1// Copyright 2011 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package template 6 7import ( 8 "errors" 9 "fmt" 10 "io" 11 "net/url" 12 "reflect" 13 "strings" 14 "sync" 15 "unicode" 16 "unicode/utf8" 17) 18 19// FuncMap is the type of the map defining the mapping from names to functions. 20// Each function must have either a single return value, or two return values of 21// which the second has type error. In that case, if the second (error) 22// return value evaluates to non-nil during execution, execution terminates and 23// Execute returns that error. 24// 25// Errors returned by Execute wrap the underlying error; call [errors.As] to 26// unwrap them. 27// 28// When template execution invokes a function with an argument list, that list 29// must be assignable to the function's parameter types. Functions meant to 30// apply to arguments of arbitrary type can use parameters of type interface{} or 31// of type [reflect.Value]. Similarly, functions meant to return a result of arbitrary 32// type can return interface{} or [reflect.Value]. 33type FuncMap map[string]any 34 35// builtins returns the FuncMap. 36// It is not a global variable so the linker can dead code eliminate 37// more when this isn't called. See golang.org/issue/36021. 38// TODO: revert this back to a global map once golang.org/issue/2559 is fixed. 39func builtins() FuncMap { 40 return FuncMap{ 41 "and": and, 42 "call": emptyCall, 43 "html": HTMLEscaper, 44 "index": index, 45 "slice": slice, 46 "js": JSEscaper, 47 "len": length, 48 "not": not, 49 "or": or, 50 "print": fmt.Sprint, 51 "printf": fmt.Sprintf, 52 "println": fmt.Sprintln, 53 "urlquery": URLQueryEscaper, 54 55 // Comparisons 56 "eq": eq, // == 57 "ge": ge, // >= 58 "gt": gt, // > 59 "le": le, // <= 60 "lt": lt, // < 61 "ne": ne, // != 62 } 63} 64 65var builtinFuncsOnce struct { 66 sync.Once 67 v map[string]reflect.Value 68} 69 70// builtinFuncsOnce lazily computes & caches the builtinFuncs map. 71// TODO: revert this back to a global map once golang.org/issue/2559 is fixed. 72func builtinFuncs() map[string]reflect.Value { 73 builtinFuncsOnce.Do(func() { 74 builtinFuncsOnce.v = createValueFuncs(builtins()) 75 }) 76 return builtinFuncsOnce.v 77} 78 79// createValueFuncs turns a FuncMap into a map[string]reflect.Value 80func createValueFuncs(funcMap FuncMap) map[string]reflect.Value { 81 m := make(map[string]reflect.Value) 82 addValueFuncs(m, funcMap) 83 return m 84} 85 86// addValueFuncs adds to values the functions in funcs, converting them to reflect.Values. 87func addValueFuncs(out map[string]reflect.Value, in FuncMap) { 88 for name, fn := range in { 89 if !goodName(name) { 90 panic(fmt.Errorf("function name %q is not a valid identifier", name)) 91 } 92 v := reflect.ValueOf(fn) 93 if v.Kind() != reflect.Func { 94 panic("value for " + name + " not a function") 95 } 96 if err := goodFunc(name, v.Type()); err != nil { 97 panic(err) 98 } 99 out[name] = v 100 } 101} 102 103// addFuncs adds to values the functions in funcs. It does no checking of the input - 104// call addValueFuncs first. 105func addFuncs(out, in FuncMap) { 106 for name, fn := range in { 107 out[name] = fn 108 } 109} 110 111// goodFunc reports whether the function or method has the right result signature. 112func goodFunc(name string, typ reflect.Type) error { 113 // We allow functions with 1 result or 2 results where the second is an error. 114 switch numOut := typ.NumOut(); { 115 case numOut == 1: 116 return nil 117 case numOut == 2 && typ.Out(1) == errorType: 118 return nil 119 case numOut == 2: 120 return fmt.Errorf("invalid function signature for %s: second return value should be error; is %s", name, typ.Out(1)) 121 default: 122 return fmt.Errorf("function %s has %d return values; should be 1 or 2", name, typ.NumOut()) 123 } 124} 125 126// goodName reports whether the function name is a valid identifier. 