xref: /btstack/port/stm32-f4discovery-usb/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_tim.c (revision a8f7f3fcbcd51f8d2e92aca076b6a9f812db358c)
1 /**
2   ******************************************************************************
3   * @file    stm32f4xx_ll_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM LL module driver.
6   ******************************************************************************
7   * @attention
8   *
9   * <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
10   * All rights reserved.</center></h2>
11   *
12   * This software component is licensed by ST under BSD 3-Clause license,
13   * the "License"; You may not use this file except in compliance with the
14   * License. You may obtain a copy of the License at:
15   *                        opensource.org/licenses/BSD-3-Clause
16   *
17   ******************************************************************************
18   */
19 #if defined(USE_FULL_LL_DRIVER)
20 
21 /* Includes ------------------------------------------------------------------*/
22 #include "stm32f4xx_ll_tim.h"
23 #include "stm32f4xx_ll_bus.h"
24 
25 #ifdef  USE_FULL_ASSERT
26 #include "stm32_assert.h"
27 #else
28 #define assert_param(expr) ((void)0U)
29 #endif /* USE_FULL_ASSERT */
30 
31 /** @addtogroup STM32F4xx_LL_Driver
32   * @{
33   */
34 
35 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM9) || defined (TIM10) || defined (TIM11) || defined (TIM12) || defined (TIM13) || defined (TIM14)
36 
37 /** @addtogroup TIM_LL
38   * @{
39   */
40 
41 /* Private types -------------------------------------------------------------*/
42 /* Private variables ---------------------------------------------------------*/
43 /* Private constants ---------------------------------------------------------*/
44 /* Private macros ------------------------------------------------------------*/
45 /** @addtogroup TIM_LL_Private_Macros
46   * @{
47   */
48 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
49                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
50                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
51                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
52                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
53 
54 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
55                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
56                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
57 
58 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
59                                      || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
60                                      || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
61                                      || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
62                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
63                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
64                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
65                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM2))
66 
67 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
68                                       || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
69 
70 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
71                                          || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
72 
73 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
74                                           || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
75 
76 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
77                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
78                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
79 
80 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
81                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
82                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
83                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
84 
85 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
86                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
87                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
88                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
89                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
90                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
91                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
92                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
93                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
94                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
95                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
96                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
97                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
98                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
99                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
100                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
101 
102 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
103                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
104                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
105 
106 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
107                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
108                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
109 
110 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
111                                                   || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
112 
113 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
114                                          || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
115 
116 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
117                                          || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
118 
119 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
120                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_1)   \
121                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_2)   \
122                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
123 
124 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
125                                           || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
126 
127 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
128                                              || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
129 
130 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
131                                                      || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
132 /**
133   * @}
134   */
135 
136 
137 /* Private function prototypes -----------------------------------------------*/
138 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
139   * @{
140   */
141 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
142 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
143 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
144 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
145 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
146 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
147 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
148 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
149 /**
150   * @}
151   */
152 
153 /* Exported functions --------------------------------------------------------*/
154 /** @addtogroup TIM_LL_Exported_Functions
155   * @{
156   */
157 
158 /** @addtogroup TIM_LL_EF_Init
159   * @{
160   */
161 
162 /**
163   * @brief  Set TIMx registers to their reset values.
