xref: /btstack/port/stm32-f4discovery-usb/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_adc.c (revision a8f7f3fcbcd51f8d2e92aca076b6a9f812db358c)
1 /**
2   ******************************************************************************
3   * @file    stm32f4xx_hal_adc.c
4   * @author  MCD Application Team
5   * @brief   This file provides firmware functions to manage the following
6   *          functionalities of the Analog to Digital Convertor (ADC) peripheral:
7   *           + Initialization and de-initialization functions
8   *           + IO operation functions
9   *           + State and errors functions
10   *
11   @verbatim
12   ==============================================================================
13                     ##### ADC Peripheral features #####
14   ==============================================================================
15   [..]
16   (#) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution.
17   (#) Interrupt generation at the end of conversion, end of injected conversion,
18       and in case of analog watchdog or overrun events
19   (#) Single and continuous conversion modes.
20   (#) Scan mode for automatic conversion of channel 0 to channel x.
21   (#) Data alignment with in-built data coherency.
22   (#) Channel-wise programmable sampling time.
23   (#) External trigger option with configurable polarity for both regular and
24       injected conversion.
25   (#) Dual/Triple mode (on devices with 2 ADCs or more).
26   (#) Configurable DMA data storage in Dual/Triple ADC mode.
27   (#) Configurable delay between conversions in Dual/Triple interleaved mode.
28   (#) ADC conversion type (refer to the datasheets).
29   (#) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at
30       slower speed.
31   (#) ADC input range: VREF(minus) = VIN = VREF(plus).
32   (#) DMA request generation during regular channel conversion.
33 
34 
35                      ##### How to use this driver #####
36   ==============================================================================
37   [..]
38   (#)Initialize the ADC low level resources by implementing the HAL_ADC_MspInit():
39        (##) Enable the ADC interface clock using __HAL_RCC_ADC_CLK_ENABLE()
40        (##) ADC pins configuration
41              (+++) Enable the clock for the ADC GPIOs using the following function:
42                    __HAL_RCC_GPIOx_CLK_ENABLE()
43              (+++) Configure these ADC pins in analog mode using HAL_GPIO_Init()
44        (##) In case of using interrupts (e.g. HAL_ADC_Start_IT())
45              (+++) Configure the ADC interrupt priority using HAL_NVIC_SetPriority()
46              (+++) Enable the ADC IRQ handler using HAL_NVIC_EnableIRQ()
47              (+++) In ADC IRQ handler, call HAL_ADC_IRQHandler()
48        (##) In case of using DMA to control data transfer (e.g. HAL_ADC_Start_DMA())
49              (+++) Enable the DMAx interface clock using __HAL_RCC_DMAx_CLK_ENABLE()
50              (+++) Configure and enable two DMA streams stream for managing data
51                  transfer from peripheral to memory (output stream)
52              (+++) Associate the initialized DMA handle to the CRYP DMA handle
53                  using  __HAL_LINKDMA()
54              (+++) Configure the priority and enable the NVIC for the transfer complete
55                  interrupt on the two DMA Streams. The output stream should have higher
56                  priority than the input stream.
57 
58     *** Configuration of ADC, groups regular/injected, channels parameters ***
59   ==============================================================================
60   [..]
61   (#) Configure the ADC parameters (resolution, data alignment, ...)
62       and regular group parameters (conversion trigger, sequencer, ...)
63       using function HAL_ADC_Init().
64 
65   (#) Configure the channels for regular group parameters (channel number,
66       channel rank into sequencer, ..., into regular group)
67       using function HAL_ADC_ConfigChannel().
68 
69   (#) Optionally, configure the injected group parameters (conversion trigger,
70       sequencer, ..., of injected group)
71       and the channels for injected group parameters (channel number,
72       channel rank into sequencer, ..., into injected group)
73       using function HAL_ADCEx_InjectedConfigChannel().
74 
75   (#) Optionally, configure the analog watchdog parameters (channels
76       monitored, thresholds, ...) using function HAL_ADC_AnalogWDGConfig().
77 
78   (#) Optionally, for devices with several ADC instances: configure the
79       multimode parameters using function HAL_ADCEx_MultiModeConfigChannel().
80 
81                        *** Execution of ADC conversions ***
82   ==============================================================================
83   [..]
84   (#) ADC driver can be used among three modes: polling, interruption,
85       transfer by DMA.
86 
87      *** Polling mode IO operation ***
88      =================================
89      [..]
90        (+) Start the ADC peripheral using HAL_ADC_Start()
91        (+) Wait for end of conversion using HAL_ADC_PollForConversion(), at this stage
92            user can specify the value of timeout according to his end application
93        (+) To read the ADC converted values, use the HAL_ADC_GetValue() function.
94        (+) Stop the ADC peripheral using HAL_ADC_Stop()
95 
96      *** Interrupt mode IO operation ***
97      ===================================
98      [..]
99        (+) Start the ADC peripheral using HAL_ADC_Start_IT()
100        (+) Use HAL_ADC_IRQHandler() called under ADC_IRQHandler() Interrupt subroutine
101        (+) At ADC end of conversion HAL_ADC_ConvCpltCallback() function is executed and user can
102            add his own code by customization of function pointer HAL_ADC_ConvCpltCallback
103        (+) In case of ADC Error, HAL_ADC_ErrorCallback() function is executed and user can
104            add his own code by customization of function pointer HAL_ADC_ErrorCallback
105        (+) Stop the ADC peripheral using HAL_ADC_Stop_IT()
106 
107      *** DMA mode IO operation ***
108      ==============================
109      [..]
110        (+) Start the ADC peripheral using HAL_ADC_Start_DMA(), at this stage the user specify the length
111            of data to be transferred at each end of conversion
112        (+) At The end of data transfer by HAL_ADC_ConvCpltCallback() function is executed and user can
113            add his own code by customization of function pointer HAL_ADC_ConvCpltCallback
114        (+) In case of transfer Error, HAL_ADC_ErrorCallback() function is executed and user can
115            add his own code by customization of function pointer HAL_ADC_ErrorCallback
116        (+) Stop the ADC peripheral using HAL_ADC_Stop_DMA()
117 
118      *** ADC HAL driver macros list ***
119      =============================================
120      [..]
121        Below the list of most used macros in ADC HAL driver.
122 
123       (+) __HAL_ADC_ENABLE : Enable the ADC peripheral
124       (+) __HAL_ADC_DISABLE : Disable the ADC peripheral
125       (+) __HAL_ADC_ENABLE_IT: Enable the ADC end of conversion interrupt
126       (+) __HAL_ADC_DISABLE_IT: Disable the ADC end of conversion interrupt
127       (+) __HAL_ADC_GET_IT_SOURCE: Check if the specified ADC interrupt source is enabled or disabled
128       (+) __HAL_ADC_CLEAR_FLAG: Clear the ADC's pending flags
129       (+) __HAL_ADC_GET_FLAG: Get the selected ADC's flag status
130       (+) ADC_GET_RESOLUTION: Return resolution bits in CR1 register
131 
132      [..]
133        (@) You can refer to the ADC HAL driver header file for more useful macros
134 
135                       *** Deinitialization of ADC ***
136   ==============================================================================
137   [..]
138   (#) Disable the ADC interface
139      (++) ADC clock can be hard reset and disabled at RCC top level.
140      (++) Hard reset of ADC peripherals
141           using macro __HAL_RCC_ADC_FORCE_RESET(), __HAL_RCC_ADC_RELEASE_RESET().
142      (++) ADC clock disable using the equivalent macro/functions as configuration step.
143                (+++) Example:
144                    Into HAL_ADC_MspDeInit() (recommended code location) or with
145                    other device clock parameters configuration:
146                (+++) HAL_RCC_GetOscConfig(&RCC_OscInitStructure);
147                (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI;
148                (+++) RCC_OscInitStructure.HSIState = RCC_HSI_OFF; (if not used for system clock)
149                (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure);
150 
151   (#) ADC pins configuration
152      (++) Disable the clock for the ADC GPIOs using macro __HAL_RCC_GPIOx_CLK_DISABLE()
153 
154   (#) Optionally, in case of usage of ADC with interruptions:
155      (++) Disable the NVIC for ADC using function HAL_NVIC_DisableIRQ(ADCx_IRQn)
156 
157   (#) Optionally, in case of usage of DMA:
158         (++) Deinitialize the DMA using function HAL_DMA_DeInit().
159         (++) Disable the NVIC for DMA using function HAL_NVIC_DisableIRQ(DMAx_Channelx_IRQn)
160                       *** Callback registration ***
161   ==============================================================================
162     [..]
163 
164      The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1,
165      allows the user to configure dynamically the driver callbacks.
166      Use Functions @ref HAL_ADC_RegisterCallback()
167      to register an interrupt callback.
168     [..]
169 
170      Function @ref HAL_ADC_RegisterCallback() allows to register following callbacks:
171        (+) ConvCpltCallback               : ADC conversion complete callback
172        (+) ConvHalfCpltCallback           : ADC conversion DMA half-transfer callback
173        (+) LevelOutOfWindowCallback       : ADC analog watchdog 1 callback
174        (+) ErrorCallback                  : ADC error callback
175        (+) InjectedConvCpltCallback       : ADC group injected conversion complete callback
176        (+) InjectedQueueOverflowCallback  : ADC group injected context queue overflow callback
177        (+) LevelOutOfWindow2Callback      : ADC analog watchdog 2 callback
178        (+) LevelOutOfWindow3Callback      : ADC analog watchdog 3 callback
179        (+) EndOfSamplingCallback          : ADC end of sampling callback
180        (+) MspInitCallback                : ADC Msp Init callback
181        (+) MspDeInitCallback              : ADC Msp DeInit callback
182      This function takes as parameters the HAL peripheral handle, the Callback ID
183      and a pointer to the user callback function.
