xref: /btstack/port/samv71-xplained-atwilc3000/ASF/sam/utils/compiler.h (revision 1b2596b5303dd8caeea8565532c93cca8dab8cc4)
1 /**
2  * \file
3  *
4  * \brief Commonly used includes, types and macros.
5  *
6  * Copyright (c) 2010-2015 Atmel Corporation. All rights reserved.
7  *
8  * \asf_license_start
9  *
10  * \page License
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright notice,
16  *    this list of conditions and the following disclaimer.
17  *
18  * 2. Redistributions in binary form must reproduce the above copyright notice,
19  *    this list of conditions and the following disclaimer in the documentation
20  *    and/or other materials provided with the distribution.
21  *
22  * 3. The name of Atmel may not be used to endorse or promote products derived
23  *    from this software without specific prior written permission.
24  *
25  * 4. This software may only be redistributed and used in connection with an
26  *    Atmel microcontroller product.
27  *
28  * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
29  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
31  * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
32  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGE.
39  *
40  * \asf_license_stop
41  *
42  */
43 /*
44  * Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
45  */
46 
47 #ifndef UTILS_COMPILER_H
48 #define UTILS_COMPILER_H
49 
50 /**
51  * \defgroup group_sam_utils Compiler abstraction layer and code utilities
52  *
53  * Compiler abstraction layer and code utilities for AT91SAM.
54  * This module provides various abstraction layers and utilities to make code compatible between different compilers.
55  *
56  * \{
57  */
58 #include <stddef.h>
59 
60 #if (defined __ICCARM__)
61 #  include <intrinsics.h>
62 #endif
63 
64 #include <parts.h>
65 #include "preprocessor.h"
66 
67 #include <io.h>
68 
69 //_____ D E C L A R A T I O N S ____________________________________________
70 
71 #ifndef __ASSEMBLY__ // Not defined for assembling.
72 
73 #include <stdio.h>
74 #include <stdbool.h>
75 #include <stdint.h>
76 #include <stdlib.h>
77 
78 #ifdef __ICCARM__
79 /*! \name Compiler Keywords
80  *
81  * Port of some keywords from GCC to IAR Embedded Workbench.
82  */
83 //! @{
84 #define __asm__             asm
85 #define __inline__          inline
86 #define __volatile__
87 //! @}
88 
89 #endif
90 
91 #define FUNC_PTR                            void *
92 /**
93  * \def UNUSED
94  * \brief Marking \a v as a unused parameter or value.
95  */
96 #define UNUSED(v)          (void)(v)
97 
98 /**
99  * \def unused
100  * \brief Marking \a v as a unused parameter or value.
101  */
102 #define unused(v)          do { (void)(v); } while(0)
103 
104 /**
105  * \def barrier
106  * \brief Memory barrier
107  */
108 #define barrier()          __DMB()
109 
110 /**
111  * \brief Emit the compiler pragma \a arg.
112  *
113  * \param arg The pragma directive as it would appear after \e \#pragma
114  * (i.e. not stringified).
115  */
116 #define COMPILER_PRAGMA(arg)            _Pragma(#arg)
117 
118 /**
119  * \def COMPILER_PACK_SET(alignment)
120  * \brief Set maximum alignment for subsequent struct and union
121  * definitions to \a alignment.
122  */
123 #define COMPILER_PACK_SET(alignment)   COMPILER_PRAGMA(pack(alignment))
124 
125 /**
126  * \def COMPILER_PACK_RESET()
127  * \brief Set default alignment for subsequent struct and union
128  * definitions.
129  */
130 #define COMPILER_PACK_RESET()          COMPILER_PRAGMA(pack())
131 
132 
133 /**
134  * \brief Set aligned boundary.
135  */
136 #if (defined __GNUC__) || (defined __CC_ARM)
137 #   define COMPILER_ALIGNED(a)    __attribute__((__aligned__(a)))
138 #elif (defined __ICCARM__)
139 #   define COMPILER_ALIGNED(a)    COMPILER_PRAGMA(data_alignment = a)
140 #endif
141 
142 /**
143  * \brief Set word-aligned boundary.
144  */
145 #if (defined __GNUC__) || defined(__CC_ARM)
146 #define COMPILER_WORD_ALIGNED    __attribute__((__aligned__(4)))
147 #elif (defined __ICCARM__)
148 #define COMPILER_WORD_ALIGNED    COMPILER_PRAGMA(data_alignment = 4)
149 #endif
150 
151 /**
152  * \def __always_inline
153  * \brief The function should always be inlined.
154  *
155  * This annotation instructs the compiler to ignore its inlining
156  * heuristics and inline the function no matter how big it thinks it
157  * becomes.
158  */
159 
160 // HACK BK: avoid warning
161 #ifdef __always_inline
162 #	undef __always_inline
163 #endif
164 
165 #if defined(__CC_ARM)
166 #	define __always_inline   __forceinline
167 #elif (defined __GNUC__)
168 #	define __always_inline   inline __attribute__((__always_inline__))
169 #elif (defined __ICCARM__)
170 #	define __always_inline   _Pragma("inline=forced")
171 #endif
172 
173 /**
174  * \def __no_inline
175  * \brief The function should not be inlined.
176  *
177  * This annotation instructs the compiler to ignore its inlining
178  * heuristics and not inline the function.
179  */
180 #if defined(__CC_ARM)
181 #   define __no_inline   __attribute__((noinline))
182 #elif (defined __GNUC__)
183 #	define __no_inline   __attribute__((__noinline__))
184 #elif (defined __ICCARM__)
185 #	define __no_inline   _Pragma("inline=never")
186 #endif
187 
188 /*! \brief This macro is used to test fatal errors.
189  *
190  * The macro tests if the expression is false. If it is, a fatal error is
191  * detected and the application hangs up. If TEST_SUITE_DEFINE_ASSERT_MACRO
192  * is defined, a unit test version of the macro is used, to allow execution
193  * of further tests after a false expression.
194  *
195  * \param expr  Expression to evaluate and supposed to be nonzero.
