1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package testing 6 7import ( 8 "flag" 9 "fmt" 10 "internal/sysinfo" 11 "io" 12 "math" 13 "os" 14 "runtime" 15 "slices" 16 "strconv" 17 "strings" 18 "sync" 19 "sync/atomic" 20 "time" 21 "unicode" 22) 23 24func initBenchmarkFlags() { 25 matchBenchmarks = flag.String("test.bench", "", "run only benchmarks matching `regexp`") 26 benchmarkMemory = flag.Bool("test.benchmem", false, "print memory allocations for benchmarks") 27 flag.Var(&benchTime, "test.benchtime", "run each benchmark for duration `d` or N times if `d` is of the form Nx") 28} 29 30var ( 31 matchBenchmarks *string 32 benchmarkMemory *bool 33 34 benchTime = durationOrCountFlag{d: 1 * time.Second} // changed during test of testing package 35) 36 37type durationOrCountFlag struct { 38 d time.Duration 39 n int 40 allowZero bool 41} 42 43func (f *durationOrCountFlag) String() string { 44 if f.n > 0 { 45 return fmt.Sprintf("%dx", f.n) 46 } 47 return f.d.String() 48} 49 50func (f *durationOrCountFlag) Set(s string) error { 51 if strings.HasSuffix(s, "x") { 52 n, err := strconv.ParseInt(s[:len(s)-1], 10, 0) 53 if err != nil || n < 0 || (!f.allowZero && n == 0) { 54 return fmt.Errorf("invalid count") 55 } 56 *f = durationOrCountFlag{n: int(n)} 57 return nil 58 } 59 d, err := time.ParseDuration(s) 60 if err != nil || d < 0 || (!f.allowZero && d == 0) { 61 return fmt.Errorf("invalid duration") 62 } 63 *f = durationOrCountFlag{d: d} 64 return nil 65} 66 67// Global lock to ensure only one benchmark runs at a time. 68var benchmarkLock sync.Mutex 69 70// Used for every benchmark for measuring memory. 71var memStats runtime.MemStats 72 73// InternalBenchmark is an internal type but exported because it is cross-package; 74// it is part of the implementation of the "go test" command. 75type InternalBenchmark struct { 76 Name string 77 F func(b *B) 78} 79 80// B is a type passed to [Benchmark] functions to manage benchmark 81// timing and to specify the number of iterations to run. 82// 83// A benchmark ends when its Benchmark function returns or calls any of the methods 84// FailNow, Fatal, Fatalf, SkipNow, Skip, or Skipf. Those methods must be called 85// only from the goroutine running the Benchmark function. 86// The other reporting methods, such as the variations of Log and Error, 87// may be called simultaneously from multiple goroutines. 88// 89// Like in tests, benchmark logs are accumulated during execution 90// and dumped to standard output when done. Unlike in tests, benchmark logs 91// are always printed, so as not to hide output whose existence may be 92// affecting benchmark results. 93type B struct { 94 common 95 importPath string // import path of the package containing the benchmark 96 context *benchContext 97 N int 98 previousN int // number of iterations in the previous run 99 previousDuration time.Duration // total duration of the previous run 100 benchFunc func(b *B) 101 benchTime durationOrCountFlag 102 bytes int64 103 missingBytes bool // one of the subbenchmarks does not have bytes set. 104 timerOn bool 105 showAllocResult bool 106 result BenchmarkResult 107 parallelism int // RunParallel creates parallelism*GOMAXPROCS goroutines 108 // The initial states of memStats.Mallocs and memStats.TotalAlloc. 109 startAllocs uint64 110 startBytes uint64 111 // The net total of this test after being run. 112 netAllocs uint64 113 netBytes uint64 114 // Extra metrics collected by ReportMetric. 115 extra map[string]float64 116} 117 118// StartTimer starts timing a test. This function is called automatically 119// before a benchmark starts, but it can also be used to resume timing after 120// a call to [B.StopTimer]. 