescaler   = LL_TIM_ICPSC_DIV1;
498   TIM_EncoderInitStruct->IC1Filter      = LL_TIM_IC_FILTER_FDIV1;
499   TIM_EncoderInitStruct->IC2Polarity    = LL_TIM_IC_POLARITY_RISING;
500   TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
501   TIM_EncoderInitStruct->IC2Prescaler   = LL_TIM_ICPSC_DIV1;
502   TIM_EncoderInitStruct->IC2Filter      = LL_TIM_IC_FILTER_FDIV1;
503 }
504 
505 /**
506   * @brief  Configure the encoder interface of the timer instance.
507   * @param  TIMx Timer Instance
508   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface configuration data structure)
509   * @retval An ErrorStatus enumeration value:
510   *          - SUCCESS: TIMx registers are de-initialized
511   *          - ERROR: not applicable
512   */
LL_TIM_ENCODER_Init(TIM_TypeDef * TIMx,LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)513 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
514 {
515   uint32_t tmpccmr1;
516   uint32_t tmpccer;
517 
518   /* Check the parameters */
519   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
520   assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
521   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
522   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
523   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
524   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
525   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
526   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
527   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
528   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
529 
530   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
531   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
532 
533   /* Get the TIMx CCMR1 register value */
534   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
535 
536   /* Get the TIMx CCER register value */
537   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
538 
539   /* Configure TI1 */
540   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
541   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
542   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
543   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
544 
545   /* Configure TI2 */
546   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F  | TIM_CCMR1_IC2PSC);
547   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
548   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
549   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
550 
551   /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
552   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
553   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
554   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
555   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
556 
557   /* Set encoder mode */
558   LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
559 
560   /* Write to TIMx CCMR1 */
561   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
562 
563   /* Write to TIMx CCER */
564   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
565 
566   return SUCCESS;
567 }
568 
569 /**
570   * @brief  Set the fields of the TIMx Hall sensor interface configuration data
571   *         structure to their default values.
572   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface configuration data structure)
573   * @retval None
574   */
LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)575 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
576 {
577   /* Set the default configuration */
578   TIM_HallSensorInitStruct->IC1Polarity       = LL_TIM_IC_POLARITY_RISING;
579   TIM_HallSensorInitStruct->IC1Prescaler      = LL_TIM_ICPSC_DIV1;
580   TIM_HallSensorInitStruct->IC1Filter         = LL_TIM_IC_FILTER_FDIV1;
581   TIM_HallSensorInitStruct->CommutationDelay  = 0U;
582 }
583 
584 /**
585   * @brief  Configure the Hall sensor interface of the timer instance.
586   * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
587   *       to the TI1 input channel
588   * @note TIMx slave mode controller is configured in reset mode.
589           Selected internal trigger is TI1F_ED.
590   * @note Channel 1 is configured as input, IC1 is mapped on TRC.
591   * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
592   *       between 2 changes on the inputs. It gives information about motor speed.
593   * @note Channel 2 is configured in output PWM 2 mode.
594   * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
595   * @note OC2REF is selected as trigger output on TRGO.
596   * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
597   *       when TIMx operates in Hall sensor interface mode.