196  */
197 #if defined(_ASSERT_ENABLE_)
198 #  if defined(TEST_SUITE_DEFINE_ASSERT_MACRO)
199      // Assert() is defined in unit_test/suite.h
200 #    include "unit_test/suite.h"
201 #  else
202 #undef TEST_SUITE_DEFINE_ASSERT_MACRO
203 #    define Assert(expr) \
204 	{\
205 		if (!(expr)) while (true);\
206 	}
207 #  endif
208 #else
209 #  define Assert(expr) ((void) 0)
210 #endif
211 
212 /* Define WEAK attribute */
213 #if defined   ( __CC_ARM   ) /* Keil µVision 4 */
214 #   define WEAK __attribute__ ((weak))
215 #elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */
216 #   define WEAK __weak
217 #elif defined (  __GNUC__  ) /* GCC CS3 2009q3-68 */
218 #   define WEAK __attribute__ ((weak))
219 #endif
220 
221 /* Define NO_INIT attribute */
222 #if defined   ( __CC_ARM   )
223 #   define NO_INIT __attribute__((zero_init))
224 #elif defined ( __ICCARM__ )
225 #   define NO_INIT __no_init
226 #elif defined (  __GNUC__  )
227 #   define NO_INIT __attribute__((section(".no_init")))
228 #endif
229 
230 /* Define RAMFUNC attribute */
231 #if defined   ( __CC_ARM   ) /* Keil µVision 4 */
232 #   define RAMFUNC __attribute__ ((section(".ramfunc")))
233 #elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */
234 #   define RAMFUNC __ramfunc
235 #elif defined (  __GNUC__  ) /* GCC CS3 2009q3-68 */
236 #   define RAMFUNC __attribute__ ((section(".ramfunc")))
237 #endif
238 
239 /* Define OPTIMIZE_HIGH attribute */
240 #if defined   ( __CC_ARM   ) /* Keil µVision 4 */
241 #   define OPTIMIZE_HIGH _Pragma("O3")
242 #elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */
243 #   define OPTIMIZE_HIGH _Pragma("optimize=high")
244 #elif defined (  __GNUC__  ) /* GCC CS3 2009q3-68 */
245 #   define OPTIMIZE_HIGH __attribute__((optimize(s)))
246 #endif
247 
248 #include "interrupt.h"
249 
250 /*! \name Usual Types
251  */
252 //! @{
253 typedef unsigned char           Bool; //!< Boolean.
254 #ifndef __cplusplus
255 #if !defined(__bool_true_false_are_defined)
256 typedef unsigned char           bool; //!< Boolean.
257 #endif
258 #endif
259 typedef int8_t                  S8 ;  //!< 8-bit signed integer.
260 typedef uint8_t                 U8 ;  //!< 8-bit unsigned integer.
261 typedef int16_t                 S16;  //!< 16-bit signed integer.
262 typedef uint16_t                U16;  //!< 16-bit unsigned integer.
263 typedef uint16_t                le16_t;
264 typedef uint16_t                be16_t;
265 typedef int32_t                 S32;  //!< 32-bit signed integer.
266 typedef uint32_t                U32;  //!< 32-bit unsigned integer.
267 typedef uint32_t                le32_t;
268 typedef uint32_t                be32_t;
269 typedef int64_t                 S64;  //!< 64-bit signed integer.
270 typedef uint64_t                U64;  //!< 64-bit unsigned integer.
271 typedef float                   F32;  //!< 32-bit floating-point number.
272 typedef double                  F64;  //!< 64-bit floating-point number.
273 typedef uint32_t                iram_size_t;
274 //! @}
275 
276 
277 /*! \name Status Types
278  */
279 //! @{
280 typedef bool                Status_bool_t;  //!< Boolean status.
281 typedef U8                  Status_t;       //!< 8-bit-coded status.
282 //! @}
283 
284 
285 /*! \name Aliasing Aggregate Types
286  */
287 //! @{
288 
289 //! 16-bit union.
290 typedef union
291 {
292   S16 s16   ;
293   U16 u16   ;
294   S8  s8 [2];
295   U8  u8 [2];
296 } Union16;
297 
298 //! 32-bit union.
299 typedef union
300 {
301   S32 s32   ;
302   U32 u32   ;
303   S16 s16[2];
304   U16 u16[2];
305   S8  s8 [4];
306   U8  u8 [4];
307 } Union32;
308 
309 //! 64-bit union.
310 typedef union
311 {
312   S64 s64   ;
313   U64 u64   ;
314   S32 s32[2];
315   U32 u32[2];
316   S16 s16[4];
317   U16 u16[4];
318   S8  s8 [8];
319   U8  u8 [8];
320 } Union64;
321 
322 //! Union of pointers to 64-, 32-, 16- and 8-bit unsigned integers.
323 typedef union
324 {
325   S64 *s64ptr;
326   U64 *u64ptr;
327   S32 *s32ptr;
328   U32 *u32ptr;
329   S16 *s16ptr;
330   U16 *u16ptr;
331   S8  *s8ptr ;
332   U8  *u8ptr ;
333 } UnionPtr;
334 
335 //! Union of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers.
336 typedef union
337 {
338   volatile S64 *s64ptr;
339   volatile U64 *u64ptr;
340   volatile S32 *s32ptr;
341   volatile U32 *u32ptr;
342   volatile S16 *s16ptr;
343   volatile U16 *u16ptr;
344   volatile S8  *s8ptr ;
345   volatile U8  *u8ptr ;
346 } UnionVPtr;
347 
348 //! Union of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers.
349 typedef union
350 {
351   const S64 *s64ptr;
352   const U64 *u64ptr;
353   const S32 *s32ptr;
354   const U32 *u32ptr;
355   const S16 *s16ptr;
356   const U16 *u16ptr;
357   const S8  *s8ptr ;
358   const U8  *u8ptr ;
359 } UnionCPtr;
360 
361 //! Union of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers.