164   * @param  TIMx Timer instance
165   * @retval An ErrorStatus enumeration value:
166   *          - SUCCESS: TIMx registers are de-initialized
167   *          - ERROR: invalid TIMx instance
168   */
LL_TIM_DeInit(TIM_TypeDef * TIMx)169 ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx)
170 {
171   ErrorStatus result = SUCCESS;
172 
173   /* Check the parameters */
174   assert_param(IS_TIM_INSTANCE(TIMx));
175 
176   if (TIMx == TIM1)
177   {
178     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
179     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
180   }
181 #if defined(TIM2)
182   else if (TIMx == TIM2)
183   {
184     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
185     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
186   }
187 #endif
188 #if defined(TIM3)
189   else if (TIMx == TIM3)
190   {
191     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
192     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
193   }
194 #endif
195 #if defined(TIM4)
196   else if (TIMx == TIM4)
197   {
198     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4);
199     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4);
200   }
201 #endif
202 #if defined(TIM5)
203   else if (TIMx == TIM5)
204   {
205     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5);
206     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5);
207   }
208 #endif
209 #if defined(TIM6)
210   else if (TIMx == TIM6)
211   {
212     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
213     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
214   }
215 #endif
216 #if defined (TIM7)
217   else if (TIMx == TIM7)
218   {
219     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
220     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
221   }
222 #endif
223 #if defined(TIM8)
224   else if (TIMx == TIM8)
225   {
226     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8);
227     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8);
228   }
229 #endif
230 #if defined(TIM9)
231   else if (TIMx == TIM9)
232   {
233     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM9);
234     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM9);
235   }
236 #endif
237 #if defined(TIM10)
238   else if (TIMx == TIM10)
239   {
240     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM10);
241     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM10);
242   }
243 #endif
244 #if defined(TIM11)
245   else if (TIMx == TIM11)
246   {
247     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM11);
248     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM11);
249   }
250 #endif
251 #if defined(TIM12)
252   else if (TIMx == TIM12)
253   {
254     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM12);
255     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM12);
256   }
257 #endif
258 #if defined(TIM13)
259   else if (TIMx == TIM13)
260   {
261     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM13);
262     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM13);
263   }
264 #endif
265 #if defined(TIM14)
266   else if (TIMx == TIM14)
267   {
268     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM14);
269     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM14);
270   }
271 #endif
272   else
273   {
274     result = ERROR;
275   }
276 
277   return result;
278 }
279 
280 /**
281   * @brief  Set the fields of the time base unit configuration data structure
282   *         to their default values.
283   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
284   * @retval None
285   */
LL_TIM_StructInit(LL_TIM_InitTypeDef * TIM_InitStruct)286 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
287 {
288   /* Set the default configuration */
289   TIM_InitStruct->Prescaler         = (uint16_t)0x0000;
290   TIM_InitStruct->CounterMode       = LL_TIM_COUNTERMODE_UP;
291   TIM_InitStruct->Autoreload        = 0xFFFFFFFFU;
292   TIM_InitStruct->ClockDivision     = LL_TIM_CLOCKDIVISION_DIV1;
293   TIM_InitStruct->RepetitionCounter = (uint8_t)0x00;
294 }
295 
296 /**
297   * @brief  Configure the TIMx time base unit.
298   * @param  TIMx Timer Instance
299   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (TIMx time base unit configuration data structure)
300   * @retval An ErrorStatus enumeration value:
301   *          - SUCCESS: TIMx registers are de-initialized
302   *          - ERROR: not applicable
303   */
LL_TIM_Init(TIM_TypeDef * TIMx,LL_TIM_InitTypeDef * TIM_InitStruct)304 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct)
305 {
306   uint32_t tmpcr1;
307 
308   /* Check the parameters */
309   assert_param(IS_TIM_INSTANCE(TIMx));
310   assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
311   assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
312 
313   tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
314 
315   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
316   {
317     /* Select the Counter Mode */
318     MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
319   }
320 
321   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
322   {
323     /* Set the clock division */
324     MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
325   }
326 
327   /* Write to TIMx CR1 */
328   LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
329 
330   /* Set the Autoreload value */
331   LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
332 
333   /* Set the Prescaler value */
334   LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
335 
336   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
337   {
338     /* Set the Repetition Counter value */
339     LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
340   }
341 
342   /* Generate an update event to reload the Prescaler
343      and the repetition counter value (if applicable) immediately */
344   LL_TIM_GenerateEvent_UPDATE(TIMx);
345 
346   return SUCCESS;
347 }
348 
349 /**
350   * @brief  Set the fields of the TIMx output channel configuration data
351   *         structure to their default values.