121func (b *B) StartTimer() { 122 if !b.timerOn { 123 runtime.ReadMemStats(&memStats) 124 b.startAllocs = memStats.Mallocs 125 b.startBytes = memStats.TotalAlloc 126 b.start = highPrecisionTimeNow() 127 b.timerOn = true 128 } 129} 130 131// StopTimer stops timing a test. This can be used to pause the timer 132// while performing complex initialization that you don't 133// want to measure. 134func (b *B) StopTimer() { 135 if b.timerOn { 136 b.duration += highPrecisionTimeSince(b.start) 137 runtime.ReadMemStats(&memStats) 138 b.netAllocs += memStats.Mallocs - b.startAllocs 139 b.netBytes += memStats.TotalAlloc - b.startBytes 140 b.timerOn = false 141 } 142} 143 144// ResetTimer zeroes the elapsed benchmark time and memory allocation counters 145// and deletes user-reported metrics. 146// It does not affect whether the timer is running. 147func (b *B) ResetTimer() { 148 if b.extra == nil { 149 // Allocate the extra map before reading memory stats. 150 // Pre-size it to make more allocation unlikely. 151 b.extra = make(map[string]float64, 16) 152 } else { 153 clear(b.extra) 154 } 155 if b.timerOn { 156 runtime.ReadMemStats(&memStats) 157 b.startAllocs = memStats.Mallocs 158 b.startBytes = memStats.TotalAlloc 159 b.start = highPrecisionTimeNow() 160 } 161 b.duration = 0 162 b.netAllocs = 0 163 b.netBytes = 0 164} 165 166// SetBytes records the number of bytes processed in a single operation. 167// If this is called, the benchmark will report ns/op and MB/s. 168func (b *B) SetBytes(n int64) { b.bytes = n } 169 170// ReportAllocs enables malloc statistics for this benchmark. 171// It is equivalent to setting -test.benchmem, but it only affects the 172// benchmark function that calls ReportAllocs. 173func (b *B) ReportAllocs() { 174 b.showAllocResult = true 175} 176 177// runN runs a single benchmark for the specified number of iterations. 178func (b *B) runN(n int) { 179 benchmarkLock.Lock() 180 defer benchmarkLock.Unlock() 181 defer func() { 182 b.runCleanup(normalPanic) 183 b.checkRaces() 184 }() 185 // Try to get a comparable environment for each run 186 // by clearing garbage from previous runs. 187 runtime.GC() 188 b.resetRaces() 189 b.N = n 190 b.parallelism = 1 191 b.ResetTimer() 192 b.StartTimer() 193 b.benchFunc(b) 194 b.StopTimer() 195 b.previousN = n 196 b.previousDuration = b.duration 197} 198 199// run1 runs the first iteration of benchFunc. It reports whether more 200// iterations of this benchmarks should be run. 201func (b *B) run1() bool { 202 if ctx := b.context; ctx != nil { 203 // Extend maxLen, if needed. 204 if n := len(b.name) + ctx.extLen + 1; n > ctx.maxLen { 205 ctx.maxLen = n + 8 // Add additional slack to avoid too many jumps in size. 206 } 207 } 208 go func() { 209 // Signal that we're done whether we return normally 210 // or by FailNow's runtime.Goexit. 211 defer func() { 212 b.signal <- true 213 }() 214 215 b.runN(1) 216 }() 217 <-b.signal 218 if b.failed { 219 fmt.Fprintf(b.w, "%s--- FAIL: %s\n%s", b.chatty.prefix(), b.name, b.output) 220 return false 221 } 222 // Only print the output if we know we are not going to proceed. 223 // Otherwise it is printed in processBench. 224 b.mu.RLock() 225 finished := b.finished 226 b.mu.RUnlock() 227 if b.hasSub.Load() || finished { 228 tag := "BENCH" 229 if b.skipped { 230 tag = "SKIP" 231 } 232 if b.chatty != nil && (len(b.output) > 0 || finished) { 233 b.trimOutput() 234 fmt.Fprintf(b.w, "%s--- %s: %s\n%s", b.chatty.prefix(), tag, b.name, b.output) 235 } 236 return false 237 } 238 return true 239} 240 241var labelsOnce sync.Once 242 243// run executes the benchmark in a separate goroutine, including all of its 244// subbenchmarks. b must not have subbenchmarks. 