1 /**
2 * \file
3 *
4 * \brief Commonly used includes, types and macros.
5 *
6 * Copyright (c) 2010-2015 Atmel Corporation. All rights reserved.
7 *
8 * \asf_license_start
9 *
10 * \page License
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions are met:
14 *
15 * 1. Redistributions of source code must retain the above copyright notice,
16 * this list of conditions and the following disclaimer.
17 *
18 * 2. Redistributions in binary form must reproduce the above copyright notice,
19 * this list of conditions and the following disclaimer in the documentation
20 * and/or other materials provided with the distribution.
21 *
22 * 3. The name of Atmel may not be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * 4. This software may only be redistributed and used in connection with an
26 * Atmel microcontroller product.
27 *
28 * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
31 * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
32 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 *
40 * \asf_license_stop
41 *
42 */
43 /*
44 * Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
45 */
46
47 #ifndef UTILS_COMPILER_H
48 #define UTILS_COMPILER_H
49
50 /**
51 * \defgroup group_sam_utils Compiler abstraction layer and code utilities
52 *
53 * Compiler abstraction layer and code utilities for AT91SAM.
54 * This module provides various abstraction layers and utilities to make code compatible between different compilers.
55 *
56 * \{
57 */
58 #include <stddef.h>
59
60 #if (defined __ICCARM__)
61 # include <intrinsics.h>
62 #endif
63
64 #include <parts.h>
65 #include "preprocessor.h"
66
67 #include <io.h>
68
69 //_____ D E C L A R A T I O N S ____________________________________________
70
71 #ifndef __ASSEMBLY__ // Not defined for assembling.
72
73 #include <stdio.h>
74 #include <stdbool.h>
75 #include <stdint.h>
76 #include <stdlib.h>
77
78 #ifdef __ICCARM__
79 /*! \name Compiler Keywords
80 *
81 * Port of some keywords from GCC to IAR Embedded Workbench.
82 */
83 //! @{
84 #define __asm__ asm
85 #define __inline__ inline
86 #define __volatile__
87 //! @}
88
89 #endif
90
91 #define FUNC_PTR void *
92 /**
93 * \def UNUSED
94 * \brief Marking \a v as a unused parameter or value.
95 */
96 #define UNUSED(v) (void)(v)
97
98 /**
99 * \def unused
100 * \brief Marking \a v as a unused parameter or value.
101 */
102 #define unused(v) do { (void)(v); } while(0)
103
104 /**
105 * \def barrier
106 * \brief Memory barrier
107 */
108 #define barrier() __DMB()
109
110 /**
111 * \brief Emit the compiler pragma \a arg.
112 *
113 * \param arg The pragma directive as it would appear after \e \#pragma
114 * (i.e. not stringified).
115 */
116 #define COMPILER_PRAGMA(arg) _Pragma(#arg)
117
118 /**
119 * \def COMPILER_PACK_SET(alignment)
120 * \brief Set maximum alignment for subsequent struct and union
121 * definitions to \a alignment.
122 */
123 #define COMPILER_PACK_SET(alignment) COMPILER_PRAGMA(pack(alignment))
124
125 /**
126 * \def COMPILER_PACK_RESET()
127 * \brief Set default alignment for subsequent struct and union
128 * definitions.
129 */
130 #define COMPILER_PACK_RESET() COMPILER_PRAGMA(pack())
131
132
133 /**
134 * \brief Set aligned boundary.
135 */
136 #if (defined __GNUC__) || (defined __CC_ARM)
137 # define COMPILER_ALIGNED(a) __attribute__((__aligned__(a)))
138 #elif (defined __ICCARM__)
139 # define COMPILER_ALIGNED(a) COMPILER_PRAGMA(data_alignment = a)
140 #endif
141
142 /**
143 * \brief Set word-aligned boundary.
144 */
145 #if (defined __GNUC__) || defined(__CC_ARM)
146 #define COMPILER_WORD_ALIGNED __attribute__((__aligned__(4)))
147 #elif (defined __ICCARM__)
148 #define COMPILER_WORD_ALIGNED COMPILER_PRAGMA(data_alignment = 4)
149 #endif
150
151 /**
152 * \def __always_inline
153 * \brief The function should always be inlined.
154 *
155 * This annotation instructs the compiler to ignore its inlining
156 * heuristics and inline the function no matter how big it thinks it
157 * becomes.
158 */
159
160 // HACK BK: avoid warning
161 #ifdef __always_inline
162 # undef __always_inline
163 #endif
164
165 #if defined(__CC_ARM)
166 # define __always_inline __forceinline
167 #elif (defined __GNUC__)
168 # define __always_inline inline __attribute__((__always_inline__))
169 #elif (defined __ICCARM__)
170 # define __always_inline _Pragma("inline=forced")
171 #endif
172
173 /**
174 * \def __no_inline
175 * \brief The function should not be inlined.
176 *
177 * This annotation instructs the compiler to ignore its inlining
178 * heuristics and not inline the function.
179 */
180 #if defined(__CC_ARM)
181 # define __no_inline __attribute__((noinline))
182 #elif (defined __GNUC__)
183 # define __no_inline __attribute__((__noinline__))
184 #elif (defined __ICCARM__)
185 # define __no_inline _Pragma("inline=never")
186 #endif
187
188 /*! \brief This macro is used to test fatal errors.
189 *
190 * The macro tests if the expression is false. If it is, a fatal error is
191 * detected and the application hangs up. If TEST_SUITE_DEFINE_ASSERT_MACRO
192 * is defined, a unit test version of the macro is used, to allow execution
193 * of further tests after a false expression.
194 *
195 * \param expr Expression to evaluate and supposed to be nonzero.
