xref: /aosp_15_r20/system/libhwbinder/Parcel.cpp (revision 77b80299c8bdfeca3ae6d0ce27ae1ad3db289be3)
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "hw-Parcel"
18 //#define LOG_NDEBUG 0
19 
20 #include <errno.h>
21 #include <fcntl.h>
22 #include <inttypes.h>
23 #include <pthread.h>
24 #include <stdint.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <sys/mman.h>
28 #include <sys/stat.h>
29 #include <sys/types.h>
30 #include <sys/resource.h>
31 #include <unistd.h>
32 
33 #include <hwbinder/Binder.h>
34 #include <hwbinder/BpHwBinder.h>
35 #include <hwbinder/IPCThreadState.h>
36 #include <hwbinder/Parcel.h>
37 #include <hwbinder/ProcessState.h>
38 
39 #include <cutils/ashmem.h>
40 #include <utils/Log.h>
41 #include <utils/misc.h>
42 #include <utils/String8.h>
43 #include <utils/String16.h>
44 
45 #include "binder_kernel.h"
46 #include <hwbinder/Static.h>
47 #include "TextOutput.h"
48 #include "Utils.h"
49 
50 #include <atomic>
51 
52 #define LOG_REFS(...)
53 //#define LOG_REFS(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
54 #define LOG_ALLOC(...)
55 //#define LOG_ALLOC(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
56 #define LOG_BUFFER(...)
57 // #define LOG_BUFFER(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
58 
59 // ---------------------------------------------------------------------------
60 
61 // This macro should never be used at runtime, as a too large value
62 // of s could cause an integer overflow. Instead, you should always
63 // use the wrapper function pad_size()
64 #define PAD_SIZE_UNSAFE(s) (((s)+3)&~3)
65 
pad_size(size_t s)66 static size_t pad_size(size_t s) {
67     if (s > (std::numeric_limits<size_t>::max() - 3)) {
68         LOG_ALWAYS_FATAL("pad size too big %zu", s);
69     }
70     return PAD_SIZE_UNSAFE(s);
71 }
72 
73 // Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER
74 #define STRICT_MODE_PENALTY_GATHER (0x40 << 16)
75 
76 namespace android {
77 namespace hardware {
78 
79 static std::atomic<size_t> gParcelGlobalAllocCount;
80 static std::atomic<size_t> gParcelGlobalAllocSize;
81 
82 static size_t gMaxFds = 0;
83 
acquire_binder_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who)84 void acquire_binder_object(const sp<ProcessState>& proc,
85     const flat_binder_object& obj, const void* who)
86 {
87     switch (obj.hdr.type) {
88         case BINDER_TYPE_BINDER:
89             if (obj.binder) {
90                 LOG_REFS("Parcel %p acquiring reference on local %llu", who, obj.cookie);
91                 reinterpret_cast<IBinder*>(obj.cookie)->incStrong(who);
92             }
93             return;
94         case BINDER_TYPE_WEAK_BINDER:
95             if (obj.binder)
96                 reinterpret_cast<RefBase::weakref_type*>(obj.binder)->incWeak(who);
97             return;
98         case BINDER_TYPE_HANDLE: {
99             const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
100             if (b != nullptr) {
101                 LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get());
102                 b->incStrong(who);
103             }
104             return;
105         }
106         case BINDER_TYPE_WEAK_HANDLE: {
107             const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
108             if (b != nullptr) b.get_refs()->incWeak(who);
109             return;
110         }
111     }
112 
113     ALOGD("Invalid object type 0x%08x", obj.hdr.type);
114 }
115 
acquire_object(const sp<ProcessState> & proc,const binder_object_header & obj,const void * who)116 void acquire_object(const sp<ProcessState>& proc, const binder_object_header& obj,
117         const void *who) {
118     switch (obj.type) {
119         case BINDER_TYPE_BINDER:
120         case BINDER_TYPE_WEAK_BINDER:
121         case BINDER_TYPE_HANDLE:
122         case BINDER_TYPE_WEAK_HANDLE: {
123             const flat_binder_object& fbo = reinterpret_cast<const flat_binder_object&>(obj);
124             acquire_binder_object(proc, fbo, who);
125             break;
126         }
127     }
128 }
129 
release_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who)130 void release_object(const sp<ProcessState>& proc,
131     const flat_binder_object& obj, const void* who)
132 {
133     switch (obj.hdr.type) {
134         case BINDER_TYPE_BINDER:
135             if (obj.binder) {
136                 LOG_REFS("Parcel %p releasing reference on local %llu", who, obj.cookie);
137                 reinterpret_cast<IBinder*>(obj.cookie)->decStrong(who);
138             }
139             return;
140         case BINDER_TYPE_WEAK_BINDER:
141             if (obj.binder)
142                 reinterpret_cast<RefBase::weakref_type*>(obj.binder)->decWeak(who);
143             return;
144         case BINDER_TYPE_HANDLE: {
145             const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
146             if (b != nullptr) {
147                 LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get());
148                 b->decStrong(who);
149             }
150             return;
151         }
152         case BINDER_TYPE_WEAK_HANDLE: {
153             const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
154             if (b != nullptr) b.get_refs()->decWeak(who);
155             return;
156         }
157         case BINDER_TYPE_FD: {
158             if (obj.cookie != 0) { // owned
159                 close(obj.handle);
160             }
161             return;
162         }
163         case BINDER_TYPE_PTR: {
164             // The relevant buffer is part of the transaction buffer and will be freed that way
165             return;
166         }
167         case BINDER_TYPE_FDA: {
168             // The enclosed file descriptors are closed in the kernel
169             return;
170         }
171     }
172 
173     ALOGE("Invalid object type 0x%08x", obj.hdr.type);
174 }
175 
finish_flatten_binder(const sp<IBinder> &,const flat_binder_object & flat,Parcel * out)176 inline static status_t finish_flatten_binder(
177     const sp<IBinder>& /*binder*/, const flat_binder_object& flat, Parcel* out)
178 {
179     return out->writeObject(flat);
180 }
181 
flatten_binder(const sp<ProcessState> &,const sp<IBinder> & binder,Parcel * out)182 status_t flatten_binder(const sp<ProcessState>& /*proc*/,
183     const sp<IBinder>& binder, Parcel* out)
184 {
185     flat_binder_object obj = {};
186 
187     if (binder != nullptr) {
188         BHwBinder *local = binder->localBinder();
189         if (!local) {
190             BpHwBinder *proxy = binder->remoteBinder();
191             if (proxy == nullptr) {
192                 ALOGE("null proxy");
193             }
194             const int32_t handle = proxy ? proxy->handle() : 0;
195             obj.hdr.type = BINDER_TYPE_HANDLE;
196             obj.flags = FLAT_BINDER_FLAG_ACCEPTS_FDS;
197             obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
198             obj.handle = handle;
199             obj.cookie = 0;
200         } else {
201             // Get policy and convert it
202             int policy = local->getMinSchedulingPolicy();
203             int priority = local->getMinSchedulingPriority();
204 
205             obj.flags = priority & FLAT_BINDER_FLAG_PRIORITY_MASK;
206             obj.flags |= FLAT_BINDER_FLAG_ACCEPTS_FDS | FLAT_BINDER_FLAG_INHERIT_RT;
207             obj.flags |= (policy & 3) << FLAT_BINDER_FLAG_SCHED_POLICY_SHIFT;
208             if (local->isRequestingSid()) {
209                 obj.flags |= FLAT_BINDER_FLAG_TXN_SECURITY_CTX;
210             }
211             obj.hdr.type = BINDER_TYPE_BINDER;
212             obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs());
213             obj.cookie = reinterpret_cast<uintptr_t>(local);
214         }
215     } else {
216         obj.hdr.type = BINDER_TYPE_BINDER;
217         obj.binder = 0;
218         obj.cookie = 0;
219     }
220 
221     return finish_flatten_binder(binder, obj, out);
222 }
223 
finish_unflatten_binder(BpHwBinder *,const flat_binder_object &,const Parcel &)224 inline static status_t finish_unflatten_binder(
225     BpHwBinder* /*proxy*/, const flat_binder_object& /*flat*/,
226     const Parcel& /*in*/)
227 {
228     return NO_ERROR;
229 }
230 
unflatten_binder(const sp<ProcessState> & proc,const Parcel & in,sp<IBinder> * out)231 status_t unflatten_binder(const sp<ProcessState>& proc,
232     const Parcel& in, sp<IBinder>* out)
233 {
234     const flat_binder_object* flat = in.readObject<flat_binder_object>();
235 
236     if (flat) {
237         switch (flat->hdr.type) {
238             case BINDER_TYPE_BINDER:
239                 *out = reinterpret_cast<IBinder*>(flat->cookie);
240                 return finish_unflatten_binder(nullptr, *flat, in);
241             case BINDER_TYPE_HANDLE:
242                 *out = proc->getStrongProxyForHandle(flat->handle);
243                 return finish_unflatten_binder(
244                     static_cast<BpHwBinder*>(out->get()), *flat, in);
245         }
246     }
247     return BAD_TYPE;
248 }
249 
250 // ---------------------------------------------------------------------------
251 
Parcel()252 Parcel::Parcel()
253 {
254     LOG_ALLOC("Parcel %p: constructing", this);
255     initState();
256 }
257 
~Parcel()258 Parcel::~Parcel()
259 {
260     freeDataNoInit();
261     LOG_ALLOC("Parcel %p: destroyed", this);
262 }
263 
getGlobalAllocSize()264 size_t Parcel::getGlobalAllocSize() {
265     return gParcelGlobalAllocSize.load();
266 }
267 
getGlobalAllocCount()268 size_t Parcel::getGlobalAllocCount() {
269     return gParcelGlobalAllocCount.load();
270 }
271 
data() const272 const uint8_t* Parcel::data() const
273 {
274     return mData;
275 }
276 
dataSize() const277 size_t Parcel::dataSize() const
278 {
279     return (mDataSize > mDataPos ? mDataSize : mDataPos);
280 }
281 
dataAvail() const282 size_t Parcel::dataAvail() const
283 {
284     size_t result = dataSize() - dataPosition();
285     if (result > INT32_MAX) {
286         LOG_ALWAYS_FATAL("result too big: %zu", result);
287     }
288     return result;
289 }
290 
dataPosition() const291 size_t Parcel::dataPosition() const
292 {
293     return mDataPos;
294 }
295 
dataCapacity() const296 size_t Parcel::dataCapacity() const
297 {
298     return mDataCapacity;
299 }
300 
setDataSize(size_t size)301 status_t Parcel::setDataSize(size_t size)
302 {
303     if (size > INT32_MAX) {
304         // don't accept size_t values which may have come from an
305         // inadvertent conversion from a negative int.