352   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (the output channel configuration data structure)
353   * @retval None
354   */
LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)355 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
356 {
357   /* Set the default configuration */
358   TIM_OC_InitStruct->OCMode       = LL_TIM_OCMODE_FROZEN;
359   TIM_OC_InitStruct->OCState      = LL_TIM_OCSTATE_DISABLE;
360   TIM_OC_InitStruct->OCNState     = LL_TIM_OCSTATE_DISABLE;
361   TIM_OC_InitStruct->CompareValue = 0x00000000U;
362   TIM_OC_InitStruct->OCPolarity   = LL_TIM_OCPOLARITY_HIGH;
363   TIM_OC_InitStruct->OCNPolarity  = LL_TIM_OCPOLARITY_HIGH;
364   TIM_OC_InitStruct->OCIdleState  = LL_TIM_OCIDLESTATE_LOW;
365   TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
366 }
367 
368 /**
369   * @brief  Configure the TIMx output channel.
370   * @param  TIMx Timer Instance
371   * @param  Channel This parameter can be one of the following values:
372   *         @arg @ref LL_TIM_CHANNEL_CH1
373   *         @arg @ref LL_TIM_CHANNEL_CH2
374   *         @arg @ref LL_TIM_CHANNEL_CH3
375   *         @arg @ref LL_TIM_CHANNEL_CH4
376   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration data structure)
377   * @retval An ErrorStatus enumeration value:
378   *          - SUCCESS: TIMx output channel is initialized
379   *          - ERROR: TIMx output channel is not initialized
380   */
LL_TIM_OC_Init(TIM_TypeDef * TIMx,uint32_t Channel,LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)381 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
382 {
383   ErrorStatus result = ERROR;
384 
385   switch (Channel)
386   {
387     case LL_TIM_CHANNEL_CH1:
388       result = OC1Config(TIMx, TIM_OC_InitStruct);
389       break;
390     case LL_TIM_CHANNEL_CH2:
391       result = OC2Config(TIMx, TIM_OC_InitStruct);
392       break;
393     case LL_TIM_CHANNEL_CH3:
394       result = OC3Config(TIMx, TIM_OC_InitStruct);
395       break;
396     case LL_TIM_CHANNEL_CH4:
397       result = OC4Config(TIMx, TIM_OC_InitStruct);
398       break;
399     default:
400       break;
401   }
402 
403   return result;
404 }
405 
406 /**
407   * @brief  Set the fields of the TIMx input channel configuration data
408   *         structure to their default values.
409   * @param  TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration data structure)
410   * @retval None
411   */
LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)412 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
413 {
414   /* Set the default configuration */
415   TIM_ICInitStruct->ICPolarity    = LL_TIM_IC_POLARITY_RISING;
416   TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
417   TIM_ICInitStruct->ICPrescaler   = LL_TIM_ICPSC_DIV1;
418   TIM_ICInitStruct->ICFilter      = LL_TIM_IC_FILTER_FDIV1;
419 }
420 
421 /**
422   * @brief  Configure the TIMx input channel.