196 */
197 #if defined(_ASSERT_ENABLE_)
198 # if defined(TEST_SUITE_DEFINE_ASSERT_MACRO)
199 // Assert() is defined in unit_test/suite.h
200 # include "unit_test/suite.h"
201 # else
202 #undef TEST_SUITE_DEFINE_ASSERT_MACRO
203 # define Assert(expr) \
204 {\
205 if (!(expr)) while (true);\
206 }
207 # endif
208 #else
209 # define Assert(expr) ((void) 0)
210 #endif
211
212 /* Define WEAK attribute */
213 #if defined ( __CC_ARM ) /* Keil µVision 4 */
214 # define WEAK __attribute__ ((weak))
215 #elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */
216 # define WEAK __weak
217 #elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */
218 # define WEAK __attribute__ ((weak))
219 #endif
220
221 /* Define NO_INIT attribute */
222 #if defined ( __CC_ARM )
223 # define NO_INIT __attribute__((zero_init))
224 #elif defined ( __ICCARM__ )
225 # define NO_INIT __no_init
226 #elif defined ( __GNUC__ )
227 # define NO_INIT __attribute__((section(".no_init")))
228 #endif
229
230 /* Define RAMFUNC attribute */
231 #if defined ( __CC_ARM ) /* Keil µVision 4 */
232 # define RAMFUNC __attribute__ ((section(".ramfunc")))
233 #elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */
234 # define RAMFUNC __ramfunc
235 #elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */
236 # define RAMFUNC __attribute__ ((section(".ramfunc")))
237 #endif
238
239 /* Define OPTIMIZE_HIGH attribute */
240 #if defined ( __CC_ARM ) /* Keil µVision 4 */
241 # define OPTIMIZE_HIGH _Pragma("O3")
242 #elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */
243 # define OPTIMIZE_HIGH _Pragma("optimize=high")
244 #elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */
245 # define OPTIMIZE_HIGH __attribute__((optimize(s)))
246 #endif
247
248 #include "interrupt.h"
249
250 /*! \name Usual Types
251 */
252 //! @{
253 typedef unsigned char Bool; //!< Boolean.
254 #ifndef __cplusplus
255 #if !defined(__bool_true_false_are_defined)
256 typedef unsigned char bool; //!< Boolean.
257 #endif
258 #endif
259 typedef int8_t S8 ; //!< 8-bit signed integer.
260 typedef uint8_t U8 ; //!< 8-bit unsigned integer.
261 typedef int16_t S16; //!< 16-bit signed integer.
262 typedef uint16_t U16; //!< 16-bit unsigned integer.
263 typedef uint16_t le16_t;
264 typedef uint16_t be16_t;
265 typedef int32_t S32; //!< 32-bit signed integer.
266 typedef uint32_t U32; //!< 32-bit unsigned integer.
267 typedef uint32_t le32_t;
268 typedef uint32_t be32_t;
269 typedef int64_t S64; //!< 64-bit signed integer.
270 typedef uint64_t U64; //!< 64-bit unsigned integer.
271 typedef float F32; //!< 32-bit floating-point number.
272 typedef double F64; //!< 64-bit floating-point number.
273 typedef uint32_t iram_size_t;
274 //! @}
275
276
277 /*! \name Status Types
278 */
279 //! @{
280 typedef bool Status_bool_t; //!< Boolean status.
281 typedef U8 Status_t; //!< 8-bit-coded status.
282 //! @}
283
284
285 /*! \name Aliasing Aggregate Types
286 */
287 //! @{
288
289 //! 16-bit union.
290 typedef union
291 {
292 S16 s16 ;
293 U16 u16 ;
294 S8 s8 [2];
295 U8 u8 [2];
296 } Union16;
297
298 //! 32-bit union.
299 typedef union
300 {
301 S32 s32 ;
302 U32 u32 ;
303 S16 s16[2];
304 U16 u16[2];
305 S8 s8 [4];
306 U8 u8 [4];
307 } Union32;
308
309 //! 64-bit union.
310 typedef union
311 {
312 S64 s64 ;
313 U64 u64 ;
314 S32 s32[2];
315 U32 u32[2];
316 S16 s16[4];
317 U16 u16[4];
318 S8 s8 [8];
319 U8 u8 [8];
320 } Union64;
321
322 //! Union of pointers to 64-, 32-, 16- and 8-bit unsigned integers.
323 typedef union
324 {
325 S64 *s64ptr;
326 U64 *u64ptr;
327 S32 *s32ptr;
328 U32 *u32ptr;
329 S16 *s16ptr;
330 U16 *u16ptr;
331 S8 *s8ptr ;
332 U8 *u8ptr ;
333 } UnionPtr;
334
335 //! Union of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers.
336 typedef union
337 {
338 volatile S64 *s64ptr;
339 volatile U64 *u64ptr;
340 volatile S32 *s32ptr;
341 volatile U32 *u32ptr;
342 volatile S16 *s16ptr;
343 volatile U16 *u16ptr;
344 volatile S8 *s8ptr ;
345 volatile U8 *u8ptr ;
346 } UnionVPtr;
347
348 //! Union of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers.
349 typedef union
350 {
351 const S64 *s64ptr;
352 const U64 *u64ptr;
353 const S32 *s32ptr;
354 const U32 *u32ptr;
355 const S16 *s16ptr;
356 const U16 *u16ptr;
357 const S8 *s8ptr ;
358 const U8 *u8ptr ;
359 } UnionCPtr;
360
361 //! Union of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers.
362 typedef union
363 {
364 const volatile S64 *s64ptr;
365 const volatile U64 *u64ptr;
366 const volatile S32 *s32ptr;
367 const volatile U32 *u32ptr;
368 const volatile S16 *s16ptr;
369 const volatile U16 *u16ptr;
370 const volatile S8 *s8ptr ;
371 const volatile U8 *u8ptr ;
372 } UnionCVPtr;
373
374 //! Structure of pointers to 64-, 32-, 16- and 8-bit unsigned integers.
