1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package testing
6
7import (
8	"flag"
9	"fmt"
10	"internal/sysinfo"
11	"io"
12	"math"
13	"os"
14	"runtime"
15	"slices"
16	"strconv"
17	"strings"
18	"sync"
19	"sync/atomic"
20	"time"
21	"unicode"
22)
23
24func initBenchmarkFlags() {
25	matchBenchmarks = flag.String("test.bench", "", "run only benchmarks matching `regexp`")
26	benchmarkMemory = flag.Bool("test.benchmem", false, "print memory allocations for benchmarks")
27	flag.Var(&benchTime, "test.benchtime", "run each benchmark for duration `d` or N times if `d` is of the form Nx")
28}
29
30var (
31	matchBenchmarks *string
32	benchmarkMemory *bool
33
34	benchTime = durationOrCountFlag{d: 1 * time.Second} // changed during test of testing package
35)
36
37type durationOrCountFlag struct {
38	d         time.Duration
39	n         int
40	allowZero bool
41}
42
43func (f *durationOrCountFlag) String() string {
44	if f.n > 0 {
45		return fmt.Sprintf("%dx", f.n)
46	}
47	return f.d.String()
48}
49
50func (f *durationOrCountFlag) Set(s string) error {
51	if strings.HasSuffix(s, "x") {
52		n, err := strconv.ParseInt(s[:len(s)-1], 10, 0)
53		if err != nil || n < 0 || (!f.allowZero && n == 0) {
54			return fmt.Errorf("invalid count")
55		}
56		*f = durationOrCountFlag{n: int(n)}
57		return nil
58	}
59	d, err := time.ParseDuration(s)
60	if err != nil || d < 0 || (!f.allowZero && d == 0) {
61		return fmt.Errorf("invalid duration")
62	}
63	*f = durationOrCountFlag{d: d}
64	return nil
65}
66
67// Global lock to ensure only one benchmark runs at a time.
68var benchmarkLock sync.Mutex
69
70// Used for every benchmark for measuring memory.
71var memStats runtime.MemStats
72
73// InternalBenchmark is an internal type but exported because it is cross-package;
74// it is part of the implementation of the "go test" command.
75type InternalBenchmark struct {
76	Name string
77	F    func(b *B)
78}
79
80// B is a type passed to [Benchmark] functions to manage benchmark
81// timing and to specify the number of iterations to run.
82//
83// A benchmark ends when its Benchmark function returns or calls any of the methods
84// FailNow, Fatal, Fatalf, SkipNow, Skip, or Skipf. Those methods must be called
85// only from the goroutine running the Benchmark function.
86// The other reporting methods, such as the variations of Log and Error,
87// may be called simultaneously from multiple goroutines.
88//
89// Like in tests, benchmark logs are accumulated during execution
90// and dumped to standard output when done. Unlike in tests, benchmark logs
91// are always printed, so as not to hide output whose existence may be
92// affecting benchmark results.
93type B struct {
94	common
95	importPath       string // import path of the package containing the benchmark
96	context          *benchContext
97	N                int
98	previousN        int           // number of iterations in the previous run
99	previousDuration time.Duration // total duration of the previous run
100	benchFunc        func(b *B)
101	benchTime        durationOrCountFlag
102	bytes            int64
103	missingBytes     bool // one of the subbenchmarks does not have bytes set.
104	timerOn          bool
105	showAllocResult  bool
106	result           BenchmarkResult
107	parallelism      int // RunParallel creates parallelism*GOMAXPROCS goroutines
108	// The initial states of memStats.Mallocs and memStats.TotalAlloc.
109	startAllocs uint64
110	startBytes  uint64
111	// The net total of this test after being run.
112	netAllocs uint64
113	netBytes  uint64
114	// Extra metrics collected by ReportMetric.
115	extra map[string]float64
116}
117
118// StartTimer starts timing a test. This function is called automatically
119// before a benchmark starts, but it can also be used to resume timing after
120// a call to [B.StopTimer].
121func (b *B) StartTimer() {
122	if !b.timerOn {
123		runtime.ReadMemStats(&memStats)
124		b.startAllocs = memStats.Mallocs
125		b.startBytes = memStats.TotalAlloc
126		b.start = highPrecisionTimeNow()
127		b.timerOn = true
128	}
129}
130
131// StopTimer stops timing a test. This can be used to pause the timer
132// while performing complex initialization that you don't
133// want to measure.