423   * @param  TIMx Timer Instance
424   * @param  Channel This parameter can be one of the following values:
425   *         @arg @ref LL_TIM_CHANNEL_CH1
426   *         @arg @ref LL_TIM_CHANNEL_CH2
427   *         @arg @ref LL_TIM_CHANNEL_CH3
428   *         @arg @ref LL_TIM_CHANNEL_CH4
429   * @param  TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data structure)
430   * @retval An ErrorStatus enumeration value:
431   *          - SUCCESS: TIMx output channel is initialized
432   *          - ERROR: TIMx output channel is not initialized
433   */
LL_TIM_IC_Init(TIM_TypeDef * TIMx,uint32_t Channel,LL_TIM_IC_InitTypeDef * TIM_IC_InitStruct)434 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
435 {
436   ErrorStatus result = ERROR;
437 
438   switch (Channel)
439   {
440     case LL_TIM_CHANNEL_CH1:
441       result = IC1Config(TIMx, TIM_IC_InitStruct);
442       break;
443     case LL_TIM_CHANNEL_CH2:
444       result = IC2Config(TIMx, TIM_IC_InitStruct);
445       break;
446     case LL_TIM_CHANNEL_CH3:
447       result = IC3Config(TIMx, TIM_IC_InitStruct);
448       break;
449     case LL_TIM_CHANNEL_CH4:
450       result = IC4Config(TIMx, TIM_IC_InitStruct);
451       break;
452     default:
453       break;
454   }
455 
456   return result;
457 }
458 
459 /**
460   * @brief  Fills each TIM_EncoderInitStruct field with its default value
461   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface configuration data structure)
462   * @retval None
463   */
LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)464 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
465 {
466   /* Set the default configuration */
467   TIM_EncoderInitStruct->EncoderMode    = LL_TIM_ENCODERMODE_X2_TI1;
468   TIM_EncoderInitStruct->IC1Polarity    = LL_TIM_IC_POLARITY_RISING;
469   TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
470   TIM_EncoderInitStruct->IC1Prescaler   = LL_TIM_ICPSC_DIV1;
471   TIM_EncoderInitStruct->IC1Filter      = LL_TIM_IC_FILTER_FDIV1;
472   TIM_EncoderInitStruct->IC2Polarity    = LL_TIM_IC_POLARITY_RISING;
473   TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
474   TIM_EncoderInitStruct->IC2Prescaler   = LL_TIM_ICPSC_DIV1;
475   TIM_EncoderInitStruct->IC2Filter      = LL_TIM_IC_FILTER_FDIV1;
476 }
477 
478 /**
479   * @brief  Configure the encoder interface of the timer instance.
480   * @param  TIMx Timer Instance
481   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface configuration data structure)
482   * @retval An ErrorStatus enumeration value:
483   *          - SUCCESS: TIMx registers are de-initialized
484   *          - ERROR: not applicable
485   */
LL_TIM_ENCODER_Init(TIM_TypeDef * TIMx,LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)486 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
487 {
488   uint32_t tmpccmr1;
489   uint32_t tmpccer;
490 
491   /* Check the parameters */
492   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
493   assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
494   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
495   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
496   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
497   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
498   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
499   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
500   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
501   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
502 
503   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
504   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
505 
506   /* Get the TIMx CCMR1 register value */
507   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
508 
509   /* Get the TIMx CCER register value */
510   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
511 
512   /* Configure TI1 */
513   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
514   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
515   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
516   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
517 
518   /* Configure TI2 */
519   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F  | TIM_CCMR1_IC2PSC);
520   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
521   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
522   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
523 
524   /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
525   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
526   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
527   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
528   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
529 
530   /* Set encoder mode */
531   LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
532 
533   /* Write to TIMx CCMR1 */
534   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
535 
536   /* Write to TIMx CCER */
537   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
538 
539   return SUCCESS;
540 }
541 
542 /**
543   * @brief  Set the fields of the TIMx Hall sensor interface configuration data
544   *         structure to their default values.
545   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface configuration data structure)
546   * @retval None
547   */
LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)548 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
549 {
550   /* Set the default configuration */
551   TIM_HallSensorInitStruct->IC1Polarity       = LL_TIM_IC_POLARITY_RISING;
552   TIM_HallSensorInitStruct->IC1Prescaler      = LL_TIM_ICPSC_DIV1;
553   TIM_HallSensorInitStruct->IC1Filter         = LL_TIM_IC_FILTER_FDIV1;
554   TIM_HallSensorInitStruct->CommutationDelay  = 0U;
555 }
556 
557 /**
558   * @brief  Configure the Hall sensor interface of the timer instance.