362 typedef union
363 {
364   const volatile S64 *s64ptr;
365   const volatile U64 *u64ptr;
366   const volatile S32 *s32ptr;
367   const volatile U32 *u32ptr;
368   const volatile S16 *s16ptr;
369   const volatile U16 *u16ptr;
370   const volatile S8  *s8ptr ;
371   const volatile U8  *u8ptr ;
372 } UnionCVPtr;
373 
374 //! Structure of pointers to 64-, 32-, 16- and 8-bit unsigned integers.
375 typedef struct
376 {
377   S64 *s64ptr;
378   U64 *u64ptr;
379   S32 *s32ptr;
380   U32 *u32ptr;
381   S16 *s16ptr;
382   U16 *u16ptr;
383   S8  *s8ptr ;
384   U8  *u8ptr ;
385 } StructPtr;
386 
387 //! Structure of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers.
388 typedef struct
389 {
390   volatile S64 *s64ptr;
391   volatile U64 *u64ptr;
392   volatile S32 *s32ptr;
393   volatile U32 *u32ptr;
394   volatile S16 *s16ptr;
395   volatile U16 *u16ptr;
396   volatile S8  *s8ptr ;
397   volatile U8  *u8ptr ;
398 } StructVPtr;
399 
400 //! Structure of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers.
401 typedef struct
402 {
403   const S64 *s64ptr;
404   const U64 *u64ptr;
405   const S32 *s32ptr;
406   const U32 *u32ptr;
407   const S16 *s16ptr;
408   const U16 *u16ptr;
409   const S8  *s8ptr ;
410   const U8  *u8ptr ;
411 } StructCPtr;
412 
413 //! Structure of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers.
414 typedef struct
415 {
416   const volatile S64 *s64ptr;
417   const volatile U64 *u64ptr;
418   const volatile S32 *s32ptr;
419   const volatile U32 *u32ptr;
420   const volatile S16 *s16ptr;
421   const volatile U16 *u16ptr;
422   const volatile S8  *s8ptr ;
423   const volatile U8  *u8ptr ;
424 } StructCVPtr;
425 
426 //! @}
427 
428 #endif  // #ifndef __ASSEMBLY__
429 
430 /*! \name Usual Constants
431  */
432 //! @{
433 #define DISABLE   0
434 #define ENABLE    1
435 #ifndef __cplusplus
436 #if !defined(__bool_true_false_are_defined)
437 #define false     0
438 #define true      1
439 #endif
440 #endif
441 #define PASS      0
442 #define FAIL      1
443 #define LOW       0
444 #define HIGH      1
445 //! @}
446 
447 
448 #ifndef __ASSEMBLY__ // not for assembling.
449 
450 //! \name Optimization Control
451 //@{
452 
453 /**
454  * \def likely(exp)
455  * \brief The expression \a exp is likely to be true
456  */
457 #ifndef likely
458 #   define likely(exp)    (exp)
459 #endif
460 
461 /**
462  * \def unlikely(exp)
463  * \brief The expression \a exp is unlikely to be true
464  */
465 #ifndef unlikely
466 #   define unlikely(exp)  (exp)
467 #endif
468 
469 /**
470  * \def is_constant(exp)
471  * \brief Determine if an expression evaluates to a constant value.
472  *
473  * \param exp Any expression
474  *
475  * \return true if \a exp is constant, false otherwise.
476  */
477 #if (defined __GNUC__) || (defined __CC_ARM)
478 #   define is_constant(exp)       __builtin_constant_p(exp)
479 #else
480 #   define is_constant(exp)       (0)
481 #endif
482 
483 //! @}
484 
485 /*! \name Bit-Field Handling
486  */
487 //! @{
488 
489 /*! \brief Reads the bits of a value specified by a given bit-mask.
490  *
491  * \param value Value to read bits from.
492  * \param mask  Bit-mask indicating bits to read.
493  *
494  * \return Read bits.
495  */
496 #define Rd_bits( value, mask)        ((value) & (mask))
497 
498 /*! \brief Writes the bits of a C lvalue specified by a given bit-mask.
499  *
500  * \param lvalue  C lvalue to write bits to.
501  * \param mask    Bit-mask indicating bits to write.
502  * \param bits    Bits to write.
503  *
504  * \return Resulting value with written bits.
505  */
506 #define Wr_bits(lvalue, mask, bits)  ((lvalue) = ((lvalue) & ~(mask)) |\
507                                                  ((bits  ) &  (mask)))
508 
509 /*! \brief Tests the bits of a value specified by a given bit-mask.
510  *
511  * \param value Value of which to test bits.
512  * \param mask  Bit-mask indicating bits to test.
513  *
514  * \return \c 1 if at least one of the tested bits is set, else \c 0.
515  */
516 #define Tst_bits( value, mask)  (Rd_bits(value, mask) != 0)
517 
518 /*! \brief Clears the bits of a C lvalue specified by a given bit-mask.
519  *
520  * \param lvalue  C lvalue of which to clear bits.
521  * \param mask    Bit-mask indicating bits to clear.
522  *
523  * \return Resulting value with cleared bits.
524  */
525 #define Clr_bits(lvalue, mask)  ((lvalue) &= ~(mask))
526 
527 /*! \brief Sets the bits of a C lvalue specified by a given bit-mask.
528  *
529  * \param lvalue  C lvalue of which to set bits.
530  * \param mask    Bit-mask indicating bits to set.
531  *
532  * \return Resulting value with set bits.
533  */
534 #define Set_bits(lvalue, mask)  ((lvalue) |=  (mask))
535 
536 /*! \brief Toggles the bits of a C lvalue specified by a given bit-mask.
537  *
538  * \param lvalue  C lvalue of which to toggle bits.
539  * \param mask    Bit-mask indicating bits to toggle.
540  *
541  * \return Resulting value with toggled bits.
542  */
543 #define Tgl_bits(lvalue, mask)  ((lvalue) ^=  (mask))
544 
545 /*! \brief Reads the bit-field of a value specified by a given bit-mask.
546  *
547  * \param value Value to read a bit-field from.
548  * \param mask  Bit-mask indicating the bit-field to read.
549  *
550  * \return Read bit-field.
551  */
552 #define Rd_bitfield( value, mask)           (Rd_bits( value, mask) >> ctz(mask))
553 
554 /*! \brief Writes the bit-field of a C lvalue specified by a given bit-mask.