127func goodName(name string) bool { 128 if name == "" { 129 return false 130 } 131 for i, r := range name { 132 switch { 133 case r == '_': 134 case i == 0 && !unicode.IsLetter(r): 135 return false 136 case !unicode.IsLetter(r) && !unicode.IsDigit(r): 137 return false 138 } 139 } 140 return true 141} 142 143// findFunction looks for a function in the template, and global map. 144func findFunction(name string, tmpl *Template) (v reflect.Value, isBuiltin, ok bool) { 145 if tmpl != nil && tmpl.common != nil { 146 tmpl.muFuncs.RLock() 147 defer tmpl.muFuncs.RUnlock() 148 if fn := tmpl.execFuncs[name]; fn.IsValid() { 149 return fn, false, true 150 } 151 } 152 if fn := builtinFuncs()[name]; fn.IsValid() { 153 return fn, true, true 154 } 155 return reflect.Value{}, false, false 156} 157 158// prepareArg checks if value can be used as an argument of type argType, and 159// converts an invalid value to appropriate zero if possible. 160func prepareArg(value reflect.Value, argType reflect.Type) (reflect.Value, error) { 161 if !value.IsValid() { 162 if !canBeNil(argType) { 163 return reflect.Value{}, fmt.Errorf("value is nil; should be of type %s", argType) 164 } 165 value = reflect.Zero(argType) 166 } 167 if value.Type().AssignableTo(argType) { 168 return value, nil 169 } 170 if intLike(value.Kind()) && intLike(argType.Kind()) && value.Type().ConvertibleTo(argType) { 171 value = value.Convert(argType) 172 return value, nil 173 } 174 return reflect.Value{}, fmt.Errorf("value has type %s; should be %s", value.Type(), argType) 175} 176 177func intLike(typ reflect.Kind) bool { 178 switch typ { 179 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 180 return true 181 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 182 return true 183 } 184 return false 185} 186 187// indexArg checks if a reflect.Value can be used as an index, and converts it to int if possible. 188func indexArg(index reflect.Value, cap int) (int, error) { 189 var x int64 190 switch index.Kind() { 191 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 192 x = index.Int() 193 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 194 x = int64(index.Uint()) 195 case reflect.Invalid: 196 return 0, fmt.Errorf("cannot index slice/array with nil") 197 default: 198 return 0, fmt.Errorf("cannot index slice/array with type %s", index.Type()) 199 } 200 if x < 0 || int(x) < 0 || int(x) > cap { 201 return 0, fmt.Errorf("index out of range: %d", x) 202 } 203 return int(x), nil 204} 205 206// Indexing. 207 208// index returns the result of indexing its first argument by the following 209// arguments. Thus "index x 1 2 3" is, in Go syntax, x[1][2][3]. Each 210// indexed item must be a map, slice, or array. 211func index(item reflect.Value, indexes ...reflect.Value) (reflect.Value, error) { 212 item = indirectInterface(item) 213 if !item.IsValid() { 214 return reflect.Value{}, fmt.Errorf("index of untyped nil") 215 } 216 for _, index := range indexes { 217 index = indirectInterface(index) 218 var isNil bool 219 if item, isNil = indirect(item); isNil { 220 return reflect.Value{}, fmt.Errorf("index of nil pointer") 221 } 222 switch item.Kind() { 223 case reflect.Array, reflect.Slice, reflect.String: 224 x, err := indexArg(index, item.Len()) 225 if err != nil { 226 return reflect.Value{}, err 227 } 228 item = item.Index(x) 229 case reflect.Map: 230 index, err := prepareArg(index, item.Type().Key()) 231 if err != nil { 232 return reflect.Value{}, err 233 } 234 if x := item.MapIndex(index); x.IsValid() { 235 item = x 236 } else { 237 item = reflect.Zero(item.Type().Elem()) 238 } 239 case reflect.Invalid: 240 // the loop holds invariant: item.IsValid() 241 panic("unreachable") 242 default: 243 return reflect.Value{}, fmt.Errorf("can't index item of type %s", item.Type()) 244 } 245 } 246 return item, nil 247} 248 249// Slicing. 