375 typedef struct
376 {
377 S64 *s64ptr;
378 U64 *u64ptr;
379 S32 *s32ptr;
380 U32 *u32ptr;
381 S16 *s16ptr;
382 U16 *u16ptr;
383 S8 *s8ptr ;
384 U8 *u8ptr ;
385 } StructPtr;
386
387 //! Structure of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers.
388 typedef struct
389 {
390 volatile S64 *s64ptr;
391 volatile U64 *u64ptr;
392 volatile S32 *s32ptr;
393 volatile U32 *u32ptr;
394 volatile S16 *s16ptr;
395 volatile U16 *u16ptr;
396 volatile S8 *s8ptr ;
397 volatile U8 *u8ptr ;
398 } StructVPtr;
399
400 //! Structure of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers.
401 typedef struct
402 {
403 const S64 *s64ptr;
404 const U64 *u64ptr;
405 const S32 *s32ptr;
406 const U32 *u32ptr;
407 const S16 *s16ptr;
408 const U16 *u16ptr;
409 const S8 *s8ptr ;
410 const U8 *u8ptr ;
411 } StructCPtr;
412
413 //! Structure of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers.
414 typedef struct
415 {
416 const volatile S64 *s64ptr;
417 const volatile U64 *u64ptr;
418 const volatile S32 *s32ptr;
419 const volatile U32 *u32ptr;
420 const volatile S16 *s16ptr;
421 const volatile U16 *u16ptr;
422 const volatile S8 *s8ptr ;
423 const volatile U8 *u8ptr ;
424 } StructCVPtr;
425
426 //! @}
427
428 #endif // #ifndef __ASSEMBLY__
429
430 /*! \name Usual Constants
431 */
432 //! @{
433 #define DISABLE 0
434 #define ENABLE 1
435 #ifndef __cplusplus
436 #if !defined(__bool_true_false_are_defined)
437 #define false 0
438 #define true 1
439 #endif
440 #endif
441 #define PASS 0
442 #define FAIL 1
443 #define LOW 0
444 #define HIGH 1
445 //! @}
446
447
448 #ifndef __ASSEMBLY__ // not for assembling.
449
450 //! \name Optimization Control
451 //@{
452
453 /**
454 * \def likely(exp)
455 * \brief The expression \a exp is likely to be true
456 */
457 #ifndef likely
458 # define likely(exp) (exp)
459 #endif
460
461 /**
462 * \def unlikely(exp)
463 * \brief The expression \a exp is unlikely to be true
464 */
465 #ifndef unlikely
466 # define unlikely(exp) (exp)
467 #endif
468
469 /**
470 * \def is_constant(exp)
471 * \brief Determine if an expression evaluates to a constant value.
472 *
473 * \param exp Any expression
474 *
475 * \return true if \a exp is constant, false otherwise.
476 */
477 #if (defined __GNUC__) || (defined __CC_ARM)
478 # define is_constant(exp) __builtin_constant_p(exp)
479 #else
480 # define is_constant(exp) (0)
481 #endif
482
483 //! @}
484
485 /*! \name Bit-Field Handling
486 */
487 //! @{
488
489 /*! \brief Reads the bits of a value specified by a given bit-mask.
490 *
491 * \param value Value to read bits from.
492 * \param mask Bit-mask indicating bits to read.
493 *
494 * \return Read bits.
495 */
496 #define Rd_bits( value, mask) ((value) & (mask))
497
498 /*! \brief Writes the bits of a C lvalue specified by a given bit-mask.
499 *
500 * \param lvalue C lvalue to write bits to.
501 * \param mask Bit-mask indicating bits to write.
502 * \param bits Bits to write.
503 *
504 * \return Resulting value with written bits.
505 */
506 #define Wr_bits(lvalue, mask, bits) ((lvalue) = ((lvalue) & ~(mask)) |\
507 ((bits ) & (mask)))
508
509 /*! \brief Tests the bits of a value specified by a given bit-mask.
510 *
511 * \param value Value of which to test bits.
512 * \param mask Bit-mask indicating bits to test.
513 *
514 * \return \c 1 if at least one of the tested bits is set, else \c 0.
515 */
516 #define Tst_bits( value, mask) (Rd_bits(value, mask) != 0)
517
518 /*! \brief Clears the bits of a C lvalue specified by a given bit-mask.
519 *
520 * \param lvalue C lvalue of which to clear bits.
521 * \param mask Bit-mask indicating bits to clear.
522 *
523 * \return Resulting value with cleared bits.
524 */
525 #define Clr_bits(lvalue, mask) ((lvalue) &= ~(mask))
526
527 /*! \brief Sets the bits of a C lvalue specified by a given bit-mask.
528 *
529 * \param lvalue C lvalue of which to set bits.
530 * \param mask Bit-mask indicating bits to set.
531 *
532 * \return Resulting value with set bits.
533 */
534 #define Set_bits(lvalue, mask) ((lvalue) |= (mask))
535
536 /*! \brief Toggles the bits of a C lvalue specified by a given bit-mask.
537 *
538 * \param lvalue C lvalue of which to toggle bits.
539 * \param mask Bit-mask indicating bits to toggle.
540 *
541 * \return Resulting value with toggled bits.
542 */
543 #define Tgl_bits(lvalue, mask) ((lvalue) ^= (mask))
544
545 /*! \brief Reads the bit-field of a value specified by a given bit-mask.
546 *
547 * \param value Value to read a bit-field from.
548 * \param mask Bit-mask indicating the bit-field to read.
549 *
550 * \return Read bit-field.
551 */
552 #define Rd_bitfield( value, mask) (Rd_bits( value, mask) >> ctz(mask))
553
554 /*! \brief Writes the bit-field of a C lvalue specified by a given bit-mask.
555 *
556 * \param lvalue C lvalue to write a bit-field to.