245func (b *B) run() { 246 labelsOnce.Do(func() { 247 fmt.Fprintf(b.w, "goos: %s\n", runtime.GOOS) 248 fmt.Fprintf(b.w, "goarch: %s\n", runtime.GOARCH) 249 if b.importPath != "" { 250 fmt.Fprintf(b.w, "pkg: %s\n", b.importPath) 251 } 252 if cpu := sysinfo.CPUName(); cpu != "" { 253 fmt.Fprintf(b.w, "cpu: %s\n", cpu) 254 } 255 }) 256 if b.context != nil { 257 // Running go test --test.bench 258 b.context.processBench(b) // Must call doBench. 259 } else { 260 // Running func Benchmark. 261 b.doBench() 262 } 263} 264 265func (b *B) doBench() BenchmarkResult { 266 go b.launch() 267 <-b.signal 268 return b.result 269} 270 271// launch launches the benchmark function. It gradually increases the number 272// of benchmark iterations until the benchmark runs for the requested benchtime. 273// launch is run by the doBench function as a separate goroutine. 274// run1 must have been called on b. 275func (b *B) launch() { 276 // Signal that we're done whether we return normally 277 // or by FailNow's runtime.Goexit. 278 defer func() { 279 b.signal <- true 280 }() 281 282 // Run the benchmark for at least the specified amount of time. 283 if b.benchTime.n > 0 { 284 // We already ran a single iteration in run1. 285 // If -benchtime=1x was requested, use that result. 286 // See https://golang.org/issue/32051. 287 if b.benchTime.n > 1 { 288 b.runN(b.benchTime.n) 289 } 290 } else { 291 d := b.benchTime.d 292 for n := int64(1); !b.failed && b.duration < d && n < 1e9; { 293 last := n 294 // Predict required iterations. 295 goalns := d.Nanoseconds() 296 prevIters := int64(b.N) 297 prevns := b.duration.Nanoseconds() 298 if prevns <= 0 { 299 // Round up, to avoid div by zero. 300 prevns = 1 301 } 302 // Order of operations matters. 303 // For very fast benchmarks, prevIters ~= prevns. 304 // If you divide first, you get 0 or 1, 305 // which can hide an order of magnitude in execution time. 306 // So multiply first, then divide. 307 n = goalns * prevIters / prevns 308 // Run more iterations than we think we'll need (1.2x). 309 n += n / 5 310 // Don't grow too fast in case we had timing errors previously. 311 n = min(n, 100*last) 312 // Be sure to run at least one more than last time. 313 n = max(n, last+1) 314 // Don't run more than 1e9 times. (This also keeps n in int range on 32 bit platforms.) 315 n = min(n, 1e9) 316 b.runN(int(n)) 317 } 318 } 319 b.result = BenchmarkResult{b.N, b.duration, b.bytes, b.netAllocs, b.netBytes, b.extra} 320} 321 322// Elapsed returns the measured elapsed time of the benchmark. 323// The duration reported by Elapsed matches the one measured by 324// [B.StartTimer], [B.StopTimer], and [B.ResetTimer]. 325func (b *B) Elapsed() time.Duration { 326 d := b.duration 327 if b.timerOn { 328 d += highPrecisionTimeSince(b.start) 329 } 330 return d 331} 332 333// ReportMetric adds "n unit" to the reported benchmark results. 334// If the metric is per-iteration, the caller should divide by b.N, 335// and by convention units should end in "/op". 336// ReportMetric overrides any previously reported value for the same unit. 337// ReportMetric panics if unit is the empty string or if unit contains 338// any whitespace. 339// If unit is a unit normally reported by the benchmark framework itself 340// (such as "allocs/op"), ReportMetric will override that metric. 341// Setting "ns/op" to 0 will suppress that built-in metric. 342func (b *B) ReportMetric(n float64, unit string) { 343 if unit == "" { 344 panic("metric unit must not be empty") 345 } 346 if strings.IndexFunc(unit, unicode.IsSpace) >= 0 { 347 panic("metric unit must not contain whitespace") 348 } 349 b.extra[unit] = n 350} 351 352// BenchmarkResult contains the results of a benchmark run. 353type BenchmarkResult struct { 354 N int // The number of iterations. 