184     [..]
185 
186      Use function @ref HAL_ADC_UnRegisterCallback to reset a callback to the default
187      weak function.
188     [..]
189 
190      @ref HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle,
191      and the Callback ID.
192      This function allows to reset following callbacks:
193        (+) ConvCpltCallback               : ADC conversion complete callback
194        (+) ConvHalfCpltCallback           : ADC conversion DMA half-transfer callback
195        (+) LevelOutOfWindowCallback       : ADC analog watchdog 1 callback
196        (+) ErrorCallback                  : ADC error callback
197        (+) InjectedConvCpltCallback       : ADC group injected conversion complete callback
198        (+) InjectedQueueOverflowCallback  : ADC group injected context queue overflow callback
199        (+) LevelOutOfWindow2Callback      : ADC analog watchdog 2 callback
200        (+) LevelOutOfWindow3Callback      : ADC analog watchdog 3 callback
201        (+) EndOfSamplingCallback          : ADC end of sampling callback
202        (+) MspInitCallback                : ADC Msp Init callback
203        (+) MspDeInitCallback              : ADC Msp DeInit callback
204      [..]
205 
206      By default, after the @ref HAL_ADC_Init() and when the state is @ref HAL_ADC_STATE_RESET
207      all callbacks are set to the corresponding weak functions:
208      examples @ref HAL_ADC_ConvCpltCallback(), @ref HAL_ADC_ErrorCallback().
209      Exception done for MspInit and MspDeInit functions that are
210      reset to the legacy weak functions in the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit() only when
211      these callbacks are null (not registered beforehand).
212     [..]
213 
214      If MspInit or MspDeInit are not null, the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit()
215      keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
216      [..]
217 
218      Callbacks can be registered/unregistered in @ref HAL_ADC_STATE_READY state only.
219      Exception done MspInit/MspDeInit functions that can be registered/unregistered
220      in @ref HAL_ADC_STATE_READY or @ref HAL_ADC_STATE_RESET state,
221      thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
222     [..]
223 
224      Then, the user first registers the MspInit/MspDeInit user callbacks
225      using @ref HAL_ADC_RegisterCallback() before calling @ref HAL_ADC_DeInit()
226      or @ref HAL_ADC_Init() function.
227      [..]
228 
229      When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or
230      not defined, the callback registration feature is not available and all callbacks
231      are set to the corresponding weak functions.
232 
233     @endverbatim
234   ******************************************************************************
235   * @attention
236   *
237   * <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
238   * All rights reserved.</center></h2>
239   *
240   * This software component is licensed by ST under BSD 3-Clause license,
241   * the "License"; You may not use this file except in compliance with the
242   * License. You may obtain a copy of the License at:
243   *                        opensource.org/licenses/BSD-3-Clause
244   *
245   ******************************************************************************
246   */
247 
248 /* Includes ------------------------------------------------------------------*/
249 #include "stm32f4xx_hal.h"
250 
251 /** @addtogroup STM32F4xx_HAL_Driver
252   * @{
253   */
254 
255 /** @defgroup ADC ADC
256   * @brief ADC driver modules
257   * @{
258   */
259 
260 #ifdef HAL_ADC_MODULE_ENABLED
261 
262 /* Private typedef -----------------------------------------------------------*/
263 /* Private define ------------------------------------------------------------*/
264 /* Private macro -------------------------------------------------------------*/
265 /* Private variables ---------------------------------------------------------*/
266 /** @addtogroup ADC_Private_Functions
267   * @{
268   */
269 /* Private function prototypes -----------------------------------------------*/
270 static void ADC_Init(ADC_HandleTypeDef* hadc);
271 static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma);
272 static void ADC_DMAError(DMA_HandleTypeDef *hdma);
273 static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma);
274 /**
275   * @}
276   */
277 /* Exported functions --------------------------------------------------------*/
278 /** @defgroup ADC_Exported_Functions ADC Exported Functions
279   * @{
280   */
281 
282 /** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions
283  *  @brief    Initialization and Configuration functions
284  *
285 @verbatim
286  ===============================================================================
287               ##### Initialization and de-initialization functions #####
288  ===============================================================================
289     [..]  This section provides functions allowing to:
290       (+) Initialize and configure the ADC.
291       (+) De-initialize the ADC.
292 
293 @endverbatim
294   * @{
295   */
296 
297 /**
298   * @brief  Initializes the ADCx peripheral according to the specified parameters
299   *         in the ADC_InitStruct and initializes the ADC MSP.
300   *
301   * @note   This function is used to configure the global features of the ADC (
302   *         ClockPrescaler, Resolution, Data Alignment and number of conversion), however,
303   *         the rest of the configuration parameters are specific to the regular
304   *         channels group (scan mode activation, continuous mode activation,
305   *         External trigger source and edge, DMA continuous request after the
306   *         last transfer and End of conversion selection).
307   *
308   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
309   *         the configuration information for the specified ADC.
310   * @retval HAL status
311   */
HAL_ADC_Init(ADC_HandleTypeDef * hadc)312 HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc)
313 {
314   HAL_StatusTypeDef tmp_hal_status = HAL_OK;
315 
316   /* Check ADC handle */
317   if(hadc == NULL)
318   {
319     return HAL_ERROR;
320   }
321 
322   /* Check the parameters */
323   assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
324   assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler));
325   assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution));
326   assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ScanConvMode));
327   assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
328   assert_param(IS_ADC_EXT_TRIG(hadc->Init.ExternalTrigConv));
329   assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign));
330   assert_param(IS_ADC_REGULAR_LENGTH(hadc->Init.NbrOfConversion));
331   assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests));
332   assert_param(IS_ADC_EOCSelection(hadc->Init.EOCSelection));
333   assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode));
334 
335   if(hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
336   {
337     assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
338   }
339 
340   if(hadc->State == HAL_ADC_STATE_RESET)
341   {
342 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
343     /* Init the ADC Callback settings */
344     hadc->ConvCpltCallback              = HAL_ADC_ConvCpltCallback;                 /* Legacy weak callback */
345     hadc->ConvHalfCpltCallback          = HAL_ADC_ConvHalfCpltCallback;             /* Legacy weak callback */
346     hadc->LevelOutOfWindowCallback      = HAL_ADC_LevelOutOfWindowCallback;         /* Legacy weak callback */
347     hadc->ErrorCallback                 = HAL_ADC_ErrorCallback;                    /* Legacy weak callback */
348     hadc->InjectedConvCpltCallback      = HAL_ADCEx_InjectedConvCpltCallback;       /* Legacy weak callback */
349     if (hadc->MspInitCallback == NULL)
350     {
351       hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit  */
352     }
353 
354     /* Init the low level hardware */
355     hadc->MspInitCallback(hadc);
356 #else
357     /* Init the low level hardware */
358     HAL_ADC_MspInit(hadc);
359 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
360 
361     /* Initialize ADC error code */
362     ADC_CLEAR_ERRORCODE(hadc);
363 
364     /* Allocate lock resource and initialize it */
365     hadc->Lock = HAL_UNLOCKED;
366   }
367 
368   /* Configuration of ADC parameters if previous preliminary actions are      */
369   /* correctly completed.                                                     */
370   if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
371   {
372     /* Set ADC state */
373     ADC_STATE_CLR_SET(hadc->State,
374                       HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
375                       HAL_ADC_STATE_BUSY_INTERNAL);
376 
377     /* Set ADC parameters */
378     ADC_Init(hadc);
379 
380     /* Set ADC error code to none */
381     ADC_CLEAR_ERRORCODE(hadc);
382 
383     /* Set the ADC state */
384     ADC_STATE_CLR_SET(hadc->State,
385                       HAL_ADC_STATE_BUSY_INTERNAL,
386                       HAL_ADC_STATE_READY);
387   }
388   else
389   {
390     tmp_hal_status = HAL_ERROR;
391   }
392 
393   /* Release Lock */
394   __HAL_UNLOCK(hadc);
395 
396   /* Return function status */
397   return tmp_hal_status;
398 }
399 
400 /**
401   * @brief  Deinitializes the ADCx peripheral registers to their default reset values.
402   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
403   *         the configuration information for the specified ADC.
404   * @retval HAL status
405   */
HAL_ADC_DeInit(ADC_HandleTypeDef * hadc)406 HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc)
407 {
408   HAL_StatusTypeDef tmp_hal_status = HAL_OK;
409 
410   /* Check ADC handle */
411   if(hadc == NULL)
412   {
413     return HAL_ERROR;
414   }
415 
416   /* Check the parameters */
417   assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
418 
419   /* Set ADC state */
420   SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL);
421 
422   /* Stop potential conversion on going, on regular and injected groups */
423   /* Disable ADC peripheral */
424   __HAL_ADC_DISABLE(hadc);
425 
426   /* Configuration of ADC parameters if previous preliminary actions are      */
427   /* correctly completed.                                                     */
428   if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
429   {
430 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
431   if (hadc->MspDeInitCallback == NULL)
432   {
433     hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit  */
434   }
435 
436   /* DeInit the low level hardware: RCC clock, NVIC */
437   hadc->MspDeInitCallback(hadc);
438 #else
439   /* DeInit the low level hardware: RCC clock, NVIC */
440   HAL_ADC_MspDeInit(hadc);
441 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
442 
443     /* Set ADC error code to none */
444     ADC_CLEAR_ERRORCODE(hadc);
445 
446     /* Set ADC state */
447     hadc->State = HAL_ADC_STATE_RESET;
448   }
449 
450   /* Process unlocked */
451   __HAL_UNLOCK(hadc);
452 
453   /* Return function status */
454   return tmp_hal_status;
455 }
456 
457 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
458 /**
459   * @brief  Register a User ADC Callback
460   *         To be used instead of the weak predefined callback
461   * @param  hadc Pointer to a ADC_HandleTypeDef structure that contains
462   *                the configuration information for the specified ADC.