134func (b *B) StopTimer() {
135	if b.timerOn {
136		b.duration += highPrecisionTimeSince(b.start)
137		runtime.ReadMemStats(&memStats)
138		b.netAllocs += memStats.Mallocs - b.startAllocs
139		b.netBytes += memStats.TotalAlloc - b.startBytes
140		b.timerOn = false
141	}
142}
143
144// ResetTimer zeroes the elapsed benchmark time and memory allocation counters
145// and deletes user-reported metrics.
146// It does not affect whether the timer is running.
147func (b *B) ResetTimer() {
148	if b.extra == nil {
149		// Allocate the extra map before reading memory stats.
150		// Pre-size it to make more allocation unlikely.
151		b.extra = make(map[string]float64, 16)
152	} else {
153		clear(b.extra)
154	}
155	if b.timerOn {
156		runtime.ReadMemStats(&memStats)
157		b.startAllocs = memStats.Mallocs
158		b.startBytes = memStats.TotalAlloc
159		b.start = highPrecisionTimeNow()
160	}
161	b.duration = 0
162	b.netAllocs = 0
163	b.netBytes = 0
164}
165
166// SetBytes records the number of bytes processed in a single operation.
167// If this is called, the benchmark will report ns/op and MB/s.
168func (b *B) SetBytes(n int64) { b.bytes = n }
169
170// ReportAllocs enables malloc statistics for this benchmark.
171// It is equivalent to setting -test.benchmem, but it only affects the
172// benchmark function that calls ReportAllocs.
173func (b *B) ReportAllocs() {
174	b.showAllocResult = true
175}
176
177// runN runs a single benchmark for the specified number of iterations.
178func (b *B) runN(n int) {
179	benchmarkLock.Lock()
180	defer benchmarkLock.Unlock()
181	defer func() {
182		b.runCleanup(normalPanic)
183		b.checkRaces()
184	}()
185	// Try to get a comparable environment for each run
186	// by clearing garbage from previous runs.
187	runtime.GC()
188	b.resetRaces()
189	b.N = n
190	b.parallelism = 1
191	b.ResetTimer()
192	b.StartTimer()
193	b.benchFunc(b)
194	b.StopTimer()
195	b.previousN = n
196	b.previousDuration = b.duration
197}
198
199// run1 runs the first iteration of benchFunc. It reports whether more
200// iterations of this benchmarks should be run.
201func (b *B) run1() bool {
202	if ctx := b.context; ctx != nil {
203		// Extend maxLen, if needed.
204		if n := len(b.name) + ctx.extLen + 1; n > ctx.maxLen {
205			ctx.maxLen = n + 8 // Add additional slack to avoid too many jumps in size.
206		}
207	}
208	go func() {
209		// Signal that we're done whether we return normally
210		// or by FailNow's runtime.Goexit.
211		defer func() {
212			b.signal <- true
213		}()
214
215		b.runN(1)
216	}()
217	<-b.signal
218	if b.failed {
219		fmt.Fprintf(b.w, "%s--- FAIL: %s\n%s", b.chatty.prefix(), b.name, b.output)
220		return false
221	}
222	// Only print the output if we know we are not going to proceed.
223	// Otherwise it is printed in processBench.
224	b.mu.RLock()
225	finished := b.finished
226	b.mu.RUnlock()
227	if b.hasSub.Load() || finished {
228		tag := "BENCH"
229		if b.skipped {
230			tag = "SKIP"
231		}
232		if b.chatty != nil && (len(b.output) > 0 || finished) {
233			b.trimOutput()
234			fmt.Fprintf(b.w, "%s--- %s: %s\n%s", b.chatty.prefix(), tag, b.name, b.output)
235		}
236		return false
237	}
238	return true
239}
240
241var labelsOnce sync.Once
242
243// run executes the benchmark in a separate goroutine, including all of its
244// subbenchmarks. b must not have subbenchmarks.
