1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package template
6
7import (
8	"errors"
9	"fmt"
10	"io"
11	"net/url"
12	"reflect"
13	"strings"
14	"sync"
15	"unicode"
16	"unicode/utf8"
17)
18
19// FuncMap is the type of the map defining the mapping from names to functions.
20// Each function must have either a single return value, or two return values of
21// which the second has type error. In that case, if the second (error)
22// return value evaluates to non-nil during execution, execution terminates and
23// Execute returns that error.
24//
25// Errors returned by Execute wrap the underlying error; call [errors.As] to
26// unwrap them.
27//
28// When template execution invokes a function with an argument list, that list
29// must be assignable to the function's parameter types. Functions meant to
30// apply to arguments of arbitrary type can use parameters of type interface{} or
31// of type [reflect.Value]. Similarly, functions meant to return a result of arbitrary
32// type can return interface{} or [reflect.Value].
33type FuncMap map[string]any
34
35// builtins returns the FuncMap.
36// It is not a global variable so the linker can dead code eliminate
37// more when this isn't called. See golang.org/issue/36021.
38// TODO: revert this back to a global map once golang.org/issue/2559 is fixed.
39func builtins() FuncMap {
40	return FuncMap{
41		"and":      and,
42		"call":     emptyCall,
43		"html":     HTMLEscaper,
44		"index":    index,
45		"slice":    slice,
46		"js":       JSEscaper,
47		"len":      length,
48		"not":      not,
49		"or":       or,
50		"print":    fmt.Sprint,
51		"printf":   fmt.Sprintf,
52		"println":  fmt.Sprintln,
53		"urlquery": URLQueryEscaper,
54
55		// Comparisons
56		"eq": eq, // ==
57		"ge": ge, // >=
58		"gt": gt, // >
59		"le": le, // <=
60		"lt": lt, // <
61		"ne": ne, // !=
62	}
63}
64
65var builtinFuncsOnce struct {
66	sync.Once
67	v map[string]reflect.Value
68}
69
70// builtinFuncsOnce lazily computes & caches the builtinFuncs map.
71// TODO: revert this back to a global map once golang.org/issue/2559 is fixed.
72func builtinFuncs() map[string]reflect.Value {
73	builtinFuncsOnce.Do(func() {
74		builtinFuncsOnce.v = createValueFuncs(builtins())
75	})
76	return builtinFuncsOnce.v
77}
78
79// createValueFuncs turns a FuncMap into a map[string]reflect.Value
80func createValueFuncs(funcMap FuncMap) map[string]reflect.Value {
81	m := make(map[string]reflect.Value)
82	addValueFuncs(m, funcMap)
83	return m
84}
85
86// addValueFuncs adds to values the functions in funcs, converting them to reflect.Values.
87func addValueFuncs(out map[string]reflect.Value, in FuncMap) {
88	for name, fn := range in {
89		if !goodName(name) {
90			panic(fmt.Errorf("function name %q is not a valid identifier", name))
91		}
92		v := reflect.ValueOf(fn)
93		if v.Kind() != reflect.Func {
94			panic("value for " + name + " not a function")
95		}
96		if err := goodFunc(name, v.Type()); err != nil {
97			panic(err)
98		}
99		out[name] = v
100	}
101}
102
103// addFuncs adds to values the functions in funcs. It does no checking of the input -
104// call addValueFuncs first.
105func addFuncs(out, in FuncMap) {
106	for name, fn := range in {
107		out[name] = fn
108	}
109}
110
111// goodFunc reports whether the function or method has the right result signature.
112func goodFunc(name string, typ reflect.Type) error {
113	// We allow functions with 1 result or 2 results where the second is an error.
114	switch numOut := typ.NumOut(); {
115	case numOut == 1:
116		return nil
117	case numOut == 2 && typ.Out(1) == errorType:
118		return nil
119	case numOut == 2:
120		return fmt.Errorf("invalid function signature for %s: second return value should be error; is %s", name, typ.Out(1))
121	default:
122		return fmt.Errorf("function %s has %d return values; should be 1 or 2", name, typ.NumOut())
123	}
124}
125
126// goodName reports whether the function name is a valid identifier.