598   * @param  TIMx Timer Instance
599   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor interface configuration data structure)
600   * @retval An ErrorStatus enumeration value:
601   *          - SUCCESS: TIMx registers are de-initialized
602   *          - ERROR: not applicable
603   */
LL_TIM_HALLSENSOR_Init(TIM_TypeDef * TIMx,LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)604 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
605 {
606   uint32_t tmpcr2;
607   uint32_t tmpccmr1;
608   uint32_t tmpccer;
609   uint32_t tmpsmcr;
610 
611   /* Check the parameters */
612   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
613   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
614   assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
615   assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
616 
617   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
618   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
619 
620   /* Get the TIMx CR2 register value */
621   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
622 
623   /* Get the TIMx CCMR1 register value */
624   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
625 
626   /* Get the TIMx CCER register value */
627   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
628 
629   /* Get the TIMx SMCR register value */
630   tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
631 
632   /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
633   tmpcr2 |= TIM_CR2_TI1S;
634 
635   /* OC2REF signal is used as trigger output (TRGO) */
636   tmpcr2 |= LL_TIM_TRGO_OC2REF;
637 
638   /* Configure the slave mode controller */
639   tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
640   tmpsmcr |= LL_TIM_TS_TI1F_ED;
641   tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
642 
643   /* Configure input channel 1 */
644   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
645   tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
646   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
647   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
648 
649   /* Configure input channel 2 */
650   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE  | TIM_CCMR1_OC2PE  | TIM_CCMR1_OC2CE);
651   tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
652 
653   /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
654   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
655   tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
656   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
657 
658   /* Write to TIMx CR2 */
659   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
660 
661   /* Write to TIMx SMCR */
662   LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
663 
664   /* Write to TIMx CCMR1 */
665   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
666 
667   /* Write to TIMx CCER */
668   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
669 
670   /* Write to TIMx CCR2 */
671   LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
672 
673   return SUCCESS;
674 }
675 
676 /**
677   * @brief  Set the fields of the Break and Dead Time configuration data structure
678   *         to their default values.
679   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
680   * @retval None
681   */
LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)682 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
683 {
684   /* Set the default configuration */
685   TIM_BDTRInitStruct->OSSRState       = LL_TIM_OSSR_DISABLE;
686   TIM_BDTRInitStruct->OSSIState       = LL_TIM_OSSI_DISABLE;
687   TIM_BDTRInitStruct->LockLevel       = LL_TIM_LOCKLEVEL_OFF;
688   TIM_BDTRInitStruct->DeadTime        = (uint8_t)0x00;
689   TIM_BDTRInitStruct->BreakState      = LL_TIM_BREAK_DISABLE;
690   TIM_BDTRInitStruct->BreakPolarity   = LL_TIM_BREAK_POLARITY_LOW;
691   TIM_BDTRInitStruct->BreakFilter     = LL_TIM_BREAK_FILTER_FDIV1;
692   TIM_BDTRInitStruct->Break2State     = LL_TIM_BREAK2_DISABLE;
693   TIM_BDTRInitStruct->Break2Polarity  = LL_TIM_BREAK2_POLARITY_LOW;
694   TIM_BDTRInitStruct->Break2Filter    = LL_TIM_BREAK2_FILTER_FDIV1;
695   TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
696 }
697 
698 /**
699   * @brief  Configure the Break and Dead Time feature of the timer instance.
700   * @note As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR
701   *  and DTG[7:0] can be write-locked depending on the LOCK configuration, it
702   *  can be necessary to configure all of them during the first write access to
703   *  the TIMx_BDTR register.
704   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
705   *       a timer instance provides a break input.
706   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
707   *       a timer instance provides a second break input.
708   * @param  TIMx Timer Instance
709   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
710   * @retval An ErrorStatus enumeration value:
711   *          - SUCCESS: Break and Dead Time is initialized
712   *          - ERROR: not applicable
713   */
LL_TIM_BDTR_Init(TIM_TypeDef * TIMx,LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)714 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
715 {
716   uint32_t tmpbdtr = 0;
717 
718   /* Check the parameters */
719   assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
720   assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
721   assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
722   assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
723   assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
724   assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
725   assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
726 
727   /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
728   the OSSI State, the dead time value and the Automatic Output Enable Bit */
729 
730   /* Set the BDTR bits */
731   MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
732   MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
733   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
734   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
735   MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
736   MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
737   MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
738   MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, TIM_BDTRInitStruct->AutomaticOutput);
739   if (IS_TIM_ADVANCED_INSTANCE(TIMx))
740   {
741     assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct->BreakFilter));
742     MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, TIM_BDTRInitStruct->BreakFilter);
743   }
744 
745   if (IS_TIM_BKIN2_INSTANCE(TIMx))
746   {
747     assert_param(IS_LL_TIM_BREAK2_STATE(TIM_BDTRInitStruct->Break2State));
748     assert_param(IS_LL_TIM_BREAK2_POLARITY(TIM_BDTRInitStruct->Break2Polarity));
749     assert_param(IS_LL_TIM_BREAK2_FILTER(TIM_BDTRInitStruct->Break2Filter));
750 
751     /* Set the BREAK2 input related BDTR bit-fields */
752     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (TIM_BDTRInitStruct->Break2Filter));
753     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, TIM_BDTRInitStruct->Break2State);
754     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, TIM_BDTRInitStruct->Break2Polarity);
755   }
756 
757   /* Set TIMx_BDTR */
758   LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
759 
760   return SUCCESS;
761 }
762 /**
763   * @}
764   */
765 
766 /**
767   * @}
768   */
769 
770 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
771   *  @brief   Private functions
772   * @{
773   */
774 /**
775   * @brief  Configure the TIMx output channel 1.