245func (b *B) run() {
246	labelsOnce.Do(func() {
247		fmt.Fprintf(b.w, "goos: %s\n", runtime.GOOS)
248		fmt.Fprintf(b.w, "goarch: %s\n", runtime.GOARCH)
249		if b.importPath != "" {
250			fmt.Fprintf(b.w, "pkg: %s\n", b.importPath)
251		}
252		if cpu := sysinfo.CPUName(); cpu != "" {
253			fmt.Fprintf(b.w, "cpu: %s\n", cpu)
254		}
255	})
256	if b.context != nil {
257		// Running go test --test.bench
258		b.context.processBench(b) // Must call doBench.
259	} else {
260		// Running func Benchmark.
261		b.doBench()
262	}
263}
264
265func (b *B) doBench() BenchmarkResult {
266	go b.launch()
267	<-b.signal
268	return b.result
269}
270
271// launch launches the benchmark function. It gradually increases the number
272// of benchmark iterations until the benchmark runs for the requested benchtime.
273// launch is run by the doBench function as a separate goroutine.
274// run1 must have been called on b.
275func (b *B) launch() {
276	// Signal that we're done whether we return normally
277	// or by FailNow's runtime.Goexit.
278	defer func() {
279		b.signal <- true
280	}()
281
282	// Run the benchmark for at least the specified amount of time.
283	if b.benchTime.n > 0 {
284		// We already ran a single iteration in run1.
285		// If -benchtime=1x was requested, use that result.
286		// See https://golang.org/issue/32051.
287		if b.benchTime.n > 1 {
288			b.runN(b.benchTime.n)
289		}
290	} else {
291		d := b.benchTime.d
292		for n := int64(1); !b.failed && b.duration < d && n < 1e9; {
293			last := n
294			// Predict required iterations.
295			goalns := d.Nanoseconds()
296			prevIters := int64(b.N)
297			prevns := b.duration.Nanoseconds()
298			if prevns <= 0 {
299				// Round up, to avoid div by zero.
300				prevns = 1
301			}
302			// Order of operations matters.
303			// For very fast benchmarks, prevIters ~= prevns.
304			// If you divide first, you get 0 or 1,
305			// which can hide an order of magnitude in execution time.
306			// So multiply first, then divide.
307			n = goalns * prevIters / prevns
308			// Run more iterations than we think we'll need (1.2x).
309			n += n / 5
310			// Don't grow too fast in case we had timing errors previously.
311			n = min(n, 100*last)
312			// Be sure to run at least one more than last time.
313			n = max(n, last+1)
314			// Don't run more than 1e9 times. (This also keeps n in int range on 32 bit platforms.)
315			n = min(n, 1e9)
316			b.runN(int(n))
317		}
318	}
319	b.result = BenchmarkResult{b.N, b.duration, b.bytes, b.netAllocs, b.netBytes, b.extra}
320}
321
322// Elapsed returns the measured elapsed time of the benchmark.
323// The duration reported by Elapsed matches the one measured by
324// [B.StartTimer], [B.StopTimer], and [B.ResetTimer].
325func (b *B) Elapsed() time.Duration {
326	d := b.duration
327	if b.timerOn {
328		d += highPrecisionTimeSince(b.start)
329	}
330	return d
331}
332
333// ReportMetric adds "n unit" to the reported benchmark results.
334// If the metric is per-iteration, the caller should divide by b.N,
335// and by convention units should end in "/op".
336// ReportMetric overrides any previously reported value for the same unit.
337// ReportMetric panics if unit is the empty string or if unit contains
338// any whitespace.
339// If unit is a unit normally reported by the benchmark framework itself
340// (such as "allocs/op"), ReportMetric will override that metric.
341// Setting "ns/op" to 0 will suppress that built-in metric.
342func (b *B) ReportMetric(n float64, unit string) {
343	if unit == "" {
344		panic("metric unit must not be empty")
345	}
346	if strings.IndexFunc(unit, unicode.IsSpace) >= 0 {
347		panic("metric unit must not contain whitespace")
348	}
349	b.extra[unit] = n
350}
351
352// BenchmarkResult contains the results of a benchmark run.
353type BenchmarkResult struct {
354	N         int           // The number of iterations.
355	T         time.Duration // The total time taken.
356	Bytes     int64         // Bytes processed in one iteration.
357	MemAllocs uint64        // The total number of memory allocations.
358	MemBytes  uint64        // The total number of bytes allocated.
359
360	// Extra records additional metrics reported by ReportMetric.