127func goodName(name string) bool {
128	if name == "" {
129		return false
130	}
131	for i, r := range name {
132		switch {
133		case r == '_':
134		case i == 0 && !unicode.IsLetter(r):
135			return false
136		case !unicode.IsLetter(r) && !unicode.IsDigit(r):
137			return false
138		}
139	}
140	return true
141}
142
143// findFunction looks for a function in the template, and global map.
144func findFunction(name string, tmpl *Template) (v reflect.Value, isBuiltin, ok bool) {
145	if tmpl != nil && tmpl.common != nil {
146		tmpl.muFuncs.RLock()
147		defer tmpl.muFuncs.RUnlock()
148		if fn := tmpl.execFuncs[name]; fn.IsValid() {
149			return fn, false, true
150		}
151	}
152	if fn := builtinFuncs()[name]; fn.IsValid() {
153		return fn, true, true
154	}
155	return reflect.Value{}, false, false
156}
157
158// prepareArg checks if value can be used as an argument of type argType, and
159// converts an invalid value to appropriate zero if possible.
160func prepareArg(value reflect.Value, argType reflect.Type) (reflect.Value, error) {
161	if !value.IsValid() {
162		if !canBeNil(argType) {
163			return reflect.Value{}, fmt.Errorf("value is nil; should be of type %s", argType)
164		}
165		value = reflect.Zero(argType)
166	}
167	if value.Type().AssignableTo(argType) {
168		return value, nil
169	}
170	if intLike(value.Kind()) && intLike(argType.Kind()) && value.Type().ConvertibleTo(argType) {
171		value = value.Convert(argType)
172		return value, nil
173	}
174	return reflect.Value{}, fmt.Errorf("value has type %s; should be %s", value.Type(), argType)
175}
176
177func intLike(typ reflect.Kind) bool {
178	switch typ {
179	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
180		return true
181	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
182		return true
183	}
184	return false
185}
186
187// indexArg checks if a reflect.Value can be used as an index, and converts it to int if possible.
188func indexArg(index reflect.Value, cap int) (int, error) {
189	var x int64
190	switch index.Kind() {
191	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
192		x = index.Int()
193	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
194		x = int64(index.Uint())
195	case reflect.Invalid:
196		return 0, fmt.Errorf("cannot index slice/array with nil")
197	default:
198		return 0, fmt.Errorf("cannot index slice/array with type %s", index.Type())
199	}
200	if x < 0 || int(x) < 0 || int(x) > cap {
201		return 0, fmt.Errorf("index out of range: %d", x)
202	}
203	return int(x), nil
204}
205
206// Indexing.
207
208// index returns the result of indexing its first argument by the following
209// arguments. Thus "index x 1 2 3" is, in Go syntax, x[1][2][3]. Each
210// indexed item must be a map, slice, or array.
211func index(item reflect.Value, indexes ...reflect.Value) (reflect.Value, error) {
212	item = indirectInterface(item)
213	if !item.IsValid() {
214		return reflect.Value{}, fmt.Errorf("index of untyped nil")
215	}
216	for _, index := range indexes {
217		index = indirectInterface(index)
218		var isNil bool
219		if item, isNil = indirect(item); isNil {
220			return reflect.Value{}, fmt.Errorf("index of nil pointer")
221		}
222		switch item.Kind() {
223		case reflect.Array, reflect.Slice, reflect.String:
224			x, err := indexArg(index, item.Len())
225			if err != nil {
226				return reflect.Value{}, err
227			}
228			item = item.Index(x)
229		case reflect.Map:
230			index, err := prepareArg(index, item.Type().Key())
231			if err != nil {
232				return reflect.Value{}, err
233			}
234			if x := item.MapIndex(index); x.IsValid() {
235				item = x
236			} else {
237				item = reflect.Zero(item.Type().Elem())
238			}
239		case reflect.Invalid:
240			// the loop holds invariant: item.IsValid()
241			panic("unreachable")
242		default:
243			return reflect.Value{}, fmt.Errorf("can't index item of type %s", item.Type())
244		}
245	}
246	return item, nil
247}
248
249// Slicing.
250
251// slice returns the result of slicing its first argument by the remaining
252// arguments. Thus "slice x 1 2" is, in Go syntax, x[1:2], while "slice x"
253// is x[:], "slice x 1" is x[1:], and "slice x 1 2 3" is x[1:2:3]. The first
254// argument must be a string, slice, or array.