306         return BAD_VALUE;
307     }
308 
309     status_t err;
310     err = continueWrite(size);
311     if (err == NO_ERROR) {
312         mDataSize = size;
313         ALOGV("setDataSize Setting data size of %p to %zu", this, mDataSize);
314     }
315     return err;
316 }
317 
setDataPosition(size_t pos) const318 void Parcel::setDataPosition(size_t pos) const
319 {
320     if (pos > INT32_MAX) {
321         // don't accept size_t values which may have come from an
322         // inadvertent conversion from a negative int.
323         LOG_ALWAYS_FATAL("pos too big: %zu", pos);
324     }
325 
326     mDataPos = pos;
327     mNextObjectHint = 0;
328 }
329 
setDataCapacity(size_t size)330 status_t Parcel::setDataCapacity(size_t size)
331 {
332     if (size > INT32_MAX) {
333         // don't accept size_t values which may have come from an
334         // inadvertent conversion from a negative int.
335         return BAD_VALUE;
336     }
337 
338     if (size > mDataCapacity) return continueWrite(size);
339     return NO_ERROR;
340 }
341 
markSensitive() const342 void Parcel::markSensitive() const
343 {
344     mDeallocZero = true;
345 }
346 
347 // Write RPC headers.  (previously just the interface token)
writeInterfaceToken(const char * interface)348 status_t Parcel::writeInterfaceToken(const char* interface)
349 {
350     // currently the interface identification token is just its name as a string
351     return writeCString(interface);
352 }
353 
enforceInterface(const char * interface) const354 bool Parcel::enforceInterface(const char* interface) const
355 {
356     const char* str = readCString();
357     if (str != nullptr && strcmp(str, interface) == 0) {
358         return true;
359     } else {
360         ALOGW("**** enforceInterface() expected '%s' but read '%s'",
361                 interface, (str ? str : "<empty string>"));
362         return false;
363     }
364 }
365 
objects() const366 const binder_size_t* Parcel::objects() const
367 {
368     return mObjects;
369 }
370 
objectsCount() const371 size_t Parcel::objectsCount() const
372 {
373     return mObjectsSize;
374 }
375 
errorCheck() const376 status_t Parcel::errorCheck() const
377 {
378     return mError;
379 }
380 
setError(status_t err)381 void Parcel::setError(status_t err)
382 {
383     mError = err;
384 }
385 
finishWrite(size_t len)386 status_t Parcel::finishWrite(size_t len)
387 {
388     if (len > INT32_MAX) {
389         // don't accept size_t values which may have come from an
390         // inadvertent conversion from a negative int.
391         return BAD_VALUE;
392     }
393 
394     //printf("Finish write of %d\n", len);
395     mDataPos += len;
396     ALOGV("finishWrite Setting data pos of %p to %zu", this, mDataPos);
397     if (mDataPos > mDataSize) {
398         mDataSize = mDataPos;
399         ALOGV("finishWrite Setting data size of %p to %zu", this, mDataSize);
400     }
401     //printf("New pos=%d, size=%d\n", mDataPos, mDataSize);
402     return NO_ERROR;
403 }
404 
write(const void * data,size_t len)405 status_t Parcel::write(const void* data, size_t len)
406 {
407     if (len > INT32_MAX) {
408         // don't accept size_t values which may have come from an
409         // inadvertent conversion from a negative int.
410         return BAD_VALUE;
411     }
412 
413     void* const d = writeInplace(len);
414     if (d) {
415         memcpy(d, data, len);
416         return NO_ERROR;
417     }
418     return mError;
419 }
420 
writeInplace(size_t len)421 void* Parcel::writeInplace(size_t len)
422 {
423     if (len > INT32_MAX) {
424         // don't accept size_t values which may have come from an
425         // inadvertent conversion from a negative int.
426         return nullptr;
427     }
428 
429     const size_t padded = pad_size(len);
430 
431     // validate for integer overflow
432     if (mDataPos+padded < mDataPos) {
433         return nullptr;
434     }
435 
436     if ((mDataPos+padded) <= mDataCapacity) {
437 restart_write:
438         //printf("Writing %ld bytes, padded to %ld\n", len, padded);
439         uint8_t* const data = mData+mDataPos;
440 
441         // Need to pad at end?
442         if (padded != len) {
443 #if BYTE_ORDER == BIG_ENDIAN
444             static const uint32_t mask[4] = {
445                 0x00000000, 0xffffff00, 0xffff0000, 0xff000000
446             };
447 #endif
448 #if BYTE_ORDER == LITTLE_ENDIAN
449             static const uint32_t mask[4] = {
450                 0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff
451             };
452 #endif
453             //printf("Applying pad mask: %p to %p\n", (void*)mask[padded-len],
454             //    *reinterpret_cast<void**>(data+padded-4));
455             *reinterpret_cast<uint32_t*>(data+padded-4) &= mask[padded-len];
456         }
457 
458         finishWrite(padded);
459         return data;
460     }
461 
462     status_t err = growData(padded);
463     if (err == NO_ERROR) goto restart_write;
464     return nullptr;
465 }
466 
writeInt8(int8_t val)467 status_t Parcel::writeInt8(int8_t val)
468 {
469     return write(&val, sizeof(val));
470 }
471 
writeUint8(uint8_t val)472 status_t Parcel::writeUint8(uint8_t val)
473 {
474     return write(&val, sizeof(val));
475 }
476 
writeInt16(int16_t val)477 status_t Parcel::writeInt16(int16_t val)
478 {
479     return write(&val, sizeof(val));
480 }
481 
writeUint16(uint16_t val)482 status_t Parcel::writeUint16(uint16_t val)
483 {
484     return write(&val, sizeof(val));
485 }
486 
writeInt32(int32_t val)487 status_t Parcel::writeInt32(int32_t val)
488 {
489     return writeAligned(val);
490 }
491 
writeUint32(uint32_t val)492 status_t Parcel::writeUint32(uint32_t val)
493 {
494     return writeAligned(val);
495 }
496 
writeBool(bool val)497 status_t Parcel::writeBool(bool val)
498 {
499     return writeInt8(int8_t(val));
500 }
writeInt64(int64_t val)501 status_t Parcel::writeInt64(int64_t val)
502 {
503     return writeAligned(val);
504 }
505 
writeUint64(uint64_t val)506 status_t Parcel::writeUint64(uint64_t val)
507 {
508     return writeAligned(val);
509 }
510 
writePointer(uintptr_t val)511 status_t Parcel::writePointer(uintptr_t val)
512 {
513     return writeAligned<binder_uintptr_t>(val);
514 }
515 
writeFloat(float val)516 status_t Parcel::writeFloat(float val)
517 {
518     return writeAligned(val);
519 }
520 
521 #if defined(__mips__) && defined(__mips_hard_float)
522 
writeDouble(double val)523 status_t Parcel::writeDouble(double val)
524 {
525     union {
526         double d;
527         unsigned long long ll;
528     } u;
529     u.d = val;
530     return writeAligned(u.ll);
531 }
532 
533 #else
534 
writeDouble(double val)535 status_t Parcel::writeDouble(double val)
536 {
537     return writeAligned(val);
538 }
539 
540 #endif
541 
writeCString(const char * str)542 status_t Parcel::writeCString(const char* str)
543 {
544     return write(str, strlen(str)+1);
545 }
writeString16(const std::unique_ptr<String16> & str)546 status_t Parcel::writeString16(const std::unique_ptr<String16>& str)
547 {
548     if (!str) {
549         return writeInt32(-1);
550     }
551 
552     return writeString16(*str);
553 }
554 
writeString16(const String16 & str)555 status_t Parcel::writeString16(const String16& str)
556 {
557     return writeString16(str.c_str(), str.size());
558 }
559 
writeString16(const char16_t * str,size_t len)560 status_t Parcel::writeString16(const char16_t* str, size_t len)
561 {
562     if (str == nullptr) return writeInt32(-1);
563 
564     status_t err = writeInt32(len);
565     if (err == NO_ERROR) {
566         len *= sizeof(char16_t);
567         uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t));
568         if (data) {
569             memcpy(data, str, len);
570             *reinterpret_cast<char16_t*>(data+len) = 0;
571             return NO_ERROR;
572         }
573         err = mError;
574     }
575     return err;
576 }
writeStrongBinder(const sp<IBinder> & val)577 status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
578 {
579     return flatten_binder(ProcessState::self(), val, this);