361	Extra map[string]float64
362}
363
364// NsPerOp returns the "ns/op" metric.
365func (r BenchmarkResult) NsPerOp() int64 {
366	if v, ok := r.Extra["ns/op"]; ok {
367		return int64(v)
368	}
369	if r.N <= 0 {
370		return 0
371	}
372	return r.T.Nanoseconds() / int64(r.N)
373}
374
375// mbPerSec returns the "MB/s" metric.
376func (r BenchmarkResult) mbPerSec() float64 {
377	if v, ok := r.Extra["MB/s"]; ok {
378		return v
379	}
380	if r.Bytes <= 0 || r.T <= 0 || r.N <= 0 {
381		return 0
382	}
383	return (float64(r.Bytes) * float64(r.N) / 1e6) / r.T.Seconds()
384}
385
386// AllocsPerOp returns the "allocs/op" metric,
387// which is calculated as r.MemAllocs / r.N.
388func (r BenchmarkResult) AllocsPerOp() int64 {
389	if v, ok := r.Extra["allocs/op"]; ok {
390		return int64(v)
391	}
392	if r.N <= 0 {
393		return 0
394	}
395	return int64(r.MemAllocs) / int64(r.N)
396}
397
398// AllocedBytesPerOp returns the "B/op" metric,
399// which is calculated as r.MemBytes / r.N.
400func (r BenchmarkResult) AllocedBytesPerOp() int64 {
401	if v, ok := r.Extra["B/op"]; ok {
402		return int64(v)
403	}
404	if r.N <= 0 {
405		return 0
406	}
407	return int64(r.MemBytes) / int64(r.N)
408}
409
410// String returns a summary of the benchmark results.
411// It follows the benchmark result line format from
412// https://golang.org/design/14313-benchmark-format, not including the
413// benchmark name.
414// Extra metrics override built-in metrics of the same name.
415// String does not include allocs/op or B/op, since those are reported
416// by [BenchmarkResult.MemString].
417func (r BenchmarkResult) String() string {
418	buf := new(strings.Builder)
419	fmt.Fprintf(buf, "%8d", r.N)
420
421	// Get ns/op as a float.
422	ns, ok := r.Extra["ns/op"]
423	if !ok {
424		ns = float64(r.T.Nanoseconds()) / float64(r.N)
425	}
426	if ns != 0 {
427		buf.WriteByte('\t')
428		prettyPrint(buf, ns, "ns/op")
429	}
430
431	if mbs := r.mbPerSec(); mbs != 0 {
432		fmt.Fprintf(buf, "\t%7.2f MB/s", mbs)
433	}
434
435	// Print extra metrics that aren't represented in the standard
436	// metrics.
437	var extraKeys []string
438	for k := range r.Extra {
439		switch k {
440		case "ns/op", "MB/s", "B/op", "allocs/op":
441			// Built-in metrics reported elsewhere.
442			continue
443		}
444		extraKeys = append(extraKeys, k)
445	}
446	slices.Sort(extraKeys)
447	for _, k := range extraKeys {
448		buf.WriteByte('\t')
449		prettyPrint(buf, r.Extra[k], k)
450	}
451	return buf.String()
452}
453
454func prettyPrint(w io.Writer, x float64, unit string) {
455	// Print all numbers with 10 places before the decimal point
456	// and small numbers with four sig figs. Field widths are
457	// chosen to fit the whole part in 10 places while aligning
458	// the decimal point of all fractional formats.
459	var format string
460	switch y := math.Abs(x); {
461	case y == 0 || y >= 999.95:
462		format = "%10.0f %s"
463	case y >= 99.995:
464		format = "%12.1f %s"
465	case y >= 9.9995:
466		format = "%13.2f %s"
467	case y >= 0.99995:
468		format = "%14.3f %s"
469	case y >= 0.099995:
470		format = "%15.4f %s"
471	case y >= 0.0099995:
472		format = "%16.5f %s"
473	case y >= 0.00099995:
474		format = "%17.6f %s"
475	default:
476		format = "%18.7f %s"
477	}
478	fmt.Fprintf(w, format, x, unit)
479}
480
481// MemString returns r.AllocedBytesPerOp and r.AllocsPerOp in the same format as 'go test'.
