1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// Package strings implements simple functions to manipulate UTF-8 encoded strings. 6// 7// For information about UTF-8 strings in Go, see https://blog.golang.org/strings. 8package strings 9 10import ( 11 "internal/bytealg" 12 "internal/stringslite" 13 "unicode" 14 "unicode/utf8" 15) 16 17const maxInt = int(^uint(0) >> 1) 18 19// explode splits s into a slice of UTF-8 strings, 20// one string per Unicode character up to a maximum of n (n < 0 means no limit). 21// Invalid UTF-8 bytes are sliced individually. 22func explode(s string, n int) []string { 23 l := utf8.RuneCountInString(s) 24 if n < 0 || n > l { 25 n = l 26 } 27 a := make([]string, n) 28 for i := 0; i < n-1; i++ { 29 _, size := utf8.DecodeRuneInString(s) 30 a[i] = s[:size] 31 s = s[size:] 32 } 33 if n > 0 { 34 a[n-1] = s 35 } 36 return a 37} 38 39// Count counts the number of non-overlapping instances of substr in s. 40// If substr is an empty string, Count returns 1 + the number of Unicode code points in s. 41func Count(s, substr string) int { 42 // special case 43 if len(substr) == 0 { 44 return utf8.RuneCountInString(s) + 1 45 } 46 if len(substr) == 1 { 47 return bytealg.CountString(s, substr[0]) 48 } 49 n := 0 50 for { 51 i := Index(s, substr) 52 if i == -1 { 53 return n 54 } 55 n++ 56 s = s[i+len(substr):] 57 } 58} 59 60// Contains reports whether substr is within s. 61func Contains(s, substr string) bool { 62 return Index(s, substr) >= 0 63} 64 65// ContainsAny reports whether any Unicode code points in chars are within s. 66func ContainsAny(s, chars string) bool { 67 return IndexAny(s, chars) >= 0 68} 69 70// ContainsRune reports whether the Unicode code point r is within s. 71func ContainsRune(s string, r rune) bool { 72 return IndexRune(s, r) >= 0 73} 74 75// ContainsFunc reports whether any Unicode code points r within s satisfy f(r). 76func ContainsFunc(s string, f func(rune) bool) bool { 77 return IndexFunc(s, f) >= 0 78} 79 80// LastIndex returns the index of the last instance of substr in s, or -1 if substr is not present in s. 81func LastIndex(s, substr string) int { 82 n := len(substr) 83 switch { 84 case n == 0: 85 return len(s) 86 case n == 1: 87 return bytealg.LastIndexByteString(s, substr[0]) 88 case n == len(s): 89 if substr == s { 90 return 0 91 } 92 return -1 93 case n > len(s): 94 return -1 95 } 96 // Rabin-Karp search from the end of the string 97 hashss, pow := bytealg.HashStrRev(substr) 98 last := len(s) - n 99 var h uint32 100 for i := len(s) - 1; i >= last; i-- { 101 h = h*bytealg.PrimeRK + uint32(s[i]) 102 } 103 if h == hashss && s[last:] == substr { 104 return last 105 } 106 for i := last - 1; i >= 0; i-- { 107 h *= bytealg.PrimeRK 108 h += uint32(s[i]) 109 h -= pow * uint32(s[i+n]) 110 if h == hashss && s[i:i+n] == substr { 111 return i 112 } 113 } 114 return -1 115} 116 117// IndexByte returns the index of the first instance of c in s, or -1 if c is not present in s. 118func IndexByte(s string, c byte) int { 119 return stringslite.IndexByte(s, c) 120} 121 122// IndexRune returns the index of the first instance of the Unicode code point 123// r, or -1 if rune is not present in s. 124// If r is [utf8.RuneError], it returns the first instance of any 125// invalid UTF-8 byte sequence. 126func IndexRune(s string, r rune) int { 127 switch { 128 case 0 <= r && r < utf8.RuneSelf: 129 return IndexByte(s, byte(r)) 130 case r == utf8.RuneError: 131 for i, r := range s { 132 if r == utf8.RuneError { 133 return i 134 } 135 } 136 return -1 137 case !utf8.ValidRune(r): 138 return -1 139 default: 140 return Index(s, string(r)) 141 } 142} 143 144// IndexAny returns the index of the first instance of any Unicode code point 145// from chars in s, or -1 if no Unicode code point from chars is present in s. 146func IndexAny(s, chars string) int { 147 if chars == "" { 148 // Avoid scanning all of s. 149 return -1 150 } 151 if len(chars) == 1 { 152 // Avoid scanning all of s. 153 r := rune(chars[0]) 154 if r >= utf8.RuneSelf { 155 r = utf8.RuneError 156 } 157 return IndexRune(s, r) 158 } 159 if len(s) > 8 { 160 if as, isASCII := makeASCIISet(chars); isASCII { 161 for i := 0; i < len(s); i++ { 162 if as.contains(s[i]) { 163 return i 164 } 165 } 166 return -1 167 } 168 } 169 for i, c := range s { 170 if IndexRune(chars, c) >= 0 { 171 return i 