250 251// slice returns the result of slicing its first argument by the remaining 252// arguments. Thus "slice x 1 2" is, in Go syntax, x[1:2], while "slice x" 253// is x[:], "slice x 1" is x[1:], and "slice x 1 2 3" is x[1:2:3]. The first 254// argument must be a string, slice, or array. 255func slice(item reflect.Value, indexes ...reflect.Value) (reflect.Value, error) { 256 item = indirectInterface(item) 257 if !item.IsValid() { 258 return reflect.Value{}, fmt.Errorf("slice of untyped nil") 259 } 260 if len(indexes) > 3 { 261 return reflect.Value{}, fmt.Errorf("too many slice indexes: %d", len(indexes)) 262 } 263 var cap int 264 switch item.Kind() { 265 case reflect.String: 266 if len(indexes) == 3 { 267 return reflect.Value{}, fmt.Errorf("cannot 3-index slice a string") 268 } 269 cap = item.Len() 270 case reflect.Array, reflect.Slice: 271 cap = item.Cap() 272 default: 273 return reflect.Value{}, fmt.Errorf("can't slice item of type %s", item.Type()) 274 } 275 // set default values for cases item[:], item[i:]. 276 idx := [3]int{0, item.Len()} 277 for i, index := range indexes { 278 x, err := indexArg(index, cap) 279 if err != nil { 280 return reflect.Value{}, err 281 } 282 idx[i] = x 283 } 284 // given item[i:j], make sure i <= j. 285 if idx[0] > idx[1] { 286 return reflect.Value{}, fmt.Errorf("invalid slice index: %d > %d", idx[0], idx[1]) 287 } 288 if len(indexes) < 3 { 289 return item.Slice(idx[0], idx[1]), nil 290 } 291 // given item[i:j:k], make sure i <= j <= k. 292 if idx[1] > idx[2] { 293 return reflect.Value{}, fmt.Errorf("invalid slice index: %d > %d", idx[1], idx[2]) 294 } 295 return item.Slice3(idx[0], idx[1], idx[2]), nil 296} 297 298// Length 299 300// length returns the length of the item, with an error if it has no defined length. 301func length(item reflect.Value) (int, error) { 302 item, isNil := indirect(item) 303 if isNil { 304 return 0, fmt.Errorf("len of nil pointer") 305 } 306 switch item.Kind() { 307 case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice, reflect.String: 308 return item.Len(), nil 309 } 310 return 0, fmt.Errorf("len of type %s", item.Type()) 311} 312 313// Function invocation 314 315func emptyCall(fn reflect.Value, args ...reflect.Value) reflect.Value { 316 panic("unreachable") // implemented as a special case in evalCall 317} 318 319// call returns the result of evaluating the first argument as a function. 320// The function must return 1 result, or 2 results, the second of which is an error. 321func call(name string, fn reflect.Value, args ...reflect.Value) (reflect.Value, error) { 322 fn = indirectInterface(fn) 323 if !fn.IsValid() { 324 return reflect.Value{}, fmt.Errorf("call of nil") 325 } 326 typ := fn.Type() 327 if typ.Kind() != reflect.Func { 328 return reflect.Value{}, fmt.Errorf("non-function %s of type %s", name, typ) 329 } 330 331 if err := goodFunc(name, typ); err != nil { 332 return reflect.Value{}, err 333 } 334 numIn := typ.NumIn() 335 var dddType reflect.Type 336 if typ.IsVariadic() { 337 if len(args) < numIn-1 { 338 return reflect.Value{}, fmt.Errorf("wrong number of args for %s: got %d want at least %d", name, len(args), numIn-1) 339 } 340 dddType = typ.In(numIn - 1).Elem() 341 } else { 342 if len(args) != numIn { 343 return reflect.Value{}, fmt.Errorf("wrong number of args for %s: got %d want %d", name, len(args), numIn) 344 } 345 } 346 argv := make([]reflect.Value, len(args)) 347 for i, arg := range args { 348 arg = indirectInterface(arg) 349 // Compute the expected type. Clumsy because of variadics. 