557 * \param mask Bit-mask indicating the bit-field to write.
558 * \param bitfield Bit-field to write.
559 *
560 * \return Resulting value with written bit-field.
561 */
562 #define Wr_bitfield(lvalue, mask, bitfield) (Wr_bits(lvalue, mask, (U32)(bitfield) << ctz(mask)))
563
564 //! @}
565
566
567 /*! \name Zero-Bit Counting
568 *
569 * Under GCC, __builtin_clz and __builtin_ctz behave like macros when
570 * applied to constant expressions (values known at compile time), so they are
571 * more optimized than the use of the corresponding assembly instructions and
572 * they can be used as constant expressions e.g. to initialize objects having
573 * static storage duration, and like the corresponding assembly instructions
574 * when applied to non-constant expressions (values unknown at compile time), so
575 * they are more optimized than an assembly periphrasis. Hence, clz and ctz
576 * ensure a possible and optimized behavior for both constant and non-constant
577 * expressions.
578 */
579 //! @{
580
581 /*! \brief Counts the leading zero bits of the given value considered as a 32-bit integer.
582 *
583 * \param u Value of which to count the leading zero bits.
584 *
585 * \return The count of leading zero bits in \a u.
586 */
587 #if (defined __GNUC__) || (defined __CC_ARM)
588 # define clz(u) __builtin_clz(u)
589 #elif (defined __ICCARM__)
590 # define clz(u) __CLZ(u)
591 #else
592 # define clz(u) (((u) == 0) ? 32 : \
593 ((u) & (1ul << 31)) ? 0 : \
594 ((u) & (1ul << 30)) ? 1 : \
595 ((u) & (1ul << 29)) ? 2 : \
596 ((u) & (1ul << 28)) ? 3 : \
597 ((u) & (1ul << 27)) ? 4 : \
598 ((u) & (1ul << 26)) ? 5 : \
599 ((u) & (1ul << 25)) ? 6 : \
600 ((u) & (1ul << 24)) ? 7 : \
601 ((u) & (1ul << 23)) ? 8 : \
602 ((u) & (1ul << 22)) ? 9 : \
603 ((u) & (1ul << 21)) ? 10 : \
604 ((u) & (1ul << 20)) ? 11 : \
605 ((u) & (1ul << 19)) ? 12 : \
606 ((u) & (1ul << 18)) ? 13 : \
607 ((u) & (1ul << 17)) ? 14 : \
608 ((u) & (1ul << 16)) ? 15 : \
609 ((u) & (1ul << 15)) ? 16 : \
610 ((u) & (1ul << 14)) ? 17 : \
611 ((u) & (1ul << 13)) ? 18 : \
612 ((u) & (1ul << 12)) ? 19 : \
613 ((u) & (1ul << 11)) ? 20 : \
614 ((u) & (1ul << 10)) ? 21 : \
615 ((u) & (1ul << 9)) ? 22 : \
616 ((u) & (1ul << 8)) ? 23 : \
617 ((u) & (1ul << 7)) ? 24 : \
618 ((u) & (1ul << 6)) ? 25 : \
619 ((u) & (1ul << 5)) ? 26 : \
620 ((u) & (1ul << 4)) ? 27 : \
621 ((u) & (1ul << 3)) ? 28 : \
622 ((u) & (1ul << 2)) ? 29 : \
623 ((u) & (1ul << 1)) ? 30 : \
624 31)
625 #endif
626
627 /*! \brief Counts the trailing zero bits of the given value considered as a 32-bit integer.
628 *
629 * \param u Value of which to count the trailing zero bits.
630 *
631 * \return The count of trailing zero bits in \a u.
632 */
633 #if (defined __GNUC__) || (defined __CC_ARM)
634 # define ctz(u) __builtin_ctz(u)
635 #else
636 # define ctz(u) ((u) & (1ul << 0) ? 0 : \
637 (u) & (1ul << 1) ? 1 : \
638 (u) & (1ul << 2) ? 2 : \
639 (u) & (1ul << 3) ? 3 : \
640 (u) & (1ul << 4) ? 4 : \
641 (u) & (1ul << 5) ? 5 : \
642 (u) & (1ul << 6) ? 6 : \
643 (u) & (1ul << 7) ? 7 : \
644 (u) & (1ul << 8) ? 8 : \
645 (u) & (1ul << 9) ? 9 : \
646 (u) & (1ul << 10) ? 10 : \
647 (u) & (1ul << 11) ? 11 : \
648 (u) & (1ul << 12) ? 12 : \
649 (u) & (1ul << 13) ? 13 : \
650 (u) & (1ul << 14) ? 14 : \
651 (u) & (1ul << 15) ? 15 : \
652 (u) & (1ul << 16) ? 16 : \
653 (u) & (1ul << 17) ? 17 : \
654 (u) & (1ul << 18) ? 18 : \
655 (u) & (1ul << 19) ? 19 : \
656 (u) & (1ul << 20) ? 20 : \
657 (u) & (1ul << 21) ? 21 : \
658 (u) & (1ul << 22) ? 22 : \
659 (u) & (1ul << 23) ? 23 : \
660 (u) & (1ul << 24) ? 24 : \
661 (u) & (1ul << 25) ? 25 : \
662 (u) & (1ul << 26) ? 26 : \
663 (u) & (1ul << 27) ? 27 : \
664 (u) & (1ul << 28) ? 28 : \
665 (u) & (1ul << 29) ? 29 : \
666 (u) & (1ul << 30) ? 30 : \
667 (u) & (1ul << 31) ? 31 : \
668 32)
669 #endif
670
671 //! @}
672
673
674 /*! \name Bit Reversing
675 */
676 //! @{
677
678 /*! \brief Reverses the bits of \a u8.
679 *
680 * \param u8 U8 of which to reverse the bits.
681 *
682 * \return Value resulting from \a u8 with reversed bits.