172 } 173 } 174 return -1 175} 176 177// LastIndexAny returns the index of the last instance of any Unicode code 178// point from chars in s, or -1 if no Unicode code point from chars is 179// present in s. 180func LastIndexAny(s, chars string) int { 181 if chars == "" { 182 // Avoid scanning all of s. 183 return -1 184 } 185 if len(s) == 1 { 186 rc := rune(s[0]) 187 if rc >= utf8.RuneSelf { 188 rc = utf8.RuneError 189 } 190 if IndexRune(chars, rc) >= 0 { 191 return 0 192 } 193 return -1 194 } 195 if len(s) > 8 { 196 if as, isASCII := makeASCIISet(chars); isASCII { 197 for i := len(s) - 1; i >= 0; i-- { 198 if as.contains(s[i]) { 199 return i 200 } 201 } 202 return -1 203 } 204 } 205 if len(chars) == 1 { 206 rc := rune(chars[0]) 207 if rc >= utf8.RuneSelf { 208 rc = utf8.RuneError 209 } 210 for i := len(s); i > 0; { 211 r, size := utf8.DecodeLastRuneInString(s[:i]) 212 i -= size 213 if rc == r { 214 return i 215 } 216 } 217 return -1 218 } 219 for i := len(s); i > 0; { 220 r, size := utf8.DecodeLastRuneInString(s[:i]) 221 i -= size 222 if IndexRune(chars, r) >= 0 { 223 return i 224 } 225 } 226 return -1 227} 228 229// LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s. 230func LastIndexByte(s string, c byte) int { 231 return bytealg.LastIndexByteString(s, c) 232} 233 234// Generic split: splits after each instance of sep, 235// including sepSave bytes of sep in the subarrays. 236func genSplit(s, sep string, sepSave, n int) []string { 237 if n == 0 { 238 return nil 239 } 240 if sep == "" { 241 return explode(s, n) 242 } 243 if n < 0 { 244 n = Count(s, sep) + 1 245 } 246 247 if n > len(s)+1 { 248 n = len(s) + 1 249 } 250 a := make([]string, n) 251 n-- 252 i := 0 253 for i < n { 254 m := Index(s, sep) 255 if m < 0 { 256 break 257 } 258 a[i] = s[:m+sepSave] 259 s = s[m+len(sep):] 260 i++ 261 } 262 a[i] = s 263 return a[:i+1] 264} 265 266// SplitN slices s into substrings separated by sep and returns a slice of 267// the substrings between those separators. 268// 269// The count determines the number of substrings to return: 270// - n > 0: at most n substrings; the last substring will be the unsplit remainder; 271// - n == 0: the result is nil (zero substrings); 272// - n < 0: all substrings. 273// 274// Edge cases for s and sep (for example, empty strings) are handled 275// as described in the documentation for [Split]. 276// 277// To split around the first instance of a separator, see [Cut]. 278func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) } 279 280// SplitAfterN slices s into substrings after each instance of sep and 281// returns a slice of those substrings. 282// 283// The count determines the number of substrings to return: 284// - n > 0: at most n substrings; the last substring will be the unsplit remainder; 285// - n == 0: the result is nil (zero substrings); 286// - n < 0: all substrings. 287// 288// Edge cases for s and sep (for example, empty strings) are handled 289// as described in the documentation for [SplitAfter]. 290func SplitAfterN(s, sep string, n int) []string { 291 return genSplit(s, sep, len(sep), n) 292} 293 294// Split slices s into all substrings separated by sep and returns a slice of 295// the substrings between those separators. 296// 297// If s does not contain sep and sep is not empty, Split returns a 298// slice of length 1 whose only element is s. 299// 300// If sep is empty, Split splits after each UTF-8 sequence. If both s 301// and sep are empty, Split returns an empty slice. 302// 303// It is equivalent to [SplitN] with a count of -1. 304// 305// To split around the first instance of a separator, see [Cut]. 306func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) } 307 308// SplitAfter slices s into all substrings after each instance of sep and 309// returns a slice of those substrings. 310// 311// If s does not contain sep and sep is not empty, SplitAfter returns 312// a slice of length 1 whose only element is s. 313// 314// If sep is empty, SplitAfter splits after each UTF-8 sequence. If 315// both s and sep are empty, SplitAfter returns an empty slice. 316// 317// It is equivalent to [SplitAfterN] with a count of -1. 