559   * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
560   *       to the TI1 input channel
561   * @note TIMx slave mode controller is configured in reset mode.
562           Selected internal trigger is TI1F_ED.
563   * @note Channel 1 is configured as input, IC1 is mapped on TRC.
564   * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
565   *       between 2 changes on the inputs. It gives information about motor speed.
566   * @note Channel 2 is configured in output PWM 2 mode.
567   * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
568   * @note OC2REF is selected as trigger output on TRGO.
569   * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
570   *       when TIMx operates in Hall sensor interface mode.
571   * @param  TIMx Timer Instance
572   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor interface configuration data structure)
573   * @retval An ErrorStatus enumeration value:
574   *          - SUCCESS: TIMx registers are de-initialized
575   *          - ERROR: not applicable
576   */
LL_TIM_HALLSENSOR_Init(TIM_TypeDef * TIMx,LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)577 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
578 {
579   uint32_t tmpcr2;
580   uint32_t tmpccmr1;
581   uint32_t tmpccer;
582   uint32_t tmpsmcr;
583 
584   /* Check the parameters */
585   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
586   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
587   assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
588   assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
589 
590   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
591   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
592 
593   /* Get the TIMx CR2 register value */
594   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
595 
596   /* Get the TIMx CCMR1 register value */
597   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
598 
599   /* Get the TIMx CCER register value */
600   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
601 
602   /* Get the TIMx SMCR register value */
603   tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
604 
605   /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
606   tmpcr2 |= TIM_CR2_TI1S;
607 
608   /* OC2REF signal is used as trigger output (TRGO) */
609   tmpcr2 |= LL_TIM_TRGO_OC2REF;
610 
611   /* Configure the slave mode controller */
612   tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
613   tmpsmcr |= LL_TIM_TS_TI1F_ED;
614   tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
615 
616   /* Configure input channel 1 */
617   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
618   tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
619   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
620   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
621 
622   /* Configure input channel 2 */
623   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE  | TIM_CCMR1_OC2PE  | TIM_CCMR1_OC2CE);
624   tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
625 
626   /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
627   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
628   tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
629   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
630 
631   /* Write to TIMx CR2 */
632   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
633 
634   /* Write to TIMx SMCR */
635   LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
636 
637   /* Write to TIMx CCMR1 */
638   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
639 
640   /* Write to TIMx CCER */
641   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
642 
643   /* Write to TIMx CCR2 */
644   LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
645 
646   return SUCCESS;
647 }
648 
649 /**
650   * @brief  Set the fields of the Break and Dead Time configuration data structure
651   *         to their default values.
652   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
653   * @retval None
654   */
LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)655 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
656 {
657   /* Set the default configuration */
658   TIM_BDTRInitStruct->OSSRState       = LL_TIM_OSSR_DISABLE;
659   TIM_BDTRInitStruct->OSSIState       = LL_TIM_OSSI_DISABLE;
660   TIM_BDTRInitStruct->LockLevel       = LL_TIM_LOCKLEVEL_OFF;
661   TIM_BDTRInitStruct->DeadTime        = (uint8_t)0x00;
662   TIM_BDTRInitStruct->BreakState      = LL_TIM_BREAK_DISABLE;
663   TIM_BDTRInitStruct->BreakPolarity   = LL_TIM_BREAK_POLARITY_LOW;
664   TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
665 }
666 
667 /**
668   * @brief  Configure the Break and Dead Time feature of the timer instance.
669   * @note As the bits AOE, BKP, BKE, OSSR, OSSI and DTG[7:0] can be write-locked
670   *  depending on the LOCK configuration, it can be necessary to configure all of
671   *  them during the first write access to the TIMx_BDTR register.
672   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
673   *       a timer instance provides a break input.