683 */
684 #define bit_reverse8(u8) ((U8)(bit_reverse32((U8)(u8)) >> 24))
685
686 /*! \brief Reverses the bits of \a u16.
687 *
688 * \param u16 U16 of which to reverse the bits.
689 *
690 * \return Value resulting from \a u16 with reversed bits.
691 */
692 #define bit_reverse16(u16) ((U16)(bit_reverse32((U16)(u16)) >> 16))
693
694 /*! \brief Reverses the bits of \a u32.
695 *
696 * \param u32 U32 of which to reverse the bits.
697 *
698 * \return Value resulting from \a u32 with reversed bits.
699 */
700 #define bit_reverse32(u32) __RBIT(u32)
701
702 /*! \brief Reverses the bits of \a u64.
703 *
704 * \param u64 U64 of which to reverse the bits.
705 *
706 * \return Value resulting from \a u64 with reversed bits.
707 */
708 #define bit_reverse64(u64) ((U64)(((U64)bit_reverse32((U64)(u64) >> 32)) |\
709 ((U64)bit_reverse32((U64)(u64)) << 32)))
710
711 //! @}
712
713
714 /*! \name Alignment
715 */
716 //! @{
717
718 /*! \brief Tests alignment of the number \a val with the \a n boundary.
719 *
720 * \param val Input value.
721 * \param n Boundary.
722 *
723 * \return \c 1 if the number \a val is aligned with the \a n boundary, else \c 0.
724 */
725 #define Test_align(val, n ) (!Tst_bits( val, (n) - 1 ) )
726
727 /*! \brief Gets alignment of the number \a val with respect to the \a n boundary.
728 *
729 * \param val Input value.
730 * \param n Boundary.
731 *
732 * \return Alignment of the number \a val with respect to the \a n boundary.
733 */
734 #define Get_align( val, n ) ( Rd_bits( val, (n) - 1 ) )
735
736 /*! \brief Sets alignment of the lvalue number \a lval to \a alg with respect to the \a n boundary.
737 *
738 * \param lval Input/output lvalue.
739 * \param n Boundary.
740 * \param alg Alignment.
741 *
742 * \return New value of \a lval resulting from its alignment set to \a alg with respect to the \a n boundary.
743 */
744 #define Set_align(lval, n, alg) ( Wr_bits(lval, (n) - 1, alg) )
745
746 /*! \brief Aligns the number \a val with the upper \a n boundary.
747 *
748 * \param val Input value.
749 * \param n Boundary.
750 *
751 * \return Value resulting from the number \a val aligned with the upper \a n boundary.
752 */
753 #define Align_up( val, n ) (((val) + ((n) - 1)) & ~((n) - 1))
754
755 /*! \brief Aligns the number \a val with the lower \a n boundary.
756 *
757 * \param val Input value.
758 * \param n Boundary.
759 *
760 * \return Value resulting from the number \a val aligned with the lower \a n boundary.
761 */
762 #define Align_down(val, n ) ( (val) & ~((n) - 1))
763
764 //! @}
765
766
767 /*! \name Mathematics
768 *
769 * The same considerations as for clz and ctz apply here but GCC does not
770 * provide built-in functions to access the assembly instructions abs, min and
771 * max and it does not produce them by itself in most cases, so two sets of
772 * macros are defined here:
773 * - Abs, Min and Max to apply to constant expressions (values known at
774 * compile time);
775 * - abs, min and max to apply to non-constant expressions (values unknown at
776 * compile time), abs is found in stdlib.h.
777 */
778 //! @{
779
780 /*! \brief Takes the absolute value of \a a.
781 *
782 * \param a Input value.
783 *
784 * \return Absolute value of \a a.
785 *
786 * \note More optimized if only used with values known at compile time.
787 */
788 #define Abs(a) (((a) < 0 ) ? -(a) : (a))
789
790 /*! \brief Takes the minimal value of \a a and \a b.
791 *
792 * \param a Input value.
793 * \param b Input value.
794 *
795 * \return Minimal value of \a a and \a b.
796 *
797 * \note More optimized if only used with values known at compile time.
798 */
799 #define Min(a, b) (((a) < (b)) ? (a) : (b))
800
801 /*! \brief Takes the maximal value of \a a and \a b.
802 *
803 * \param a Input value.
804 * \param b Input value.
805 *
806 * \return Maximal value of \a a and \a b.
807 *
808 * \note More optimized if only used with values known at compile time.
809 */
810 #define Max(a, b) (((a) > (b)) ? (a) : (b))
811
812 // abs() is already defined by stdlib.h
813
814 /*! \brief Takes the minimal value of \a a and \a b.
815 *
816 * \param a Input value.
817 * \param b Input value.
818 *
819 * \return Minimal value of \a a and \a b.
820 *
821 * \note More optimized if only used with values unknown at compile time.
822 */
823 #define min(a, b) Min(a, b)
824
825 /*! \brief Takes the maximal value of \a a and \a b.
826 *
827 * \param a Input value.
828 * \param b Input value.
829 *
830 * \return Maximal value of \a a and \a b.
831 *
832 * \note More optimized if only used with values unknown at compile time.
833 */
834 #define max(a, b) Max(a, b)
835
836 //! @}
837
838
839 /*! \brief Calls the routine at address \a addr.
840 *
841 * It generates a long call opcode.
842 *
843 * For example, `Long_call(0x80000000)' generates a software reset on a UC3 if
844 * it is invoked from the CPU supervisor mode.
845 *
846 * \param addr Address of the routine to call.
847 *
848 * \note It may be used as a long jump opcode in some special cases.
849 */
850 #define Long_call(addr) ((*(void (*)(void))(addr))())
851
852
853 /*! \name MCU Endianism Handling
854 * ARM is MCU little endianism.
855 */
856 //! @{
857 #define MSB(u16) (((U8 *)&(u16))[1]) //!< Most significant byte of \a u16.