463   * @param  CallbackID ID of the callback to be registered
464   *         This parameter can be one of the following values:
465   *          @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID      ADC conversion complete callback ID
466   *          @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID          ADC conversion DMA half-transfer callback ID
467   *          @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID    ADC analog watchdog 1 callback ID
468   *          @arg @ref HAL_ADC_ERROR_CB_ID                    ADC error callback ID
469   *          @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID  ADC group injected conversion complete callback ID
470   *          @arg @ref HAL_ADC_MSPINIT_CB_ID                  ADC Msp Init callback ID
471   *          @arg @ref HAL_ADC_MSPDEINIT_CB_ID                ADC Msp DeInit callback ID
472   * @param  pCallback pointer to the Callback function
473   * @retval HAL status
474   */
HAL_ADC_RegisterCallback(ADC_HandleTypeDef * hadc,HAL_ADC_CallbackIDTypeDef CallbackID,pADC_CallbackTypeDef pCallback)475 HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, pADC_CallbackTypeDef pCallback)
476 {
477   HAL_StatusTypeDef status = HAL_OK;
478 
479   if (pCallback == NULL)
480   {
481     /* Update the error code */
482     hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
483 
484     return HAL_ERROR;
485   }
486 
487   if ((hadc->State & HAL_ADC_STATE_READY) != 0UL)
488   {
489     switch (CallbackID)
490     {
491       case HAL_ADC_CONVERSION_COMPLETE_CB_ID :
492         hadc->ConvCpltCallback = pCallback;
493         break;
494 
495       case HAL_ADC_CONVERSION_HALF_CB_ID :
496         hadc->ConvHalfCpltCallback = pCallback;
497         break;
498 
499       case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID :
500         hadc->LevelOutOfWindowCallback = pCallback;
501         break;
502 
503       case HAL_ADC_ERROR_CB_ID :
504         hadc->ErrorCallback = pCallback;
505         break;
506 
507       case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID :
508         hadc->InjectedConvCpltCallback = pCallback;
509         break;
510 
511       case HAL_ADC_MSPINIT_CB_ID :
512         hadc->MspInitCallback = pCallback;
513         break;
514 
515       case HAL_ADC_MSPDEINIT_CB_ID :
516         hadc->MspDeInitCallback = pCallback;
517         break;
518 
519       default :
520         /* Update the error code */
521         hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
522 
523         /* Return error status */
524         status = HAL_ERROR;
525         break;
526     }
527   }
528   else if (HAL_ADC_STATE_RESET == hadc->State)
529   {
530     switch (CallbackID)
531     {
532       case HAL_ADC_MSPINIT_CB_ID :
533         hadc->MspInitCallback = pCallback;
534         break;
535 
536       case HAL_ADC_MSPDEINIT_CB_ID :
537         hadc->MspDeInitCallback = pCallback;
538         break;
539 
540       default :
541         /* Update the error code */
542         hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
543 
544         /* Return error status */
545         status = HAL_ERROR;
546         break;
547     }
548   }
549   else
550   {
551     /* Update the error code */
552     hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
553 
554     /* Return error status */
555     status =  HAL_ERROR;
556   }
557 
558   return status;
559 }
560 
561 /**
562   * @brief  Unregister a ADC Callback
563   *         ADC callback is redirected to the weak predefined callback
564   * @param  hadc Pointer to a ADC_HandleTypeDef structure that contains
565   *                the configuration information for the specified ADC.
566   * @param  CallbackID ID of the callback to be unregistered
567   *         This parameter can be one of the following values:
568   *          @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID      ADC conversion complete callback ID
569   *          @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID          ADC conversion DMA half-transfer callback ID
570   *          @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID    ADC analog watchdog 1 callback ID
571   *          @arg @ref HAL_ADC_ERROR_CB_ID                    ADC error callback ID
572   *          @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID  ADC group injected conversion complete callback ID
573   *          @arg @ref HAL_ADC_MSPINIT_CB_ID                  ADC Msp Init callback ID
574   *          @arg @ref HAL_ADC_MSPDEINIT_CB_ID                ADC Msp DeInit callback ID
575   * @retval HAL status
576   */
HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef * hadc,HAL_ADC_CallbackIDTypeDef CallbackID)577 HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID)
578 {
579   HAL_StatusTypeDef status = HAL_OK;
580 
581   if ((hadc->State & HAL_ADC_STATE_READY) != 0UL)
582   {
583     switch (CallbackID)
584     {
585       case HAL_ADC_CONVERSION_COMPLETE_CB_ID :
586         hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback;
587         break;
588 
589       case HAL_ADC_CONVERSION_HALF_CB_ID :
590         hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback;
591         break;
592 
593       case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID :
594         hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback;
595         break;
596 
597       case HAL_ADC_ERROR_CB_ID :
598         hadc->ErrorCallback = HAL_ADC_ErrorCallback;
599         break;
600 
601       case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID :
602         hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback;
603         break;
604 
605       case HAL_ADC_MSPINIT_CB_ID :
606         hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit              */
607         break;
608 
609       case HAL_ADC_MSPDEINIT_CB_ID :
610         hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit            */
611         break;
612 
613       default :
614         /* Update the error code */
615         hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
616 
617         /* Return error status */
618         status =  HAL_ERROR;
619         break;
620     }
621   }
622   else if (HAL_ADC_STATE_RESET == hadc->State)
623   {
624     switch (CallbackID)
625     {
626       case HAL_ADC_MSPINIT_CB_ID :
627         hadc->MspInitCallback = HAL_ADC_MspInit;                   /* Legacy weak MspInit              */
628         break;
629 
630       case HAL_ADC_MSPDEINIT_CB_ID :
631         hadc->MspDeInitCallback = HAL_ADC_MspDeInit;               /* Legacy weak MspDeInit            */
632         break;
633 
634       default :
635         /* Update the error code */
636         hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
637 
638         /* Return error status */
639         status =  HAL_ERROR;
640         break;
641     }
642   }
643   else
644   {
645     /* Update the error code */
646     hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
647 
648     /* Return error status */
649     status =  HAL_ERROR;
650   }
651 
652   return status;
653 }
654 
655 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
656 
657 /**
658   * @brief  Initializes the ADC MSP.
659   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
660   *         the configuration information for the specified ADC.
661   * @retval None
662   */
HAL_ADC_MspInit(ADC_HandleTypeDef * hadc)663 __weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
664 {
665   /* Prevent unused argument(s) compilation warning */
666   UNUSED(hadc);
667   /* NOTE : This function Should not be modified, when the callback is needed,
668             the HAL_ADC_MspInit could be implemented in the user file
669    */
670 }
671 
672 /**
673   * @brief  DeInitializes the ADC MSP.
674   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
675   *         the configuration information for the specified ADC.
676   * @retval None
677   */
HAL_ADC_MspDeInit(ADC_HandleTypeDef * hadc)678 __weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc)
679 {
680   /* Prevent unused argument(s) compilation warning */
681   UNUSED(hadc);
682   /* NOTE : This function Should not be modified, when the callback is needed,
683             the HAL_ADC_MspDeInit could be implemented in the user file
684    */
685 }
686 
687 /**
688   * @}
689   */
690 
691 /** @defgroup ADC_Exported_Functions_Group2 IO operation functions
692  *  @brief    IO operation functions
693  *
694 @verbatim
695  ===============================================================================
696              ##### IO operation functions #####
697  ===============================================================================
698     [..]  This section provides functions allowing to:
699       (+) Start conversion of regular channel.
700       (+) Stop conversion of regular channel.
701       (+) Start conversion of regular channel and enable interrupt.
702       (+) Stop conversion of regular channel and disable interrupt.
703       (+) Start conversion of regular channel and enable DMA transfer.
704       (+) Stop conversion of regular channel and disable DMA transfer.
705       (+) Handle ADC interrupt request.
706 
707 @endverbatim
708   * @{
709   */
710 
711 /**
712   * @brief  Enables ADC and starts conversion of the regular channels.
713   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
714   *         the configuration information for the specified ADC.