355 T time.Duration // The total time taken. 356 Bytes int64 // Bytes processed in one iteration. 357 MemAllocs uint64 // The total number of memory allocations. 358 MemBytes uint64 // The total number of bytes allocated. 359 360 // Extra records additional metrics reported by ReportMetric. 361 Extra map[string]float64 362} 363 364// NsPerOp returns the "ns/op" metric. 365func (r BenchmarkResult) NsPerOp() int64 { 366 if v, ok := r.Extra["ns/op"]; ok { 367 return int64(v) 368 } 369 if r.N <= 0 { 370 return 0 371 } 372 return r.T.Nanoseconds() / int64(r.N) 373} 374 375// mbPerSec returns the "MB/s" metric. 376func (r BenchmarkResult) mbPerSec() float64 { 377 if v, ok := r.Extra["MB/s"]; ok { 378 return v 379 } 380 if r.Bytes <= 0 || r.T <= 0 || r.N <= 0 { 381 return 0 382 } 383 return (float64(r.Bytes) * float64(r.N) / 1e6) / r.T.Seconds() 384} 385 386// AllocsPerOp returns the "allocs/op" metric, 387// which is calculated as r.MemAllocs / r.N. 388func (r BenchmarkResult) AllocsPerOp() int64 { 389 if v, ok := r.Extra["allocs/op"]; ok { 390 return int64(v) 391 } 392 if r.N <= 0 { 393 return 0 394 } 395 return int64(r.MemAllocs) / int64(r.N) 396} 397 398// AllocedBytesPerOp returns the "B/op" metric, 399// which is calculated as r.MemBytes / r.N. 400func (r BenchmarkResult) AllocedBytesPerOp() int64 { 401 if v, ok := r.Extra["B/op"]; ok { 402 return int64(v) 403 } 404 if r.N <= 0 { 405 return 0 406 } 407 return int64(r.MemBytes) / int64(r.N) 408} 409 410// String returns a summary of the benchmark results. 411// It follows the benchmark result line format from 412// https://golang.org/design/14313-benchmark-format, not including the 413// benchmark name. 414// Extra metrics override built-in metrics of the same name. 415// String does not include allocs/op or B/op, since those are reported 416// by [BenchmarkResult.MemString]. 417func (r BenchmarkResult) String() string { 418 buf := new(strings.Builder) 419 fmt.Fprintf(buf, "%8d", r.N) 420 421 // Get ns/op as a float. 422 ns, ok := r.Extra["ns/op"] 423 if !ok { 424 ns = float64(r.T.Nanoseconds()) / float64(r.N) 425 } 426 if ns != 0 { 427 buf.WriteByte('\t') 428 prettyPrint(buf, ns, "ns/op") 429 } 430 431 if mbs := r.mbPerSec(); mbs != 0 { 432 fmt.Fprintf(buf, "\t%7.2f MB/s", mbs) 433 } 434 435 // Print extra metrics that aren't represented in the standard 436 // metrics. 437 var extraKeys []string 438 for k := range r.Extra { 439 switch k { 440 case "ns/op", "MB/s", "B/op", "allocs/op": 441 // Built-in metrics reported elsewhere. 442 continue 443 } 444 extraKeys = append(extraKeys, k) 445 } 446 slices.Sort(extraKeys) 447 for _, k := range extraKeys { 448 buf.WriteByte('\t') 449 prettyPrint(buf, r.Extra[k], k) 450 } 451 return buf.String() 452} 453 454func prettyPrint(w io.Writer, x float64, unit string) { 455 // Print all numbers with 10 places before the decimal point 456 // and small numbers with four sig figs. Field widths are 457 // chosen to fit the whole part in 10 places while aligning 458 // the decimal point of all fractional formats. 459 var format string 460 switch y := math.Abs(x); { 461 case y == 0 || y >= 999.95: 462 format = "%10.0f %s" 463 case y >= 99.995: 464 format = "%12.1f %s" 465 case y >= 9.9995: 466 format = "%13.2f %s" 467 case y >= 0.99995: 468 format = "%14.3f %s" 469 case y >= 0.099995: 470 format = "%15.4f %s" 471 case y >= 0.0099995: 472 format = "%16.5f %s" 473 case y >= 0.00099995: 474 format = "%17.6f %s" 475 default: 476 format = "%18.7f %s" 477 } 478 fmt.Fprintf(w, format, x, unit) 479} 480 481// MemString returns r.AllocedBytesPerOp and r.AllocsPerOp in the same format as 'go test'. 