555  *
556  * \param lvalue    C lvalue to write a bit-field to.
557  * \param mask      Bit-mask indicating the bit-field to write.
558  * \param bitfield  Bit-field to write.
559  *
560  * \return Resulting value with written bit-field.
561  */
562 #define Wr_bitfield(lvalue, mask, bitfield) (Wr_bits(lvalue, mask, (U32)(bitfield) << ctz(mask)))
563 
564 //! @}
565 
566 
567 /*! \name Zero-Bit Counting
568  *
569  * Under GCC, __builtin_clz and __builtin_ctz behave like macros when
570  * applied to constant expressions (values known at compile time), so they are
571  * more optimized than the use of the corresponding assembly instructions and
572  * they can be used as constant expressions e.g. to initialize objects having
573  * static storage duration, and like the corresponding assembly instructions
574  * when applied to non-constant expressions (values unknown at compile time), so
575  * they are more optimized than an assembly periphrasis. Hence, clz and ctz
576  * ensure a possible and optimized behavior for both constant and non-constant
577  * expressions.
578  */
579 //! @{
580 
581 /*! \brief Counts the leading zero bits of the given value considered as a 32-bit integer.
582  *
583  * \param u Value of which to count the leading zero bits.
584  *
585  * \return The count of leading zero bits in \a u.
586  */
587 #if (defined __GNUC__) || (defined __CC_ARM)
588 #   define clz(u)              __builtin_clz(u)
589 #elif (defined __ICCARM__)
590 #   define clz(u)              __CLZ(u)
591 #else
592 #   define clz(u)              (((u) == 0)          ? 32 : \
593                                 ((u) & (1ul << 31)) ?  0 : \
594                                 ((u) & (1ul << 30)) ?  1 : \
595                                 ((u) & (1ul << 29)) ?  2 : \
596                                 ((u) & (1ul << 28)) ?  3 : \
597                                 ((u) & (1ul << 27)) ?  4 : \
598                                 ((u) & (1ul << 26)) ?  5 : \
599                                 ((u) & (1ul << 25)) ?  6 : \
600                                 ((u) & (1ul << 24)) ?  7 : \
601                                 ((u) & (1ul << 23)) ?  8 : \
602                                 ((u) & (1ul << 22)) ?  9 : \
603                                 ((u) & (1ul << 21)) ? 10 : \
604                                 ((u) & (1ul << 20)) ? 11 : \
605                                 ((u) & (1ul << 19)) ? 12 : \
606                                 ((u) & (1ul << 18)) ? 13 : \
607                                 ((u) & (1ul << 17)) ? 14 : \
608                                 ((u) & (1ul << 16)) ? 15 : \
609                                 ((u) & (1ul << 15)) ? 16 : \
610                                 ((u) & (1ul << 14)) ? 17 : \
611                                 ((u) & (1ul << 13)) ? 18 : \
612                                 ((u) & (1ul << 12)) ? 19 : \
613                                 ((u) & (1ul << 11)) ? 20 : \
614                                 ((u) & (1ul << 10)) ? 21 : \
615                                 ((u) & (1ul <<  9)) ? 22 : \
616                                 ((u) & (1ul <<  8)) ? 23 : \
617                                 ((u) & (1ul <<  7)) ? 24 : \
618                                 ((u) & (1ul <<  6)) ? 25 : \
619                                 ((u) & (1ul <<  5)) ? 26 : \
620                                 ((u) & (1ul <<  4)) ? 27 : \
621                                 ((u) & (1ul <<  3)) ? 28 : \
622                                 ((u) & (1ul <<  2)) ? 29 : \
623                                 ((u) & (1ul <<  1)) ? 30 : \
624                                 31)
625 #endif
626 
627 /*! \brief Counts the trailing zero bits of the given value considered as a 32-bit integer.
628  *
629  * \param u Value of which to count the trailing zero bits.
630  *
631  * \return The count of trailing zero bits in \a u.
632  */
633 #if (defined __GNUC__) || (defined __CC_ARM)
634 #   define ctz(u)              __builtin_ctz(u)
635 #else
636 #   define ctz(u)              ((u) & (1ul <<  0) ?  0 : \
637                                 (u) & (1ul <<  1) ?  1 : \
638                                 (u) & (1ul <<  2) ?  2 : \
639                                 (u) & (1ul <<  3) ?  3 : \
640                                 (u) & (1ul <<  4) ?  4 : \
641                                 (u) & (1ul <<  5) ?  5 : \
642                                 (u) & (1ul <<  6) ?  6 : \
643                                 (u) & (1ul <<  7) ?  7 : \
644                                 (u) & (1ul <<  8) ?  8 : \
645                                 (u) & (1ul <<  9) ?  9 : \
646                                 (u) & (1ul << 10) ? 10 : \
647                                 (u) & (1ul << 11) ? 11 : \
648                                 (u) & (1ul << 12) ? 12 : \
649                                 (u) & (1ul << 13) ? 13 : \
650                                 (u) & (1ul << 14) ? 14 : \
651                                 (u) & (1ul << 15) ? 15 : \
652                                 (u) & (1ul << 16) ? 16 : \
653                                 (u) & (1ul << 17) ? 17 : \
654                                 (u) & (1ul << 18) ? 18 : \
655                                 (u) & (1ul << 19) ? 19 : \
656                                 (u) & (1ul << 20) ? 20 : \
657                                 (u) & (1ul << 21) ? 21 : \
658                                 (u) & (1ul << 22) ? 22 : \
659                                 (u) & (1ul << 23) ? 23 : \
660                                 (u) & (1ul << 24) ? 24 : \
661                                 (u) & (1ul << 25) ? 25 : \
662                                 (u) & (1ul << 26) ? 26 : \
663                                 (u) & (1ul << 27) ? 27 : \
664                                 (u) & (1ul << 28) ? 28 : \
665                                 (u) & (1ul << 29) ? 29 : \
666                                 (u) & (1ul << 30) ? 30 : \
667                                 (u) & (1ul << 31) ? 31 : \
668                                 32)
669 #endif
670 
671 //! @}
672 
673 
674 /*! \name Bit Reversing
675  */
676 //! @{
677 
678 /*! \brief Reverses the bits of \a u8.