318func SplitAfter(s, sep string) []string { 319 return genSplit(s, sep, len(sep), -1) 320} 321 322var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1} 323 324// Fields splits the string s around each instance of one or more consecutive white space 325// characters, as defined by [unicode.IsSpace], returning a slice of substrings of s or an 326// empty slice if s contains only white space. 327func Fields(s string) []string { 328 // First count the fields. 329 // This is an exact count if s is ASCII, otherwise it is an approximation. 330 n := 0 331 wasSpace := 1 332 // setBits is used to track which bits are set in the bytes of s. 333 setBits := uint8(0) 334 for i := 0; i < len(s); i++ { 335 r := s[i] 336 setBits |= r 337 isSpace := int(asciiSpace[r]) 338 n += wasSpace & ^isSpace 339 wasSpace = isSpace 340 } 341 342 if setBits >= utf8.RuneSelf { 343 // Some runes in the input string are not ASCII. 344 return FieldsFunc(s, unicode.IsSpace) 345 } 346 // ASCII fast path 347 a := make([]string, n) 348 na := 0 349 fieldStart := 0 350 i := 0 351 // Skip spaces in the front of the input. 352 for i < len(s) && asciiSpace[s[i]] != 0 { 353 i++ 354 } 355 fieldStart = i 356 for i < len(s) { 357 if asciiSpace[s[i]] == 0 { 358 i++ 359 continue 360 } 361 a[na] = s[fieldStart:i] 362 na++ 363 i++ 364 // Skip spaces in between fields. 365 for i < len(s) && asciiSpace[s[i]] != 0 { 366 i++ 367 } 368 fieldStart = i 369 } 370 if fieldStart < len(s) { // Last field might end at EOF. 371 a[na] = s[fieldStart:] 372 } 373 return a 374} 375 376// FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c) 377// and returns an array of slices of s. If all code points in s satisfy f(c) or the 378// string is empty, an empty slice is returned. 379// 380// FieldsFunc makes no guarantees about the order in which it calls f(c) 381// and assumes that f always returns the same value for a given c. 382func FieldsFunc(s string, f func(rune) bool) []string { 383 // A span is used to record a slice of s of the form s[start:end]. 384 // The start index is inclusive and the end index is exclusive. 385 type span struct { 386 start int 387 end int 388 } 389 spans := make([]span, 0, 32) 390 391 // Find the field start and end indices. 392 // Doing this in a separate pass (rather than slicing the string s 393 // and collecting the result substrings right away) is significantly 394 // more efficient, possibly due to cache effects. 395 start := -1 // valid span start if >= 0 396 for end, rune := range s { 397 if f(rune) { 398 if start >= 0 { 399 spans = append(spans, span{start, end}) 400 // Set start to a negative value. 401 // Note: using -1 here consistently and reproducibly 402 // slows down this code by a several percent on amd64. 403 start = ^start 404 } 405 } else { 406 if start < 0 { 407 start = end 408 } 409 } 410 } 411 412 // Last field might end at EOF. 413 if start >= 0 { 414 spans = append(spans, span{start, len(s)}) 415 } 416 417 // Create strings from recorded field indices. 418 a := make([]string, len(spans)) 419 for i, span := range spans { 420 a[i] = s[span.start:span.end] 421 } 422 423 return a 424} 425 426// Join concatenates the elements of its first argument to create a single string. The separator 427// string sep is placed between elements in the resulting string. 428func Join(elems []string, sep string) string { 429 switch len(elems) { 430 case 0: 431 return "" 432 case 1: 433 return elems[0] 434 } 435 436 var n int 437 if len(sep) > 0 { 438 if len(sep) >= maxInt/(len(elems)-1) { 439 panic("strings: Join output length overflow") 440 } 441 n += len(sep) * (len(elems) - 1) 442 } 443 for _, elem := range elems { 444 if len(elem) > maxInt-n { 445 panic("strings: Join output length overflow") 446 } 447 n += len(elem) 448 } 449 450 var b Builder 451 b.Grow(n) 452 b.WriteString(elems[0]) 453 for _, s := range elems[1:] { 454 b.WriteString(sep) 455 b.WriteString(s) 456 } 457 return b.String() 458} 459 460// HasPrefix reports whether the string s begins with prefix. 461func HasPrefix(s, prefix string) bool { 462 return stringslite.HasPrefix(s, prefix) 463} 464 465// HasSuffix reports whether the string s ends with suffix. 466func HasSuffix(s, suffix string) bool { 467 return stringslite.HasSuffix(s, suffix) 468} 469 470// Map returns a copy of the string s with all its characters modified 471// according to the mapping function. If mapping returns a negative value, the character is 472// dropped from the string with no replacement. 