580 }
581 
582 template <typename T>
writeObject(const T & val)583 status_t Parcel::writeObject(const T& val)
584 {
585     const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;
586     const bool enoughObjects = mObjectsSize < mObjectsCapacity;
587     if (enoughData && enoughObjects) {
588 restart_write:
589         *reinterpret_cast<T*>(mData+mDataPos) = val;
590 
591         const binder_object_header* hdr = reinterpret_cast<binder_object_header*>(mData+mDataPos);
592         switch (hdr->type) {
593             case BINDER_TYPE_BINDER:
594             case BINDER_TYPE_WEAK_BINDER:
595             case BINDER_TYPE_HANDLE:
596             case BINDER_TYPE_WEAK_HANDLE: {
597                 const flat_binder_object *fbo = reinterpret_cast<const flat_binder_object*>(hdr);
598                 if (fbo->binder != 0) {
599                     mObjects[mObjectsSize++] = mDataPos;
600                     acquire_binder_object(ProcessState::self(), *fbo, this);
601                 }
602                 break;
603             }
604             case BINDER_TYPE_FD: {
605                 // remember if it's a file descriptor
606                 if (!mAllowFds) {
607                     // fail before modifying our object index
608                     return FDS_NOT_ALLOWED;
609                 }
610                 mHasFds = mFdsKnown = true;
611                 mObjects[mObjectsSize++] = mDataPos;
612                 break;
613             }
614             case BINDER_TYPE_FDA:
615                 mObjects[mObjectsSize++] = mDataPos;
616                 break;
617             case BINDER_TYPE_PTR: {
618                 const binder_buffer_object *buffer_obj = reinterpret_cast<
619                     const binder_buffer_object*>(hdr);
620                 if ((void *)buffer_obj->buffer != nullptr) {
621                     mObjects[mObjectsSize++] = mDataPos;
622                 }
623                 break;
624             }
625             default: {
626                 ALOGE("writeObject: unknown type %d", hdr->type);
627                 break;
628             }
629         }
630         return finishWrite(sizeof(val));
631     }
632 
633     if (!enoughData) {
634         const status_t err = growData(sizeof(val));
635         if (err != NO_ERROR) return err;
636     }
637     if (!enoughObjects) {
638         if (mObjectsSize > SIZE_MAX - 2) return NO_MEMORY; // overflow
639         if (mObjectsSize + 2 > SIZE_MAX / 3) return NO_MEMORY; // overflow
640         size_t newSize = ((mObjectsSize+2)*3)/2;
641         if (newSize > SIZE_MAX / sizeof(binder_size_t)) return NO_MEMORY; // overflow
642         binder_size_t* objects = (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
643         if (objects == nullptr) return NO_MEMORY;
644         mObjects = objects;
645         mObjectsCapacity = newSize;
646     }
647 
648     goto restart_write;
649 }
650 
651 template status_t Parcel::writeObject<flat_binder_object>(const flat_binder_object& val);
652 template status_t Parcel::writeObject<binder_fd_object>(const binder_fd_object& val);
653 template status_t Parcel::writeObject<binder_buffer_object>(const binder_buffer_object& val);
654 template status_t Parcel::writeObject<binder_fd_array_object>(const binder_fd_array_object& val);
655 
validateBufferChild(size_t child_buffer_handle,size_t child_offset) const656 bool Parcel::validateBufferChild(size_t child_buffer_handle,
657                                  size_t child_offset) const {
658     if (child_buffer_handle >= mObjectsSize)
659         return false;
660     binder_buffer_object *child = reinterpret_cast<binder_buffer_object*>
661             (mData + mObjects[child_buffer_handle]);
662     if (child->hdr.type != BINDER_TYPE_PTR || child_offset > child->length) {
663         // Parent object not a buffer, or not large enough
664         LOG_BUFFER("writeEmbeddedReference found weird child. "
665                    "child_offset = %zu, child->length = %zu",
666                    child_offset, (size_t)child->length);
667         return false;
668     }
669     return true;
670 }
671 
validateBufferParent(size_t parent_buffer_handle,size_t parent_offset) const672 bool Parcel::validateBufferParent(size_t parent_buffer_handle,
673                                   size_t parent_offset) const {
674     if (parent_buffer_handle >= mObjectsSize)
675         return false;
676     binder_buffer_object *parent = reinterpret_cast<binder_buffer_object*>
677             (mData + mObjects[parent_buffer_handle]);
678     if (parent->hdr.type != BINDER_TYPE_PTR ||
679             sizeof(binder_uintptr_t) > parent->length ||
680             parent_offset > parent->length - sizeof(binder_uintptr_t)) {
681         // Parent object not a buffer, or not large enough
682         return false;
683     }
684     return true;
685 }
writeEmbeddedBuffer(const void * buffer,size_t length,size_t * handle,size_t parent_buffer_handle,size_t parent_offset)686 status_t Parcel::writeEmbeddedBuffer(
687         const void *buffer, size_t length, size_t *handle,
688         size_t parent_buffer_handle, size_t parent_offset) {
689     LOG_BUFFER("writeEmbeddedBuffer(%p, %zu, parent = (%zu, %zu)) -> %zu",
690         buffer, length, parent_buffer_handle,
691          parent_offset, mObjectsSize);
692     if(!validateBufferParent(parent_buffer_handle, parent_offset))
693         return BAD_VALUE;
694     binder_buffer_object obj = {
695         .hdr = { .type = BINDER_TYPE_PTR },
696         .flags = BINDER_BUFFER_FLAG_HAS_PARENT,
697         .buffer = reinterpret_cast<binder_uintptr_t>(buffer),
698         .length = length,
699         .parent = parent_buffer_handle,
700         .parent_offset = parent_offset,
701     };
702     if (handle != nullptr) {
703         // We use an index into mObjects as a handle
704         *handle = mObjectsSize;
705     }
706     return writeObject(obj);
707 }
708 
writeBuffer(const void * buffer,size_t length,size_t * handle)709 status_t Parcel::writeBuffer(const void *buffer, size_t length, size_t *handle)
710 {
711     LOG_BUFFER("writeBuffer(%p, %zu) -> %zu",
712         buffer, length, mObjectsSize);
713     binder_buffer_object obj {
714         .hdr = { .type = BINDER_TYPE_PTR },
715         .flags = 0,
716         .buffer = reinterpret_cast<binder_uintptr_t>(buffer),
717         .length = length,
718     };
719     if (handle != nullptr) {
720         // We use an index into mObjects as a handle
721         *handle = mObjectsSize;
722     }
723     return writeObject(obj);
724 }
725 
clearCache() const726 void Parcel::clearCache() const {
727     LOG_BUFFER("clearing cache.");
728     mBufCachePos = 0;
729     mBufCache.clear();
730 }
731 
updateCache() const732 void Parcel::updateCache() const {
733     if(mBufCachePos == mObjectsSize)
734         return;
735     LOG_BUFFER("updating cache from %zu to %zu", mBufCachePos, mObjectsSize);
736     for(size_t i = mBufCachePos; i < mObjectsSize; i++) {
737         binder_size_t dataPos = mObjects[i];
738         binder_buffer_object *obj =
739             reinterpret_cast<binder_buffer_object*>(mData+dataPos);
740         if(obj->hdr.type != BINDER_TYPE_PTR)
741             continue;
742         BufferInfo ifo;
743         ifo.index = i;
744         ifo.buffer = obj->buffer;
745         ifo.bufend = obj->buffer + obj->length;
746         mBufCache.push_back(ifo);
747     }
748     mBufCachePos = mObjectsSize;
749 }
750 
751 /* O(n) (n=#buffers) to find a buffer that contains the given addr */
findBuffer(const void * ptr,size_t length,bool * found,size_t * handle,size_t * offset) const752 status_t Parcel::findBuffer(const void *ptr, size_t length, bool *found,
753                         size_t *handle, size_t *offset) const {
754     if(found == nullptr)
755         return UNKNOWN_ERROR;
756     updateCache();
757     binder_uintptr_t ptrVal = reinterpret_cast<binder_uintptr_t>(ptr);
758     // true if the pointer is in some buffer, but the length is too big
759     // so that ptr + length doesn't fit into the buffer.