255func slice(item reflect.Value, indexes ...reflect.Value) (reflect.Value, error) {
256	item = indirectInterface(item)
257	if !item.IsValid() {
258		return reflect.Value{}, fmt.Errorf("slice of untyped nil")
259	}
260	if len(indexes) > 3 {
261		return reflect.Value{}, fmt.Errorf("too many slice indexes: %d", len(indexes))
262	}
263	var cap int
264	switch item.Kind() {
265	case reflect.String:
266		if len(indexes) == 3 {
267			return reflect.Value{}, fmt.Errorf("cannot 3-index slice a string")
268		}
269		cap = item.Len()
270	case reflect.Array, reflect.Slice:
271		cap = item.Cap()
272	default:
273		return reflect.Value{}, fmt.Errorf("can't slice item of type %s", item.Type())
274	}
275	// set default values for cases item[:], item[i:].
276	idx := [3]int{0, item.Len()}
277	for i, index := range indexes {
278		x, err := indexArg(index, cap)
279		if err != nil {
280			return reflect.Value{}, err
281		}
282		idx[i] = x
283	}
284	// given item[i:j], make sure i <= j.
285	if idx[0] > idx[1] {
286		return reflect.Value{}, fmt.Errorf("invalid slice index: %d > %d", idx[0], idx[1])
287	}
288	if len(indexes) < 3 {
289		return item.Slice(idx[0], idx[1]), nil
290	}
291	// given item[i:j:k], make sure i <= j <= k.
292	if idx[1] > idx[2] {
293		return reflect.Value{}, fmt.Errorf("invalid slice index: %d > %d", idx[1], idx[2])
294	}
295	return item.Slice3(idx[0], idx[1], idx[2]), nil
296}
297
298// Length
299
300// length returns the length of the item, with an error if it has no defined length.
301func length(item reflect.Value) (int, error) {
302	item, isNil := indirect(item)
303	if isNil {
304		return 0, fmt.Errorf("len of nil pointer")
305	}
306	switch item.Kind() {
307	case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice, reflect.String:
308		return item.Len(), nil
309	}
310	return 0, fmt.Errorf("len of type %s", item.Type())
311}
312
313// Function invocation
314
315func emptyCall(fn reflect.Value, args ...reflect.Value) reflect.Value {
316	panic("unreachable") // implemented as a special case in evalCall
317}
318
319// call returns the result of evaluating the first argument as a function.
320// The function must return 1 result, or 2 results, the second of which is an error.
321func call(name string, fn reflect.Value, args ...reflect.Value) (reflect.Value, error) {
322	fn = indirectInterface(fn)
323	if !fn.IsValid() {
324		return reflect.Value{}, fmt.Errorf("call of nil")
325	}
326	typ := fn.Type()
327	if typ.Kind() != reflect.Func {
328		return reflect.Value{}, fmt.Errorf("non-function %s of type %s", name, typ)
329	}
330
331	if err := goodFunc(name, typ); err != nil {
332		return reflect.Value{}, err
333	}
334	numIn := typ.NumIn()
335	var dddType reflect.Type
336	if typ.IsVariadic() {
337		if len(args) < numIn-1 {
338			return reflect.Value{}, fmt.Errorf("wrong number of args for %s: got %d want at least %d", name, len(args), numIn-1)
339		}
340		dddType = typ.In(numIn - 1).Elem()
341	} else {
342		if len(args) != numIn {
343			return reflect.Value{}, fmt.Errorf("wrong number of args for %s: got %d want %d", name, len(args), numIn)
344		}
345	}
346	argv := make([]reflect.Value, len(args))
347	for i, arg := range args {
348		arg = indirectInterface(arg)
349		// Compute the expected type. Clumsy because of variadics.
350		argType := dddType
351		if !typ.IsVariadic() || i < numIn-1 {
352			argType = typ.In(i)
353		}
354
355		var err error
356		if argv[i], err = prepareArg(arg, argType); err != nil {
357			return reflect.Value{}, fmt.Errorf("arg %d: %w", i, err)
358		}
359	}
360	return safeCall(fn, argv)
361}
362
363// safeCall runs fun.Call(args), and returns the resulting value and error, if
364// any. If the call panics, the panic value is returned as an error.