473func Map(mapping func(rune) rune, s string) string { 474 // In the worst case, the string can grow when mapped, making 475 // things unpleasant. But it's so rare we barge in assuming it's 476 // fine. It could also shrink but that falls out naturally. 477 478 // The output buffer b is initialized on demand, the first 479 // time a character differs. 480 var b Builder 481 482 for i, c := range s { 483 r := mapping(c) 484 if r == c && c != utf8.RuneError { 485 continue 486 } 487 488 var width int 489 if c == utf8.RuneError { 490 c, width = utf8.DecodeRuneInString(s[i:]) 491 if width != 1 && r == c { 492 continue 493 } 494 } else { 495 width = utf8.RuneLen(c) 496 } 497 498 b.Grow(len(s) + utf8.UTFMax) 499 b.WriteString(s[:i]) 500 if r >= 0 { 501 b.WriteRune(r) 502 } 503 504 s = s[i+width:] 505 break 506 } 507 508 // Fast path for unchanged input 509 if b.Cap() == 0 { // didn't call b.Grow above 510 return s 511 } 512 513 for _, c := range s { 514 r := mapping(c) 515 516 if r >= 0 { 517 // common case 518 // Due to inlining, it is more performant to determine if WriteByte should be 519 // invoked rather than always call WriteRune 520 if r < utf8.RuneSelf { 521 b.WriteByte(byte(r)) 522 } else { 523 // r is not an ASCII rune. 524 b.WriteRune(r) 525 } 526 } 527 } 528 529 return b.String() 530} 531 532// According to static analysis, spaces, dashes, zeros, equals, and tabs 533// are the most commonly repeated string literal, 534// often used for display on fixed-width terminal windows. 535// Pre-declare constants for these for O(1) repetition in the common-case. 536const ( 537 repeatedSpaces = "" + 538 " " + 539 " " 540 repeatedDashes = "" + 541 "----------------------------------------------------------------" + 542 "----------------------------------------------------------------" 543 repeatedZeroes = "" + 544 "0000000000000000000000000000000000000000000000000000000000000000" 545 repeatedEquals = "" + 546 "================================================================" + 547 "================================================================" 548 repeatedTabs = "" + 549 "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t" + 550 "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t" 551) 552 553// Repeat returns a new string consisting of count copies of the string s. 554// 555// It panics if count is negative or if the result of (len(s) * count) 556// overflows. 557func Repeat(s string, count int) string { 558 switch count { 559 case 0: 560 return "" 561 case 1: 562 return s 563 } 564 565 // Since we cannot return an error on overflow, 566 // we should panic if the repeat will generate an overflow. 567 // See golang.org/issue/16237. 568 if count < 0 { 569 panic("strings: negative Repeat count") 570 } 571 if len(s) > maxInt/count { 572 panic("strings: Repeat output length overflow") 573 } 574 n := len(s) * count 575 576 if len(s) == 0 { 577 return "" 578 } 579 580 // Optimize for commonly repeated strings of relatively short length. 581 switch s[0] { 582 case ' ', '-', '0', '=', '\t': 583 switch { 584 case n <= len(repeatedSpaces) && HasPrefix(repeatedSpaces, s): 585 return repeatedSpaces[:n] 586 case n <= len(repeatedDashes) && HasPrefix(repeatedDashes, s): 587 return repeatedDashes[:n] 588 case n <= len(repeatedZeroes) && HasPrefix(repeatedZeroes, s): 589 return repeatedZeroes[:n] 590 case n <= len(repeatedEquals) && HasPrefix(repeatedEquals, s): 591 return repeatedEquals[:n] 592 case n <= len(repeatedTabs) && HasPrefix(repeatedTabs, s): 593 return repeatedTabs[:n] 594 } 595 } 596 597 // Past a certain chunk size it is counterproductive to use 598 // larger chunks as the source of the write, as when the source 599 // is too large we are basically just thrashing the CPU D-cache. 600 // So if the result length is larger than an empirically-found 601 // limit (8KB), we stop growing the source string once the limit 602 // is reached and keep reusing the same source string - that 603 // should therefore be always resident in the L1 cache - until we 604 // have completed the construction of the result. 605 // This yields significant speedups (up to +100%) in cases where 606 // the result length is large (roughly, over L2 cache size). 