715   * @retval HAL status
716   */
HAL_ADC_Start(ADC_HandleTypeDef * hadc)717 HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc)
718 {
719   __IO uint32_t counter = 0U;
720   ADC_Common_TypeDef *tmpADC_Common;
721 
722   /* Check the parameters */
723   assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
724   assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
725 
726   /* Process locked */
727   __HAL_LOCK(hadc);
728 
729   /* Enable the ADC peripheral */
730   /* Check if ADC peripheral is disabled in order to enable it and wait during
731   Tstab time the ADC's stabilization */
732   if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON)
733   {
734     /* Enable the Peripheral */
735     __HAL_ADC_ENABLE(hadc);
736 
737     /* Delay for ADC stabilization time */
738     /* Compute number of CPU cycles to wait for */
739     counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
740     while(counter != 0U)
741     {
742       counter--;
743     }
744   }
745 
746   /* Start conversion if ADC is effectively enabled */
747   if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON))
748   {
749     /* Set ADC state                                                          */
750     /* - Clear state bitfield related to regular group conversion results     */
751     /* - Set state bitfield related to regular group operation                */
752     ADC_STATE_CLR_SET(hadc->State,
753                       HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR,
754                       HAL_ADC_STATE_REG_BUSY);
755 
756     /* If conversions on group regular are also triggering group injected,    */
757     /* update ADC state.                                                      */
758     if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
759     {
760       ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
761     }
762 
763     /* State machine update: Check if an injected conversion is ongoing */
764     if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
765     {
766       /* Reset ADC error code fields related to conversions on group regular */
767       CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
768     }
769     else
770     {
771       /* Reset ADC all error code fields */
772       ADC_CLEAR_ERRORCODE(hadc);
773     }
774 
775     /* Process unlocked */
776     /* Unlock before starting ADC conversions: in case of potential           */
777     /* interruption, to let the process to ADC IRQ Handler.                   */
778     __HAL_UNLOCK(hadc);
779 
780     /* Pointer to the common control register to which is belonging hadc    */
781     /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */
782     /* control register)                                                    */
783     tmpADC_Common = ADC_COMMON_REGISTER(hadc);
784 
785     /* Clear regular group conversion flag and overrun flag */
786     /* (To ensure of no unknown state from potential previous ADC operations) */
787     __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR);
788 
789     /* Check if Multimode enabled */
790     if(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_MULTI))
791     {
792 #if defined(ADC2) && defined(ADC3)
793       if((hadc->Instance == ADC1) || ((hadc->Instance == ADC2) && ((ADC->CCR & ADC_CCR_MULTI_Msk) < ADC_CCR_MULTI_0)) \
794                                   || ((hadc->Instance == ADC3) && ((ADC->CCR & ADC_CCR_MULTI_Msk) < ADC_CCR_MULTI_4)))
795       {
796 #endif /* ADC2 || ADC3 */
797         /* if no external trigger present enable software conversion of regular channels */
798         if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET)
799         {
800           /* Enable the selected ADC software conversion for regular group */
801           hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
802         }
803 #if defined(ADC2) && defined(ADC3)
804       }
805 #endif /* ADC2 || ADC3 */
806     }
807     else
808     {
809       /* if instance of handle correspond to ADC1 and  no external trigger present enable software conversion of regular channels */
810       if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET))
811       {
812         /* Enable the selected ADC software conversion for regular group */
813           hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
814       }
815     }
816   }
817 
818   /* Return function status */
819   return HAL_OK;
820 }
821 
822 /**
823   * @brief  Disables ADC and stop conversion of regular channels.
824   *
825   * @note   Caution: This function will stop also injected channels.
826   *
827   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
828   *         the configuration information for the specified ADC.
829   *
830   * @retval HAL status.
831   */
HAL_ADC_Stop(ADC_HandleTypeDef * hadc)832 HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc)
833 {
834   /* Check the parameters */
835   assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
836 
837   /* Process locked */
838   __HAL_LOCK(hadc);
839 
840   /* Stop potential conversion on going, on regular and injected groups */
841   /* Disable ADC peripheral */
842   __HAL_ADC_DISABLE(hadc);
843 
844   /* Check if ADC is effectively disabled */
845   if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
846   {
847     /* Set ADC state */
848     ADC_STATE_CLR_SET(hadc->State,
849                       HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
850                       HAL_ADC_STATE_READY);
851   }
852 
853   /* Process unlocked */
854   __HAL_UNLOCK(hadc);
855 
856   /* Return function status */
857   return HAL_OK;
858 }
859 
860 /**
861   * @brief  Poll for regular conversion complete
862   * @note   ADC conversion flags EOS (end of sequence) and EOC (end of
863   *         conversion) are cleared by this function.
864   * @note   This function cannot be used in a particular setup: ADC configured
865   *         in DMA mode and polling for end of each conversion (ADC init
866   *         parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV).
867   *         In this case, DMA resets the flag EOC and polling cannot be
868   *         performed on each conversion. Nevertheless, polling can still
869   *         be performed on the complete sequence.
870   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
871   *         the configuration information for the specified ADC.
872   * @param  Timeout Timeout value in millisecond.
873   * @retval HAL status
874   */
HAL_ADC_PollForConversion(ADC_HandleTypeDef * hadc,uint32_t Timeout)875 HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
876 {
877   uint32_t tickstart = 0U;
878 
879   /* Verification that ADC configuration is compliant with polling for      */
880   /* each conversion:                                                       */
881   /* Particular case is ADC configured in DMA mode and ADC sequencer with   */
882   /* several ranks and polling for end of each conversion.                  */
883   /* For code simplicity sake, this particular case is generalized to       */
884   /* ADC configured in DMA mode and polling for end of each conversion.     */
885   if (HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_EOCS) &&
886       HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_DMA)    )
887   {
888     /* Update ADC state machine to error */
889     SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
890 
891     /* Process unlocked */
892     __HAL_UNLOCK(hadc);
893 
894     return HAL_ERROR;
895   }
896 
897   /* Get tick */
898   tickstart = HAL_GetTick();
899 
900   /* Check End of conversion flag */
901   while(!(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC)))
902   {
903     /* Check if timeout is disabled (set to infinite wait) */
904     if(Timeout != HAL_MAX_DELAY)
905     {
906       if((Timeout == 0U) || ((HAL_GetTick() - tickstart ) > Timeout))
907       {
908         /* Update ADC state machine to timeout */
909         SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
910 
911         /* Process unlocked */
912         __HAL_UNLOCK(hadc);
913 
914         return HAL_TIMEOUT;
915       }
916     }
917   }
918 
919   /* Clear regular group conversion flag */
920   __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC);
921 
922   /* Update ADC state machine */
923   SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
924 
925   /* Determine whether any further conversion upcoming on group regular       */
926   /* by external trigger, continuous mode or scan sequence on going.          */
927   /* Note: On STM32F4, there is no independent flag of end of sequence.       */
928   /*       The test of scan sequence on going is done either with scan        */
929   /*       sequence disabled or with end of conversion flag set to            */
930   /*       of end of sequence.                                                */
931   if(ADC_IS_SOFTWARE_START_REGULAR(hadc)                   &&
932      (hadc->Init.ContinuousConvMode == DISABLE)            &&
933      (HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) ||
934       HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS)  )   )
935   {
936     /* Set ADC state */
937     CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
938 
939     if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
940     {
941       SET_BIT(hadc->State, HAL_ADC_STATE_READY);
942     }
943   }
944 
945   /* Return ADC state */
946   return HAL_OK;
947 }
948 
949 /**
950   * @brief  Poll for conversion event
951   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
952   *         the configuration information for the specified ADC.
953   * @param  EventType the ADC event type.
954   *          This parameter can be one of the following values:
955   *            @arg ADC_AWD_EVENT: ADC Analog watch Dog event.
956   *            @arg ADC_OVR_EVENT: ADC Overrun event.
957   * @param  Timeout Timeout value in millisecond.
958   * @retval HAL status
959   */
HAL_ADC_PollForEvent(ADC_HandleTypeDef * hadc,uint32_t EventType,uint32_t Timeout)960 HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout)
961 {
962   uint32_t tickstart = 0U;
963 
964   /* Check the parameters */
965   assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
966   assert_param(IS_ADC_EVENT_TYPE(EventType));
967 
968   /* Get tick */
969   tickstart = HAL_GetTick();
970 
971   /* Check selected event flag */
972   while(!(__HAL_ADC_GET_FLAG(hadc,EventType)))
973   {
974     /* Check for the Timeout */
975     if(Timeout != HAL_MAX_DELAY)
976     {
977       if((Timeout == 0U) || ((HAL_GetTick() - tickstart ) > Timeout))
978       {
979         /* Update ADC state machine to timeout */
980         SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
981 
982         /* Process unlocked */
983         __HAL_UNLOCK(hadc);
984 
985         return HAL_TIMEOUT;
986       }
987     }
988   }
989 
990   /* Analog watchdog (level out of window) event */
991   if(EventType == ADC_AWD_EVENT)
992   {
993     /* Set ADC state */
994     SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
995 
996     /* Clear ADC analog watchdog flag */
997     __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
998   }
999   /* Overrun event */
1000   else
1001   {
1002     /* Set ADC state */
1003     SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);
1004     /* Set ADC error code to overrun */
1005     SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
1006 
1007     /* Clear ADC overrun flag */
1008     __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
1009   }
1010 
1011   /* Return ADC state */
1012   return HAL_OK;
1013 }
1014 
1015 
1016 /**
1017   * @brief  Enables the interrupt and starts ADC conversion of regular channels.
1018   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
1019   *         the configuration information for the specified ADC.
1020   * @retval HAL status.