365func safeCall(fun reflect.Value, args []reflect.Value) (val reflect.Value, err error) {
366	defer func() {
367		if r := recover(); r != nil {
368			if e, ok := r.(error); ok {
369				err = e
370			} else {
371				err = fmt.Errorf("%v", r)
372			}
373		}
374	}()
375	ret := fun.Call(args)
376	if len(ret) == 2 && !ret[1].IsNil() {
377		return ret[0], ret[1].Interface().(error)
378	}
379	return ret[0], nil
380}
381
382// Boolean logic.
383
384func truth(arg reflect.Value) bool {
385	t, _ := isTrue(indirectInterface(arg))
386	return t
387}
388
389// and computes the Boolean AND of its arguments, returning
390// the first false argument it encounters, or the last argument.
391func and(arg0 reflect.Value, args ...reflect.Value) reflect.Value {
392	panic("unreachable") // implemented as a special case in evalCall
393}
394
395// or computes the Boolean OR of its arguments, returning
396// the first true argument it encounters, or the last argument.
397func or(arg0 reflect.Value, args ...reflect.Value) reflect.Value {
398	panic("unreachable") // implemented as a special case in evalCall
399}
400
401// not returns the Boolean negation of its argument.
402func not(arg reflect.Value) bool {
403	return !truth(arg)
404}
405
406// Comparison.
407
408// TODO: Perhaps allow comparison between signed and unsigned integers.
409
410var (
411	errBadComparisonType = errors.New("invalid type for comparison")
412	errBadComparison     = errors.New("incompatible types for comparison")
413	errNoComparison      = errors.New("missing argument for comparison")
414)
415
416type kind int
417
418const (
419	invalidKind kind = iota
420	boolKind
421	complexKind
422	intKind
423	floatKind
424	stringKind
425	uintKind
426)
427
428func basicKind(v reflect.Value) (kind, error) {
429	switch v.Kind() {
430	case reflect.Bool:
431		return boolKind, nil
432	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
433		return intKind, nil
434	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
435		return uintKind, nil
436	case reflect.Float32, reflect.Float64:
437		return floatKind, nil
438	case reflect.Complex64, reflect.Complex128:
439		return complexKind, nil
440	case reflect.String:
441		return stringKind, nil
442	}
443	return invalidKind, errBadComparisonType
444}
445
446// isNil returns true if v is the zero reflect.Value, or nil of its type.
447func isNil(v reflect.Value) bool {
448	if !v.IsValid() {
449		return true
450	}
451	switch v.Kind() {
452	case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Pointer, reflect.Slice:
453		return v.IsNil()
454	}
455	return false
456}
457
458// canCompare reports whether v1 and v2 are both the same kind, or one is nil.
459// Called only when dealing with nillable types, or there's about to be an error.
460func canCompare(v1, v2 reflect.Value) bool {
461	k1 := v1.Kind()
462	k2 := v2.Kind()
463	if k1 == k2 {
464		return true
465	}
466	// We know the type can be compared to nil.
467	return k1 == reflect.Invalid || k2 == reflect.Invalid
468}
469
470// eq evaluates the comparison a == b || a == c || ...
471func eq(arg1 reflect.Value, arg2 ...reflect.Value) (bool, error) {
472	arg1 = indirectInterface(arg1)
473	if len(arg2) == 0 {
474		return false, errNoComparison
475	}
476	k1, _ := basicKind(arg1)
477	for _, arg := range arg2 {
478		arg = indirectInterface(arg)
479		k2, _ := basicKind(arg)
480		truth := false
481		if k1 != k2 {
482			// Special case: Can compare integer values regardless of type's sign.
483			switch {
484			case k1 == intKind && k2 == uintKind:
485				truth = arg1.Int() >= 0 && uint64(arg1.Int()) == arg.Uint()
486			case k1 == uintKind && k2 == intKind:
487				truth = arg.Int() >= 0 && arg1.Uint() == uint64(arg.Int())
488			default:
489				if arg1.IsValid() && arg.IsValid() {
490					return false, errBadComparison
491				}
492			}
493		} else {
494			switch k1 {
495			case boolKind:
496				truth = arg1.Bool() == arg.Bool()
497			case complexKind:
498				truth = arg1.Complex() == arg.Complex()
499			case floatKind:
500				truth = arg1.Float() == arg.Float()
501			case intKind:
502				truth = arg1.Int() == arg.Int()
503			case stringKind:
504				truth = arg1.String() == arg.String()
505			case uintKind:
506				truth = arg1.Uint() == arg.Uint()
507			default:
508				if !canCompare(arg1, arg) {
509					return false, fmt.Errorf("non-comparable types %s: %v, %s: %v", arg1, arg1.Type(), arg.Type(), arg)
510				}
511				if isNil(arg1) || isNil(arg) {
512					truth = isNil(arg) == isNil(arg1)
513				} else {
514					if !arg.Type().Comparable() {
515						return false, fmt.Errorf("non-comparable type %s: %v", arg, arg.Type())
516					}
517					truth = arg1.Interface() == arg.Interface()
518				}
519			}
520		}
521		if truth {
522			return true, nil
523		}
524	}
525	return false, nil
526}
527
528// ne evaluates the comparison a != b.