858 #define LSB(u16) (((U8 *)&(u16))[0]) //!< Least significant byte of \a u16.
859
860 #define MSH(u32) (((U16 *)&(u32))[1]) //!< Most significant half-word of \a u32.
861 #define LSH(u32) (((U16 *)&(u32))[0]) //!< Least significant half-word of \a u32.
862 #define MSB0W(u32) (((U8 *)&(u32))[3]) //!< Most significant byte of 1st rank of \a u32.
863 #define MSB1W(u32) (((U8 *)&(u32))[2]) //!< Most significant byte of 2nd rank of \a u32.
864 #define MSB2W(u32) (((U8 *)&(u32))[1]) //!< Most significant byte of 3rd rank of \a u32.
865 #define MSB3W(u32) (((U8 *)&(u32))[0]) //!< Most significant byte of 4th rank of \a u32.
866 #define LSB3W(u32) MSB0W(u32) //!< Least significant byte of 4th rank of \a u32.
867 #define LSB2W(u32) MSB1W(u32) //!< Least significant byte of 3rd rank of \a u32.
868 #define LSB1W(u32) MSB2W(u32) //!< Least significant byte of 2nd rank of \a u32.
869 #define LSB0W(u32) MSB3W(u32) //!< Least significant byte of 1st rank of \a u32.
870
871 #define MSW(u64) (((U32 *)&(u64))[1]) //!< Most significant word of \a u64.
872 #define LSW(u64) (((U32 *)&(u64))[0]) //!< Least significant word of \a u64.
873 #define MSH0(u64) (((U16 *)&(u64))[3]) //!< Most significant half-word of 1st rank of \a u64.
874 #define MSH1(u64) (((U16 *)&(u64))[2]) //!< Most significant half-word of 2nd rank of \a u64.
875 #define MSH2(u64) (((U16 *)&(u64))[1]) //!< Most significant half-word of 3rd rank of \a u64.
876 #define MSH3(u64) (((U16 *)&(u64))[0]) //!< Most significant half-word of 4th rank of \a u64.
877 #define LSH3(u64) MSH0(u64) //!< Least significant half-word of 4th rank of \a u64.
878 #define LSH2(u64) MSH1(u64) //!< Least significant half-word of 3rd rank of \a u64.
879 #define LSH1(u64) MSH2(u64) //!< Least significant half-word of 2nd rank of \a u64.
880 #define LSH0(u64) MSH3(u64) //!< Least significant half-word of 1st rank of \a u64.
881 #define MSB0D(u64) (((U8 *)&(u64))[7]) //!< Most significant byte of 1st rank of \a u64.
882 #define MSB1D(u64) (((U8 *)&(u64))[6]) //!< Most significant byte of 2nd rank of \a u64.
883 #define MSB2D(u64) (((U8 *)&(u64))[5]) //!< Most significant byte of 3rd rank of \a u64.
884 #define MSB3D(u64) (((U8 *)&(u64))[4]) //!< Most significant byte of 4th rank of \a u64.
885 #define MSB4D(u64) (((U8 *)&(u64))[3]) //!< Most significant byte of 5th rank of \a u64.
886 #define MSB5D(u64) (((U8 *)&(u64))[2]) //!< Most significant byte of 6th rank of \a u64.
887 #define MSB6D(u64) (((U8 *)&(u64))[1]) //!< Most significant byte of 7th rank of \a u64.
888 #define MSB7D(u64) (((U8 *)&(u64))[0]) //!< Most significant byte of 8th rank of \a u64.
889 #define LSB7D(u64) MSB0D(u64) //!< Least significant byte of 8th rank of \a u64.
890 #define LSB6D(u64) MSB1D(u64) //!< Least significant byte of 7th rank of \a u64.
891 #define LSB5D(u64) MSB2D(u64) //!< Least significant byte of 6th rank of \a u64.
892 #define LSB4D(u64) MSB3D(u64) //!< Least significant byte of 5th rank of \a u64.
893 #define LSB3D(u64) MSB4D(u64) //!< Least significant byte of 4th rank of \a u64.
894 #define LSB2D(u64) MSB5D(u64) //!< Least significant byte of 3rd rank of \a u64.
895 #define LSB1D(u64) MSB6D(u64) //!< Least significant byte of 2nd rank of \a u64.
896 #define LSB0D(u64) MSB7D(u64) //!< Least significant byte of 1st rank of \a u64.
897
898 #define BE16(x) Swap16(x)
899 #define LE16(x) (x)
900
901 #define le16_to_cpu(x) (x)
902 #define cpu_to_le16(x) (x)
903 #define LE16_TO_CPU(x) (x)
904 #define CPU_TO_LE16(x) (x)
905
906 #define be16_to_cpu(x) Swap16(x)
907 #define cpu_to_be16(x) Swap16(x)
908 #define BE16_TO_CPU(x) Swap16(x)
909 #define CPU_TO_BE16(x) Swap16(x)
910
911 #define le32_to_cpu(x) (x)
912 #define cpu_to_le32(x) (x)
913 #define LE32_TO_CPU(x) (x)
914 #define CPU_TO_LE32(x) (x)
915
916 #define be32_to_cpu(x) swap32(x)
917 #define cpu_to_be32(x) swap32(x)
918 #define BE32_TO_CPU(x) swap32(x)
919 #define CPU_TO_BE32(x) swap32(x)
920 //! @}
921
922
923 /*! \name Endianism Conversion
924 *
925 * The same considerations as for clz and ctz apply here but GCC's
926 * __builtin_bswap_32 and __builtin_bswap_64 do not behave like macros when
927 * applied to constant expressions, so two sets of macros are defined here:
928 * - Swap16, Swap32 and Swap64 to apply to constant expressions (values known
929 * at compile time);
930 * - swap16, swap32 and swap64 to apply to non-constant expressions (values
931 * unknown at compile time).