1021   */
HAL_ADC_Start_IT(ADC_HandleTypeDef * hadc)1022 HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc)
1023 {
1024   __IO uint32_t counter = 0U;
1025   ADC_Common_TypeDef *tmpADC_Common;
1026 
1027   /* Check the parameters */
1028   assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
1029   assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
1030 
1031   /* Process locked */
1032   __HAL_LOCK(hadc);
1033 
1034   /* Enable the ADC peripheral */
1035   /* Check if ADC peripheral is disabled in order to enable it and wait during
1036   Tstab time the ADC's stabilization */
1037   if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON)
1038   {
1039     /* Enable the Peripheral */
1040     __HAL_ADC_ENABLE(hadc);
1041 
1042     /* Delay for ADC stabilization time */
1043     /* Compute number of CPU cycles to wait for */
1044     counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
1045     while(counter != 0U)
1046     {
1047       counter--;
1048     }
1049   }
1050 
1051   /* Start conversion if ADC is effectively enabled */
1052   if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON))
1053   {
1054     /* Set ADC state                                                          */
1055     /* - Clear state bitfield related to regular group conversion results     */
1056     /* - Set state bitfield related to regular group operation                */
1057     ADC_STATE_CLR_SET(hadc->State,
1058                       HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR,
1059                       HAL_ADC_STATE_REG_BUSY);
1060 
1061     /* If conversions on group regular are also triggering group injected,    */
1062     /* update ADC state.                                                      */
1063     if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
1064     {
1065       ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
1066     }
1067 
1068     /* State machine update: Check if an injected conversion is ongoing */
1069     if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
1070     {
1071       /* Reset ADC error code fields related to conversions on group regular */
1072       CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
1073     }
1074     else
1075     {
1076       /* Reset ADC all error code fields */
1077       ADC_CLEAR_ERRORCODE(hadc);
1078     }
1079 
1080     /* Process unlocked */
1081     /* Unlock before starting ADC conversions: in case of potential           */
1082     /* interruption, to let the process to ADC IRQ Handler.                   */
1083     __HAL_UNLOCK(hadc);
1084 
1085     /* Pointer to the common control register to which is belonging hadc    */
1086     /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */
1087     /* control register)                                                    */
1088     tmpADC_Common = ADC_COMMON_REGISTER(hadc);
1089 
1090     /* Clear regular group conversion flag and overrun flag */
1091     /* (To ensure of no unknown state from potential previous ADC operations) */
1092     __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR);
1093 
1094     /* Enable end of conversion interrupt for regular group */
1095     __HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_OVR));
1096 
1097     /* Check if Multimode enabled */
1098     if(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_MULTI))
1099     {
1100 #if defined(ADC2) && defined(ADC3)
1101       if((hadc->Instance == ADC1) || ((hadc->Instance == ADC2) && ((ADC->CCR & ADC_CCR_MULTI_Msk) < ADC_CCR_MULTI_0)) \
1102                                   || ((hadc->Instance == ADC3) && ((ADC->CCR & ADC_CCR_MULTI_Msk) < ADC_CCR_MULTI_4)))
1103       {
1104 #endif /* ADC2 || ADC3 */
1105         /* if no external trigger present enable software conversion of regular channels */
1106         if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET)
1107         {
1108           /* Enable the selected ADC software conversion for regular group */
1109           hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
1110         }
1111 #if defined(ADC2) && defined(ADC3)
1112       }
1113 #endif /* ADC2 || ADC3 */
1114     }
1115     else
1116     {
1117       /* if instance of handle correspond to ADC1 and  no external trigger present enable software conversion of regular channels */
1118       if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET))
1119       {
1120         /* Enable the selected ADC software conversion for regular group */
1121           hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
1122       }
1123     }
1124   }
1125 
1126   /* Return function status */
1127   return HAL_OK;
1128 }
1129 
1130 /**
1131   * @brief  Disables the interrupt and stop ADC conversion of regular channels.
1132   *
1133   * @note   Caution: This function will stop also injected channels.
1134   *
1135   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
1136   *         the configuration information for the specified ADC.
1137   * @retval HAL status.
1138   */
HAL_ADC_Stop_IT(ADC_HandleTypeDef * hadc)1139 HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc)
1140 {
1141   /* Check the parameters */
1142   assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
1143 
1144   /* Process locked */
1145   __HAL_LOCK(hadc);
1146 
1147   /* Stop potential conversion on going, on regular and injected groups */
1148   /* Disable ADC peripheral */
1149   __HAL_ADC_DISABLE(hadc);
1150 
1151   /* Check if ADC is effectively disabled */
1152   if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
1153   {
1154   	/* Disable ADC end of conversion interrupt for regular group */
1155     __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_OVR));
1156 
1157     /* Set ADC state */
1158     ADC_STATE_CLR_SET(hadc->State,
1159                       HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
1160                       HAL_ADC_STATE_READY);
1161   }
1162 
1163   /* Process unlocked */
1164   __HAL_UNLOCK(hadc);
1165 
1166   /* Return function status */
1167   return HAL_OK;
1168 }
1169 
1170 /**
1171   * @brief  Handles ADC interrupt request
1172   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
1173   *         the configuration information for the specified ADC.
1174   * @retval None
1175   */
HAL_ADC_IRQHandler(ADC_HandleTypeDef * hadc)1176 void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc)
1177 {
1178   uint32_t tmp1 = 0U, tmp2 = 0U;
1179 
1180   /* Check the parameters */
1181   assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
1182   assert_param(IS_ADC_REGULAR_LENGTH(hadc->Init.NbrOfConversion));
1183   assert_param(IS_ADC_EOCSelection(hadc->Init.EOCSelection));
1184 
1185   tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC);
1186   tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOC);
1187   /* Check End of conversion flag for regular channels */
1188   if(tmp1 && tmp2)
1189   {
1190     /* Update state machine on conversion status if not in error state */
1191     if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
1192     {
1193       /* Set ADC state */
1194       SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
1195     }
1196 
1197     /* Determine whether any further conversion upcoming on group regular   */
1198     /* by external trigger, continuous mode or scan sequence on going.      */
1199     /* Note: On STM32F4, there is no independent flag of end of sequence.   */
1200     /*       The test of scan sequence on going is done either with scan    */
1201     /*       sequence disabled or with end of conversion flag set to        */
1202     /*       of end of sequence.                                            */
1203     if(ADC_IS_SOFTWARE_START_REGULAR(hadc)                   &&
1204        (hadc->Init.ContinuousConvMode == DISABLE)            &&
1205        (HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) ||
1206         HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS)  )   )
1207     {
1208       /* Disable ADC end of single conversion interrupt on group regular */
1209       /* Note: Overrun interrupt was enabled with EOC interrupt in          */
1210       /* HAL_ADC_Start_IT(), but is not disabled here because can be used   */
1211       /* by overrun IRQ process below.                                      */
1212       __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
1213 
1214       /* Set ADC state */
1215       CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
1216 
1217       if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
1218       {
1219         SET_BIT(hadc->State, HAL_ADC_STATE_READY);
1220       }
1221     }
1222 
1223     /* Conversion complete callback */
1224 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
1225     hadc->ConvCpltCallback(hadc);
1226 #else
1227     HAL_ADC_ConvCpltCallback(hadc);
1228 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
1229 
1230     /* Clear regular group conversion flag */
1231     __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC);
1232   }
1233 
1234   tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOC);
1235   tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_JEOC);
1236   /* Check End of conversion flag for injected channels */
1237   if(tmp1 && tmp2)
1238   {
1239     /* Update state machine on conversion status if not in error state */
1240     if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
1241     {
1242       /* Set ADC state */
1243       SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
1244     }
1245 
1246     /* Determine whether any further conversion upcoming on group injected  */
1247     /* by external trigger, scan sequence on going or by automatic injected */
1248     /* conversion from group regular (same conditions as group regular      */
1249     /* interruption disabling above).                                       */
1250     if(ADC_IS_SOFTWARE_START_INJECTED(hadc)                    &&
1251        (HAL_IS_BIT_CLR(hadc->Instance->JSQR, ADC_JSQR_JL)  ||
1252         HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS)    ) &&
1253        (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) &&
1254         (ADC_IS_SOFTWARE_START_REGULAR(hadc)       &&
1255         (hadc->Init.ContinuousConvMode == DISABLE)   )       )   )
1256     {
1257       /* Disable ADC end of single conversion interrupt on group injected */
1258       __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
1259 
1260       /* Set ADC state */
1261       CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
1262 
1263       if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
1264       {
1265         SET_BIT(hadc->State, HAL_ADC_STATE_READY);
1266       }
1267     }
1268 
1269     /* Conversion complete callback */
1270     /* Conversion complete callback */
1271 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
1272       hadc->InjectedConvCpltCallback(hadc);
1273 #else
1274       HAL_ADCEx_InjectedConvCpltCallback(hadc);
1275 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
1276 
1277     /* Clear injected group conversion flag */
1278     __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JSTRT | ADC_FLAG_JEOC));
1279   }
1280 
1281   tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD);
1282   tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_AWD);
1283   /* Check Analog watchdog flag */
1284   if(tmp1 && tmp2)
1285   {
1286     if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD))
1287     {
1288       /* Set ADC state */
1289       SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
1290 
1291       /* Level out of window callback */
1292 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
1293       hadc->LevelOutOfWindowCallback(hadc);
1294 #else
1295       HAL_ADC_LevelOutOfWindowCallback(hadc);
1296 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
1297 
1298       /* Clear the ADC analog watchdog flag */
1299       __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
1300     }
1301   }
1302 
1303   tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_OVR);
1304   tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_OVR);
1305   /* Check Overrun flag */
1306   if(tmp1 && tmp2)
1307   {
1308     /* Note: On STM32F4, ADC overrun can be set through other parameters    */
1309     /*       refer to description of parameter "EOCSelection" for more      */
1310     /*       details.                                                       */
1311 
1312     /* Set ADC error code to overrun */
1313     SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
1314 
1315     /* Clear ADC overrun flag */
1316     __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
1317 
1318     /* Error callback */
1319 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
1320       hadc->ErrorCallback(hadc);
1321 #else
1322       HAL_ADC_ErrorCallback(hadc);
1323 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
1324 
1325     /* Clear the Overrun flag */
1326     __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
1327   }
1328 }
1329 
1330 /**
1331   * @brief  Enables ADC DMA request after last transfer (Single-ADC mode) and enables ADC peripheral
1332   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
1333   *         the configuration information for the specified ADC.