776   * @param  TIMx Timer Instance
777   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
778   * @retval An ErrorStatus enumeration value:
779   *          - SUCCESS: TIMx registers are de-initialized
780   *          - ERROR: not applicable
781   */
OC1Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)782 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
783 {
784   uint32_t tmpccmr1;
785   uint32_t tmpccer;
786   uint32_t tmpcr2;
787 
788   /* Check the parameters */
789   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
790   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
791   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
792   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
793   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
794   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
795 
796   /* Disable the Channel 1: Reset the CC1E Bit */
797   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
798 
799   /* Get the TIMx CCER register value */
800   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
801 
802   /* Get the TIMx CR2 register value */
803   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
804 
805   /* Get the TIMx CCMR1 register value */
806   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
807 
808   /* Reset Capture/Compare selection Bits */
809   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
810 
811   /* Set the Output Compare Mode */
812   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
813 
814   /* Set the Output Compare Polarity */
815   MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
816 
817   /* Set the Output State */
818   MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
819 
820   if (IS_TIM_BREAK_INSTANCE(TIMx))
821   {
822     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
823     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
824 
825     /* Set the complementary output Polarity */
826     MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
827 
828     /* Set the complementary output State */
829     MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
830 
831     /* Set the Output Idle state */
832     MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
833 
834     /* Set the complementary output Idle state */
835     MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
836   }
837 
838   /* Write to TIMx CR2 */
839   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
840 
841   /* Write to TIMx CCMR1 */
842   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
843 
844   /* Set the Capture Compare Register value */
845   LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
846 
847   /* Write to TIMx CCER */
848   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
849 
850   return SUCCESS;
851 }
852 
853 /**
854   * @brief  Configure the TIMx output channel 2.
855   * @param  TIMx Timer Instance
856   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
857   * @retval An ErrorStatus enumeration value:
858   *          - SUCCESS: TIMx registers are de-initialized
859   *          - ERROR: not applicable
860   */
OC2Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)861 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
862 {
863   uint32_t tmpccmr1;
864   uint32_t tmpccer;
865   uint32_t tmpcr2;
866 
867   /* Check the parameters */
868   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
869   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
870   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
871   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
872   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
873   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
874 
875   /* Disable the Channel 2: Reset the CC2E Bit */
876   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
877 
878   /* Get the TIMx CCER register value */
879   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
880 
881   /* Get the TIMx CR2 register value */
882   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
883 
884   /* Get the TIMx CCMR1 register value */
885   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
886 
887   /* Reset Capture/Compare selection Bits */
888   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
889 
890   /* Select the Output Compare Mode */
891   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
892 
893   /* Set the Output Compare Polarity */
894   MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
895 
896   /* Set the Output State */
897   MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
898 
899   if (IS_TIM_BREAK_INSTANCE(TIMx))
900   {
901     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
902     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
903 
904     /* Set the complementary output Polarity */
905     MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
906 
907     /* Set the complementary output State */
908     MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
909 
910     /* Set the Output Idle state */
911     MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
912 
913     /* Set the complementary output Idle state */
914     MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
915   }
916 
917   /* Write to TIMx CR2 */
918   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
919 
920   /* Write to TIMx CCMR1 */
921   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
922 
923   /* Set the Capture Compare Register value */
924   LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
925 
926   /* Write to TIMx CCER */
927   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
928 
929   return SUCCESS;
930 }
931 
932 /**
933   * @brief  Configure the TIMx output channel 3.