760     bool suspectRejectBadPointer = false;
761     LOG_BUFFER("findBuffer examining %zu objects.", mObjectsSize);
762     for(auto entry = mBufCache.rbegin(); entry != mBufCache.rend(); ++entry ) {
763         if(entry->buffer <= ptrVal && ptrVal < entry->bufend) {
764             // might have found it.
765             if(ptrVal + length <= entry->bufend) {
766                 *found = true;
767                 if(handle != nullptr) *handle = entry->index;
768                 if(offset != nullptr) *offset = ptrVal - entry->buffer;
769                 LOG_BUFFER("    findBuffer has a match at %zu!", entry->index);
770                 return OK;
771             } else {
772                 suspectRejectBadPointer = true;
773             }
774         }
775     }
776     LOG_BUFFER("findBuffer did not find for ptr = %p.", ptr);
777     *found = false;
778     return suspectRejectBadPointer ? BAD_VALUE : OK;
779 }
780 
781 /* findBuffer with the assumption that ptr = .buffer (so it points to top
782  * of the buffer, aka offset 0).
783  *  */
quickFindBuffer(const void * ptr,size_t * handle) const784 status_t Parcel::quickFindBuffer(const void *ptr, size_t *handle) const {
785     updateCache();
786     binder_uintptr_t ptrVal = reinterpret_cast<binder_uintptr_t>(ptr);
787     LOG_BUFFER("quickFindBuffer examining %zu objects.", mObjectsSize);
788     for(auto entry = mBufCache.rbegin(); entry != mBufCache.rend(); ++entry ) {
789         if(entry->buffer == ptrVal) {
790             if(handle != nullptr) *handle = entry->index;
791             return OK;
792         }
793     }
794     LOG_BUFFER("quickFindBuffer did not find for ptr = %p.", ptr);
795     return NO_INIT;
796 }
797 
writeNativeHandleNoDup(const native_handle_t * handle,bool embedded,size_t parent_buffer_handle,size_t parent_offset)798 status_t Parcel::writeNativeHandleNoDup(const native_handle_t *handle,
799                                         bool embedded,
800                                         size_t parent_buffer_handle,
801                                         size_t parent_offset)
802 {
803     size_t buffer_handle;
804     status_t status = OK;
805 
806     if (handle == nullptr) {
807         status = writeUint64(0);
808         return status;
809     }
810 
811     size_t native_handle_size = sizeof(native_handle_t)
812                 + handle->numFds * sizeof(int) + handle->numInts * sizeof(int);
813     writeUint64(native_handle_size);
814 
815     if (embedded) {
816         status = writeEmbeddedBuffer((void*) handle,
817                 native_handle_size, &buffer_handle,
818                 parent_buffer_handle, parent_offset);
819     } else {
820         status = writeBuffer((void*) handle, native_handle_size, &buffer_handle);
821     }
822 
823     if (status != OK) {
824         return status;
825     }
826 
827     struct binder_fd_array_object fd_array {
828         .hdr = { .type = BINDER_TYPE_FDA },
829         .num_fds = static_cast<binder_size_t>(handle->numFds),
830         .parent = buffer_handle,
831         .parent_offset = offsetof(native_handle_t, data),
832     };
833 
834     return writeObject(fd_array);
835 }
836 
writeNativeHandleNoDup(const native_handle_t * handle)837 status_t Parcel::writeNativeHandleNoDup(const native_handle_t *handle)
838 {
839     return writeNativeHandleNoDup(handle, false /* embedded */);
840 }
841 
writeEmbeddedNativeHandle(const native_handle_t * handle,size_t parent_buffer_handle,size_t parent_offset)842 status_t Parcel::writeEmbeddedNativeHandle(const native_handle_t *handle,
843                                            size_t parent_buffer_handle,
844                                            size_t parent_offset)
845 {
846     return writeNativeHandleNoDup(handle, true /* embedded */,
847                                   parent_buffer_handle, parent_offset);
848 }
849 
read(void * outData,size_t len) const850 status_t Parcel::read(void* outData, size_t len) const
851 {
852     if (len > INT32_MAX) {
853         // don't accept size_t values which may have come from an
854         // inadvertent conversion from a negative int.
855         return BAD_VALUE;
856     }
857 
858     if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
859             && len <= pad_size(len)) {
860         memcpy(outData, mData+mDataPos, len);
861         mDataPos += pad_size(len);
862         ALOGV("read Setting data pos of %p to %zu", this, mDataPos);
863         return NO_ERROR;
864     }
865     return NOT_ENOUGH_DATA;
866 }
867 
readInplace(size_t len) const868 const void* Parcel::readInplace(size_t len) const
869 {
870     if (len > INT32_MAX) {
871         // don't accept size_t values which may have come from an
872         // inadvertent conversion from a negative int.
873         return nullptr;
874     }
875 
876     if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
877             && len <= pad_size(len)) {
878         const void* data = mData+mDataPos;
879         mDataPos += pad_size(len);
880         ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos);
881         return data;
882     }
883     return nullptr;
884 }
885 
886 template<class T>
readAligned(T * pArg) const887 status_t Parcel::readAligned(T *pArg) const {
888     static_assert(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
889 
890     if ((mDataPos+sizeof(T)) <= mDataSize) {
891         const void* data = mData+mDataPos;
892         mDataPos += sizeof(T);
893         *pArg =  *reinterpret_cast<const T*>(data);
894         return NO_ERROR;
895     } else {
896         return NOT_ENOUGH_DATA;
897     }
898 }
899 
900 template<class T>
readAligned() const901 T Parcel::readAligned() const {
902     T result;
903     if (readAligned(&result) != NO_ERROR) {
904         result = 0;
905     }
906 
907     return result;
908 }
909 
910 template<class T>
writeAligned(T val)911 status_t Parcel::writeAligned(T val) {
912     static_assert(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
913 
914     if ((mDataPos+sizeof(val)) <= mDataCapacity) {
915 restart_write:
916         *reinterpret_cast<T*>(mData+mDataPos) = val;
917         return finishWrite(sizeof(val));
918     }
919 
920     status_t err = growData(sizeof(val));
921     if (err == NO_ERROR) goto restart_write;
922     return err;
923 }
924 
readInt8(int8_t * pArg) const925 status_t Parcel::readInt8(int8_t *pArg) const
926 {
927     return read(pArg, sizeof(*pArg));
928 }
929 
readUint8(uint8_t * pArg) const930 status_t Parcel::readUint8(uint8_t *pArg) const
931 {
932     return read(pArg, sizeof(*pArg));
933 }
934 
readInt16(int16_t * pArg) const935 status_t Parcel::readInt16(int16_t *pArg) const
936 {
937     return read(pArg, sizeof(*pArg));
938 }
939 
readUint16(uint16_t * pArg) const940 status_t Parcel::readUint16(uint16_t *pArg) const
941 {
942     return read(pArg, sizeof(*pArg));
943 }
944 
readInt32(int32_t * pArg) const945 status_t Parcel::readInt32(int32_t *pArg) const
946 {
947     return readAligned(pArg);
948 }
949 
readInt32() const950 int32_t Parcel::readInt32() const
951 {
952     return readAligned<int32_t>();
953 }
954 
readUint32(uint32_t * pArg) const955 status_t Parcel::readUint32(uint32_t *pArg) const
956 {
957     return readAligned(pArg);
958 }
959 
readUint32() const960 uint32_t Parcel::readUint32() const
961 {
962     return readAligned<uint32_t>();
963 }
964 
readInt64(int64_t * pArg) const965 status_t Parcel::readInt64(int64_t *pArg) const
966 {
967     return readAligned(pArg);
968 }
969 
readInt64() const970 int64_t Parcel::readInt64() const
971 {
972     return readAligned<int64_t>();
973 }
974 
readUint64(uint64_t * pArg) const975 status_t Parcel::readUint64(uint64_t *pArg) const
976 {
977     return readAligned(pArg);
978 }
979 
readUint64() const980 uint64_t Parcel::readUint64() const
981 {
982     return readAligned<uint64_t>();
983 }
984 
readPointer(uintptr_t * pArg) const985 status_t Parcel::readPointer(uintptr_t *pArg) const
986 {
987     status_t ret;
988     binder_uintptr_t ptr;
989     ret = readAligned(&ptr);
990     if (!ret)
991         *pArg = ptr;
992     return ret;
993 }
994 
readPointer() const995 uintptr_t Parcel::readPointer() const
996 {
997     return readAligned<binder_uintptr_t>();
998 }
999 
1000 
readFloat(float * pArg) const1001 status_t Parcel::readFloat(float *pArg) const
1002 {
1003     return readAligned(pArg);
1004 }
1005 
1006 
readFloat() const1007 float Parcel::readFloat() const
1008 {
1009     return readAligned<float>();
1010 }
1011 
1012 #if defined(__mips__) && defined(__mips_hard_float)
1013 
readDouble(double * pArg) const1014 status_t Parcel::readDouble(double *pArg) const
1015 {
1016     union {
1017       double d;
1018       unsigned long long ll;
1019     } u;
1020     u.d = 0;
1021     status_t status;
1022     status = readAligned(&u.ll);
1023     *pArg = u.d;
1024     return status;
1025 }
1026 
readDouble() const1027 double Parcel::readDouble() const
1028 {
1029     union {
1030       double d;
1031       unsigned long long ll;
1032     } u;
1033     u.ll = readAligned<unsigned long long>();
1034     return u.d;
1035 }
1036 
1037 #else
1038 
readDouble(double * pArg) const1039 status_t Parcel::readDouble(double *pArg) const
1040 {
1041     return readAligned(pArg);
1042 }
1043 
readDouble() const1044 double Parcel::readDouble() const
1045 {
1046     return readAligned<double>();
1047 }
1048 
1049 #endif
1050 
readBool(bool * pArg) const1051 status_t Parcel::readBool(bool *pArg) const
1052 {
1053     int8_t tmp;
1054     status_t ret = readInt8(&tmp);
1055     *pArg = (tmp != 0);
1056     return ret;
1057 }
1058 
readBool() const1059 bool Parcel::readBool() const
1060 {
1061     int8_t tmp;
1062     status_t err = readInt8(&tmp);
1063 
1064     if (err != OK) {
1065         return 0;
1066     }
1067 
1068     return tmp != 0;
1069 }
1070 
readCString() const1071 const char* Parcel::readCString() const
1072 {
1073     if (mDataPos < mDataSize) {
1074         const size_t avail = mDataSize-mDataPos;
1075         const char* str = reinterpret_cast<const char*>(mData+mDataPos);
1076         // is the string's trailing NUL within the parcel's valid bounds?