350 argType := dddType 351 if !typ.IsVariadic() || i < numIn-1 { 352 argType = typ.In(i) 353 } 354 355 var err error 356 if argv[i], err = prepareArg(arg, argType); err != nil { 357 return reflect.Value{}, fmt.Errorf("arg %d: %w", i, err) 358 } 359 } 360 return safeCall(fn, argv) 361} 362 363// safeCall runs fun.Call(args), and returns the resulting value and error, if 364// any. If the call panics, the panic value is returned as an error. 365func safeCall(fun reflect.Value, args []reflect.Value) (val reflect.Value, err error) { 366 defer func() { 367 if r := recover(); r != nil { 368 if e, ok := r.(error); ok { 369 err = e 370 } else { 371 err = fmt.Errorf("%v", r) 372 } 373 } 374 }() 375 ret := fun.Call(args) 376 if len(ret) == 2 && !ret[1].IsNil() { 377 return ret[0], ret[1].Interface().(error) 378 } 379 return ret[0], nil 380} 381 382// Boolean logic. 383 384func truth(arg reflect.Value) bool { 385 t, _ := isTrue(indirectInterface(arg)) 386 return t 387} 388 389// and computes the Boolean AND of its arguments, returning 390// the first false argument it encounters, or the last argument. 391func and(arg0 reflect.Value, args ...reflect.Value) reflect.Value { 392 panic("unreachable") // implemented as a special case in evalCall 393} 394 395// or computes the Boolean OR of its arguments, returning 396// the first true argument it encounters, or the last argument. 397func or(arg0 reflect.Value, args ...reflect.Value) reflect.Value { 398 panic("unreachable") // implemented as a special case in evalCall 399} 400 401// not returns the Boolean negation of its argument. 402func not(arg reflect.Value) bool { 403 return !truth(arg) 404} 405 406// Comparison. 407 408// TODO: Perhaps allow comparison between signed and unsigned integers. 409 410var ( 411 errBadComparisonType = errors.New("invalid type for comparison") 412 errBadComparison = errors.New("incompatible types for comparison") 413 errNoComparison = errors.New("missing argument for comparison") 414) 415 416type kind int 417 418const ( 419 invalidKind kind = iota 420 boolKind 421 complexKind 422 intKind 423 floatKind 424 stringKind 425 uintKind 426) 427 428func basicKind(v reflect.Value) (kind, error) { 429 switch v.Kind() { 430 case reflect.Bool: 431 return boolKind, nil 432 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 433 return intKind, nil 434 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 435 return uintKind, nil 436 case reflect.Float32, reflect.Float64: 437 return floatKind, nil 438 case reflect.Complex64, reflect.Complex128: 439 return complexKind, nil 440 case reflect.String: 441 return stringKind, nil 442 } 443 return invalidKind, errBadComparisonType 444} 445 446// isNil returns true if v is the zero reflect.Value, or nil of its type. 447func isNil(v reflect.Value) bool { 448 if !v.IsValid() { 449 return true 450 } 451 switch v.Kind() { 452 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Pointer, reflect.Slice: 453 return v.IsNil() 454 } 455 return false 456} 457 458// canCompare reports whether v1 and v2 are both the same kind, or one is nil. 459// Called only when dealing with nillable types, or there's about to be an error. 460func canCompare(v1, v2 reflect.Value) bool { 461 k1 := v1.Kind() 462 k2 := v2.Kind() 463 if k1 == k2 { 464 return true 465 } 466 // We know the type can be compared to nil. 467 return k1 == reflect.Invalid || k2 == reflect.Invalid 468} 469 470// eq evaluates the comparison a == b || a == c || ... 