674   * @param  TIMx Timer Instance
675   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
676   * @retval An ErrorStatus enumeration value:
677   *          - SUCCESS: Break and Dead Time is initialized
678   *          - ERROR: not applicable
679   */
LL_TIM_BDTR_Init(TIM_TypeDef * TIMx,LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)680 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
681 {
682   uint32_t tmpbdtr = 0;
683 
684   /* Check the parameters */
685   assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
686   assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
687   assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
688   assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
689   assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
690   assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
691   assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
692 
693   /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
694   the OSSI State, the dead time value and the Automatic Output Enable Bit */
695 
696   /* Set the BDTR bits */
697   MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
698   MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
699   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
700   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
701   MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
702   MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
703   MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
704   MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, TIM_BDTRInitStruct->AutomaticOutput);
705 
706   /* Set TIMx_BDTR */
707   LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
708 
709   return SUCCESS;
710 }
711 /**
712   * @}
713   */
714 
715 /**
716   * @}
717   */
718 
719 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
720   *  @brief   Private functions
721   * @{
722   */
723 /**
724   * @brief  Configure the TIMx output channel 1.
725   * @param  TIMx Timer Instance
726   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
727   * @retval An ErrorStatus enumeration value:
728   *          - SUCCESS: TIMx registers are de-initialized
729   *          - ERROR: not applicable
730   */
OC1Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)731 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
732 {
733   uint32_t tmpccmr1;
734   uint32_t tmpccer;
735   uint32_t tmpcr2;
736 
737   /* Check the parameters */
738   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
739   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
740   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
741   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
742   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
743   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
744 
745   /* Disable the Channel 1: Reset the CC1E Bit */
746   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
747 
748   /* Get the TIMx CCER register value */
749   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
750 
751   /* Get the TIMx CR2 register value */
752   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
753 
754   /* Get the TIMx CCMR1 register value */
755   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
756 
757   /* Reset Capture/Compare selection Bits */
758   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
759 
760   /* Set the Output Compare Mode */
761   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
762 
763   /* Set the Output Compare Polarity */
764   MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
765 
766   /* Set the Output State */
767   MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
768 
769   if (IS_TIM_BREAK_INSTANCE(TIMx))
770   {
771     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
772     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
773 
774     /* Set the complementary output Polarity */
775     MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
776 
777     /* Set the complementary output State */
778     MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
779 
780     /* Set the Output Idle state */
781     MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
782 
783     /* Set the complementary output Idle state */
784     MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
785   }
786 
787   /* Write to TIMx CR2 */
788   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
789 
790   /* Write to TIMx CCMR1 */
791   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
792 
793   /* Set the Capture Compare Register value */
794   LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
795 
796   /* Write to TIMx CCER */
797   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
798 
799   return SUCCESS;
800 }
801 
802 /**
803   * @brief  Configure the TIMx output channel 2.
804   * @param  TIMx Timer Instance
805   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
806   * @retval An ErrorStatus enumeration value:
807   *          - SUCCESS: TIMx registers are de-initialized
808   *          - ERROR: not applicable
809   */
OC2Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)810 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
811 {
812   uint32_t tmpccmr1;
813   uint32_t tmpccer;
814   uint32_t tmpcr2;
815 
816   /* Check the parameters */
817   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
818   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
819   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
820   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
821   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
822   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
823 
824   /* Disable the Channel 2: Reset the CC2E Bit */
825   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
826 
827   /* Get the TIMx CCER register value */
828   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
829 
830   /* Get the TIMx CR2 register value */
831   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
832 
833   /* Get the TIMx CCMR1 register value */
834   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
835 
836   /* Reset Capture/Compare selection Bits */
837   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
838 
839   /* Select the Output Compare Mode */
840   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
841 
842   /* Set the Output Compare Polarity */
843   MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
844 
845   /* Set the Output State */
846   MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
847 
848   if (IS_TIM_BREAK_INSTANCE(TIMx))
849   {
850     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
851     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
852 
853     /* Set the complementary output Polarity */
854     MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
855 
856     /* Set the complementary output State */
857     MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
858 
859     /* Set the Output Idle state */
860     MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
861 
862     /* Set the complementary output Idle state */
863     MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
864   }
865 
866   /* Write to TIMx CR2 */
867   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
868 
869   /* Write to TIMx CCMR1 */
870   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
871 
872   /* Set the Capture Compare Register value */
873   LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
874 
875   /* Write to TIMx CCER */
876   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
877 
878   return SUCCESS;
879 }
880 
881 /**
882   * @brief  Configure the TIMx output channel 3.