482func (r BenchmarkResult) MemString() string { 483 return fmt.Sprintf("%8d B/op\t%8d allocs/op", 484 r.AllocedBytesPerOp(), r.AllocsPerOp()) 485} 486 487// benchmarkName returns full name of benchmark including procs suffix. 488func benchmarkName(name string, n int) string { 489 if n != 1 { 490 return fmt.Sprintf("%s-%d", name, n) 491 } 492 return name 493} 494 495type benchContext struct { 496 match *matcher 497 498 maxLen int // The largest recorded benchmark name. 499 extLen int // Maximum extension length. 500} 501 502// RunBenchmarks is an internal function but exported because it is cross-package; 503// it is part of the implementation of the "go test" command. 504func RunBenchmarks(matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) { 505 runBenchmarks("", matchString, benchmarks) 506} 507 508func runBenchmarks(importPath string, matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) bool { 509 // If no flag was specified, don't run benchmarks. 510 if len(*matchBenchmarks) == 0 { 511 return true 512 } 513 // Collect matching benchmarks and determine longest name. 514 maxprocs := 1 515 for _, procs := range cpuList { 516 if procs > maxprocs { 517 maxprocs = procs 518 } 519 } 520 ctx := &benchContext{ 521 match: newMatcher(matchString, *matchBenchmarks, "-test.bench", *skip), 522 extLen: len(benchmarkName("", maxprocs)), 523 } 524 var bs []InternalBenchmark 525 for _, Benchmark := range benchmarks { 526 if _, matched, _ := ctx.match.fullName(nil, Benchmark.Name); matched { 527 bs = append(bs, Benchmark) 528 benchName := benchmarkName(Benchmark.Name, maxprocs) 529 if l := len(benchName) + ctx.extLen + 1; l > ctx.maxLen { 530 ctx.maxLen = l 531 } 532 } 533 } 534 main := &B{ 535 common: common{ 536 name: "Main", 537 w: os.Stdout, 538 bench: true, 539 }, 540 importPath: importPath, 541 benchFunc: func(b *B) { 542 for _, Benchmark := range bs { 543 b.Run(Benchmark.Name, Benchmark.F) 544 } 545 }, 546 benchTime: benchTime, 547 context: ctx, 548 } 549 if Verbose() { 550 main.chatty = newChattyPrinter(main.w) 551 } 552 main.runN(1) 553 return !main.failed 554} 555 556// processBench runs bench b for the configured CPU counts and prints the results. 557func (ctx *benchContext) processBench(b *B) { 558 for i, procs := range cpuList { 559 for j := uint(0); j < *count; j++ { 560 runtime.GOMAXPROCS(procs) 561 benchName := benchmarkName(b.name, procs) 562 563 // If it's chatty, we've already printed this information. 564 if b.chatty == nil { 565 fmt.Fprintf(b.w, "%-*s\t", ctx.maxLen, benchName) 566 } 567 // Recompute the running time for all but the first iteration. 568 if i > 0 || j > 0 { 569 b = &B{ 570 common: common{ 571 signal: make(chan bool), 572 name: b.name, 573 w: b.w, 574 chatty: b.chatty, 575 bench: true, 576 }, 577 benchFunc: b.benchFunc, 578 benchTime: b.benchTime, 579 } 580 b.run1() 581 } 582 r := b.doBench() 583 if b.failed { 584 // The output could be very long here, but probably isn't. 585 // We print it all, regardless, because we don't want to trim the reason 586 // the benchmark failed. 587 fmt.Fprintf(b.w, "%s--- FAIL: %s\n%s", b.chatty.prefix(), benchName, b.output) 588 continue 589 } 590 results := r.String() 591 if b.chatty != nil { 592 fmt.Fprintf(b.w, "%-*s\t", ctx.maxLen, benchName) 593 } 594 if *benchmarkMemory || b.showAllocResult { 595 results += "\t" + r.MemString() 596 } 597 fmt.Fprintln(b.w, results) 598 // Unlike with tests, we ignore the -chatty flag and always print output for 599 // benchmarks since the output generation time will skew the results. 