679  *
680  * \param u8  U8 of which to reverse the bits.
681  *
682  * \return Value resulting from \a u8 with reversed bits.
683  */
684 #define bit_reverse8(u8)    ((U8)(bit_reverse32((U8)(u8)) >> 24))
685 
686 /*! \brief Reverses the bits of \a u16.
687  *
688  * \param u16 U16 of which to reverse the bits.
689  *
690  * \return Value resulting from \a u16 with reversed bits.
691  */
692 #define bit_reverse16(u16)  ((U16)(bit_reverse32((U16)(u16)) >> 16))
693 
694 /*! \brief Reverses the bits of \a u32.
695  *
696  * \param u32 U32 of which to reverse the bits.
697  *
698  * \return Value resulting from \a u32 with reversed bits.
699  */
700 #define bit_reverse32(u32)   __RBIT(u32)
701 
702 /*! \brief Reverses the bits of \a u64.
703  *
704  * \param u64 U64 of which to reverse the bits.
705  *
706  * \return Value resulting from \a u64 with reversed bits.
707  */
708 #define bit_reverse64(u64)  ((U64)(((U64)bit_reverse32((U64)(u64) >> 32)) |\
709                                    ((U64)bit_reverse32((U64)(u64)) << 32)))
710 
711 //! @}
712 
713 
714 /*! \name Alignment
715  */
716 //! @{
717 
718 /*! \brief Tests alignment of the number \a val with the \a n boundary.
719  *
720  * \param val Input value.
721  * \param n   Boundary.
722  *
723  * \return \c 1 if the number \a val is aligned with the \a n boundary, else \c 0.
724  */
725 #define Test_align(val, n     ) (!Tst_bits( val, (n) - 1     )   )
726 
727 /*! \brief Gets alignment of the number \a val with respect to the \a n boundary.
728  *
729  * \param val Input value.
730  * \param n   Boundary.
731  *
732  * \return Alignment of the number \a val with respect to the \a n boundary.
733  */
734 #define Get_align( val, n     ) (  Rd_bits( val, (n) - 1     )   )
735 
736 /*! \brief Sets alignment of the lvalue number \a lval to \a alg with respect to the \a n boundary.
737  *
738  * \param lval  Input/output lvalue.
739  * \param n     Boundary.
740  * \param alg   Alignment.
741  *
742  * \return New value of \a lval resulting from its alignment set to \a alg with respect to the \a n boundary.
743  */
744 #define Set_align(lval, n, alg) (  Wr_bits(lval, (n) - 1, alg)   )
745 
746 /*! \brief Aligns the number \a val with the upper \a n boundary.
747  *
748  * \param val Input value.
749  * \param n   Boundary.
750  *
751  * \return Value resulting from the number \a val aligned with the upper \a n boundary.
752  */
753 #define Align_up(  val, n     ) (((val) + ((n) - 1)) & ~((n) - 1))
754 
755 /*! \brief Aligns the number \a val with the lower \a n boundary.
756  *
757  * \param val Input value.
758  * \param n   Boundary.
759  *
760  * \return Value resulting from the number \a val aligned with the lower \a n boundary.
761  */
762 #define Align_down(val, n     ) ( (val)              & ~((n) - 1))
763 
764 //! @}
765 
766 
767 /*! \name Mathematics
768  *
769  * The same considerations as for clz and ctz apply here but GCC does not
770  * provide built-in functions to access the assembly instructions abs, min and
771  * max and it does not produce them by itself in most cases, so two sets of
772  * macros are defined here:
773  *   - Abs, Min and Max to apply to constant expressions (values known at
774  *     compile time);
775  *   - abs, min and max to apply to non-constant expressions (values unknown at
776  *     compile time), abs is found in stdlib.h.
777  */
778 //! @{
779 
780 /*! \brief Takes the absolute value of \a a.
781  *
782  * \param a Input value.
783  *
784  * \return Absolute value of \a a.
785  *
786  * \note More optimized if only used with values known at compile time.
787  */
788 #define Abs(a)              (((a) <  0 ) ? -(a) : (a))
789 
790 /*! \brief Takes the minimal value of \a a and \a b.
791  *
792  * \param a Input value.
793  * \param b Input value.
794  *
795  * \return Minimal value of \a a and \a b.
796  *
797  * \note More optimized if only used with values known at compile time.
798  */
799 #define Min(a, b)           (((a) < (b)) ?  (a) : (b))
800 
801 /*! \brief Takes the maximal value of \a a and \a b.
802  *
803  * \param a Input value.
804  * \param b Input value.
805  *
806  * \return Maximal value of \a a and \a b.
807  *
808  * \note More optimized if only used with values known at compile time.
809  */
810 #define Max(a, b)           (((a) > (b)) ?  (a) : (b))
811 
812 // abs() is already defined by stdlib.h
813 
814 /*! \brief Takes the minimal value of \a a and \a b.
815  *
816  * \param a Input value.
817  * \param b Input value.
818  *
819  * \return Minimal value of \a a and \a b.
820  *
821  * \note More optimized if only used with values unknown at compile time.
822  */
823 #define min(a, b)   Min(a, b)
824 
825 /*! \brief Takes the maximal value of \a a and \a b.
826  *
827  * \param a Input value.
828  * \param b Input value.
829  *
830  * \return Maximal value of \a a and \a b.
831  *
832  * \note More optimized if only used with values unknown at compile time.
833  */
834 #define max(a, b)   Max(a, b)
835 
836 //! @}
837 
838 
839 /*! \brief Calls the routine at address \a addr.
840  *
841  * It generates a long call opcode.
842  *
843  * For example, `Long_call(0x80000000)' generates a software reset on a UC3 if
844  * it is invoked from the CPU supervisor mode.
845  *
846  * \param addr  Address of the routine to call.
847  *
848  * \note It may be used as a long jump opcode in some special cases.