1077         const char* eos = reinterpret_cast<const char*>(memchr(str, 0, avail));
1078         if (eos) {
1079             const size_t len = eos - str;
1080             mDataPos += pad_size(len+1);
1081             ALOGV("readCString Setting data pos of %p to %zu", this, mDataPos);
1082             return str;
1083         }
1084     }
1085     return nullptr;
1086 }
readString16() const1087 String16 Parcel::readString16() const
1088 {
1089     size_t len;
1090     const char16_t* str = readString16Inplace(&len);
1091     if (str) return String16(str, len);
1092     ALOGE("Reading a NULL string not supported here.");
1093     return String16();
1094 }
1095 
readString16(std::unique_ptr<String16> * pArg) const1096 status_t Parcel::readString16(std::unique_ptr<String16>* pArg) const
1097 {
1098     const int32_t start = dataPosition();
1099     int32_t size;
1100     status_t status = readInt32(&size);
1101     pArg->reset();
1102 
1103     if (status != OK || size < 0) {
1104         return status;
1105     }
1106 
1107     setDataPosition(start);
1108     pArg->reset(new (std::nothrow) String16());
1109 
1110     status = readString16(pArg->get());
1111 
1112     if (status != OK) {
1113         pArg->reset();
1114     }
1115 
1116     return status;
1117 }
1118 
readString16(String16 * pArg) const1119 status_t Parcel::readString16(String16* pArg) const
1120 {
1121     size_t len;
1122     const char16_t* str = readString16Inplace(&len);
1123     if (str) {
1124         pArg->setTo(str, len);
1125         return 0;
1126     } else {
1127         *pArg = String16();
1128         return UNEXPECTED_NULL;
1129     }
1130 }
1131 
readString16Inplace(size_t * outLen) const1132 const char16_t* Parcel::readString16Inplace(size_t* outLen) const
1133 {
1134     int32_t size = readInt32();
1135     // watch for potential int overflow from size+1
1136     if (size >= 0 && size < INT32_MAX) {
1137         *outLen = size;
1138         const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t));
1139         if (str != nullptr) {
1140             return str;
1141         }
1142     }
1143     *outLen = 0;
1144     return nullptr;
1145 }
readStrongBinder(sp<IBinder> * val) const1146 status_t Parcel::readStrongBinder(sp<IBinder>* val) const
1147 {
1148     status_t status = readNullableStrongBinder(val);
1149     if (status == OK && !val->get()) {
1150         status = UNEXPECTED_NULL;
1151     }
1152     return status;
1153 }
1154 
readNullableStrongBinder(sp<IBinder> * val) const1155 status_t Parcel::readNullableStrongBinder(sp<IBinder>* val) const
1156 {
1157     return unflatten_binder(ProcessState::self(), *this, val);
1158 }
1159 
readStrongBinder() const1160 sp<IBinder> Parcel::readStrongBinder() const
1161 {
1162     sp<IBinder> val;
1163     // Note that a lot of code in Android reads binders by hand with this
1164     // method, and that code has historically been ok with getting nullptr
1165     // back (while ignoring error codes).
1166     readNullableStrongBinder(&val);
1167     return val;
1168 }
1169 
1170 template<typename T>
readObject(size_t * objects_offset) const1171 const T* Parcel::readObject(size_t *objects_offset) const
1172 {
1173     const size_t DPOS = mDataPos;
1174     if (objects_offset != nullptr) {
1175         *objects_offset = 0;
1176     }
1177 
1178     if ((DPOS+sizeof(T)) <= mDataSize) {
1179         const T* obj = reinterpret_cast<const T*>(mData+DPOS);
1180         mDataPos = DPOS + sizeof(T);
1181         const binder_object_header *hdr = reinterpret_cast<const binder_object_header*>(obj);
1182         switch (hdr->type) {
1183             case BINDER_TYPE_BINDER:
1184             case BINDER_TYPE_WEAK_BINDER:
1185             case BINDER_TYPE_HANDLE:
1186             case BINDER_TYPE_WEAK_HANDLE: {
1187                 const flat_binder_object *flat_obj =
1188                     reinterpret_cast<const flat_binder_object*>(hdr);
1189                 if (flat_obj->cookie == 0 && flat_obj->binder == 0) {
1190                     // When transferring a NULL binder object, we don't write it into
1191                     // the object list, so we don't want to check for it when
1192                     // reading.
1193                     ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
1194                     return obj;
1195                 }
1196                 break;
1197             }
1198             case BINDER_TYPE_FD:
1199             case BINDER_TYPE_FDA:
1200                 // fd (-arrays) must always appear in the meta-data list (eg touched by the kernel)
1201                 break;
1202             case BINDER_TYPE_PTR: {
1203                 const binder_buffer_object *buffer_obj =
1204                     reinterpret_cast<const binder_buffer_object*>(hdr);
1205                 if ((void *)buffer_obj->buffer == nullptr) {
1206                     // null pointers can be returned directly - they're not written in the
1207                     // object list. All non-null buffers must appear in the objects list.
1208                     return obj;
1209                 }
1210                 break;
1211             }
1212         }
1213         // Ensure that this object is valid...
1214         binder_size_t* const OBJS = mObjects;
1215         const size_t N = mObjectsSize;
1216         size_t opos = mNextObjectHint;
1217 
1218         if (N > 0) {
1219             ALOGV("Parcel %p looking for obj at %zu, hint=%zu",
1220                  this, DPOS, opos);
1221 
1222             // Start at the current hint position, looking for an object at
1223             // the current data position.
1224             if (opos < N) {
1225                 while (opos < (N-1) && OBJS[opos] < DPOS) {
1226                     opos++;
1227                 }
1228             } else {
1229                 opos = N-1;
1230             }
1231             if (OBJS[opos] == DPOS) {
1232                 // Found it!
1233                 ALOGV("Parcel %p found obj %zu at index %zu with forward search",
1234                      this, DPOS, opos);
1235                 mNextObjectHint = opos+1;
1236                 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
1237                 if (objects_offset != nullptr) {
1238                     *objects_offset = opos;
1239                 }
1240                 return obj;
1241             }
1242 
1243             // Look backwards for it...
1244             while (opos > 0 && OBJS[opos] > DPOS) {
1245                 opos--;
1246             }
1247             if (OBJS[opos] == DPOS) {
1248                 // Found it!