883   * @param  TIMx Timer Instance
884   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
885   * @retval An ErrorStatus enumeration value:
886   *          - SUCCESS: TIMx registers are de-initialized
887   *          - ERROR: not applicable
888   */
OC3Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)889 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
890 {
891   uint32_t tmpccmr2;
892   uint32_t tmpccer;
893   uint32_t tmpcr2;
894 
895   /* Check the parameters */
896   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
897   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
898   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
899   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
900   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
901   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
902 
903   /* Disable the Channel 3: Reset the CC3E Bit */
904   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
905 
906   /* Get the TIMx CCER register value */
907   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
908 
909   /* Get the TIMx CR2 register value */
910   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
911 
912   /* Get the TIMx CCMR2 register value */
913   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
914 
915   /* Reset Capture/Compare selection Bits */
916   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
917 
918   /* Select the Output Compare Mode */
919   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
920 
921   /* Set the Output Compare Polarity */
922   MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
923 
924   /* Set the Output State */
925   MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
926 
927   if (IS_TIM_BREAK_INSTANCE(TIMx))
928   {
929     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
930     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
931 
932     /* Set the complementary output Polarity */
933     MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
934 
935     /* Set the complementary output State */
936     MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
937 
938     /* Set the Output Idle state */
939     MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
940 
941     /* Set the complementary output Idle state */
942     MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
943   }
944 
945   /* Write to TIMx CR2 */
946   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
947 
948   /* Write to TIMx CCMR2 */
949   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
950 
951   /* Set the Capture Compare Register value */
952   LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
953 
954   /* Write to TIMx CCER */
955   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
956 
957   return SUCCESS;
958 }
959 
960 /**
961   * @brief  Configure the TIMx output channel 4.
962   * @param  TIMx Timer Instance
963   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
964   * @retval An ErrorStatus enumeration value:
965   *          - SUCCESS: TIMx registers are de-initialized
966   *          - ERROR: not applicable
967   */
OC4Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)968 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
969 {
970   uint32_t tmpccmr2;
971   uint32_t tmpccer;
972   uint32_t tmpcr2;
973 
974   /* Check the parameters */
975   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
976   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
977   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
978   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
979   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
980   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
981 
982   /* Disable the Channel 4: Reset the CC4E Bit */
983   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
984 
985   /* Get the TIMx CCER register value */
986   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
987 
988   /* Get the TIMx CR2 register value */
989   tmpcr2 =  LL_TIM_ReadReg(TIMx, CR2);
990 
991   /* Get the TIMx CCMR2 register value */
992   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
993 
994   /* Reset Capture/Compare selection Bits */
995   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
996 
997   /* Select the Output Compare Mode */
998   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
999 
1000   /* Set the Output Compare Polarity */
1001   MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
1002 
1003   /* Set the Output State */
1004   MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
1005 
1006   if (IS_TIM_BREAK_INSTANCE(TIMx))
1007   {
1008     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1009     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1010 
1011     /* Set the Output Idle state */
1012     MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
1013   }
1014 
1015   /* Write to TIMx CR2 */
1016   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1017 
1018   /* Write to TIMx CCMR2 */
1019   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1020 
1021   /* Set the Capture Compare Register value */
1022   LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
1023 
1024   /* Write to TIMx CCER */
1025   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1026 
1027   return SUCCESS;
1028 }
1029 
1030 
1031 /**
1032   * @brief  Configure the TIMx input channel 1.