934   * @param  TIMx Timer Instance
935   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
936   * @retval An ErrorStatus enumeration value:
937   *          - SUCCESS: TIMx registers are de-initialized
938   *          - ERROR: not applicable
939   */
OC3Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)940 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
941 {
942   uint32_t tmpccmr2;
943   uint32_t tmpccer;
944   uint32_t tmpcr2;
945 
946   /* Check the parameters */
947   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
948   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
949   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
950   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
951   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
952   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
953 
954   /* Disable the Channel 3: Reset the CC3E Bit */
955   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
956 
957   /* Get the TIMx CCER register value */
958   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
959 
960   /* Get the TIMx CR2 register value */
961   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
962 
963   /* Get the TIMx CCMR2 register value */
964   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
965 
966   /* Reset Capture/Compare selection Bits */
967   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
968 
969   /* Select the Output Compare Mode */
970   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
971 
972   /* Set the Output Compare Polarity */
973   MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
974 
975   /* Set the Output State */
976   MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
977 
978   if (IS_TIM_BREAK_INSTANCE(TIMx))
979   {
980     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
981     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
982 
983     /* Set the complementary output Polarity */
984     MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
985 
986     /* Set the complementary output State */
987     MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
988 
989     /* Set the Output Idle state */
990     MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
991 
992     /* Set the complementary output Idle state */
993     MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
994   }
995 
996   /* Write to TIMx CR2 */
997   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
998 
999   /* Write to TIMx CCMR2 */
1000   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1001 
1002   /* Set the Capture Compare Register value */
1003   LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
1004 
1005   /* Write to TIMx CCER */
1006   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1007 
1008   return SUCCESS;
1009 }
1010 
1011 /**
1012   * @brief  Configure the TIMx output channel 4.
1013   * @param  TIMx Timer Instance
1014   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
1015   * @retval An ErrorStatus enumeration value:
1016   *          - SUCCESS: TIMx registers are de-initialized
1017   *          - ERROR: not applicable
1018   */
OC4Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1019 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1020 {
1021   uint32_t tmpccmr2;
1022   uint32_t tmpccer;
1023   uint32_t tmpcr2;
1024 
1025   /* Check the parameters */
1026   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1027   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1028   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1029   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1030   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1031   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1032 
1033   /* Disable the Channel 4: Reset the CC4E Bit */
1034   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
1035 
1036   /* Get the TIMx CCER register value */
1037   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1038 
1039   /* Get the TIMx CR2 register value */
1040   tmpcr2 =  LL_TIM_ReadReg(TIMx, CR2);
1041 
1042   /* Get the TIMx CCMR2 register value */
1043   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1044 
1045   /* Reset Capture/Compare selection Bits */
1046   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
1047 
1048   /* Select the Output Compare Mode */
1049   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
1050 
1051   /* Set the Output Compare Polarity */
1052   MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
1053 
1054   /* Set the Output State */
1055   MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
1056 
1057   if (IS_TIM_BREAK_INSTANCE(TIMx))
1058   {
1059     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1060     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1061 
1062     /* Set the Output Idle state */
1063     MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
1064   }
1065 
1066   /* Write to TIMx CR2 */
1067   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1068 
1069   /* Write to TIMx CCMR2 */
1070   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1071 
1072   /* Set the Capture Compare Register value */
1073   LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
1074 
1075   /* Write to TIMx CCER */
1076   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1077 
1078   return SUCCESS;
1079 }
1080 
1081 /**
1082   * @brief  Configure the TIMx output channel 5.