1334   * @param  pData The destination Buffer address.
1335   * @param  Length The length of data to be transferred from ADC peripheral to memory.
1336   * @retval HAL status
1337   */
HAL_ADC_Start_DMA(ADC_HandleTypeDef * hadc,uint32_t * pData,uint32_t Length)1338 HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length)
1339 {
1340   __IO uint32_t counter = 0U;
1341   ADC_Common_TypeDef *tmpADC_Common;
1342 
1343   /* Check the parameters */
1344   assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
1345   assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
1346 
1347   /* Process locked */
1348   __HAL_LOCK(hadc);
1349 
1350   /* Enable the ADC peripheral */
1351   /* Check if ADC peripheral is disabled in order to enable it and wait during
1352   Tstab time the ADC's stabilization */
1353   if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON)
1354   {
1355     /* Enable the Peripheral */
1356     __HAL_ADC_ENABLE(hadc);
1357 
1358     /* Delay for ADC stabilization time */
1359     /* Compute number of CPU cycles to wait for */
1360     counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
1361     while(counter != 0U)
1362     {
1363       counter--;
1364     }
1365   }
1366 
1367   /* Start conversion if ADC is effectively enabled */
1368   if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON))
1369   {
1370     /* Set ADC state                                                          */
1371     /* - Clear state bitfield related to regular group conversion results     */
1372     /* - Set state bitfield related to regular group operation                */
1373     ADC_STATE_CLR_SET(hadc->State,
1374                       HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR,
1375                       HAL_ADC_STATE_REG_BUSY);
1376 
1377     /* If conversions on group regular are also triggering group injected,    */
1378     /* update ADC state.                                                      */
1379     if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
1380     {
1381       ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
1382     }
1383 
1384     /* State machine update: Check if an injected conversion is ongoing */
1385     if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
1386     {
1387       /* Reset ADC error code fields related to conversions on group regular */
1388       CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
1389     }
1390     else
1391     {
1392       /* Reset ADC all error code fields */
1393       ADC_CLEAR_ERRORCODE(hadc);
1394     }
1395 
1396     /* Process unlocked */
1397     /* Unlock before starting ADC conversions: in case of potential           */
1398     /* interruption, to let the process to ADC IRQ Handler.                   */
1399     __HAL_UNLOCK(hadc);
1400 
1401     /* Pointer to the common control register to which is belonging hadc    */
1402     /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */
1403     /* control register)                                                    */
1404     tmpADC_Common = ADC_COMMON_REGISTER(hadc);
1405 
1406     /* Set the DMA transfer complete callback */
1407     hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;
1408 
1409     /* Set the DMA half transfer complete callback */
1410     hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
1411 
1412     /* Set the DMA error callback */
1413     hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;
1414 
1415 
1416     /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC     */
1417     /* start (in case of SW start):                                           */
1418 
1419     /* Clear regular group conversion flag and overrun flag */
1420     /* (To ensure of no unknown state from potential previous ADC operations) */
1421     __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR);
1422 
1423     /* Enable ADC overrun interrupt */
1424     __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
1425 
1426     /* Enable ADC DMA mode */
1427     hadc->Instance->CR2 |= ADC_CR2_DMA;
1428 
1429     /* Start the DMA channel */
1430     HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
1431 
1432     /* Check if Multimode enabled */
1433     if(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_MULTI))
1434     {
1435 #if defined(ADC2) && defined(ADC3)
1436       if((hadc->Instance == ADC1) || ((hadc->Instance == ADC2) && ((ADC->CCR & ADC_CCR_MULTI_Msk) < ADC_CCR_MULTI_0)) \
1437                                   || ((hadc->Instance == ADC3) && ((ADC->CCR & ADC_CCR_MULTI_Msk) < ADC_CCR_MULTI_4)))
1438       {
1439 #endif /* ADC2 || ADC3 */
1440         /* if no external trigger present enable software conversion of regular channels */
1441         if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET)
1442         {
1443           /* Enable the selected ADC software conversion for regular group */
1444           hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
1445         }
1446 #if defined(ADC2) && defined(ADC3)
1447       }
1448 #endif /* ADC2 || ADC3 */
1449     }
1450     else
1451     {
1452       /* if instance of handle correspond to ADC1 and  no external trigger present enable software conversion of regular channels */
1453       if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET))
1454       {
1455         /* Enable the selected ADC software conversion for regular group */
1456           hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
1457       }
1458     }
1459   }
1460 
1461   /* Return function status */
1462   return HAL_OK;
1463 }
1464 
1465 /**
1466   * @brief  Disables ADC DMA (Single-ADC mode) and disables ADC peripheral
1467   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
1468   *         the configuration information for the specified ADC.
1469   * @retval HAL status
1470   */
HAL_ADC_Stop_DMA(ADC_HandleTypeDef * hadc)1471 HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc)
1472 {
1473   HAL_StatusTypeDef tmp_hal_status = HAL_OK;
1474 
1475   /* Check the parameters */
1476   assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
1477 
1478   /* Process locked */
1479   __HAL_LOCK(hadc);
1480 
1481   /* Stop potential conversion on going, on regular and injected groups */
1482   /* Disable ADC peripheral */
1483   __HAL_ADC_DISABLE(hadc);
1484 
1485   /* Check if ADC is effectively disabled */
1486   if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
1487   {
1488     /* Disable the selected ADC DMA mode */
1489     hadc->Instance->CR2 &= ~ADC_CR2_DMA;
1490 
1491     /* Disable the DMA channel (in case of DMA in circular mode or stop while */
1492     /* DMA transfer is on going)                                              */
1493     tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
1494 
1495     /* Disable ADC overrun interrupt */
1496     __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
1497 
1498     /* Set ADC state */
1499     ADC_STATE_CLR_SET(hadc->State,
1500                       HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
1501                       HAL_ADC_STATE_READY);
1502   }
1503 
1504   /* Process unlocked */
1505   __HAL_UNLOCK(hadc);
1506 
1507   /* Return function status */
1508   return tmp_hal_status;
1509 }
1510 
1511 /**
1512   * @brief  Gets the converted value from data register of regular channel.
1513   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
1514   *         the configuration information for the specified ADC.
1515   * @retval Converted value
1516   */
HAL_ADC_GetValue(ADC_HandleTypeDef * hadc)1517 uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc)
1518 {
1519   /* Return the selected ADC converted value */
1520   return hadc->Instance->DR;
1521 }
1522 
1523 /**
1524   * @brief  Regular conversion complete callback in non blocking mode
1525   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
1526   *         the configuration information for the specified ADC.
1527   * @retval None
1528   */
HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef * hadc)1529 __weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
1530 {
1531   /* Prevent unused argument(s) compilation warning */
1532   UNUSED(hadc);
1533   /* NOTE : This function Should not be modified, when the callback is needed,
1534             the HAL_ADC_ConvCpltCallback could be implemented in the user file
1535    */
1536 }
1537 
1538 /**
1539   * @brief  Regular conversion half DMA transfer callback in non blocking mode
1540   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
1541   *         the configuration information for the specified ADC.
1542   * @retval None
1543   */
HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef * hadc)1544 __weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
1545 {
1546   /* Prevent unused argument(s) compilation warning */
1547   UNUSED(hadc);
1548   /* NOTE : This function Should not be modified, when the callback is needed,
1549             the HAL_ADC_ConvHalfCpltCallback could be implemented in the user file
1550    */
1551 }
1552 
1553 /**
1554   * @brief  Analog watchdog callback in non blocking mode
1555   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
1556   *         the configuration information for the specified ADC.
1557   * @retval None
1558   */
HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef * hadc)1559 __weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc)
1560 {
1561   /* Prevent unused argument(s) compilation warning */
1562   UNUSED(hadc);
1563   /* NOTE : This function Should not be modified, when the callback is needed,
1564             the HAL_ADC_LevelOoutOfWindowCallback could be implemented in the user file
1565    */
1566 }
1567 
1568 /**
1569   * @brief  Error ADC callback.
1570   * @note   In case of error due to overrun when using ADC with DMA transfer
1571   *         (HAL ADC handle paramater "ErrorCode" to state "HAL_ADC_ERROR_OVR"):
1572   *         - Reinitialize the DMA using function "HAL_ADC_Stop_DMA()".
1573   *         - If needed, restart a new ADC conversion using function
1574   *           "HAL_ADC_Start_DMA()"
1575   *           (this function is also clearing overrun flag)
1576   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
1577   *         the configuration information for the specified ADC.
1578   * @retval None
1579   */
HAL_ADC_ErrorCallback(ADC_HandleTypeDef * hadc)1580 __weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
1581 {
1582   /* Prevent unused argument(s) compilation warning */
1583   UNUSED(hadc);
1584   /* NOTE : This function Should not be modified, when the callback is needed,
1585             the HAL_ADC_ErrorCallback could be implemented in the user file
1586    */
1587 }
1588 
1589 /**
1590   * @}
1591   */
1592 
1593 /** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions
1594  *  @brief   	Peripheral Control functions
1595  *
1596 @verbatim
1597  ===============================================================================
1598              ##### Peripheral Control functions #####
1599  ===============================================================================
1600     [..]  This section provides functions allowing to:
1601       (+) Configure regular channels.
1602       (+) Configure injected channels.