932 */
933 //! @{
934
935 /*! \brief Toggles the endianism of \a u16 (by swapping its bytes).
936 *
937 * \param u16 U16 of which to toggle the endianism.
938 *
939 * \return Value resulting from \a u16 with toggled endianism.
940 *
941 * \note More optimized if only used with values known at compile time.
942 */
943 #define Swap16(u16) ((U16)(((U16)(u16) >> 8) |\
944 ((U16)(u16) << 8)))
945
946 /*! \brief Toggles the endianism of \a u32 (by swapping its bytes).
947 *
948 * \param u32 U32 of which to toggle the endianism.
949 *
950 * \return Value resulting from \a u32 with toggled endianism.
951 *
952 * \note More optimized if only used with values known at compile time.
953 */
954 #define Swap32(u32) ((U32)(((U32)Swap16((U32)(u32) >> 16)) |\
955 ((U32)Swap16((U32)(u32)) << 16)))
956
957 /*! \brief Toggles the endianism of \a u64 (by swapping its bytes).
958 *
959 * \param u64 U64 of which to toggle the endianism.
960 *
961 * \return Value resulting from \a u64 with toggled endianism.
962 *
963 * \note More optimized if only used with values known at compile time.
964 */
965 #define Swap64(u64) ((U64)(((U64)Swap32((U64)(u64) >> 32)) |\
966 ((U64)Swap32((U64)(u64)) << 32)))
967
968 /*! \brief Toggles the endianism of \a u16 (by swapping its bytes).
969 *
970 * \param u16 U16 of which to toggle the endianism.
971 *
972 * \return Value resulting from \a u16 with toggled endianism.
973 *
974 * \note More optimized if only used with values unknown at compile time.
975 */
976 #define swap16(u16) Swap16(u16)
977
978 /*! \brief Toggles the endianism of \a u32 (by swapping its bytes).
979 *
980 * \param u32 U32 of which to toggle the endianism.
981 *
982 * \return Value resulting from \a u32 with toggled endianism.
983 *
984 * \note More optimized if only used with values unknown at compile time.
985 */
986 #if (defined __GNUC__)
987 # define swap32(u32) ((U32)__builtin_bswap32((U32)(u32)))
988 #else
989 # define swap32(u32) Swap32(u32)
990 #endif
991
992 /*! \brief Toggles the endianism of \a u64 (by swapping its bytes).
993 *
994 * \param u64 U64 of which to toggle the endianism.
995 *
996 * \return Value resulting from \a u64 with toggled endianism.
997 *
998 * \note More optimized if only used with values unknown at compile time.
999 */
1000 #if (defined __GNUC__)
1001 # define swap64(u64) ((U64)__builtin_bswap64((U64)(u64)))
1002 #else
1003 # define swap64(u64) ((U64)(((U64)swap32((U64)(u64) >> 32)) |\
1004 ((U64)swap32((U64)(u64)) << 32)))
1005 #endif
1006
1007 //! @}
1008
1009
1010 /*! \name Target Abstraction
1011 */
1012 //! @{
1013
1014 #define _GLOBEXT_ extern //!< extern storage-class specifier.
1015 #define _CONST_TYPE_ const //!< const type qualifier.
1016 #define _MEM_TYPE_SLOW_ //!< Slow memory type.
1017 #define _MEM_TYPE_MEDFAST_ //!< Fairly fast memory type.
1018 #define _MEM_TYPE_FAST_ //!< Fast memory type.
1019
1020 typedef U8 Byte; //!< 8-bit unsigned integer.
1021
1022 #define memcmp_ram2ram memcmp //!< Target-specific memcmp of RAM to RAM.
1023 #define memcmp_code2ram memcmp //!< Target-specific memcmp of RAM to NVRAM.
1024 #define memcpy_ram2ram memcpy //!< Target-specific memcpy from RAM to RAM.
1025 #define memcpy_code2ram memcpy //!< Target-specific memcpy from NVRAM to RAM.
1026
1027 #define LSB0(u32) LSB0W(u32) //!< Least significant byte of 1st rank of \a u32.
1028 #define LSB1(u32) LSB1W(u32) //!< Least significant byte of 2nd rank of \a u32.
1029 #define LSB2(u32) LSB2W(u32) //!< Least significant byte of 3rd rank of \a u32.
1030 #define LSB3(u32) LSB3W(u32) //!< Least significant byte of 4th rank of \a u32.
1031 #define MSB3(u32) MSB3W(u32) //!< Most significant byte of 4th rank of \a u32.
1032 #define MSB2(u32) MSB2W(u32) //!< Most significant byte of 3rd rank of \a u32.
1033 #define MSB1(u32) MSB1W(u32) //!< Most significant byte of 2nd rank of \a u32.
1034 #define MSB0(u32) MSB0W(u32) //!< Most significant byte of 1st rank of \a u32.
1035
1036 //! @}
1037
1038 /**
1039 * \brief Calculate \f$ \left\lceil \frac{a}{b} \right\rceil \f$ using
1040 * integer arithmetic.
1041 *
1042 * \param a An integer
1043 * \param b Another integer
1044 *
1045 * \return (\a a / \a b) rounded up to the nearest integer.
