1 // Copyright 2010 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4 
5 // This C program generates the file cmplxdivide1.go. It uses the
6 // output of the operations by C99 as the reference to check
7 // the implementation of complex numbers in Go.
8 // The generated file, cmplxdivide1.go, is compiled along
9 // with the driver cmplxdivide.go (the names are confusing
10 // and unimaginative) to run the actual test. This is done by
11 // the usual test runner.
12 //
13 // The file cmplxdivide1.go is checked in to the repository, but
14 // if it needs to be regenerated, compile and run this C program
15 // like this:
16 //	gcc '-std=c99' cmplxdivide.c && a.out >cmplxdivide1.go
17 
18 #include <complex.h>
19 #include <math.h>
20 #include <stdio.h>
21 #include <string.h>
22 
23 #define nelem(x) (sizeof(x)/sizeof((x)[0]))
24 
25 double f[] = {
26 	0.0,
27 	-0.0,
28 	1.0,
29 	-1.0,
30 	2.0,
31 	NAN,
32 	INFINITY,
33 	-INFINITY,
34 };
35 
fmt(double g)36 char* fmt(double g) {
37 	static char buf[10][30];
38 	static int n;
39 	char *p;
40 
41 	p = buf[n++];
42 	if(n == 10) {
43 		n = 0;
44 	}
45 
46 	sprintf(p, "%g", g);
47 
48 	if(strcmp(p, "0") == 0) {
49 		strcpy(p, "zero");
50 		return p;
51 	}
52 
53 	if(strcmp(p, "-0") == 0) {
54 		strcpy(p, "-zero");
55 		return p;
56 	}
57 
58 	return p;
59 }
60 
main(void)61 int main(void) {
62 	int i, j, k, l;
63 	double complex n, d, q;
64 
65 	printf("// skip\n");
66 	printf("// # generated by cmplxdivide.c\n");
67 	printf("\n");
68 	printf("package main\n");
69 	printf("\n");
70 	printf("import \"math\"\n");
71 	printf("\n");
72 	printf("var (\n");
73 	printf("\tnan     = math.NaN()\n");
74 	printf("\tinf     = math.Inf(1)\n");
75 	printf("\tzero    = 0.0\n");
76 	printf(")\n");
77 	printf("\n");
78 	printf("var tests = []struct {\n");
79 	printf("\tf, g complex128\n");
80 	printf("\tout  complex128\n");
81 	printf("}{\n");
82 
83 	for(i=0; i<nelem(f); i++)
84 	for(j=0; j<nelem(f); j++)
85 	for(k=0; k<nelem(f); k++)
86 	for(l=0; l<nelem(f); l++) {
87 		n = f[i] + f[j]*I;
88 		d = f[k] + f[l]*I;
89 		q = n/d;
90 
91 		printf("\t{complex(%s, %s), complex(%s, %s), complex(%s, %s)},\n",
92 			fmt(creal(n)), fmt(cimag(n)),
93 			fmt(creal(d)), fmt(cimag(d)),
94 			fmt(creal(q)), fmt(cimag(q)));
95 	}
96 	printf("}\n");
97 	return 0;
98 }
99