1249                 ALOGV("Parcel %p found obj %zu at index %zu with backward search",
1250                      this, DPOS, opos);
1251                 mNextObjectHint = opos+1;
1252                 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
1253                 if (objects_offset != nullptr) {
1254                     *objects_offset = opos;
1255                 }
1256                 return obj;
1257             }
1258         }
1259         ALOGW("Attempt to read object from Parcel %p at offset %zu that is not in the object list",
1260              this, DPOS);
1261     }
1262     return nullptr;
1263 }
1264 
1265 template const flat_binder_object* Parcel::readObject<flat_binder_object>(size_t *objects_offset) const;
1266 
1267 template const binder_fd_object* Parcel::readObject<binder_fd_object>(size_t *objects_offset) const;
1268 
1269 template const binder_buffer_object* Parcel::readObject<binder_buffer_object>(size_t *objects_offset) const;
1270 
1271 template const binder_fd_array_object* Parcel::readObject<binder_fd_array_object>(size_t *objects_offset) const;
1272 
verifyBufferObject(const binder_buffer_object * buffer_obj,size_t size,uint32_t flags,size_t parent,size_t parentOffset) const1273 bool Parcel::verifyBufferObject(const binder_buffer_object *buffer_obj,
1274                                 size_t size, uint32_t flags, size_t parent,
1275                                 size_t parentOffset) const {
1276     if (buffer_obj->length != size) {
1277         ALOGE("Buffer length %" PRIu64 " does not match expected size %zu.",
1278               static_cast<uint64_t>(buffer_obj->length), size);
1279         return false;
1280     }
1281 
1282     if (buffer_obj->flags != flags) {
1283         ALOGE("Buffer flags 0x%02X do not match expected flags 0x%02X.", buffer_obj->flags, flags);
1284         return false;
1285     }
1286 
1287     if (flags & BINDER_BUFFER_FLAG_HAS_PARENT) {
1288         if (buffer_obj->parent != parent) {
1289             ALOGE("Buffer parent %" PRIu64 " does not match expected parent %zu.",
1290                   static_cast<uint64_t>(buffer_obj->parent), parent);
1291             return false;
1292         }
1293         if (buffer_obj->parent_offset != parentOffset) {
1294             ALOGE("Buffer parent offset %" PRIu64 " does not match expected offset %zu.",
1295                   static_cast<uint64_t>(buffer_obj->parent_offset), parentOffset);
1296             return false;
1297         }
1298 
1299         // checked by kernel driver, but needed for fuzzer
1300         if (parent >= mObjectsSize) {
1301             ALOGE("Parent index %zu but only have %zu objects", parent, mObjectsSize);
1302             return false;
1303         }
1304 
1305         binder_buffer_object *parentBuffer =
1306             reinterpret_cast<binder_buffer_object*>(mData + mObjects[parent]);
1307         void* bufferInParent = *reinterpret_cast<void**>(
1308             reinterpret_cast<uint8_t*>(parentBuffer->buffer) + parentOffset);
1309         void* childBuffer = reinterpret_cast<void*>(buffer_obj->buffer);
1310 
1311         if (bufferInParent != childBuffer) {
1312               ALOGE("Buffer in parent %p differs from embedded buffer %p",
1313                     bufferInParent, childBuffer);
1314               android_errorWriteLog(0x534e4554, "179289794");
1315               return false;
1316         }
1317     }
1318 
1319     return true;
1320 }
1321 
readBuffer(size_t buffer_size,size_t * buffer_handle,uint32_t flags,size_t parent,size_t parentOffset,const void ** buffer_out) const1322 status_t Parcel::readBuffer(size_t buffer_size, size_t *buffer_handle,
1323                             uint32_t flags, size_t parent, size_t parentOffset,
1324                             const void **buffer_out) const {
1325 
1326     const binder_buffer_object* buffer_obj = readObject<binder_buffer_object>(buffer_handle);
1327 
1328     if (buffer_obj == nullptr || buffer_obj->hdr.type != BINDER_TYPE_PTR) {
1329         return BAD_VALUE;
1330     }
1331 
1332     if (!verifyBufferObject(buffer_obj, buffer_size, flags, parent, parentOffset)) {
1333         return BAD_VALUE;
1334     }
1335 
1336     // in read side, always use .buffer and .length.
1337     *buffer_out = reinterpret_cast<void*>(buffer_obj->buffer);
1338 
1339     return OK;
1340 }
1341 
readNullableBuffer(size_t buffer_size,size_t * buffer_handle,const void ** buffer_out) const1342 status_t Parcel::readNullableBuffer(size_t buffer_size, size_t *buffer_handle,
1343                                     const void **buffer_out) const
1344 {
1345     return readBuffer(buffer_size, buffer_handle,
1346                       0 /* flags */, 0 /* parent */, 0 /* parentOffset */,
1347                       buffer_out);
1348 }
1349 
readBuffer(size_t buffer_size,size_t * buffer_handle,const void ** buffer_out) const1350 status_t Parcel::readBuffer(size_t buffer_size, size_t *buffer_handle,
1351                             const void **buffer_out) const
1352 {
1353     status_t status = readNullableBuffer(buffer_size, buffer_handle, buffer_out);
1354     if (status == OK && *buffer_out == nullptr) {
1355         return UNEXPECTED_NULL;
1356     }
1357     return status;
1358 }
1359 
1360 
readEmbeddedBuffer(size_t buffer_size,size_t * buffer_handle,size_t parent_buffer_handle,size_t parent_offset,const void ** buffer_out) const1361 status_t Parcel::readEmbeddedBuffer(size_t buffer_size,
1362                                     size_t *buffer_handle,
1363                                     size_t parent_buffer_handle,
1364                                     size_t parent_offset,
1365                                     const void **buffer_out) const
1366 {
1367     status_t status = readNullableEmbeddedBuffer(buffer_size, buffer_handle,
1368                                                  parent_buffer_handle,
1369                                                  parent_offset, buffer_out);
1370     if (status == OK && *buffer_out == nullptr) {
1371         return UNEXPECTED_NULL;
1372     }
1373     return status;
1374 }
1375 
readNullableEmbeddedBuffer(size_t buffer_size,size_t * buffer_handle,size_t parent_buffer_handle,size_t parent_offset,const void ** buffer_out) const1376 status_t Parcel::readNullableEmbeddedBuffer(size_t buffer_size,
1377                                             size_t *buffer_handle,
1378                                             size_t parent_buffer_handle,
1379                                             size_t parent_offset,
1380                                             const void **buffer_out) const
1381 {
1382     return readBuffer(buffer_size, buffer_handle, BINDER_BUFFER_FLAG_HAS_PARENT,
1383                       parent_buffer_handle, parent_offset, buffer_out);
1384 }
1385 
readEmbeddedNativeHandle(size_t parent_buffer_handle,size_t parent_offset,const native_handle_t ** handle) const1386 status_t Parcel::readEmbeddedNativeHandle(size_t parent_buffer_handle,
1387                                           size_t parent_offset,
1388                                           const native_handle_t **handle) const
1389 {
1390     status_t status = readNullableEmbeddedNativeHandle(parent_buffer_handle, parent_offset, handle);
1391     if (status == OK && *handle == nullptr) {
1392         return UNEXPECTED_NULL;
1393     }
1394     return status;
1395 }
1396 
readNullableNativeHandleNoDup(const native_handle_t ** handle,bool embedded,size_t parent_buffer_handle,size_t parent_offset) const1397 status_t Parcel::readNullableNativeHandleNoDup(const native_handle_t **handle,
1398                                                bool embedded,
1399                                                size_t parent_buffer_handle,
1400                                                size_t parent_offset) const
1401 {
1402     uint64_t nativeHandleSize;
1403     status_t status = readUint64(&nativeHandleSize);
1404     if (status != OK) {
1405         return BAD_VALUE;
1406     }
1407 
1408     if (nativeHandleSize == 0) {
1409         // If !embedded, then parent_* vars are 0 and don't actually correspond
1410         // to anything. In that case, we're actually reading this data into
1411         // writable memory, and the handle returned from here will actually be
1412         // used (rather than be ignored).