607 const chunkLimit = 8 * 1024 608 chunkMax := n 609 if n > chunkLimit { 610 chunkMax = chunkLimit / len(s) * len(s) 611 if chunkMax == 0 { 612 chunkMax = len(s) 613 } 614 } 615 616 var b Builder 617 b.Grow(n) 618 b.WriteString(s) 619 for b.Len() < n { 620 chunk := n - b.Len() 621 if chunk > b.Len() { 622 chunk = b.Len() 623 } 624 if chunk > chunkMax { 625 chunk = chunkMax 626 } 627 b.WriteString(b.String()[:chunk]) 628 } 629 return b.String() 630} 631 632// ToUpper returns s with all Unicode letters mapped to their upper case. 633func ToUpper(s string) string { 634 isASCII, hasLower := true, false 635 for i := 0; i < len(s); i++ { 636 c := s[i] 637 if c >= utf8.RuneSelf { 638 isASCII = false 639 break 640 } 641 hasLower = hasLower || ('a' <= c && c <= 'z') 642 } 643 644 if isASCII { // optimize for ASCII-only strings. 645 if !hasLower { 646 return s 647 } 648 var ( 649 b Builder 650 pos int 651 ) 652 b.Grow(len(s)) 653 for i := 0; i < len(s); i++ { 654 c := s[i] 655 if 'a' <= c && c <= 'z' { 656 c -= 'a' - 'A' 657 if pos < i { 658 b.WriteString(s[pos:i]) 659 } 660 b.WriteByte(c) 661 pos = i + 1 662 } 663 } 664 if pos < len(s) { 665 b.WriteString(s[pos:]) 666 } 667 return b.String() 668 } 669 return Map(unicode.ToUpper, s) 670} 671 672// ToLower returns s with all Unicode letters mapped to their lower case. 673func ToLower(s string) string { 674 isASCII, hasUpper := true, false 675 for i := 0; i < len(s); i++ { 676 c := s[i] 677 if c >= utf8.RuneSelf { 678 isASCII = false 679 break 680 } 681 hasUpper = hasUpper || ('A' <= c && c <= 'Z') 682 } 683 684 if isASCII { // optimize for ASCII-only strings. 685 if !hasUpper { 686 return s 687 } 688 var ( 689 b Builder 690 pos int 691 ) 692 b.Grow(len(s)) 693 for i := 0; i < len(s); i++ { 694 c := s[i] 695 if 'A' <= c && c <= 'Z' { 696 c += 'a' - 'A' 697 if pos < i { 698 b.WriteString(s[pos:i]) 699 } 700 b.WriteByte(c) 701 pos = i + 1 702 } 703 } 704 if pos < len(s) { 705 b.WriteString(s[pos:]) 706 } 707 return b.String() 708 } 709 return Map(unicode.ToLower, s) 710} 711 712// ToTitle returns a copy of the string s with all Unicode letters mapped to 713// their Unicode title case. 714func ToTitle(s string) string { return Map(unicode.ToTitle, s) } 715 716// ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their 717// upper case using the case mapping specified by c. 718func ToUpperSpecial(c unicode.SpecialCase, s string) string { 719 return Map(c.ToUpper, s) 720} 721 722// ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their 723// lower case using the case mapping specified by c. 724func ToLowerSpecial(c unicode.SpecialCase, s string) string { 725 return Map(c.ToLower, s) 726} 727 728// ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their 729// Unicode title case, giving priority to the special casing rules. 730func ToTitleSpecial(c unicode.SpecialCase, s string) string { 731 return Map(c.ToTitle, s) 732} 733 734// ToValidUTF8 returns a copy of the string s with each run of invalid UTF-8 byte sequences 735// replaced by the replacement string, which may be empty. 736func ToValidUTF8(s, replacement string) string { 737 var b Builder 738 739 for i, c := range s { 740 if c != utf8.RuneError { 741 continue 742 } 743 744 _, wid := utf8.DecodeRuneInString(s[i:]) 745 if wid == 1 { 746 b.Grow(len(s) + len(replacement)) 747 b.WriteString(s[:i]) 748 s = s[i:] 749 break 750 } 751 } 752 753 // Fast path for unchanged input 754 if b.Cap() == 0 { // didn't call b.Grow above 755 return s 756 } 757 758 invalid := false // previous byte was from an invalid UTF-8 sequence 759 for i := 0; i < len(s); { 760 c := s[i] 761 if c < utf8.RuneSelf { 762 i++ 763 invalid = false 764 b.WriteByte(c) 765 continue 766 } 767 _, wid := utf8.DecodeRuneInString(s[i:]) 768 if wid == 1 { 769 i++ 770 if !invalid { 771 invalid = true 772 b.WriteString(replacement) 773 } 774 continue 775 } 776 invalid = false 777 b.WriteString(s[i : i+wid]) 778 i += wid 779 } 780 781 return b.String() 782} 783 784// isSeparator reports whether the rune could mark a word boundary. 785// TODO: update when package unicode captures more of the properties. 786func isSeparator(r rune) bool { 787 // ASCII alphanumerics and underscore are not separators 788 if r <= 0x7F { 789 switch { 790 case '0' <= r && r <= '9': 791 return false 792 case 'a' <= r && r <= 'z': 793 return false 794 case 'A' <= r && r <= 'Z': 795 return false 796 case r == '_': 797 return false 798 } 799 return true 800 } 801 // Letters and digits are not separators 802 if unicode.IsLetter(r) || unicode.IsDigit(r) { 803 return false 804 } 805 // Otherwise, all we can do for now is treat spaces as separators. 