1033   * @param  TIMx Timer Instance
1034   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1035   * @retval An ErrorStatus enumeration value:
1036   *          - SUCCESS: TIMx registers are de-initialized
1037   *          - ERROR: not applicable
1038   */
IC1Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1039 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1040 {
1041   /* Check the parameters */
1042   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1043   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1044   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1045   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1046   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1047 
1048   /* Disable the Channel 1: Reset the CC1E Bit */
1049   TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1050 
1051   /* Select the Input and set the filter and the prescaler value */
1052   MODIFY_REG(TIMx->CCMR1,
1053              (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1054              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1055 
1056   /* Select the Polarity and set the CC1E Bit */
1057   MODIFY_REG(TIMx->CCER,
1058              (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1059              (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1060 
1061   return SUCCESS;
1062 }
1063 
1064 /**
1065   * @brief  Configure the TIMx input channel 2.
1066   * @param  TIMx Timer Instance
1067   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1068   * @retval An ErrorStatus enumeration value:
1069   *          - SUCCESS: TIMx registers are de-initialized
1070   *          - ERROR: not applicable
1071   */
IC2Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1072 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1073 {
1074   /* Check the parameters */
1075   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1076   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1077   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1078   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1079   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1080 
1081   /* Disable the Channel 2: Reset the CC2E Bit */
1082   TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1083 
1084   /* Select the Input and set the filter and the prescaler value */
1085   MODIFY_REG(TIMx->CCMR1,
1086              (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1087              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1088 
1089   /* Select the Polarity and set the CC2E Bit */
1090   MODIFY_REG(TIMx->CCER,
1091              (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1092              ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1093 
1094   return SUCCESS;
1095 }
1096 
1097 /**
1098   * @brief  Configure the TIMx input channel 3.
1099   * @param  TIMx Timer Instance
1100   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1101   * @retval An ErrorStatus enumeration value:
1102   *          - SUCCESS: TIMx registers are de-initialized
1103   *          - ERROR: not applicable
1104   */
IC3Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1105 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1106 {
1107   /* Check the parameters */
1108   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1109   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1110   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1111   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1112   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1113 
1114   /* Disable the Channel 3: Reset the CC3E Bit */
1115   TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1116 
1117   /* Select the Input and set the filter and the prescaler value */
1118   MODIFY_REG(TIMx->CCMR2,
1119              (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1120              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1121 
1122   /* Select the Polarity and set the CC3E Bit */
1123   MODIFY_REG(TIMx->CCER,
1124              (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1125              ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1126 
1127   return SUCCESS;
1128 }
1129 
1130 /**
1131   * @brief  Configure the TIMx input channel 4.
1132   * @param  TIMx Timer Instance
1133   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1134   * @retval An ErrorStatus enumeration value:
1135   *          - SUCCESS: TIMx registers are de-initialized
1136   *          - ERROR: not applicable
1137   */
IC4Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1138 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1139 {
1140   /* Check the parameters */
1141   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1142   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1143   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1144   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1145   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1146 
1147   /* Disable the Channel 4: Reset the CC4E Bit */
1148   TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1149 
1150   /* Select the Input and set the filter and the prescaler value */
1151   MODIFY_REG(TIMx->CCMR2,
1152              (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1153              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1154 
1155   /* Select the Polarity and set the CC2E Bit */
1156   MODIFY_REG(TIMx->CCER,
1157              (TIM_CCER_CC4P | TIM_CCER_CC4NP),
1158              ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1159 
1160   return SUCCESS;
1161 }
1162 
1163 
1164 /**
1165   * @}
1166   */
1167 
1168 /**
1169   * @}
1170   */
1171 
1172 #endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM9 || TIM10 || TIM11 || TIM12 || TIM13 || TIM14 */
1173 
1174 /**
1175   * @}
1176   */
1177 
1178 #endif /* USE_FULL_LL_DRIVER */
1179 
1180 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
1181