1413         if (embedded) {
1414             if(!validateBufferParent(parent_buffer_handle, parent_offset)) {
1415                 ALOGE("Buffer in parent %zu offset %zu invalid.", parent_buffer_handle, parent_offset);
1416                 return BAD_VALUE;
1417             }
1418 
1419             binder_buffer_object *parentBuffer =
1420                 reinterpret_cast<binder_buffer_object*>(mData + mObjects[parent_buffer_handle]);
1421 
1422             void* bufferInParent = *reinterpret_cast<void**>(
1423                 reinterpret_cast<uint8_t*>(parentBuffer->buffer) + parent_offset);
1424 
1425             if (bufferInParent != nullptr) {
1426                   ALOGE("Buffer in (handle) parent %p is not nullptr.", bufferInParent);
1427                   android_errorWriteLog(0x534e4554, "179289794");
1428                   return BAD_VALUE;
1429             }
1430         }
1431 
1432         *handle = nullptr;
1433         return status;
1434     }
1435 
1436     if (nativeHandleSize < sizeof(native_handle_t) || nativeHandleSize > std::numeric_limits<uint32_t>::max()) {
1437         ALOGE("Invalid native_handle_t size: %" PRIu64, nativeHandleSize);
1438         return BAD_VALUE;
1439     }
1440 
1441     size_t fdaParent;
1442     if (embedded) {
1443         status = readNullableEmbeddedBuffer(nativeHandleSize, &fdaParent,
1444                                             parent_buffer_handle, parent_offset,
1445                                             reinterpret_cast<const void**>(handle));
1446     } else {
1447         status = readNullableBuffer(nativeHandleSize, &fdaParent,
1448                                     reinterpret_cast<const void**>(handle));
1449     }
1450 
1451     if (status != OK) {
1452         return status;
1453     }
1454 
1455     if (*handle == nullptr) {
1456         // null handle already read above
1457         ALOGE("Expecting non-null handle buffer");
1458         return BAD_VALUE;
1459     }
1460 
1461     int numFds = (*handle)->numFds;
1462     int numInts = (*handle)->numInts;
1463 
1464     if (numFds < 0 || numFds > NATIVE_HANDLE_MAX_FDS) {
1465         ALOGE("Received native_handle with invalid number of fds.");
1466         return BAD_VALUE;
1467     }
1468 
1469     if (numInts < 0 || numInts > NATIVE_HANDLE_MAX_INTS) {
1470         ALOGE("Received native_handle with invalid number of ints.");
1471         return BAD_VALUE;
1472     }
1473 
1474     if (nativeHandleSize != (sizeof(native_handle_t) + ((numFds + numInts) * sizeof(int)))) {
1475         ALOGE("Size of native_handle doesn't match.");
1476         return BAD_VALUE;
1477     }
1478 
1479     const binder_fd_array_object* fd_array_obj = readObject<binder_fd_array_object>();
1480 
1481     if (fd_array_obj == nullptr || fd_array_obj->hdr.type != BINDER_TYPE_FDA) {
1482         ALOGE("Can't find file-descriptor array object.");
1483         return BAD_VALUE;
1484     }
1485 
1486     if (static_cast<int>(fd_array_obj->num_fds) != numFds) {
1487         ALOGE("Number of native handles does not match.");
1488         return BAD_VALUE;
1489     }
1490 
1491     if (fd_array_obj->parent != fdaParent) {
1492         ALOGE("Parent handle of file-descriptor array not correct.");
1493         return BAD_VALUE;
1494     }
1495 
1496     if (fd_array_obj->parent_offset != offsetof(native_handle_t, data)) {
1497         ALOGE("FD array object not properly offset in parent.");
1498         return BAD_VALUE;
1499     }
1500 
1501     return OK;
1502 }
1503 
readNullableEmbeddedNativeHandle(size_t parent_buffer_handle,size_t parent_offset,const native_handle_t ** handle) const1504 status_t Parcel::readNullableEmbeddedNativeHandle(size_t parent_buffer_handle,
1505                                                   size_t parent_offset,
1506                                                   const native_handle_t **handle) const
1507 {
1508     return readNullableNativeHandleNoDup(handle, true /* embedded */, parent_buffer_handle,
1509                                          parent_offset);
1510 }
1511 
readNativeHandleNoDup(const native_handle_t ** handle) const1512 status_t Parcel::readNativeHandleNoDup(const native_handle_t **handle) const
1513 {
1514     status_t status = readNullableNativeHandleNoDup(handle);
1515     if (status == OK && *handle == nullptr) {
1516         return UNEXPECTED_NULL;
1517     }
1518     return status;
1519 }
1520 
readNullableNativeHandleNoDup(const native_handle_t ** handle) const1521 status_t Parcel::readNullableNativeHandleNoDup(const native_handle_t **handle) const
1522 {
1523     return readNullableNativeHandleNoDup(handle, false /* embedded */);
1524 }
1525 
closeFileDescriptors()1526 void Parcel::closeFileDescriptors()
1527 {
1528     size_t i = mObjectsSize;
1529     if (i > 0) {
1530         //ALOGI("Closing file descriptors for %zu objects...", i);
1531     }
1532     while (i > 0) {
1533         i--;
1534         const flat_binder_object* flat
1535             = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
1536         if (flat->hdr.type == BINDER_TYPE_FD) {
1537             //ALOGI("Closing fd: %ld", flat->handle);
1538             close(flat->handle);
1539         }
1540     }
1541 }
1542 
ipcData() const1543 uintptr_t Parcel::ipcData() const
1544 {
1545     return reinterpret_cast<uintptr_t>(mData);
1546 }
1547 
ipcDataSize() const1548 size_t Parcel::ipcDataSize() const
1549 {
1550     return mDataSize > mDataPos ? mDataSize : mDataPos;
1551 }
1552 
ipcObjects() const1553 uintptr_t Parcel::ipcObjects() const
1554 {
1555     return reinterpret_cast<uintptr_t>(mObjects);
1556 }
1557 
ipcObjectsCount() const1558 size_t Parcel::ipcObjectsCount() const
1559 {
1560     return mObjectsSize;
1561 }
1562 
1563 #define BUFFER_ALIGNMENT_BYTES 8
ipcBufferSize() const1564 size_t Parcel::ipcBufferSize() const
1565 {
1566     size_t totalBuffersSize = 0;
1567     // Add size for BINDER_TYPE_PTR
1568     size_t i = mObjectsSize;
1569     while (i > 0) {
1570         i--;
1571         const binder_buffer_object* buffer
1572             = reinterpret_cast<binder_buffer_object*>(mData+mObjects[i]);
1573         if (buffer->hdr.type == BINDER_TYPE_PTR) {
1574             /* The binder kernel driver requires each buffer to be 8-byte
1575              * aligned */
1576             size_t alignedSize = (buffer->length + (BUFFER_ALIGNMENT_BYTES - 1))
1577                     & ~(BUFFER_ALIGNMENT_BYTES - 1);
1578             if (alignedSize > SIZE_MAX - totalBuffersSize) {
1579                 ALOGE("ipcBuffersSize(): invalid buffer sizes.");
1580                 return 0;
1581             }
1582             totalBuffersSize += alignedSize;
1583         }
1584     }
1585     return totalBuffersSize;
1586 }
1587 
ipcSetDataReference(const uint8_t * data,size_t dataSize,const binder_size_t * objects,size_t objectsCount,release_func relFunc,void * relCookie)1588 void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,
1589     const binder_size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie)
1590 {
1591     binder_size_t minOffset = 0;
1592     freeDataNoInit();
1593     mError = NO_ERROR;
1594     mData = const_cast<uint8_t*>(data);
1595     mDataSize = mDataCapacity = dataSize;
1596     //ALOGI("setDataReference Setting data size of %p to %lu (pid=%d)", this, mDataSize, getpid());
1597     mDataPos = 0;
1598     ALOGV("setDataReference Setting data pos of %p to %zu", this, mDataPos);
1599     mObjects = const_cast<binder_size_t*>(objects);
1600     mObjectsSize = mObjectsCapacity = objectsCount;
1601     mNextObjectHint = 0;
1602     clearCache();
1603     mOwner = relFunc;
1604     mOwnerCookie = relCookie;
1605     for (size_t i = 0; i < mObjectsSize; i++) {
1606         binder_size_t offset = mObjects[i];
1607         if (offset < minOffset) {
1608             ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n",
1609                   __func__, (uint64_t)offset, (uint64_t)minOffset);
1610             mObjectsSize = 0;
1611             break;
1612         }
1613         minOffset = offset + sizeof(flat_binder_object);
1614     }
1615     scanForFds();
1616 }
1617 
print(TextOutput & to,uint32_t) const1618 void Parcel::print(TextOutput& to, uint32_t /*flags*/) const
1619 {
1620     to << "Parcel(";
1621 
1622     if (errorCheck() != NO_ERROR) {
1623         const status_t err = errorCheck();
1624         to << "Error: " << (void*)(intptr_t)err << " \"" << strerror(-err) << "\"";
1625     } else if (dataSize() > 0) {
1626         const uint8_t* DATA = data();
1627         to << indent << HexDump(DATA, dataSize()) << dedent;
1628         const binder_size_t* OBJS = objects();
1629         const size_t N = objectsCount();
1630         for (size_t i=0; i<N; i++) {
1631             const flat_binder_object* flat
1632                 = reinterpret_cast<const flat_binder_object*>(DATA+OBJS[i]);
1633             if (flat->hdr.type == BINDER_TYPE_PTR) {
1634                 const binder_buffer_object* buffer
1635                     = reinterpret_cast<const binder_buffer_object*>(DATA+OBJS[i]);
1636                 HexDump bufferDump((const uint8_t*)buffer->buffer, (size_t)buffer->length);
1637                 bufferDump.setSingleLineCutoff(0);
1638                 to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << " (buffer size " << buffer->length << "):";
1639                 to << indent << bufferDump << dedent;
1640             } else {
1641                 to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": "
1642                     << TypeCode(flat->hdr.type & 0x7f7f7f00)
1643                     << " = " << flat->binder;
1644             }
1645         }
1646     } else {
1647         to << "NULL";
1648     }
1649 
1650     to << ")";
1651 }
1652 
releaseObjects()1653 void Parcel::releaseObjects()
1654 {
1655     const sp<ProcessState> proc(ProcessState::self());
1656     size_t i = mObjectsSize;
1657     uint8_t* const data = mData;
1658     binder_size_t* const objects = mObjects;
1659     while (i > 0) {
1660         i--;
1661         const flat_binder_object* flat
1662             = reinterpret_cast<flat_binder_object*>(data+objects[i]);
1663         release_object(proc, *flat, this);
1664     }
1665 }
1666 
acquireObjects()1667 void Parcel::acquireObjects()
1668 {
1669     const sp<ProcessState> proc(ProcessState::self());
1670     size_t i = mObjectsSize;
1671     uint8_t* const data = mData;
1672     binder_size_t* const objects = mObjects;
1673     while (i > 0) {
1674         i--;
1675         const binder_object_header* flat
1676             = reinterpret_cast<binder_object_header*>(data+objects[i]);
1677         acquire_object(proc, *flat, this);
1678     }
1679 }
1680 
freeData()1681 void Parcel::freeData()
1682 {
1683     freeDataNoInit();
1684     initState();
1685 }
1686 
freeDataNoInit()1687 void Parcel::freeDataNoInit()
1688 {
1689     if (mOwner) {
1690         LOG_ALLOC("Parcel %p: freeing other owner data", this);
1691         //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
1692         mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
1693     } else {
1694         LOG_ALLOC("Parcel %p: freeing allocated data", this);
1695         releaseObjects();
1696         if (mData) {
1697             LOG_ALLOC("Parcel %p: freeing with %zu capacity", this, mDataCapacity);
1698             gParcelGlobalAllocSize -= mDataCapacity;
1699             gParcelGlobalAllocCount--;
1700             if (mDeallocZero) {
1701                 zeroMemory(mData, mDataSize);
1702             }
1703             free(mData);
1704         }
1705         if (mObjects) free(mObjects);
1706     }
1707 }
1708 
growData(size_t len)1709 status_t Parcel::growData(size_t len)
1710 {
1711     if (len > INT32_MAX) {
1712         // don't accept size_t values which may have come from an
1713         // inadvertent conversion from a negative int.