849  */
850 #define Long_call(addr)                   ((*(void (*)(void))(addr))())
851 
852 
853 /*! \name MCU Endianism Handling
854  * ARM is MCU little endianism.
855  */
856 //! @{
857 #define  MSB(u16)       (((U8  *)&(u16))[1]) //!< Most significant byte of \a u16.
858 #define  LSB(u16)       (((U8  *)&(u16))[0]) //!< Least significant byte of \a u16.
859 
860 #define  MSH(u32)       (((U16 *)&(u32))[1]) //!< Most significant half-word of \a u32.
861 #define  LSH(u32)       (((U16 *)&(u32))[0]) //!< Least significant half-word of \a u32.
862 #define  MSB0W(u32)     (((U8  *)&(u32))[3]) //!< Most significant byte of 1st rank of \a u32.
863 #define  MSB1W(u32)     (((U8  *)&(u32))[2]) //!< Most significant byte of 2nd rank of \a u32.
864 #define  MSB2W(u32)     (((U8  *)&(u32))[1]) //!< Most significant byte of 3rd rank of \a u32.
865 #define  MSB3W(u32)     (((U8  *)&(u32))[0]) //!< Most significant byte of 4th rank of \a u32.
866 #define  LSB3W(u32)     MSB0W(u32)           //!< Least significant byte of 4th rank of \a u32.
867 #define  LSB2W(u32)     MSB1W(u32)           //!< Least significant byte of 3rd rank of \a u32.
868 #define  LSB1W(u32)     MSB2W(u32)           //!< Least significant byte of 2nd rank of \a u32.
869 #define  LSB0W(u32)     MSB3W(u32)           //!< Least significant byte of 1st rank of \a u32.
870 
871 #define  MSW(u64)       (((U32 *)&(u64))[1]) //!< Most significant word of \a u64.
872 #define  LSW(u64)       (((U32 *)&(u64))[0]) //!< Least significant word of \a u64.
873 #define  MSH0(u64)      (((U16 *)&(u64))[3]) //!< Most significant half-word of 1st rank of \a u64.
874 #define  MSH1(u64)      (((U16 *)&(u64))[2]) //!< Most significant half-word of 2nd rank of \a u64.
875 #define  MSH2(u64)      (((U16 *)&(u64))[1]) //!< Most significant half-word of 3rd rank of \a u64.
876 #define  MSH3(u64)      (((U16 *)&(u64))[0]) //!< Most significant half-word of 4th rank of \a u64.
877 #define  LSH3(u64)      MSH0(u64)            //!< Least significant half-word of 4th rank of \a u64.
878 #define  LSH2(u64)      MSH1(u64)            //!< Least significant half-word of 3rd rank of \a u64.
879 #define  LSH1(u64)      MSH2(u64)            //!< Least significant half-word of 2nd rank of \a u64.
880 #define  LSH0(u64)      MSH3(u64)            //!< Least significant half-word of 1st rank of \a u64.
881 #define  MSB0D(u64)     (((U8  *)&(u64))[7]) //!< Most significant byte of 1st rank of \a u64.
882 #define  MSB1D(u64)     (((U8  *)&(u64))[6]) //!< Most significant byte of 2nd rank of \a u64.
883 #define  MSB2D(u64)     (((U8  *)&(u64))[5]) //!< Most significant byte of 3rd rank of \a u64.
884 #define  MSB3D(u64)     (((U8  *)&(u64))[4]) //!< Most significant byte of 4th rank of \a u64.
885 #define  MSB4D(u64)     (((U8  *)&(u64))[3]) //!< Most significant byte of 5th rank of \a u64.
886 #define  MSB5D(u64)     (((U8  *)&(u64))[2]) //!< Most significant byte of 6th rank of \a u64.
887 #define  MSB6D(u64)     (((U8  *)&(u64))[1]) //!< Most significant byte of 7th rank of \a u64.
888 #define  MSB7D(u64)     (((U8  *)&(u64))[0]) //!< Most significant byte of 8th rank of \a u64.
889 #define  LSB7D(u64)     MSB0D(u64)           //!< Least significant byte of 8th rank of \a u64.
890 #define  LSB6D(u64)     MSB1D(u64)           //!< Least significant byte of 7th rank of \a u64.
891 #define  LSB5D(u64)     MSB2D(u64)           //!< Least significant byte of 6th rank of \a u64.
892 #define  LSB4D(u64)     MSB3D(u64)           //!< Least significant byte of 5th rank of \a u64.
893 #define  LSB3D(u64)     MSB4D(u64)           //!< Least significant byte of 4th rank of \a u64.
894 #define  LSB2D(u64)     MSB5D(u64)           //!< Least significant byte of 3rd rank of \a u64.
895 #define  LSB1D(u64)     MSB6D(u64)           //!< Least significant byte of 2nd rank of \a u64.
896 #define  LSB0D(u64)     MSB7D(u64)           //!< Least significant byte of 1st rank of \a u64.
897 
898 #define  BE16(x)        Swap16(x)
899 #define  LE16(x)        (x)
900 
901 #define  le16_to_cpu(x) (x)
902 #define  cpu_to_le16(x) (x)
903 #define  LE16_TO_CPU(x) (x)
904 #define  CPU_TO_LE16(x) (x)
905 
906 #define  be16_to_cpu(x) Swap16(x)
907 #define  cpu_to_be16(x) Swap16(x)
908 #define  BE16_TO_CPU(x) Swap16(x)
909 #define  CPU_TO_BE16(x) Swap16(x)
910 
911 #define  le32_to_cpu(x) (x)
912 #define  cpu_to_le32(x) (x)
913 #define  LE32_TO_CPU(x) (x)
914 #define  CPU_TO_LE32(x) (x)
915 
916 #define  be32_to_cpu(x) swap32(x)
917 #define  cpu_to_be32(x) swap32(x)
918 #define  BE32_TO_CPU(x) swap32(x)
919 #define  CPU_TO_BE32(x) swap32(x)
920 //! @}
921 
922 
923 /*! \name Endianism Conversion
924  *
925  * The same considerations as for clz and ctz apply here but GCC's
926  * __builtin_bswap_32 and __builtin_bswap_64 do not behave like macros when
927  * applied to constant expressions, so two sets of macros are defined here:
928  *   - Swap16, Swap32 and Swap64 to apply to constant expressions (values known
929  *     at compile time);
930  *   - swap16, swap32 and swap64 to apply to non-constant expressions (values
931  *     unknown at compile time).