1603       (+) Configure multimode.
1604       (+) Configure the analog watch dog.
1605 
1606 @endverbatim
1607   * @{
1608   */
1609 
1610   /**
1611   * @brief  Configures for the selected ADC regular channel its corresponding
1612   *         rank in the sequencer and its sample time.
1613   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
1614   *         the configuration information for the specified ADC.
1615   * @param  sConfig ADC configuration structure.
1616   * @retval HAL status
1617   */
HAL_ADC_ConfigChannel(ADC_HandleTypeDef * hadc,ADC_ChannelConfTypeDef * sConfig)1618 HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig)
1619 {
1620   __IO uint32_t counter = 0U;
1621   ADC_Common_TypeDef *tmpADC_Common;
1622 
1623   /* Check the parameters */
1624   assert_param(IS_ADC_CHANNEL(sConfig->Channel));
1625   assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank));
1626   assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime));
1627 
1628   /* Process locked */
1629   __HAL_LOCK(hadc);
1630 
1631   /* if ADC_Channel_10 ... ADC_Channel_18 is selected */
1632   if (sConfig->Channel > ADC_CHANNEL_9)
1633   {
1634     /* Clear the old sample time */
1635     hadc->Instance->SMPR1 &= ~ADC_SMPR1(ADC_SMPR1_SMP10, sConfig->Channel);
1636 
1637     /* Set the new sample time */
1638     hadc->Instance->SMPR1 |= ADC_SMPR1(sConfig->SamplingTime, sConfig->Channel);
1639   }
1640   else /* ADC_Channel include in ADC_Channel_[0..9] */
1641   {
1642     /* Clear the old sample time */
1643     hadc->Instance->SMPR2 &= ~ADC_SMPR2(ADC_SMPR2_SMP0, sConfig->Channel);
1644 
1645     /* Set the new sample time */
1646     hadc->Instance->SMPR2 |= ADC_SMPR2(sConfig->SamplingTime, sConfig->Channel);
1647   }
1648 
1649   /* For Rank 1 to 6 */
1650   if (sConfig->Rank < 7U)
1651   {
1652     /* Clear the old SQx bits for the selected rank */
1653     hadc->Instance->SQR3 &= ~ADC_SQR3_RK(ADC_SQR3_SQ1, sConfig->Rank);
1654 
1655     /* Set the SQx bits for the selected rank */
1656     hadc->Instance->SQR3 |= ADC_SQR3_RK(sConfig->Channel, sConfig->Rank);
1657   }
1658   /* For Rank 7 to 12 */
1659   else if (sConfig->Rank < 13U)
1660   {
1661     /* Clear the old SQx bits for the selected rank */
1662     hadc->Instance->SQR2 &= ~ADC_SQR2_RK(ADC_SQR2_SQ7, sConfig->Rank);
1663 
1664     /* Set the SQx bits for the selected rank */
1665     hadc->Instance->SQR2 |= ADC_SQR2_RK(sConfig->Channel, sConfig->Rank);
1666   }
1667   /* For Rank 13 to 16 */
1668   else
1669   {
1670     /* Clear the old SQx bits for the selected rank */
1671     hadc->Instance->SQR1 &= ~ADC_SQR1_RK(ADC_SQR1_SQ13, sConfig->Rank);
1672 
1673     /* Set the SQx bits for the selected rank */
1674     hadc->Instance->SQR1 |= ADC_SQR1_RK(sConfig->Channel, sConfig->Rank);
1675   }
1676 
1677     /* Pointer to the common control register to which is belonging hadc    */
1678     /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */
1679     /* control register)                                                    */
1680     tmpADC_Common = ADC_COMMON_REGISTER(hadc);
1681 
1682   /* if ADC1 Channel_18 is selected for VBAT Channel ennable VBATE */
1683   if ((hadc->Instance == ADC1) && (sConfig->Channel == ADC_CHANNEL_VBAT))
1684   {
1685     /* Disable the TEMPSENSOR channel in case of using board with multiplixed ADC_CHANNEL_VBAT & ADC_CHANNEL_TEMPSENSOR*/
1686     if ((uint16_t)ADC_CHANNEL_TEMPSENSOR == (uint16_t)ADC_CHANNEL_VBAT)
1687     {
1688       tmpADC_Common->CCR &= ~ADC_CCR_TSVREFE;
1689     }
1690     /* Enable the VBAT channel*/
1691     tmpADC_Common->CCR |= ADC_CCR_VBATE;
1692   }
1693 
1694   /* if ADC1 Channel_16 or Channel_18 is selected for Temperature sensor or
1695      Channel_17 is selected for VREFINT enable TSVREFE */
1696   if ((hadc->Instance == ADC1) && ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) || (sConfig->Channel == ADC_CHANNEL_VREFINT)))
1697   {
1698     /* Disable the VBAT channel in case of using board with multiplixed ADC_CHANNEL_VBAT & ADC_CHANNEL_TEMPSENSOR*/
1699     if ((uint16_t)ADC_CHANNEL_TEMPSENSOR == (uint16_t)ADC_CHANNEL_VBAT)
1700     {
1701       tmpADC_Common->CCR &= ~ADC_CCR_VBATE;
1702     }
1703     /* Enable the Temperature sensor and VREFINT channel*/
1704     tmpADC_Common->CCR |= ADC_CCR_TSVREFE;
1705 
1706     if((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR))
1707     {
1708       /* Delay for temperature sensor stabilization time */
1709       /* Compute number of CPU cycles to wait for */
1710       counter = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000U));
1711       while(counter != 0U)
1712       {
1713         counter--;
1714       }
1715     }
1716   }
1717 
1718   /* Process unlocked */
1719   __HAL_UNLOCK(hadc);
1720 
1721   /* Return function status */
1722   return HAL_OK;
1723 }
1724 
1725 /**
1726   * @brief  Configures the analog watchdog.
1727   * @note Analog watchdog thresholds can be modified while ADC conversion
1728   * is on going.
1729   * In this case, some constraints must be taken into account:
1730   * The programmed threshold values are effective from the next
1731   * ADC EOC (end of unitary conversion).
1732   * Considering that registers write delay may happen due to
1733   * bus activity, this might cause an uncertainty on the
1734   * effective timing of the new programmed threshold values.
1735   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
1736   *         the configuration information for the specified ADC.
1737   * @param  AnalogWDGConfig  pointer to an ADC_AnalogWDGConfTypeDef structure
1738   *         that contains the configuration information of ADC analog watchdog.
1739   * @retval HAL status
1740   */
HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef * hadc,ADC_AnalogWDGConfTypeDef * AnalogWDGConfig)1741 HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig)
1742 {
1743 #ifdef USE_FULL_ASSERT
1744   uint32_t tmp = 0U;
1745 #endif /* USE_FULL_ASSERT  */
1746 
1747   /* Check the parameters */
1748   assert_param(IS_ADC_ANALOG_WATCHDOG(AnalogWDGConfig->WatchdogMode));
1749   assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel));
1750   assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode));
1751 
1752 #ifdef USE_FULL_ASSERT
1753   tmp = ADC_GET_RESOLUTION(hadc);
1754   assert_param(IS_ADC_RANGE(tmp, AnalogWDGConfig->HighThreshold));
1755   assert_param(IS_ADC_RANGE(tmp, AnalogWDGConfig->LowThreshold));
1756 #endif /* USE_FULL_ASSERT  */
1757 
1758   /* Process locked */
1759   __HAL_LOCK(hadc);
1760 
1761   if(AnalogWDGConfig->ITMode == ENABLE)
1762   {
1763     /* Enable the ADC Analog watchdog interrupt */
1764     __HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD);
1765   }
1766   else
1767   {
1768     /* Disable the ADC Analog watchdog interrupt */
1769     __HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD);
1770   }
1771 
1772   /* Clear AWDEN, JAWDEN and AWDSGL bits */
1773   hadc->Instance->CR1 &=  ~(ADC_CR1_AWDSGL | ADC_CR1_JAWDEN | ADC_CR1_AWDEN);
1774 
1775   /* Set the analog watchdog enable mode */
1776   hadc->Instance->CR1 |= AnalogWDGConfig->WatchdogMode;
1777 
1778   /* Set the high threshold */
1779   hadc->Instance->HTR = AnalogWDGConfig->HighThreshold;
1780 
1781   /* Set the low threshold */
1782   hadc->Instance->LTR = AnalogWDGConfig->LowThreshold;
1783 
1784   /* Clear the Analog watchdog channel select bits */
1785   hadc->Instance->CR1 &= ~ADC_CR1_AWDCH;
1786 
1787   /* Set the Analog watchdog channel */
1788   hadc->Instance->CR1 |= (uint32_t)((uint16_t)(AnalogWDGConfig->Channel));
1789 
1790   /* Process unlocked */
1791   __HAL_UNLOCK(hadc);
1792 
1793   /* Return function status */
1794   return HAL_OK;
1795 }
1796 
1797 /**
1798   * @}
1799   */
1800 
1801 /** @defgroup ADC_Exported_Functions_Group4 ADC Peripheral State functions
1802  *  @brief   ADC Peripheral State functions
1803  *
1804 @verbatim
1805  ===============================================================================
1806             ##### Peripheral State and errors functions #####
1807  ===============================================================================
1808     [..]
1809     This subsection provides functions allowing to
1810       (+) Check the ADC state
1811       (+) Check the ADC Error
1812 
1813 @endverbatim
1814   * @{
1815   */
1816 
1817 /**
1818   * @brief  return the ADC state
1819   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
1820   *         the configuration information for the specified ADC.