482func (r BenchmarkResult) MemString() string {
483	return fmt.Sprintf("%8d B/op\t%8d allocs/op",
484		r.AllocedBytesPerOp(), r.AllocsPerOp())
485}
486
487// benchmarkName returns full name of benchmark including procs suffix.
488func benchmarkName(name string, n int) string {
489	if n != 1 {
490		return fmt.Sprintf("%s-%d", name, n)
491	}
492	return name
493}
494
495type benchContext struct {
496	match *matcher
497
498	maxLen int // The largest recorded benchmark name.
499	extLen int // Maximum extension length.
500}
501
502// RunBenchmarks is an internal function but exported because it is cross-package;
503// it is part of the implementation of the "go test" command.
504func RunBenchmarks(matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) {
505	runBenchmarks("", matchString, benchmarks)
506}
507
508func runBenchmarks(importPath string, matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) bool {
509	// If no flag was specified, don't run benchmarks.
510	if len(*matchBenchmarks) == 0 {
511		return true
512	}
513	// Collect matching benchmarks and determine longest name.
514	maxprocs := 1
515	for _, procs := range cpuList {
516		if procs > maxprocs {
517			maxprocs = procs
518		}
519	}
520	ctx := &benchContext{
521		match:  newMatcher(matchString, *matchBenchmarks, "-test.bench", *skip),
522		extLen: len(benchmarkName("", maxprocs)),
523	}
524	var bs []InternalBenchmark
525	for _, Benchmark := range benchmarks {
526		if _, matched, _ := ctx.match.fullName(nil, Benchmark.Name); matched {
527			bs = append(bs, Benchmark)
528			benchName := benchmarkName(Benchmark.Name, maxprocs)
529			if l := len(benchName) + ctx.extLen + 1; l > ctx.maxLen {
530				ctx.maxLen = l
531			}
532		}
533	}
534	main := &B{
535		common: common{
536			name:  "Main",
537			w:     os.Stdout,
538			bench: true,
539		},
540		importPath: importPath,
541		benchFunc: func(b *B) {
542			for _, Benchmark := range bs {
543				b.Run(Benchmark.Name, Benchmark.F)
544			}
545		},
546		benchTime: benchTime,
547		context:   ctx,
548	}
549	if Verbose() {
550		main.chatty = newChattyPrinter(main.w)
551	}
552	main.runN(1)
553	return !main.failed
554}
555
556// processBench runs bench b for the configured CPU counts and prints the results.
557func (ctx *benchContext) processBench(b *B) {
558	for i, procs := range cpuList {
559		for j := uint(0); j < *count; j++ {
560			runtime.GOMAXPROCS(procs)
561			benchName := benchmarkName(b.name, procs)
562
563			// If it's chatty, we've already printed this information.
564			if b.chatty == nil {
565				fmt.Fprintf(b.w, "%-*s\t", ctx.maxLen, benchName)
566			}
567			// Recompute the running time for all but the first iteration.
568			if i > 0 || j > 0 {
569				b = &B{
570					common: common{
571						signal: make(chan bool),
572						name:   b.name,
573						w:      b.w,
574						chatty: b.chatty,
575						bench:  true,
576					},
577					benchFunc: b.benchFunc,
578					benchTime: b.benchTime,
579				}
580				b.run1()
581			}
582			r := b.doBench()
583			if b.failed {
584				// The output could be very long here, but probably isn't.
585				// We print it all, regardless, because we don't want to trim the reason
586				// the benchmark failed.
587				fmt.Fprintf(b.w, "%s--- FAIL: %s\n%s", b.chatty.prefix(), benchName, b.output)
588				continue
589			}
590			results := r.String()
591			if b.chatty != nil {
592				fmt.Fprintf(b.w, "%-*s\t", ctx.maxLen, benchName)
593			}
594			if *benchmarkMemory || b.showAllocResult {
595				results += "\t" + r.MemString()
596			}
597			fmt.Fprintln(b.w, results)
598			// Unlike with tests, we ignore the -chatty flag and always print output for
599			// benchmarks since the output generation time will skew the results.