806 return unicode.IsSpace(r) 807} 808 809// Title returns a copy of the string s with all Unicode letters that begin words 810// mapped to their Unicode title case. 811// 812// Deprecated: The rule Title uses for word boundaries does not handle Unicode 813// punctuation properly. Use golang.org/x/text/cases instead. 814func Title(s string) string { 815 // Use a closure here to remember state. 816 // Hackish but effective. Depends on Map scanning in order and calling 817 // the closure once per rune. 818 prev := ' ' 819 return Map( 820 func(r rune) rune { 821 if isSeparator(prev) { 822 prev = r 823 return unicode.ToTitle(r) 824 } 825 prev = r 826 return r 827 }, 828 s) 829} 830 831// TrimLeftFunc returns a slice of the string s with all leading 832// Unicode code points c satisfying f(c) removed. 833func TrimLeftFunc(s string, f func(rune) bool) string { 834 i := indexFunc(s, f, false) 835 if i == -1 { 836 return "" 837 } 838 return s[i:] 839} 840 841// TrimRightFunc returns a slice of the string s with all trailing 842// Unicode code points c satisfying f(c) removed. 843func TrimRightFunc(s string, f func(rune) bool) string { 844 i := lastIndexFunc(s, f, false) 845 if i >= 0 && s[i] >= utf8.RuneSelf { 846 _, wid := utf8.DecodeRuneInString(s[i:]) 847 i += wid 848 } else { 849 i++ 850 } 851 return s[0:i] 852} 853 854// TrimFunc returns a slice of the string s with all leading 855// and trailing Unicode code points c satisfying f(c) removed. 856func TrimFunc(s string, f func(rune) bool) string { 857 return TrimRightFunc(TrimLeftFunc(s, f), f) 858} 859 860// IndexFunc returns the index into s of the first Unicode 861// code point satisfying f(c), or -1 if none do. 862func IndexFunc(s string, f func(rune) bool) int { 863 return indexFunc(s, f, true) 864} 865 866// LastIndexFunc returns the index into s of the last 867// Unicode code point satisfying f(c), or -1 if none do. 868func LastIndexFunc(s string, f func(rune) bool) int { 869 return lastIndexFunc(s, f, true) 870} 871 872// indexFunc is the same as IndexFunc except that if 873// truth==false, the sense of the predicate function is 874// inverted. 875func indexFunc(s string, f func(rune) bool, truth bool) int { 876 for i, r := range s { 877 if f(r) == truth { 878 return i 879 } 880 } 881 return -1 882} 883 884// lastIndexFunc is the same as LastIndexFunc except that if 885// truth==false, the sense of the predicate function is 886// inverted. 887func lastIndexFunc(s string, f func(rune) bool, truth bool) int { 888 for i := len(s); i > 0; { 889 r, size := utf8.DecodeLastRuneInString(s[0:i]) 890 i -= size 891 if f(r) == truth { 892 return i 893 } 894 } 895 return -1 896} 897 898// asciiSet is a 32-byte value, where each bit represents the presence of a 899// given ASCII character in the set. The 128-bits of the lower 16 bytes, 900// starting with the least-significant bit of the lowest word to the 901// most-significant bit of the highest word, map to the full range of all 902// 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed, 903// ensuring that any non-ASCII character will be reported as not in the set. 904// This allocates a total of 32 bytes even though the upper half 905// is unused to avoid bounds checks in asciiSet.contains. 906type asciiSet [8]uint32 907 908// makeASCIISet creates a set of ASCII characters and reports whether all 909// characters in chars are ASCII. 910func makeASCIISet(chars string) (as asciiSet, ok bool) { 911 for i := 0; i < len(chars); i++ { 912 c := chars[i] 913 if c >= utf8.RuneSelf { 914 return as, false 915 } 916 as[c/32] |= 1 << (c % 32) 917 } 918 return as, true 919} 920 921// contains reports whether c is inside the set. 922func (as *asciiSet) contains(c byte) bool { 923 return (as[c/32] & (1 << (c % 32))) != 0 924} 925 926// Trim returns a slice of the string s with all leading and 927// trailing Unicode code points contained in cutset removed. 928func Trim(s, cutset string) string { 929 if s == "" || cutset == "" { 930 return s 931 } 932 if len(cutset) == 1 && cutset[0] < utf8.RuneSelf { 933 return trimLeftByte(trimRightByte(s, cutset[0]), cutset[0]) 934 } 935 if as, ok := makeASCIISet(cutset); ok { 936 return trimLeftASCII(trimRightASCII(s, &as), &as) 937 } 938 return trimLeftUnicode(trimRightUnicode(s, cutset), cutset) 939} 940 941// TrimLeft returns a slice of the string s with all leading 942// Unicode code points contained in cutset removed. 