471func eq(arg1 reflect.Value, arg2 ...reflect.Value) (bool, error) { 472 arg1 = indirectInterface(arg1) 473 if len(arg2) == 0 { 474 return false, errNoComparison 475 } 476 k1, _ := basicKind(arg1) 477 for _, arg := range arg2 { 478 arg = indirectInterface(arg) 479 k2, _ := basicKind(arg) 480 truth := false 481 if k1 != k2 { 482 // Special case: Can compare integer values regardless of type's sign. 483 switch { 484 case k1 == intKind && k2 == uintKind: 485 truth = arg1.Int() >= 0 && uint64(arg1.Int()) == arg.Uint() 486 case k1 == uintKind && k2 == intKind: 487 truth = arg.Int() >= 0 && arg1.Uint() == uint64(arg.Int()) 488 default: 489 if arg1.IsValid() && arg.IsValid() { 490 return false, errBadComparison 491 } 492 } 493 } else { 494 switch k1 { 495 case boolKind: 496 truth = arg1.Bool() == arg.Bool() 497 case complexKind: 498 truth = arg1.Complex() == arg.Complex() 499 case floatKind: 500 truth = arg1.Float() == arg.Float() 501 case intKind: 502 truth = arg1.Int() == arg.Int() 503 case stringKind: 504 truth = arg1.String() == arg.String() 505 case uintKind: 506 truth = arg1.Uint() == arg.Uint() 507 default: 508 if !canCompare(arg1, arg) { 509 return false, fmt.Errorf("non-comparable types %s: %v, %s: %v", arg1, arg1.Type(), arg.Type(), arg) 510 } 511 if isNil(arg1) || isNil(arg) { 512 truth = isNil(arg) == isNil(arg1) 513 } else { 514 if !arg.Type().Comparable() { 515 return false, fmt.Errorf("non-comparable type %s: %v", arg, arg.Type()) 516 } 517 truth = arg1.Interface() == arg.Interface() 518 } 519 } 520 } 521 if truth { 522 return true, nil 523 } 524 } 525 return false, nil 526} 527 528// ne evaluates the comparison a != b. 529func ne(arg1, arg2 reflect.Value) (bool, error) { 530 // != is the inverse of ==. 531 equal, err := eq(arg1, arg2) 532 return !equal, err 533} 534 535// lt evaluates the comparison a < b. 536func lt(arg1, arg2 reflect.Value) (bool, error) { 537 arg1 = indirectInterface(arg1) 538 k1, err := basicKind(arg1) 539 if err != nil { 540 return false, err 541 } 542 arg2 = indirectInterface(arg2) 543 k2, err := basicKind(arg2) 544 if err != nil { 545 return false, err 546 } 547 truth := false 548 if k1 != k2 { 549 // Special case: Can compare integer values regardless of type's sign. 550 switch { 551 case k1 == intKind && k2 == uintKind: 552 truth = arg1.Int() < 0 || uint64(arg1.Int()) < arg2.Uint() 553 case k1 == uintKind && k2 == intKind: 554 truth = arg2.Int() >= 0 && arg1.Uint() < uint64(arg2.Int()) 555 default: 556 return false, errBadComparison 557 } 558 } else { 559 switch k1 { 560 case boolKind, complexKind: 561 return false, errBadComparisonType 562 case floatKind: 563 truth = arg1.Float() < arg2.Float() 564 case intKind: 565 truth = arg1.Int() < arg2.Int() 566 case stringKind: 567 truth = arg1.String() < arg2.String() 568 case uintKind: 569 truth = arg1.Uint() < arg2.Uint() 570 default: 571 panic("invalid kind") 572 } 573 } 574 return truth, nil 575} 576 577// le evaluates the comparison <= b. 578func le(arg1, arg2 reflect.Value) (bool, error) { 579 // <= is < or ==. 580 lessThan, err := lt(arg1, arg2) 581 if lessThan || err != nil { 582 return lessThan, err 583 } 584 return eq(arg1, arg2) 585} 586 587// gt evaluates the comparison a > b. 588func gt(arg1, arg2 reflect.Value) (bool, error) { 589 // > is the inverse of <=. 590 lessOrEqual, err := le(arg1, arg2) 591 if err != nil { 592 return false, err 593 } 594 return !lessOrEqual, nil 595} 596 597// ge evaluates the comparison a >= b. 598func ge(arg1, arg2 reflect.Value) (bool, error) { 599 // >= is the inverse of <. 600 lessThan, err := lt(arg1, arg2) 601 if err != nil { 602 return false, err 603 } 604 return !lessThan, nil 605} 606 607// HTML escaping. 