1046 */
1047 #define div_ceil(a, b) (((a) + (b) - 1) / (b))
1048
1049 #endif // #ifndef __ASSEMBLY__
1050
1051
1052 #if defined(__ICCARM__)
1053 #define SHORTENUM __packed
1054 #elif defined(__GNUC__)
1055 #define SHORTENUM __attribute__((packed))
1056 #endif
1057
1058 /* No operation */
1059 #if defined(__ICCARM__)
1060 #define nop() __no_operation()
1061 #elif defined(__GNUC__)
1062 #define nop() (__NOP())
1063 #endif
1064
1065 #define FLASH_DECLARE(x) const x
1066 #define FLASH_EXTERN(x) extern const x
1067 #define PGM_READ_BYTE(x) *(x)
1068 #define PGM_READ_WORD(x) *(x)
1069 #define PGM_READ_DWORD(x) *(x)
1070 #define MEMCPY_ENDIAN memcpy
1071 #define PGM_READ_BLOCK(dst, src, len) memcpy((dst), (src), (len))
1072
1073 /*Defines the Flash Storage for the request and response of MAC*/
1074 #define CMD_ID_OCTET (0)
1075
1076 /* Converting of values from CPU endian to little endian. */
1077 #define CPU_ENDIAN_TO_LE16(x) (x)
1078 #define CPU_ENDIAN_TO_LE32(x) (x)
1079 #define CPU_ENDIAN_TO_LE64(x) (x)
1080
1081 /* Converting of values from little endian to CPU endian. */
1082 #define LE16_TO_CPU_ENDIAN(x) (x)
1083 #define LE32_TO_CPU_ENDIAN(x) (x)
1084 #define LE64_TO_CPU_ENDIAN(x) (x)
1085
1086 /* Converting of constants from little endian to CPU endian. */
1087 #define CLE16_TO_CPU_ENDIAN(x) (x)
1088 #define CLE32_TO_CPU_ENDIAN(x) (x)
1089 #define CLE64_TO_CPU_ENDIAN(x) (x)
1090
1091 /* Converting of constants from CPU endian to little endian. */
1092 #define CCPU_ENDIAN_TO_LE16(x) (x)
1093 #define CCPU_ENDIAN_TO_LE32(x) (x)
1094 #define CCPU_ENDIAN_TO_LE64(x) (x)
1095
1096 #define ADDR_COPY_DST_SRC_16(dst, src) ((dst) = (src))
1097 #define ADDR_COPY_DST_SRC_64(dst, src) ((dst) = (src))
1098
1099 /**
1100 * @brief Converts a 64-Bit value into a 8 Byte array
1101 *
1102 * @param[in] value 64-Bit value
1103 * @param[out] data Pointer to the 8 Byte array to be updated with 64-Bit value
1104 * @ingroup apiPalApi
1105 */
convert_64_bit_to_byte_array(uint64_t value,uint8_t * data)1106 static inline void convert_64_bit_to_byte_array(uint64_t value, uint8_t *data)
1107 {
1108 uint8_t val_index = 0;
1109
1110 while (val_index < 8)
1111 {
1112 data[val_index++] = value & 0xFF;
1113 value = value >> 8;
1114 }
1115 }
1116
1117 /**
1118 * @brief Converts a 16-Bit value into a 2 Byte array
1119 *
1120 * @param[in] value 16-Bit value
1121 * @param[out] data Pointer to the 2 Byte array to be updated with 16-Bit value
1122 * @ingroup apiPalApi
1123 */
convert_16_bit_to_byte_array(uint16_t value,uint8_t * data)1124 static inline void convert_16_bit_to_byte_array(uint16_t value, uint8_t *data)
1125 {
1126 data[0] = value & 0xFF;
1127 data[1] = (value >> 8) & 0xFF;
1128 }
1129
1130 /* Converts a 16-Bit value into a 2 Byte array */
convert_spec_16_bit_to_byte_array(uint16_t value,uint8_t * data)1131 static inline void convert_spec_16_bit_to_byte_array(uint16_t value, uint8_t *data)
1132 {
1133 data[0] = value & 0xFF;
1134 data[1] = (value >> 8) & 0xFF;
1135 }
1136
1137 /* Converts a 16-Bit value into a 2 Byte array */
convert_16_bit_to_byte_address(uint16_t value,uint8_t * data)1138 static inline void convert_16_bit_to_byte_address(uint16_t value, uint8_t *data)
1139 {
1140 data[0] = value & 0xFF;
1141 data[1] = (value >> 8) & 0xFF;
1142 }
1143
1144 /*
1145 * @brief Converts a 2 Byte array into a 16-Bit value
1146 *
1147 * @param data Specifies the pointer to the 2 Byte array
1148 *
1149 * @return 16-Bit value
1150 * @ingroup apiPalApi
1151 */
convert_byte_array_to_16_bit(uint8_t * data)1152 static inline uint16_t convert_byte_array_to_16_bit(uint8_t *data)
1153 {
1154 return (data[0] | ((uint16_t)data[1] << 8));
1155 }
1156
1157 /* Converts a 8 Byte array into a 32-Bit value */
convert_byte_array_to_32_bit(uint8_t * data)1158 static inline uint32_t convert_byte_array_to_32_bit(uint8_t *data)
1159 {
1160 union
1161 {
1162 uint32_t u32;
1163 uint8_t u8[8];
1164 }long_addr;
1165 uint8_t index;
1166 for (index = 0; index < 4; index++)
1167 {
1168 long_addr.u8[index] = *data++;
1169 }
1170 return long_addr.u32;
1171 }
1172
1173 /**
1174 * @brief Converts a 8 Byte array into a 64-Bit value
1175 *
1176 * @param data Specifies the pointer to the 8 Byte array
1177 *
1178 * @return 64-Bit value
1179 * @ingroup apiPalApi
1180 */
convert_byte_array_to_64_bit(uint8_t * data)1181 static inline uint64_t convert_byte_array_to_64_bit(uint8_t *data)
1182 {
1183 union
1184 {
1185 uint64_t u64;
1186 uint8_t u8[8];
1187 } long_addr;
1188
1189 uint8_t val_index;
1190
1191 for (val_index = 0; val_index < 8; val_index++)
1192 {
1193 long_addr.u8[val_index] = *data++;
1194 }
1195
1196 return long_addr.u64;
1197 }
1198 /**
1199 * \}
1200 */
1201
1202 #endif /* UTILS_COMPILER_H */
1203