943// 944// To remove a prefix, use [TrimPrefix] instead. 945func TrimLeft(s, cutset string) string { 946 if s == "" || cutset == "" { 947 return s 948 } 949 if len(cutset) == 1 && cutset[0] < utf8.RuneSelf { 950 return trimLeftByte(s, cutset[0]) 951 } 952 if as, ok := makeASCIISet(cutset); ok { 953 return trimLeftASCII(s, &as) 954 } 955 return trimLeftUnicode(s, cutset) 956} 957 958func trimLeftByte(s string, c byte) string { 959 for len(s) > 0 && s[0] == c { 960 s = s[1:] 961 } 962 return s 963} 964 965func trimLeftASCII(s string, as *asciiSet) string { 966 for len(s) > 0 { 967 if !as.contains(s[0]) { 968 break 969 } 970 s = s[1:] 971 } 972 return s 973} 974 975func trimLeftUnicode(s, cutset string) string { 976 for len(s) > 0 { 977 r, n := rune(s[0]), 1 978 if r >= utf8.RuneSelf { 979 r, n = utf8.DecodeRuneInString(s) 980 } 981 if !ContainsRune(cutset, r) { 982 break 983 } 984 s = s[n:] 985 } 986 return s 987} 988 989// TrimRight returns a slice of the string s, with all trailing 990// Unicode code points contained in cutset removed. 991// 992// To remove a suffix, use [TrimSuffix] instead. 993func TrimRight(s, cutset string) string { 994 if s == "" || cutset == "" { 995 return s 996 } 997 if len(cutset) == 1 && cutset[0] < utf8.RuneSelf { 998 return trimRightByte(s, cutset[0]) 999 } 1000 if as, ok := makeASCIISet(cutset); ok { 1001 return trimRightASCII(s, &as) 1002 } 1003 return trimRightUnicode(s, cutset) 1004} 1005 1006func trimRightByte(s string, c byte) string { 1007 for len(s) > 0 && s[len(s)-1] == c { 1008 s = s[:len(s)-1] 1009 } 1010 return s 1011} 1012 1013func trimRightASCII(s string, as *asciiSet) string { 1014 for len(s) > 0 { 1015 if !as.contains(s[len(s)-1]) { 1016 break 1017 } 1018 s = s[:len(s)-1] 1019 } 1020 return s 1021} 1022 1023func trimRightUnicode(s, cutset string) string { 1024 for len(s) > 0 { 1025 r, n := rune(s[len(s)-1]), 1 1026 if r >= utf8.RuneSelf { 1027 r, n = utf8.DecodeLastRuneInString(s) 1028 } 1029 if !ContainsRune(cutset, r) { 1030 break 1031 } 1032 s = s[:len(s)-n] 1033 } 1034 return s 1035} 1036 1037// TrimSpace returns a slice of the string s, with all leading 1038// and trailing white space removed, as defined by Unicode. 1039func TrimSpace(s string) string { 1040 // Fast path for ASCII: look for the first ASCII non-space byte 1041 start := 0 1042 for ; start < len(s); start++ { 1043 c := s[start] 1044 if c >= utf8.RuneSelf { 1045 // If we run into a non-ASCII byte, fall back to the 1046 // slower unicode-aware method on the remaining bytes 1047 return TrimFunc(s[start:], unicode.IsSpace) 1048 } 1049 if asciiSpace[c] == 0 { 1050 break 1051 } 1052 } 1053 1054 // Now look for the first ASCII non-space byte from the end 1055 stop := len(s) 1056 for ; stop > start; stop-- { 1057 c := s[stop-1] 1058 if c >= utf8.RuneSelf { 1059 // start has been already trimmed above, should trim end only 1060 return TrimRightFunc(s[start:stop], unicode.IsSpace) 1061 } 1062 if asciiSpace[c] == 0 { 1063 break 1064 } 1065 } 1066 1067 // At this point s[start:stop] starts and ends with an ASCII 1068 // non-space bytes, so we're done. Non-ASCII cases have already 1069 // been handled above. 1070 return s[start:stop] 1071} 1072 1073// TrimPrefix returns s without the provided leading prefix string. 1074// If s doesn't start with prefix, s is returned unchanged. 1075func TrimPrefix(s, prefix string) string { 1076 return stringslite.TrimPrefix(s, prefix) 1077} 1078 1079// TrimSuffix returns s without the provided trailing suffix string. 1080// If s doesn't end with suffix, s is returned unchanged. 1081func TrimSuffix(s, suffix string) string { 1082 return stringslite.TrimSuffix(s, suffix) 1083} 1084 1085// Replace returns a copy of the string s with the first n 1086// non-overlapping instances of old replaced by new. 1087// If old is empty, it matches at the beginning of the string 1088// and after each UTF-8 sequence, yielding up to k+1 replacements 1089// for a k-rune string. 1090// If n < 0, there is no limit on the number of replacements. 1091func Replace(s, old, new string, n int) string { 1092 if old == new || n == 0 { 1093 return s // avoid allocation 1094 } 1095 1096 // Compute number of replacements. 