600			if len(b.output) > 0 {
601				b.trimOutput()
602				fmt.Fprintf(b.w, "%s--- BENCH: %s\n%s", b.chatty.prefix(), benchName, b.output)
603			}
604			if p := runtime.GOMAXPROCS(-1); p != procs {
605				fmt.Fprintf(os.Stderr, "testing: %s left GOMAXPROCS set to %d\n", benchName, p)
606			}
607			if b.chatty != nil && b.chatty.json {
608				b.chatty.Updatef("", "=== NAME  %s\n", "")
609			}
610		}
611	}
612}
613
614// If hideStdoutForTesting is true, Run does not print the benchName.
615// This avoids a spurious print during 'go test' on package testing itself,
616// which invokes b.Run in its own tests (see sub_test.go).
617var hideStdoutForTesting = false
618
619// Run benchmarks f as a subbenchmark with the given name. It reports
620// whether there were any failures.
621//
622// A subbenchmark is like any other benchmark. A benchmark that calls Run at
623// least once will not be measured itself and will be called once with N=1.
624func (b *B) Run(name string, f func(b *B)) bool {
625	// Since b has subbenchmarks, we will no longer run it as a benchmark itself.
626	// Release the lock and acquire it on exit to ensure locks stay paired.
627	b.hasSub.Store(true)
628	benchmarkLock.Unlock()
629	defer benchmarkLock.Lock()
630
631	benchName, ok, partial := b.name, true, false
632	if b.context != nil {
633		benchName, ok, partial = b.context.match.fullName(&b.common, name)
634	}
635	if !ok {
636		return true
637	}
638	var pc [maxStackLen]uintptr
639	n := runtime.Callers(2, pc[:])
640	sub := &B{
641		common: common{
642			signal:  make(chan bool),
643			name:    benchName,
644			parent:  &b.common,
645			level:   b.level + 1,
646			creator: pc[:n],
647			w:       b.w,
648			chatty:  b.chatty,
649			bench:   true,
650		},
651		importPath: b.importPath,
652		benchFunc:  f,
653		benchTime:  b.benchTime,
654		context:    b.context,
655	}
656	if partial {
657		// Partial name match, like -bench=X/Y matching BenchmarkX.
658		// Only process sub-benchmarks, if any.
659		sub.hasSub.Store(true)
660	}
661
662	if b.chatty != nil {
663		labelsOnce.Do(func() {
664			fmt.Printf("goos: %s\n", runtime.GOOS)
665			fmt.Printf("goarch: %s\n", runtime.GOARCH)
666			if b.importPath != "" {
667				fmt.Printf("pkg: %s\n", b.importPath)
668			}
669			if cpu := sysinfo.CPUName(); cpu != "" {
670				fmt.Printf("cpu: %s\n", cpu)
671			}
672		})
673
674		if !hideStdoutForTesting {
675			if b.chatty.json {
676				b.chatty.Updatef(benchName, "=== RUN   %s\n", benchName)
677			}
678			fmt.Println(benchName)
679		}
680	}
681
682	if sub.run1() {
683		sub.run()
684	}
685	b.add(sub.result)
686	return !sub.failed
687}
688
689// add simulates running benchmarks in sequence in a single iteration. It is
690// used to give some meaningful results in case func Benchmark is used in
691// combination with Run.
692func (b *B) add(other BenchmarkResult) {
693	r := &b.result
694	// The aggregated BenchmarkResults resemble running all subbenchmarks as
695	// in sequence in a single benchmark.
696	r.N = 1
697	r.T += time.Duration(other.NsPerOp())
698	if other.Bytes == 0 {
699		// Summing Bytes is meaningless in aggregate if not all subbenchmarks
700		// set it.
701		b.missingBytes = true
702		r.Bytes = 0
703	}
704	if !b.missingBytes {
705		r.Bytes += other.Bytes
706	}
707	r.MemAllocs += uint64(other.AllocsPerOp())
708	r.MemBytes += uint64(other.AllocedBytesPerOp())
709}
710
711// trimOutput shortens the output from a benchmark, which can be very long.
712func (b *B) trimOutput() {
713	// The output is likely to appear multiple times because the benchmark
714	// is run multiple times, but at least it will be seen. This is not a big deal
715	// because benchmarks rarely print, but just in case, we trim it if it's too long.
716	const maxNewlines = 10
717	for nlCount, j := 0, 0; j < len(b.output); j++ {
718		if b.output[j] == '\n' {
719			nlCount++
720			if nlCount >= maxNewlines {
721				b.output = append(b.output[:j], "\n\t... [output truncated]\n"...)