932  */
933 //! @{
934 
935 /*! \brief Toggles the endianism of \a u16 (by swapping its bytes).
936  *
937  * \param u16 U16 of which to toggle the endianism.
938  *
939  * \return Value resulting from \a u16 with toggled endianism.
940  *
941  * \note More optimized if only used with values known at compile time.
942  */
943 #define Swap16(u16) ((U16)(((U16)(u16) >> 8) |\
944                            ((U16)(u16) << 8)))
945 
946 /*! \brief Toggles the endianism of \a u32 (by swapping its bytes).
947  *
948  * \param u32 U32 of which to toggle the endianism.
949  *
950  * \return Value resulting from \a u32 with toggled endianism.
951  *
952  * \note More optimized if only used with values known at compile time.
953  */
954 #define Swap32(u32) ((U32)(((U32)Swap16((U32)(u32) >> 16)) |\
955                            ((U32)Swap16((U32)(u32)) << 16)))
956 
957 /*! \brief Toggles the endianism of \a u64 (by swapping its bytes).
958  *
959  * \param u64 U64 of which to toggle the endianism.
960  *
961  * \return Value resulting from \a u64 with toggled endianism.
962  *
963  * \note More optimized if only used with values known at compile time.
964  */
965 #define Swap64(u64) ((U64)(((U64)Swap32((U64)(u64) >> 32)) |\
966                            ((U64)Swap32((U64)(u64)) << 32)))
967 
968 /*! \brief Toggles the endianism of \a u16 (by swapping its bytes).
969  *
970  * \param u16 U16 of which to toggle the endianism.
971  *
972  * \return Value resulting from \a u16 with toggled endianism.
973  *
974  * \note More optimized if only used with values unknown at compile time.
975  */
976 #define swap16(u16) Swap16(u16)
977 
978 /*! \brief Toggles the endianism of \a u32 (by swapping its bytes).
979  *
980  * \param u32 U32 of which to toggle the endianism.
981  *
982  * \return Value resulting from \a u32 with toggled endianism.
983  *
984  * \note More optimized if only used with values unknown at compile time.
985  */
986 #if (defined __GNUC__)
987 #   define swap32(u32) ((U32)__builtin_bswap32((U32)(u32)))
988 #else
989 #   define swap32(u32) Swap32(u32)
990 #endif
991 
992 /*! \brief Toggles the endianism of \a u64 (by swapping its bytes).
993  *
994  * \param u64 U64 of which to toggle the endianism.
995  *
996  * \return Value resulting from \a u64 with toggled endianism.
997  *
998  * \note More optimized if only used with values unknown at compile time.
999  */
1000 #if (defined __GNUC__)
1001 #   define swap64(u64) ((U64)__builtin_bswap64((U64)(u64)))
1002 #else
1003 #   define swap64(u64) ((U64)(((U64)swap32((U64)(u64) >> 32)) |\
1004                            ((U64)swap32((U64)(u64)) << 32)))
1005 #endif
1006 
1007 //! @}
1008 
1009 
1010 /*! \name Target Abstraction
1011  */
1012 //! @{
1013 
1014 #define _GLOBEXT_           extern      //!< extern storage-class specifier.
1015 #define _CONST_TYPE_        const       //!< const type qualifier.
1016 #define _MEM_TYPE_SLOW_                 //!< Slow memory type.
1017 #define _MEM_TYPE_MEDFAST_              //!< Fairly fast memory type.
1018 #define _MEM_TYPE_FAST_                 //!< Fast memory type.
1019 
1020 typedef U8                  Byte;       //!< 8-bit unsigned integer.
1021 
1022 #define memcmp_ram2ram      memcmp      //!< Target-specific memcmp of RAM to RAM.
1023 #define memcmp_code2ram     memcmp      //!< Target-specific memcmp of RAM to NVRAM.
1024 #define memcpy_ram2ram      memcpy      //!< Target-specific memcpy from RAM to RAM.
1025 #define memcpy_code2ram     memcpy      //!< Target-specific memcpy from NVRAM to RAM.
1026 
1027 #define LSB0(u32)           LSB0W(u32)  //!< Least significant byte of 1st rank of \a u32.
1028 #define LSB1(u32)           LSB1W(u32)  //!< Least significant byte of 2nd rank of \a u32.
1029 #define LSB2(u32)           LSB2W(u32)  //!< Least significant byte of 3rd rank of \a u32.
1030 #define LSB3(u32)           LSB3W(u32)  //!< Least significant byte of 4th rank of \a u32.
1031 #define MSB3(u32)           MSB3W(u32)  //!< Most significant byte of 4th rank of \a u32.
1032 #define MSB2(u32)           MSB2W(u32)  //!< Most significant byte of 3rd rank of \a u32.
1033 #define MSB1(u32)           MSB1W(u32)  //!< Most significant byte of 2nd rank of \a u32.
1034 #define MSB0(u32)           MSB0W(u32)  //!< Most significant byte of 1st rank of \a u32.
1035 
1036 //! @}
1037 
1038 /**
1039  * \brief Calculate \f$ \left\lceil \frac{a}{b} \right\rceil \f$ using
1040  * integer arithmetic.
1041  *
1042  * \param a An integer
1043  * \param b Another integer
1044  *
1045  * \return (\a a / \a b) rounded up to the nearest integer.