600 if len(b.output) > 0 { 601 b.trimOutput() 602 fmt.Fprintf(b.w, "%s--- BENCH: %s\n%s", b.chatty.prefix(), benchName, b.output) 603 } 604 if p := runtime.GOMAXPROCS(-1); p != procs { 605 fmt.Fprintf(os.Stderr, "testing: %s left GOMAXPROCS set to %d\n", benchName, p) 606 } 607 if b.chatty != nil && b.chatty.json { 608 b.chatty.Updatef("", "=== NAME %s\n", "") 609 } 610 } 611 } 612} 613 614// If hideStdoutForTesting is true, Run does not print the benchName. 615// This avoids a spurious print during 'go test' on package testing itself, 616// which invokes b.Run in its own tests (see sub_test.go). 617var hideStdoutForTesting = false 618 619// Run benchmarks f as a subbenchmark with the given name. It reports 620// whether there were any failures. 621// 622// A subbenchmark is like any other benchmark. A benchmark that calls Run at 623// least once will not be measured itself and will be called once with N=1. 624func (b *B) Run(name string, f func(b *B)) bool { 625 // Since b has subbenchmarks, we will no longer run it as a benchmark itself. 626 // Release the lock and acquire it on exit to ensure locks stay paired. 627 b.hasSub.Store(true) 628 benchmarkLock.Unlock() 629 defer benchmarkLock.Lock() 630 631 benchName, ok, partial := b.name, true, false 632 if b.context != nil { 633 benchName, ok, partial = b.context.match.fullName(&b.common, name) 634 } 635 if !ok { 636 return true 637 } 638 var pc [maxStackLen]uintptr 639 n := runtime.Callers(2, pc[:]) 640 sub := &B{ 641 common: common{ 642 signal: make(chan bool), 643 name: benchName, 644 parent: &b.common, 645 level: b.level + 1, 646 creator: pc[:n], 647 w: b.w, 648 chatty: b.chatty, 649 bench: true, 650 }, 651 importPath: b.importPath, 652 benchFunc: f, 653 benchTime: b.benchTime, 654 context: b.context, 655 } 656 if partial { 657 // Partial name match, like -bench=X/Y matching BenchmarkX. 658 // Only process sub-benchmarks, if any. 659 sub.hasSub.Store(true) 660 } 661 662 if b.chatty != nil { 663 labelsOnce.Do(func() { 664 fmt.Printf("goos: %s\n", runtime.GOOS) 665 fmt.Printf("goarch: %s\n", runtime.GOARCH) 666 if b.importPath != "" { 667 fmt.Printf("pkg: %s\n", b.importPath) 668 } 669 if cpu := sysinfo.CPUName(); cpu != "" { 670 fmt.Printf("cpu: %s\n", cpu) 671 } 672 }) 673 674 if !hideStdoutForTesting { 675 if b.chatty.json { 676 b.chatty.Updatef(benchName, "=== RUN %s\n", benchName) 677 } 678 fmt.Println(benchName) 679 } 680 } 681 682 if sub.run1() { 683 sub.run() 684 } 685 b.add(sub.result) 686 return !sub.failed 687} 688 689// add simulates running benchmarks in sequence in a single iteration. It is 690// used to give some meaningful results in case func Benchmark is used in 691// combination with Run. 692func (b *B) add(other BenchmarkResult) { 693 r := &b.result 694 // The aggregated BenchmarkResults resemble running all subbenchmarks as 695 // in sequence in a single benchmark. 696 r.N = 1 697 r.T += time.Duration(other.NsPerOp()) 698 if other.Bytes == 0 { 699 // Summing Bytes is meaningless in aggregate if not all subbenchmarks 700 // set it. 701 b.missingBytes = true 702 r.Bytes = 0 703 } 704 if !b.missingBytes { 705 r.Bytes += other.Bytes 706 } 707 r.MemAllocs += uint64(other.AllocsPerOp()) 708 r.MemBytes += uint64(other.AllocedBytesPerOp()) 709} 710 711// trimOutput shortens the output from a benchmark, which can be very long. 712func (b *B) trimOutput() { 713 // The output is likely to appear multiple times because the benchmark 714 // is run multiple times, but at least it will be seen. This is not a big deal 715 // because benchmarks rarely print, but just in case, we trim it if it's too long. 716 const maxNewlines = 10 717 for nlCount, j := 0, 0; j < len(b.output); j++ { 718 if b.output[j] == '\n' { 719 nlCount++ 720 if nlCount >= maxNewlines { 721 b.output = append(b.output[:j], "\n\t... [output truncated]\n"...) 722 break 723 } 724 } 725 } 726} 727 728// A PB is used by RunParallel for running parallel benchmarks. 