722				break
723			}
724		}
725	}
726}
727
728// A PB is used by RunParallel for running parallel benchmarks.
729type PB struct {
730	globalN *atomic.Uint64 // shared between all worker goroutines iteration counter
731	grain   uint64         // acquire that many iterations from globalN at once
732	cache   uint64         // local cache of acquired iterations
733	bN      uint64         // total number of iterations to execute (b.N)
734}
735
736// Next reports whether there are more iterations to execute.
737func (pb *PB) Next() bool {
738	if pb.cache == 0 {
739		n := pb.globalN.Add(pb.grain)
740		if n <= pb.bN {
741			pb.cache = pb.grain
742		} else if n < pb.bN+pb.grain {
743			pb.cache = pb.bN + pb.grain - n
744		} else {
745			return false
746		}
747	}
748	pb.cache--
749	return true
750}
751
752// RunParallel runs a benchmark in parallel.
753// It creates multiple goroutines and distributes b.N iterations among them.
754// The number of goroutines defaults to GOMAXPROCS. To increase parallelism for
755// non-CPU-bound benchmarks, call [B.SetParallelism] before RunParallel.
756// RunParallel is usually used with the go test -cpu flag.
757//
758// The body function will be run in each goroutine. It should set up any
759// goroutine-local state and then iterate until pb.Next returns false.
760// It should not use the [B.StartTimer], [B.StopTimer], or [B.ResetTimer] functions,
761// because they have global effect. It should also not call [B.Run].
762//
763// RunParallel reports ns/op values as wall time for the benchmark as a whole,
764// not the sum of wall time or CPU time over each parallel goroutine.
765func (b *B) RunParallel(body func(*PB)) {
766	if b.N == 0 {
767		return // Nothing to do when probing.
768	}
769	// Calculate grain size as number of iterations that take ~100µs.
770	// 100µs is enough to amortize the overhead and provide sufficient
771	// dynamic load balancing.
772	grain := uint64(0)
773	if b.previousN > 0 && b.previousDuration > 0 {
774		grain = 1e5 * uint64(b.previousN) / uint64(b.previousDuration)
775	}
776	if grain < 1 {
777		grain = 1
778	}
779	// We expect the inner loop and function call to take at least 10ns,
780	// so do not do more than 100µs/10ns=1e4 iterations.
781	if grain > 1e4 {
782		grain = 1e4
783	}
784
785	var n atomic.Uint64
786	numProcs := b.parallelism * runtime.GOMAXPROCS(0)
787	var wg sync.WaitGroup
788	wg.Add(numProcs)
789	for p := 0; p < numProcs; p++ {
790		go func() {
791			defer wg.Done()
792			pb := &PB{
793				globalN: &n,
794				grain:   grain,
795				bN:      uint64(b.N),
796			}
797			body(pb)
798		}()
799	}
800	wg.Wait()
801	if n.Load() <= uint64(b.N) && !b.Failed() {
802		b.Fatal("RunParallel: body exited without pb.Next() == false")
803	}
804}
805
806// SetParallelism sets the number of goroutines used by [B.RunParallel] to p*GOMAXPROCS.
807// There is usually no need to call SetParallelism for CPU-bound benchmarks.
808// If p is less than 1, this call will have no effect.
809func (b *B) SetParallelism(p int) {
810	if p >= 1 {
811		b.parallelism = p
812	}
813}
814
815// Benchmark benchmarks a single function. It is useful for creating
816// custom benchmarks that do not use the "go test" command.
817//
818// If f depends on testing flags, then [Init] must be used to register
819// those flags before calling Benchmark and before calling [flag.Parse].
820//
821// If f calls Run, the result will be an estimate of running all its
822// subbenchmarks that don't call Run in sequence in a single benchmark.
823func Benchmark(f func(b *B)) BenchmarkResult {
824	b := &B{
825		common: common{
826			signal: make(chan bool),
827			w:      discard{},
828		},
829		benchFunc: f,
830		benchTime: benchTime,
831	}
832	if b.run1() {
833		b.run()
834	}
835	return b.result
836}
837
838type discard struct{}
839
840func (discard) Write(b []byte) (n int, err error) { return len(b), nil }
841