1097 if m := Count(s, old); m == 0 { 1098 return s // avoid allocation 1099 } else if n < 0 || m < n { 1100 n = m 1101 } 1102 1103 // Apply replacements to buffer. 1104 var b Builder 1105 b.Grow(len(s) + n*(len(new)-len(old))) 1106 start := 0 1107 for i := 0; i < n; i++ { 1108 j := start 1109 if len(old) == 0 { 1110 if i > 0 { 1111 _, wid := utf8.DecodeRuneInString(s[start:]) 1112 j += wid 1113 } 1114 } else { 1115 j += Index(s[start:], old) 1116 } 1117 b.WriteString(s[start:j]) 1118 b.WriteString(new) 1119 start = j + len(old) 1120 } 1121 b.WriteString(s[start:]) 1122 return b.String() 1123} 1124 1125// ReplaceAll returns a copy of the string s with all 1126// non-overlapping instances of old replaced by new. 1127// If old is empty, it matches at the beginning of the string 1128// and after each UTF-8 sequence, yielding up to k+1 replacements 1129// for a k-rune string. 1130func ReplaceAll(s, old, new string) string { 1131 return Replace(s, old, new, -1) 1132} 1133 1134// EqualFold reports whether s and t, interpreted as UTF-8 strings, 1135// are equal under simple Unicode case-folding, which is a more general 1136// form of case-insensitivity. 1137func EqualFold(s, t string) bool { 1138 // ASCII fast path 1139 i := 0 1140 for ; i < len(s) && i < len(t); i++ { 1141 sr := s[i] 1142 tr := t[i] 1143 if sr|tr >= utf8.RuneSelf { 1144 goto hasUnicode 1145 } 1146 1147 // Easy case. 1148 if tr == sr { 1149 continue 1150 } 1151 1152 // Make sr < tr to simplify what follows. 1153 if tr < sr { 1154 tr, sr = sr, tr 1155 } 1156 // ASCII only, sr/tr must be upper/lower case 1157 if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' { 1158 continue 1159 } 1160 return false 1161 } 1162 // Check if we've exhausted both strings. 1163 return len(s) == len(t) 1164 1165hasUnicode: 1166 s = s[i:] 1167 t = t[i:] 1168 for _, sr := range s { 1169 // If t is exhausted the strings are not equal. 1170 if len(t) == 0 { 1171 return false 1172 } 1173 1174 // Extract first rune from second string. 1175 var tr rune 1176 if t[0] < utf8.RuneSelf { 1177 tr, t = rune(t[0]), t[1:] 1178 } else { 1179 r, size := utf8.DecodeRuneInString(t) 1180 tr, t = r, t[size:] 1181 } 1182 1183 // If they match, keep going; if not, return false. 1184 1185 // Easy case. 1186 if tr == sr { 1187 continue 1188 } 1189 1190 // Make sr < tr to simplify what follows. 1191 if tr < sr { 1192 tr, sr = sr, tr 1193 } 1194 // Fast check for ASCII. 1195 if tr < utf8.RuneSelf { 1196 // ASCII only, sr/tr must be upper/lower case 1197 if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' { 1198 continue 1199 } 1200 return false 1201 } 1202 1203 // General case. SimpleFold(x) returns the next equivalent rune > x 1204 // or wraps around to smaller values. 1205 r := unicode.SimpleFold(sr) 1206 for r != sr && r < tr { 1207 r = unicode.SimpleFold(r) 1208 } 1209 if r == tr { 1210 continue 1211 } 1212 return false 1213 } 1214 1215 // First string is empty, so check if the second one is also empty. 1216 return len(t) == 0 1217} 1218 1219// Index returns the index of the first instance of substr in s, or -1 if substr is not present in s. 1220func Index(s, substr string) int { 1221 return stringslite.Index(s, substr) 1222} 1223 1224// Cut slices s around the first instance of sep, 1225// returning the text before and after sep. 1226// The found result reports whether sep appears in s. 1227// If sep does not appear in s, cut returns s, "", false. 1228func Cut(s, sep string) (before, after string, found bool) { 1229 return stringslite.Cut(s, sep) 1230} 1231 1232// CutPrefix returns s without the provided leading prefix string 1233// and reports whether it found the prefix. 1234// If s doesn't start with prefix, CutPrefix returns s, false. 1235// If prefix is the empty string, CutPrefix returns s, true. 1236func CutPrefix(s, prefix string) (after string, found bool) { 1237 return stringslite.CutPrefix(s, prefix) 1238} 1239 1240// CutSuffix returns s without the provided ending suffix string 1241// and reports whether it found the suffix. 1242// If s doesn't end with suffix, CutSuffix returns s, false. 1243// If suffix is the empty string, CutSuffix returns s, true. 1244func CutSuffix(s, suffix string) (before string, found bool) { 1245 return stringslite.CutSuffix(s, suffix) 1246} 1247