729type PB struct { 730 globalN *atomic.Uint64 // shared between all worker goroutines iteration counter 731 grain uint64 // acquire that many iterations from globalN at once 732 cache uint64 // local cache of acquired iterations 733 bN uint64 // total number of iterations to execute (b.N) 734} 735 736// Next reports whether there are more iterations to execute. 737func (pb *PB) Next() bool { 738 if pb.cache == 0 { 739 n := pb.globalN.Add(pb.grain) 740 if n <= pb.bN { 741 pb.cache = pb.grain 742 } else if n < pb.bN+pb.grain { 743 pb.cache = pb.bN + pb.grain - n 744 } else { 745 return false 746 } 747 } 748 pb.cache-- 749 return true 750} 751 752// RunParallel runs a benchmark in parallel. 753// It creates multiple goroutines and distributes b.N iterations among them. 754// The number of goroutines defaults to GOMAXPROCS. To increase parallelism for 755// non-CPU-bound benchmarks, call [B.SetParallelism] before RunParallel. 756// RunParallel is usually used with the go test -cpu flag. 757// 758// The body function will be run in each goroutine. It should set up any 759// goroutine-local state and then iterate until pb.Next returns false. 760// It should not use the [B.StartTimer], [B.StopTimer], or [B.ResetTimer] functions, 761// because they have global effect. It should also not call [B.Run]. 762// 763// RunParallel reports ns/op values as wall time for the benchmark as a whole, 764// not the sum of wall time or CPU time over each parallel goroutine. 765func (b *B) RunParallel(body func(*PB)) { 766 if b.N == 0 { 767 return // Nothing to do when probing. 768 } 769 // Calculate grain size as number of iterations that take ~100µs. 770 // 100µs is enough to amortize the overhead and provide sufficient 771 // dynamic load balancing. 772 grain := uint64(0) 773 if b.previousN > 0 && b.previousDuration > 0 { 774 grain = 1e5 * uint64(b.previousN) / uint64(b.previousDuration) 775 } 776 if grain < 1 { 777 grain = 1 778 } 779 // We expect the inner loop and function call to take at least 10ns, 780 // so do not do more than 100µs/10ns=1e4 iterations. 781 if grain > 1e4 { 782 grain = 1e4 783 } 784 785 var n atomic.Uint64 786 numProcs := b.parallelism * runtime.GOMAXPROCS(0) 787 var wg sync.WaitGroup 788 wg.Add(numProcs) 789 for p := 0; p < numProcs; p++ { 790 go func() { 791 defer wg.Done() 792 pb := &PB{ 793 globalN: &n, 794 grain: grain, 795 bN: uint64(b.N), 796 } 797 body(pb) 798 }() 799 } 800 wg.Wait() 801 if n.Load() <= uint64(b.N) && !b.Failed() { 802 b.Fatal("RunParallel: body exited without pb.Next() == false") 803 } 804} 805 806// SetParallelism sets the number of goroutines used by [B.RunParallel] to p*GOMAXPROCS. 807// There is usually no need to call SetParallelism for CPU-bound benchmarks. 808// If p is less than 1, this call will have no effect. 809func (b *B) SetParallelism(p int) { 810 if p >= 1 { 811 b.parallelism = p 812 } 813} 814 815// Benchmark benchmarks a single function. It is useful for creating 816// custom benchmarks that do not use the "go test" command. 817// 818// If f depends on testing flags, then [Init] must be used to register 819// those flags before calling Benchmark and before calling [flag.Parse]. 820// 821// If f calls Run, the result will be an estimate of running all its 822// subbenchmarks that don't call Run in sequence in a single benchmark. 823func Benchmark(f func(b *B)) BenchmarkResult { 824 b := &B{ 825 common: common{ 826 signal: make(chan bool), 827 w: discard{}, 828 }, 829 benchFunc: f, 830 benchTime: benchTime, 831 } 832 if b.run1() { 833 b.run() 834 } 835 return b.result 836} 837 838type discard struct{} 839 840func (discard) Write(b []byte) (n int, err error) { return len(b), nil } 841