1083   * @param  TIMx Timer Instance
1084   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 5 configuration data structure
1085   * @retval An ErrorStatus enumeration value:
1086   *          - SUCCESS: TIMx registers are de-initialized
1087   *          - ERROR: not applicable
1088   */
OC5Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1089 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1090 {
1091   uint32_t tmpccmr3;
1092   uint32_t tmpccer;
1093 
1094   /* Check the parameters */
1095   assert_param(IS_TIM_CC5_INSTANCE(TIMx));
1096   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1097   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1098   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1099   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1100   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1101 
1102   /* Disable the Channel 5: Reset the CC5E Bit */
1103   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC5E);
1104 
1105   /* Get the TIMx CCER register value */
1106   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1107 
1108   /* Get the TIMx CCMR3 register value */
1109   tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1110 
1111   /* Select the Output Compare Mode */
1112   MODIFY_REG(tmpccmr3, TIM_CCMR3_OC5M, TIM_OCInitStruct->OCMode);
1113 
1114   /* Set the Output Compare Polarity */
1115   MODIFY_REG(tmpccer, TIM_CCER_CC5P, TIM_OCInitStruct->OCPolarity << 16U);
1116 
1117   /* Set the Output State */
1118   MODIFY_REG(tmpccer, TIM_CCER_CC5E, TIM_OCInitStruct->OCState << 16U);
1119 
1120   if (IS_TIM_BREAK_INSTANCE(TIMx))
1121   {
1122     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1123     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1124 
1125     /* Set the Output Idle state */
1126     MODIFY_REG(TIMx->CR2, TIM_CR2_OIS5, TIM_OCInitStruct->OCIdleState << 8U);
1127 
1128   }
1129 
1130   /* Write to TIMx CCMR3 */
1131   LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1132 
1133   /* Set the Capture Compare Register value */
1134   LL_TIM_OC_SetCompareCH5(TIMx, TIM_OCInitStruct->CompareValue);
1135 
1136   /* Write to TIMx CCER */
1137   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1138 
1139   return SUCCESS;
1140 }
1141 
1142 /**
1143   * @brief  Configure the TIMx output channel 6.
1144   * @param  TIMx Timer Instance
1145   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 6 configuration data structure
1146   * @retval An ErrorStatus enumeration value:
1147   *          - SUCCESS: TIMx registers are de-initialized
1148   *          - ERROR: not applicable
1149   */
OC6Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1150 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1151 {
1152   uint32_t tmpccmr3;
1153   uint32_t tmpccer;
1154 
1155   /* Check the parameters */
1156   assert_param(IS_TIM_CC6_INSTANCE(TIMx));
1157   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1158   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1159   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1160   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1161   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1162 
1163   /* Disable the Channel 5: Reset the CC6E Bit */
1164   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC6E);
1165 
1166   /* Get the TIMx CCER register value */
1167   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1168 
1169   /* Get the TIMx CCMR3 register value */
1170   tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1171 
1172   /* Select the Output Compare Mode */
1173   MODIFY_REG(tmpccmr3, TIM_CCMR3_OC6M, TIM_OCInitStruct->OCMode << 8U);
1174 
1175   /* Set the Output Compare Polarity */
1176   MODIFY_REG(tmpccer, TIM_CCER_CC6P, TIM_OCInitStruct->OCPolarity << 20U);
1177 
1178   /* Set the Output State */
1179   MODIFY_REG(tmpccer, TIM_CCER_CC6E, TIM_OCInitStruct->OCState << 20U);
1180 
1181   if (IS_TIM_BREAK_INSTANCE(TIMx))
1182   {
1183     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1184     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1185 
1186     /* Set the Output Idle state */
1187     MODIFY_REG(TIMx->CR2, TIM_CR2_OIS6, TIM_OCInitStruct->OCIdleState << 10U);
1188   }
1189 
1190   /* Write to TIMx CCMR3 */
1191   LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1192 
1193   /* Set the Capture Compare Register value */
1194   LL_TIM_OC_SetCompareCH6(TIMx, TIM_OCInitStruct->CompareValue);
1195 
1196   /* Write to TIMx CCER */
1197   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1198 
1199   return SUCCESS;
1200 }
1201 
1202 /**
1203   * @brief  Configure the TIMx input channel 1.