529func ne(arg1, arg2 reflect.Value) (bool, error) {
530	// != is the inverse of ==.
531	equal, err := eq(arg1, arg2)
532	return !equal, err
533}
534
535// lt evaluates the comparison a < b.
536func lt(arg1, arg2 reflect.Value) (bool, error) {
537	arg1 = indirectInterface(arg1)
538	k1, err := basicKind(arg1)
539	if err != nil {
540		return false, err
541	}
542	arg2 = indirectInterface(arg2)
543	k2, err := basicKind(arg2)
544	if err != nil {
545		return false, err
546	}
547	truth := false
548	if k1 != k2 {
549		// Special case: Can compare integer values regardless of type's sign.
550		switch {
551		case k1 == intKind && k2 == uintKind:
552			truth = arg1.Int() < 0 || uint64(arg1.Int()) < arg2.Uint()
553		case k1 == uintKind && k2 == intKind:
554			truth = arg2.Int() >= 0 && arg1.Uint() < uint64(arg2.Int())
555		default:
556			return false, errBadComparison
557		}
558	} else {
559		switch k1 {
560		case boolKind, complexKind:
561			return false, errBadComparisonType
562		case floatKind:
563			truth = arg1.Float() < arg2.Float()
564		case intKind:
565			truth = arg1.Int() < arg2.Int()
566		case stringKind:
567			truth = arg1.String() < arg2.String()
568		case uintKind:
569			truth = arg1.Uint() < arg2.Uint()
570		default:
571			panic("invalid kind")
572		}
573	}
574	return truth, nil
575}
576
577// le evaluates the comparison <= b.
578func le(arg1, arg2 reflect.Value) (bool, error) {
579	// <= is < or ==.
580	lessThan, err := lt(arg1, arg2)
581	if lessThan || err != nil {
582		return lessThan, err
583	}
584	return eq(arg1, arg2)
585}
586
587// gt evaluates the comparison a > b.
588func gt(arg1, arg2 reflect.Value) (bool, error) {
589	// > is the inverse of <=.
590	lessOrEqual, err := le(arg1, arg2)
591	if err != nil {
592		return false, err
593	}
594	return !lessOrEqual, nil
595}
596
597// ge evaluates the comparison a >= b.
598func ge(arg1, arg2 reflect.Value) (bool, error) {
599	// >= is the inverse of <.
600	lessThan, err := lt(arg1, arg2)
601	if err != nil {
602		return false, err
603	}
604	return !lessThan, nil
605}
606
607// HTML escaping.
608
609var (
610	htmlQuot = []byte("&#34;") // shorter than "&quot;"
611	htmlApos = []byte("&#39;") // shorter than "&apos;" and apos was not in HTML until HTML5
612	htmlAmp  = []byte("&amp;")
613	htmlLt   = []byte("&lt;")
614	htmlGt   = []byte("&gt;")
615	htmlNull = []byte("\uFFFD")
616)
617
618// HTMLEscape writes to w the escaped HTML equivalent of the plain text data b.
619func HTMLEscape(w io.Writer, b []byte) {
620	last := 0
621	for i, c := range b {
622		var html []byte
623		switch c {
624		case '\000':
625			html = htmlNull
626		case '"':
627			html = htmlQuot
628		case '\'':
629			html = htmlApos
630		case '&':
631			html = htmlAmp
632		case '<':
633			html = htmlLt
634		case '>':
635			html = htmlGt
636		default:
637			continue
638		}
639		w.Write(b[last:i])
640		w.Write(html)
641		last = i + 1
642	}
643	w.Write(b[last:])
644}
645
646// HTMLEscapeString returns the escaped HTML equivalent of the plain text data s.