1046  */
1047 #define div_ceil(a, b)      (((a) + (b) - 1) / (b))
1048 
1049 #endif  // #ifndef __ASSEMBLY__
1050 
1051 
1052 #if defined(__ICCARM__)
1053 #define SHORTENUM           __packed
1054 #elif defined(__GNUC__)
1055 #define SHORTENUM           __attribute__((packed))
1056 #endif
1057 
1058 /* No operation */
1059 #if defined(__ICCARM__)
1060 #define nop()               __no_operation()
1061 #elif defined(__GNUC__)
1062 #define nop()               (__NOP())
1063 #endif
1064 
1065 #define FLASH_DECLARE(x)  const x
1066 #define FLASH_EXTERN(x) extern const x
1067 #define PGM_READ_BYTE(x) *(x)
1068 #define PGM_READ_WORD(x) *(x)
1069 #define PGM_READ_DWORD(x) *(x)
1070 #define MEMCPY_ENDIAN memcpy
1071 #define PGM_READ_BLOCK(dst, src, len) memcpy((dst), (src), (len))
1072 
1073 /*Defines the Flash Storage for the request and response of MAC*/
1074 #define CMD_ID_OCTET    (0)
1075 
1076 /* Converting of values from CPU endian to little endian. */
1077 #define CPU_ENDIAN_TO_LE16(x)   (x)
1078 #define CPU_ENDIAN_TO_LE32(x)   (x)
1079 #define CPU_ENDIAN_TO_LE64(x)   (x)
1080 
1081 /* Converting of values from little endian to CPU endian. */
1082 #define LE16_TO_CPU_ENDIAN(x)   (x)
1083 #define LE32_TO_CPU_ENDIAN(x)   (x)
1084 #define LE64_TO_CPU_ENDIAN(x)   (x)
1085 
1086 /* Converting of constants from little endian to CPU endian. */
1087 #define CLE16_TO_CPU_ENDIAN(x)  (x)
1088 #define CLE32_TO_CPU_ENDIAN(x)  (x)
1089 #define CLE64_TO_CPU_ENDIAN(x)  (x)
1090 
1091 /* Converting of constants from CPU endian to little endian. */
1092 #define CCPU_ENDIAN_TO_LE16(x)  (x)
1093 #define CCPU_ENDIAN_TO_LE32(x)  (x)
1094 #define CCPU_ENDIAN_TO_LE64(x)  (x)
1095 
1096 #define ADDR_COPY_DST_SRC_16(dst, src)  ((dst) = (src))
1097 #define ADDR_COPY_DST_SRC_64(dst, src)  ((dst) = (src))
1098 
1099 /**
1100  * @brief Converts a 64-Bit value into  a 8 Byte array
1101  *
1102  * @param[in] value 64-Bit value
1103  * @param[out] data Pointer to the 8 Byte array to be updated with 64-Bit value
1104  * @ingroup apiPalApi
1105  */
convert_64_bit_to_byte_array(uint64_t value,uint8_t * data)1106 static inline void convert_64_bit_to_byte_array(uint64_t value, uint8_t *data)
1107 {
1108     uint8_t val_index = 0;
1109 
1110     while (val_index < 8)
1111     {
1112         data[val_index++] = value & 0xFF;
1113         value = value >> 8;
1114     }
1115 }
1116 
1117 /**
1118  * @brief Converts a 16-Bit value into  a 2 Byte array
1119  *
1120  * @param[in] value 16-Bit value
1121  * @param[out] data Pointer to the 2 Byte array to be updated with 16-Bit value
1122  * @ingroup apiPalApi
1123  */
convert_16_bit_to_byte_array(uint16_t value,uint8_t * data)1124 static inline void convert_16_bit_to_byte_array(uint16_t value, uint8_t *data)
1125 {
1126     data[0] = value & 0xFF;
1127     data[1] = (value >> 8) & 0xFF;
1128 }
1129 
1130 /* Converts a 16-Bit value into a 2 Byte array */
convert_spec_16_bit_to_byte_array(uint16_t value,uint8_t * data)1131 static inline void convert_spec_16_bit_to_byte_array(uint16_t value, uint8_t *data)
1132 {
1133     data[0] = value & 0xFF;
1134     data[1] = (value >> 8) & 0xFF;
1135 }
1136 
1137 /* Converts a 16-Bit value into a 2 Byte array */
convert_16_bit_to_byte_address(uint16_t value,uint8_t * data)1138 static inline void convert_16_bit_to_byte_address(uint16_t value, uint8_t *data)
1139 {
1140     data[0] = value & 0xFF;
1141     data[1] = (value >> 8) & 0xFF;
1142 }
1143 
1144 /*
1145  * @brief Converts a 2 Byte array into a 16-Bit value
1146  *
1147  * @param data Specifies the pointer to the 2 Byte array
1148  *
1149  * @return 16-Bit value
1150  * @ingroup apiPalApi
1151  */
convert_byte_array_to_16_bit(uint8_t * data)1152 static inline uint16_t convert_byte_array_to_16_bit(uint8_t *data)
1153 {
1154     return (data[0] | ((uint16_t)data[1] << 8));
1155 }
1156 
1157 /* Converts a 8 Byte array into a 32-Bit value */
convert_byte_array_to_32_bit(uint8_t * data)1158 static inline uint32_t convert_byte_array_to_32_bit(uint8_t *data)
1159 {
1160 	union
1161 	{
1162 		uint32_t u32;
1163 		uint8_t u8[8];
1164 	}long_addr;
1165 	uint8_t index;
1166 	for (index = 0; index < 4; index++)
1167 	{
1168 		long_addr.u8[index] = *data++;
1169 	}
1170 	return long_addr.u32;
1171 }
1172 
1173 /**
1174  * @brief Converts a 8 Byte array into a 64-Bit value
1175  *
1176  * @param data Specifies the pointer to the 8 Byte array
1177  *
1178  * @return 64-Bit value
1179  * @ingroup apiPalApi
1180  */
convert_byte_array_to_64_bit(uint8_t * data)1181 static inline uint64_t convert_byte_array_to_64_bit(uint8_t *data)
1182 {
1183     union
1184     {
1185         uint64_t u64;
1186         uint8_t u8[8];
1187     } long_addr;
1188 
1189     uint8_t val_index;
1190 
1191     for (val_index = 0; val_index < 8; val_index++)
1192     {
1193         long_addr.u8[val_index] = *data++;
1194     }
1195 
1196     return long_addr.u64;
1197 }
1198 /**
1199  * \}
1200  */
1201 
1202 #endif /* UTILS_COMPILER_H */
1203