1204   * @param  TIMx Timer Instance
1205   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1206   * @retval An ErrorStatus enumeration value:
1207   *          - SUCCESS: TIMx registers are de-initialized
1208   *          - ERROR: not applicable
1209   */
IC1Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1210 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1211 {
1212   /* Check the parameters */
1213   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1214   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1215   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1216   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1217   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1218 
1219   /* Disable the Channel 1: Reset the CC1E Bit */
1220   TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1221 
1222   /* Select the Input and set the filter and the prescaler value */
1223   MODIFY_REG(TIMx->CCMR1,
1224              (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1225              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1226 
1227   /* Select the Polarity and set the CC1E Bit */
1228   MODIFY_REG(TIMx->CCER,
1229              (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1230              (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1231 
1232   return SUCCESS;
1233 }
1234 
1235 /**
1236   * @brief  Configure the TIMx input channel 2.
1237   * @param  TIMx Timer Instance
1238   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1239   * @retval An ErrorStatus enumeration value:
1240   *          - SUCCESS: TIMx registers are de-initialized
1241   *          - ERROR: not applicable
1242   */
IC2Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1243 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1244 {
1245   /* Check the parameters */
1246   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1247   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1248   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1249   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1250   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1251 
1252   /* Disable the Channel 2: Reset the CC2E Bit */
1253   TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1254 
1255   /* Select the Input and set the filter and the prescaler value */
1256   MODIFY_REG(TIMx->CCMR1,
1257              (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1258              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1259 
1260   /* Select the Polarity and set the CC2E Bit */
1261   MODIFY_REG(TIMx->CCER,
1262              (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1263              ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1264 
1265   return SUCCESS;
1266 }
1267 
1268 /**
1269   * @brief  Configure the TIMx input channel 3.
1270   * @param  TIMx Timer Instance
1271   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1272   * @retval An ErrorStatus enumeration value:
1273   *          - SUCCESS: TIMx registers are de-initialized
1274   *          - ERROR: not applicable
1275   */
IC3Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1276 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1277 {
1278   /* Check the parameters */
1279   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1280   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1281   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1282   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1283   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1284 
1285   /* Disable the Channel 3: Reset the CC3E Bit */
1286   TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1287 
1288   /* Select the Input and set the filter and the prescaler value */
1289   MODIFY_REG(TIMx->CCMR2,
1290              (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1291              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1292 
1293   /* Select the Polarity and set the CC3E Bit */
1294   MODIFY_REG(TIMx->CCER,
1295              (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1296              ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1297 
1298   return SUCCESS;
1299 }
1300 
1301 /**
1302   * @brief  Configure the TIMx input channel 4.
1303   * @param  TIMx Timer Instance
1304   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1305   * @retval An ErrorStatus enumeration value:
1306   *          - SUCCESS: TIMx registers are de-initialized
1307   *          - ERROR: not applicable
1308   */
IC4Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1309 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1310 {
1311   /* Check the parameters */
1312   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1313   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1314   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1315   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1316   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1317 
1318   /* Disable the Channel 4: Reset the CC4E Bit */
1319   TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1320 
1321   /* Select the Input and set the filter and the prescaler value */
1322   MODIFY_REG(TIMx->CCMR2,
1323              (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1324              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1325 
1326   /* Select the Polarity and set the CC2E Bit */
1327   MODIFY_REG(TIMx->CCER,
1328              (TIM_CCER_CC4P | TIM_CCER_CC4NP),
1329              ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1330 
1331   return SUCCESS;
1332 }
1333 
1334 
1335 /**
1336   * @}
1337   */
1338 
1339 /**
1340   * @}
1341   */
1342 
1343 #endif /* TIM1 || TIM8 || TIM2 || TIM3 ||  TIM4 || TIM5 || TIM15 || TIM16 || TIM17 || TIM6 || TIM7 */
1344 
1345 /**
1346   * @}
1347   */
1348 
1349 #endif /* USE_FULL_LL_DRIVER */
1350 
1351 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
1352