647func HTMLEscapeString(s string) string {
648	// Avoid allocation if we can.
649	if !strings.ContainsAny(s, "'\"&<>\000") {
650		return s
651	}
652	var b strings.Builder
653	HTMLEscape(&b, []byte(s))
654	return b.String()
655}
656
657// HTMLEscaper returns the escaped HTML equivalent of the textual
658// representation of its arguments.
659func HTMLEscaper(args ...any) string {
660	return HTMLEscapeString(evalArgs(args))
661}
662
663// JavaScript escaping.
664
665var (
666	jsLowUni = []byte(`\u00`)
667	hex      = []byte("0123456789ABCDEF")
668
669	jsBackslash = []byte(`\\`)
670	jsApos      = []byte(`\'`)
671	jsQuot      = []byte(`\"`)
672	jsLt        = []byte(`\u003C`)
673	jsGt        = []byte(`\u003E`)
674	jsAmp       = []byte(`\u0026`)
675	jsEq        = []byte(`\u003D`)
676)
677
678// JSEscape writes to w the escaped JavaScript equivalent of the plain text data b.
679func JSEscape(w io.Writer, b []byte) {
680	last := 0
681	for i := 0; i < len(b); i++ {
682		c := b[i]
683
684		if !jsIsSpecial(rune(c)) {
685			// fast path: nothing to do
686			continue
687		}
688		w.Write(b[last:i])
689
690		if c < utf8.RuneSelf {
691			// Quotes, slashes and angle brackets get quoted.
692			// Control characters get written as \u00XX.
693			switch c {
694			case '\\':
695				w.Write(jsBackslash)
696			case '\'':
697				w.Write(jsApos)
698			case '"':
699				w.Write(jsQuot)
700			case '<':
701				w.Write(jsLt)
702			case '>':
703				w.Write(jsGt)
704			case '&':
705				w.Write(jsAmp)
706			case '=':
707				w.Write(jsEq)
708			default:
709				w.Write(jsLowUni)
710				t, b := c>>4, c&0x0f
711				w.Write(hex[t : t+1])
712				w.Write(hex[b : b+1])
713			}
714		} else {
715			// Unicode rune.
716			r, size := utf8.DecodeRune(b[i:])
717			if unicode.IsPrint(r) {
718				w.Write(b[i : i+size])
719			} else {
720				fmt.Fprintf(w, "\\u%04X", r)
721			}
722			i += size - 1
723		}
724		last = i + 1
725	}
726	w.Write(b[last:])
727}
728
729// JSEscapeString returns the escaped JavaScript equivalent of the plain text data s.
730func JSEscapeString(s string) string {
731	// Avoid allocation if we can.
732	if strings.IndexFunc(s, jsIsSpecial) < 0 {
733		return s
734	}
735	var b strings.Builder
736	JSEscape(&b, []byte(s))
737	return b.String()
738}
739
740func jsIsSpecial(r rune) bool {
741	switch r {
742	case '\\', '\'', '"', '<', '>', '&', '=':
743		return true
744	}
745	return r < ' ' || utf8.RuneSelf <= r
746}
747
748// JSEscaper returns the escaped JavaScript equivalent of the textual
749// representation of its arguments.
750func JSEscaper(args ...any) string {
751	return JSEscapeString(evalArgs(args))
752}
753
754// URLQueryEscaper returns the escaped value of the textual representation of
755// its arguments in a form suitable for embedding in a URL query.
756func URLQueryEscaper(args ...any) string {
757	return url.QueryEscape(evalArgs(args))
758}
759
760// evalArgs formats the list of arguments into a string. It is therefore equivalent to
761//
762//	fmt.Sprint(args...)
763//
764// except that each argument is indirected (if a pointer), as required,
765// using the same rules as the default string evaluation during template
766// execution.
767func evalArgs(args []any) string {
768	ok := false
769	var s string
770	// Fast path for simple common case.
771	if len(args) == 1 {
772		s, ok = args[0].(string)
773	}
774	if !ok {
775		for i, arg := range args {
776			a, ok := printableValue(reflect.ValueOf(arg))
777			if ok {
778				args[i] = a
779			} // else let fmt do its thing
780		}
781		s = fmt.Sprint(args...)
782	}
783	return s
784}
785