608 609var ( 610 htmlQuot = []byte(""") // shorter than """ 611 htmlApos = []byte("'") // shorter than "'" and apos was not in HTML until HTML5 612 htmlAmp = []byte("&") 613 htmlLt = []byte("<") 614 htmlGt = []byte(">") 615 htmlNull = []byte("\uFFFD") 616) 617 618// HTMLEscape writes to w the escaped HTML equivalent of the plain text data b. 619func HTMLEscape(w io.Writer, b []byte) { 620 last := 0 621 for i, c := range b { 622 var html []byte 623 switch c { 624 case '\000': 625 html = htmlNull 626 case '"': 627 html = htmlQuot 628 case '\'': 629 html = htmlApos 630 case '&': 631 html = htmlAmp 632 case '<': 633 html = htmlLt 634 case '>': 635 html = htmlGt 636 default: 637 continue 638 } 639 w.Write(b[last:i]) 640 w.Write(html) 641 last = i + 1 642 } 643 w.Write(b[last:]) 644} 645 646// HTMLEscapeString returns the escaped HTML equivalent of the plain text data s. 647func HTMLEscapeString(s string) string { 648 // Avoid allocation if we can. 649 if !strings.ContainsAny(s, "'\"&<>\000") { 650 return s 651 } 652 var b strings.Builder 653 HTMLEscape(&b, []byte(s)) 654 return b.String() 655} 656 657// HTMLEscaper returns the escaped HTML equivalent of the textual 658// representation of its arguments. 659func HTMLEscaper(args ...any) string { 660 return HTMLEscapeString(evalArgs(args)) 661} 662 663// JavaScript escaping. 664 665var ( 666 jsLowUni = []byte(`\u00`) 667 hex = []byte("0123456789ABCDEF") 668 669 jsBackslash = []byte(`\\`) 670 jsApos = []byte(`\'`) 671 jsQuot = []byte(`\"`) 672 jsLt = []byte(`\u003C`) 673 jsGt = []byte(`\u003E`) 674 jsAmp = []byte(`\u0026`) 675 jsEq = []byte(`\u003D`) 676) 677 678// JSEscape writes to w the escaped JavaScript equivalent of the plain text data b. 679func JSEscape(w io.Writer, b []byte) { 680 last := 0 681 for i := 0; i < len(b); i++ { 682 c := b[i] 683 684 if !jsIsSpecial(rune(c)) { 685 // fast path: nothing to do 686 continue 687 } 688 w.Write(b[last:i]) 689 690 if c < utf8.RuneSelf { 691 // Quotes, slashes and angle brackets get quoted. 692 // Control characters get written as \u00XX. 693 switch c { 694 case '\\': 695 w.Write(jsBackslash) 696 case '\'': 697 w.Write(jsApos) 698 case '"': 699 w.Write(jsQuot) 700 case '<': 701 w.Write(jsLt) 702 case '>': 703 w.Write(jsGt) 704 case '&': 705 w.Write(jsAmp) 706 case '=': 707 w.Write(jsEq) 708 default: 709 w.Write(jsLowUni) 710 t, b := c>>4, c&0x0f 711 w.Write(hex[t : t+1]) 712 w.Write(hex[b : b+1]) 713 } 714 } else { 715 // Unicode rune. 716 r, size := utf8.DecodeRune(b[i:]) 717 if unicode.IsPrint(r) { 718 w.Write(b[i : i+size]) 719 } else { 720 fmt.Fprintf(w, "\\u%04X", r) 721 } 722 i += size - 1 723 } 724 last = i + 1 725 } 726 w.Write(b[last:]) 727} 728 729// JSEscapeString returns the escaped JavaScript equivalent of the plain text data s. 730func JSEscapeString(s string) string { 731 // Avoid allocation if we can. 732 if strings.IndexFunc(s, jsIsSpecial) < 0 { 733 return s 734 } 735 var b strings.Builder 736 JSEscape(&b, []byte(s)) 737 return b.String() 738} 739 740func jsIsSpecial(r rune) bool { 741 switch r { 742 case '\\', '\'', '"', '<', '>', '&', '=': 743 return true 744 } 745 return r < ' ' || utf8.RuneSelf <= r 746} 747 748// JSEscaper returns the escaped JavaScript equivalent of the textual 749// representation of its arguments. 750func JSEscaper(args ...any) string { 751 return JSEscapeString(evalArgs(args)) 752} 753 754// URLQueryEscaper returns the escaped value of the textual representation of 755// its arguments in a form suitable for embedding in a URL query. 756func URLQueryEscaper(args ...any) string { 757 return url.QueryEscape(evalArgs(args)) 758} 759 760// evalArgs formats the list of arguments into a string. It is therefore equivalent to 761// 762// fmt.Sprint(args...) 763// 764// except that each argument is indirected (if a pointer), as required, 765// using the same rules as the default string evaluation during template 766// execution. 767func evalArgs(args []any) string { 768 ok := false 769 var s string 770 // Fast path for simple common case. 771 if len(args) == 1 { 772 s, ok = args[0].(string) 773 } 774 if !ok { 775 for i, arg := range args { 776 a, ok := printableValue(reflect.ValueOf(arg)) 777 if ok { 778 args[i] = a 779 } // else let fmt do its thing 780 } 781 s = fmt.Sprint(args...) 782 } 783 return s 784} 785