1714         return BAD_VALUE;
1715     }
1716     if (len > SIZE_MAX - mDataSize) return NO_MEMORY; // overflow
1717     if (mDataSize + len > SIZE_MAX / 3) return NO_MEMORY; // overflow
1718     size_t newSize = ((mDataSize+len)*3)/2;
1719     return continueWrite(newSize);
1720 }
1721 
reallocZeroFree(uint8_t * data,size_t oldCapacity,size_t newCapacity,bool zero)1722 static uint8_t* reallocZeroFree(uint8_t* data, size_t oldCapacity, size_t newCapacity, bool zero) {
1723     if (!zero) {
1724         return (uint8_t*)realloc(data, newCapacity);
1725     }
1726     uint8_t* newData = (uint8_t*)malloc(newCapacity);
1727     if (!newData) {
1728         return nullptr;
1729     }
1730 
1731     memcpy(newData, data, std::min(oldCapacity, newCapacity));
1732     zeroMemory(data, oldCapacity);
1733     free(data);
1734     return newData;
1735 }
1736 
continueWrite(size_t desired)1737 status_t Parcel::continueWrite(size_t desired)
1738 {
1739     if (desired > INT32_MAX) {
1740         // don't accept size_t values which may have come from an
1741         // inadvertent conversion from a negative int.
1742         return BAD_VALUE;
1743     }
1744 
1745     // If shrinking, first adjust for any objects that appear
1746     // after the new data size.
1747     size_t objectsSize = mObjectsSize;
1748     if (desired < mDataSize) {
1749         if (desired == 0) {
1750             objectsSize = 0;
1751         } else {
1752             while (objectsSize > 0) {
1753                 if (mObjects[objectsSize-1] < desired)
1754                     break;
1755                 objectsSize--;
1756             }
1757         }
1758     }
1759 
1760     if (mOwner) {
1761         // If the size is going to zero, just release the owner's data.
1762         if (desired == 0) {
1763             freeData();
1764             return NO_ERROR;
1765         }
1766 
1767         // If there is a different owner, we need to take
1768         // posession.
1769         uint8_t* data = (uint8_t*)malloc(desired);
1770         if (!data) {
1771             mError = NO_MEMORY;
1772             return NO_MEMORY;
1773         }
1774         binder_size_t* objects = nullptr;
1775 
1776         if (objectsSize) {
1777             objects = (binder_size_t*)calloc(objectsSize, sizeof(binder_size_t));
1778             if (!objects) {
1779                 free(data);
1780 
1781                 mError = NO_MEMORY;
1782                 return NO_MEMORY;
1783             }
1784 
1785             // Little hack to only acquire references on objects
1786             // we will be keeping.
1787             size_t oldObjectsSize = mObjectsSize;
1788             mObjectsSize = objectsSize;
1789             acquireObjects();
1790             mObjectsSize = oldObjectsSize;
1791         }
1792 
1793         if (mData) {
1794             memcpy(data, mData, mDataSize < desired ? mDataSize : desired);
1795         }
1796         if (objects && mObjects) {
1797             memcpy(objects, mObjects, objectsSize*sizeof(binder_size_t));
1798         }
1799         //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
1800         mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
1801         mOwner = nullptr;
1802 
1803         LOG_ALLOC("Parcel %p: taking ownership of %zu capacity", this, desired);
1804         gParcelGlobalAllocSize += desired;
1805         gParcelGlobalAllocCount++;
1806 
1807         mData = data;
1808         mObjects = objects;
1809         mDataSize = (mDataSize < desired) ? mDataSize : desired;
1810         ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
1811         mDataCapacity = desired;
1812         mObjectsSize = mObjectsCapacity = objectsSize;
1813         mNextObjectHint = 0;
1814 
1815         clearCache();
1816     } else if (mData) {
1817         if (objectsSize < mObjectsSize) {
1818             // Need to release refs on any objects we are dropping.
1819             const sp<ProcessState> proc(ProcessState::self());
1820             for (size_t i=objectsSize; i<mObjectsSize; i++) {
1821                 const flat_binder_object* flat
1822                     = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
1823                 if (flat->hdr.type == BINDER_TYPE_FD) {
1824                     // will need to rescan because we may have lopped off the only FDs
1825                     mFdsKnown = false;
1826                 }
1827                 release_object(proc, *flat, this);
1828             }
1829 
1830             if (objectsSize == 0) {
1831                 free(mObjects);
1832                 mObjects = nullptr;
1833             } else {
1834                 binder_size_t* objects =
1835                     (binder_size_t*)realloc(mObjects, objectsSize*sizeof(binder_size_t));
1836                 if (objects) {
1837                     mObjects = objects;
1838                 }
1839             }
1840             mObjectsSize = objectsSize;
1841             mNextObjectHint = 0;
1842 
1843             clearCache();
1844         }
1845 
1846         // We own the data, so we can just do a realloc().
1847         if (desired > mDataCapacity) {
1848             uint8_t* data = reallocZeroFree(mData, mDataCapacity, desired, mDeallocZero);
1849             if (data) {
1850                 LOG_ALLOC("Parcel %p: continue from %zu to %zu capacity", this, mDataCapacity,
1851                         desired);
1852                 gParcelGlobalAllocSize += desired;
1853                 gParcelGlobalAllocSize -= mDataCapacity;
1854                 mData = data;
1855                 mDataCapacity = desired;
1856             } else {
1857                 mError = NO_MEMORY;
1858                 return NO_MEMORY;
1859             }
1860         } else {
1861             if (mDataSize > desired) {
1862                 mDataSize = desired;
1863                 ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
1864             }
1865             if (mDataPos > desired) {
1866                 mDataPos = desired;
1867                 ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
1868             }
1869         }
1870 
1871     } else {
1872         // This is the first data.  Easy!
1873         uint8_t* data = (uint8_t*)malloc(desired);
1874         if (!data) {
1875             mError = NO_MEMORY;
1876             return NO_MEMORY;
1877         }
1878 
1879         if(!(mDataCapacity == 0 && mObjects == nullptr
1880              && mObjectsCapacity == 0)) {
1881             ALOGE("continueWrite: %zu/%p/%zu/%zu", mDataCapacity, mObjects, mObjectsCapacity, desired);
1882         }
1883 
1884         LOG_ALLOC("Parcel %p: allocating with %zu capacity", this, desired);
1885         gParcelGlobalAllocSize += desired;
1886         gParcelGlobalAllocCount++;
1887 
1888         mData = data;
1889         mDataSize = mDataPos = 0;
1890         ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
1891         ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
1892         mDataCapacity = desired;
1893     }
1894 
1895     return NO_ERROR;
1896 }
1897 
initState()1898 void Parcel::initState()
1899 {
1900     LOG_ALLOC("Parcel %p: initState", this);
1901     mError = NO_ERROR;
1902     mData = nullptr;
1903     mDataSize = 0;
1904     mDataCapacity = 0;
1905     mDataPos = 0;
1906     ALOGV("initState Setting data size of %p to %zu", this, mDataSize);
1907     ALOGV("initState Setting data pos of %p to %zu", this, mDataPos);
1908     mObjects = nullptr;
1909     mObjectsSize = 0;
1910     mObjectsCapacity = 0;
1911     mNextObjectHint = 0;
1912     mHasFds = false;
1913     mFdsKnown = true;
1914     mAllowFds = true;
1915     mDeallocZero = false;
1916     mOwner = nullptr;
1917     clearCache();
1918 
1919     // racing multiple init leads only to multiple identical write
1920     if (gMaxFds == 0) {
1921         struct rlimit result;
1922         if (!getrlimit(RLIMIT_NOFILE, &result)) {
1923             gMaxFds = (size_t)result.rlim_cur;
1924             //ALOGI("parcel fd limit set to %zu", gMaxFds);
1925         } else {
1926             ALOGW("Unable to getrlimit: %s", strerror(errno));
1927             gMaxFds = 1024;
1928         }
1929     }
1930 }
1931 
scanForFds() const1932 void Parcel::scanForFds() const
1933 {
1934     bool hasFds = false;
1935     for (size_t i=0; i<mObjectsSize; i++) {
1936         const flat_binder_object* flat
1937             = reinterpret_cast<const flat_binder_object*>(mData + mObjects[i]);
1938         if (flat->hdr.type == BINDER_TYPE_FD) {
1939             hasFds = true;
1940             break;
1941         }
1942     }
1943     mHasFds = hasFds;
1944     mFdsKnown = true;
1945 }
1946 
1947 } // namespace hardware
1948 } // namespace android
1949