1821   * @retval HAL state
1822   */
HAL_ADC_GetState(ADC_HandleTypeDef * hadc)1823 uint32_t HAL_ADC_GetState(ADC_HandleTypeDef* hadc)
1824 {
1825   /* Return ADC state */
1826   return hadc->State;
1827 }
1828 
1829 /**
1830   * @brief  Return the ADC error code
1831   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
1832   *         the configuration information for the specified ADC.
1833   * @retval ADC Error Code
1834   */
HAL_ADC_GetError(ADC_HandleTypeDef * hadc)1835 uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc)
1836 {
1837   return hadc->ErrorCode;
1838 }
1839 
1840 /**
1841   * @}
1842   */
1843 
1844 /** @addtogroup ADC_Private_Functions
1845   * @{
1846   */
1847 
1848 /**
1849   * @brief  Initializes the ADCx peripheral according to the specified parameters
1850   *         in the ADC_InitStruct without initializing the ADC MSP.
1851   * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
1852   *         the configuration information for the specified ADC.
1853   * @retval None
1854   */
ADC_Init(ADC_HandleTypeDef * hadc)1855 static void ADC_Init(ADC_HandleTypeDef* hadc)
1856 {
1857   ADC_Common_TypeDef *tmpADC_Common;
1858 
1859   /* Set ADC parameters */
1860   /* Pointer to the common control register to which is belonging hadc    */
1861   /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */
1862   /* control register)                                                    */
1863   tmpADC_Common = ADC_COMMON_REGISTER(hadc);
1864 
1865   /* Set the ADC clock prescaler */
1866   tmpADC_Common->CCR &= ~(ADC_CCR_ADCPRE);
1867   tmpADC_Common->CCR |=  hadc->Init.ClockPrescaler;
1868 
1869   /* Set ADC scan mode */
1870   hadc->Instance->CR1 &= ~(ADC_CR1_SCAN);
1871   hadc->Instance->CR1 |=  ADC_CR1_SCANCONV(hadc->Init.ScanConvMode);
1872 
1873   /* Set ADC resolution */
1874   hadc->Instance->CR1 &= ~(ADC_CR1_RES);
1875   hadc->Instance->CR1 |=  hadc->Init.Resolution;
1876 
1877   /* Set ADC data alignment */
1878   hadc->Instance->CR2 &= ~(ADC_CR2_ALIGN);
1879   hadc->Instance->CR2 |= hadc->Init.DataAlign;
1880 
1881   /* Enable external trigger if trigger selection is different of software  */
1882   /* start.                                                                 */
1883   /* Note: This configuration keeps the hardware feature of parameter       */
1884   /*       ExternalTrigConvEdge "trigger edge none" equivalent to           */
1885   /*       software start.                                                  */
1886   if(hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
1887   {
1888     /* Select external trigger to start conversion */
1889     hadc->Instance->CR2 &= ~(ADC_CR2_EXTSEL);
1890     hadc->Instance->CR2 |= hadc->Init.ExternalTrigConv;
1891 
1892     /* Select external trigger polarity */
1893     hadc->Instance->CR2 &= ~(ADC_CR2_EXTEN);
1894     hadc->Instance->CR2 |= hadc->Init.ExternalTrigConvEdge;
1895   }
1896   else
1897   {
1898     /* Reset the external trigger */
1899     hadc->Instance->CR2 &= ~(ADC_CR2_EXTSEL);
1900     hadc->Instance->CR2 &= ~(ADC_CR2_EXTEN);
1901   }
1902 
1903   /* Enable or disable ADC continuous conversion mode */
1904   hadc->Instance->CR2 &= ~(ADC_CR2_CONT);
1905   hadc->Instance->CR2 |= ADC_CR2_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode);
1906 
1907   if(hadc->Init.DiscontinuousConvMode != DISABLE)
1908   {
1909     assert_param(IS_ADC_REGULAR_DISC_NUMBER(hadc->Init.NbrOfDiscConversion));
1910 
1911     /* Enable the selected ADC regular discontinuous mode */
1912     hadc->Instance->CR1 |= (uint32_t)ADC_CR1_DISCEN;
1913 
1914     /* Set the number of channels to be converted in discontinuous mode */
1915     hadc->Instance->CR1 &= ~(ADC_CR1_DISCNUM);
1916     hadc->Instance->CR1 |=  ADC_CR1_DISCONTINUOUS(hadc->Init.NbrOfDiscConversion);
1917   }
1918   else
1919   {
1920     /* Disable the selected ADC regular discontinuous mode */
1921     hadc->Instance->CR1 &= ~(ADC_CR1_DISCEN);
1922   }
1923 
1924   /* Set ADC number of conversion */
1925   hadc->Instance->SQR1 &= ~(ADC_SQR1_L);
1926   hadc->Instance->SQR1 |=  ADC_SQR1(hadc->Init.NbrOfConversion);
1927 
1928   /* Enable or disable ADC DMA continuous request */
1929   hadc->Instance->CR2 &= ~(ADC_CR2_DDS);
1930   hadc->Instance->CR2 |= ADC_CR2_DMAContReq((uint32_t)hadc->Init.DMAContinuousRequests);
1931 
1932   /* Enable or disable ADC end of conversion selection */
1933   hadc->Instance->CR2 &= ~(ADC_CR2_EOCS);
1934   hadc->Instance->CR2 |= ADC_CR2_EOCSelection(hadc->Init.EOCSelection);
1935 }
1936 
1937 /**
1938   * @brief  DMA transfer complete callback.
1939   * @param  hdma pointer to a DMA_HandleTypeDef structure that contains
1940   *                the configuration information for the specified DMA module.
1941   * @retval None
1942   */
ADC_DMAConvCplt(DMA_HandleTypeDef * hdma)1943 static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma)
1944 {
1945   /* Retrieve ADC handle corresponding to current DMA handle */
1946   ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
1947 
1948   /* Update state machine on conversion status if not in error state */
1949   if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA))
1950   {
1951     /* Update ADC state machine */
1952     SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
1953 
1954     /* Determine whether any further conversion upcoming on group regular   */
1955     /* by external trigger, continuous mode or scan sequence on going.      */
1956     /* Note: On STM32F4, there is no independent flag of end of sequence.   */
1957     /*       The test of scan sequence on going is done either with scan    */
1958     /*       sequence disabled or with end of conversion flag set to        */
1959     /*       of end of sequence.                                            */
1960     if(ADC_IS_SOFTWARE_START_REGULAR(hadc)                   &&
1961        (hadc->Init.ContinuousConvMode == DISABLE)            &&
1962        (HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) ||
1963         HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS)  )   )
1964     {
1965       /* Disable ADC end of single conversion interrupt on group regular */
1966       /* Note: Overrun interrupt was enabled with EOC interrupt in          */
1967       /* HAL_ADC_Start_IT(), but is not disabled here because can be used   */
1968       /* by overrun IRQ process below.                                      */
1969       __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
1970 
1971       /* Set ADC state */
1972       CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
1973 
1974       if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
1975       {
1976         SET_BIT(hadc->State, HAL_ADC_STATE_READY);
1977       }
1978     }
1979 
1980     /* Conversion complete callback */
1981 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
1982     hadc->ConvCpltCallback(hadc);
1983 #else
1984     HAL_ADC_ConvCpltCallback(hadc);
1985 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
1986   }
1987   else /* DMA and-or internal error occurred */
1988   {
1989     if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) != 0UL)
1990     {
1991       /* Call HAL ADC Error Callback function */
1992 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
1993       hadc->ErrorCallback(hadc);
1994 #else
1995       HAL_ADC_ErrorCallback(hadc);
1996 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
1997     }
1998 	else
1999 	{
2000       /* Call DMA error callback */
2001       hadc->DMA_Handle->XferErrorCallback(hdma);
2002     }
2003   }
2004 }
2005 
2006 /**
2007   * @brief  DMA half transfer complete callback.
2008   * @param  hdma pointer to a DMA_HandleTypeDef structure that contains
2009   *                the configuration information for the specified DMA module.
2010   * @retval None
2011   */
ADC_DMAHalfConvCplt(DMA_HandleTypeDef * hdma)2012 static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma)
2013 {
2014   ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
2015    /* Half conversion callback */
2016 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
2017   hadc->ConvHalfCpltCallback(hadc);
2018 #else
2019   HAL_ADC_ConvHalfCpltCallback(hadc);
2020 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
2021 }
2022 
2023 /**
2024   * @brief  DMA error callback
2025   * @param  hdma pointer to a DMA_HandleTypeDef structure that contains
2026   *                the configuration information for the specified DMA module.
2027   * @retval None
2028   */
ADC_DMAError(DMA_HandleTypeDef * hdma)2029 static void ADC_DMAError(DMA_HandleTypeDef *hdma)
2030 {
2031   ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
2032   hadc->State= HAL_ADC_STATE_ERROR_DMA;
2033   /* Set ADC error code to DMA error */
2034   hadc->ErrorCode |= HAL_ADC_ERROR_DMA;
2035    /* Error callback */
2036 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
2037   hadc->ErrorCallback(hadc);
2038 #else
2039   HAL_ADC_ErrorCallback(hadc);
2040 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
2041 }
2042 
2043 /**
2044   * @}
2045   */
2046 
2047 /**
2048   * @}
2049   */
2050 
2051 #endif /* HAL_ADC_MODULE_ENABLED */
2052 /**
2053   * @}
2054   */
2055 
2056 /**
2057   * @}
2058   */
2059 
2060 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
2061