1// Copyright 2015 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// Garbage collector: write barriers. 6// 7// For the concurrent garbage collector, the Go compiler implements 8// updates to pointer-valued fields that may be in heap objects by 9// emitting calls to write barriers. The main write barrier for 10// individual pointer writes is gcWriteBarrier and is implemented in 11// assembly. This file contains write barrier entry points for bulk 12// operations. See also mwbbuf.go. 13 14package runtime 15 16import ( 17 "internal/abi" 18 "internal/goarch" 19 "internal/goexperiment" 20 "unsafe" 21) 22 23// Go uses a hybrid barrier that combines a Yuasa-style deletion 24// barrier—which shades the object whose reference is being 25// overwritten—with Dijkstra insertion barrier—which shades the object 26// whose reference is being written. The insertion part of the barrier 27// is necessary while the calling goroutine's stack is grey. In 28// pseudocode, the barrier is: 29// 30// writePointer(slot, ptr): 31// shade(*slot) 32// if current stack is grey: 33// shade(ptr) 34// *slot = ptr 35// 36// slot is the destination in Go code. 37// ptr is the value that goes into the slot in Go code. 38// 39// Shade indicates that it has seen a white pointer by adding the referent 40// to wbuf as well as marking it. 41// 42// The two shades and the condition work together to prevent a mutator 43// from hiding an object from the garbage collector: 44// 45// 1. shade(*slot) prevents a mutator from hiding an object by moving 46// the sole pointer to it from the heap to its stack. If it attempts 47// to unlink an object from the heap, this will shade it. 48// 49// 2. shade(ptr) prevents a mutator from hiding an object by moving 50// the sole pointer to it from its stack into a black object in the 51// heap. If it attempts to install the pointer into a black object, 52// this will shade it. 53// 54// 3. Once a goroutine's stack is black, the shade(ptr) becomes 55// unnecessary. shade(ptr) prevents hiding an object by moving it from 56// the stack to the heap, but this requires first having a pointer 57// hidden on the stack. Immediately after a stack is scanned, it only 58// points to shaded objects, so it's not hiding anything, and the 59// shade(*slot) prevents it from hiding any other pointers on its 60// stack. 61// 62// For a detailed description of this barrier and proof of 63// correctness, see https://github.com/golang/proposal/blob/master/design/17503-eliminate-rescan.md 64// 65// 66// 67// Dealing with memory ordering: 68// 69// Both the Yuasa and Dijkstra barriers can be made conditional on the 70// color of the object containing the slot. We chose not to make these 71// conditional because the cost of ensuring that the object holding 72// the slot doesn't concurrently change color without the mutator 73// noticing seems prohibitive. 74// 75// Consider the following example where the mutator writes into 76// a slot and then loads the slot's mark bit while the GC thread 77// writes to the slot's mark bit and then as part of scanning reads 78// the slot. 79// 80// Initially both [slot] and [slotmark] are 0 (nil) 81// Mutator thread GC thread 82// st [slot], ptr st [slotmark], 1 83// 84// ld r1, [slotmark] ld r2, [slot] 85// 86// Without an expensive memory barrier between the st and the ld, the final 87// result on most HW (including 386/amd64) can be r1==r2==0. This is a classic 88// example of what can happen when loads are allowed to be reordered with older 89// stores (avoiding such reorderings lies at the heart of the classic 90// Peterson/Dekker algorithms for mutual exclusion). Rather than require memory 91// barriers, which will slow down both the mutator and the GC, we always grey 92// the ptr object regardless of the slot's color. 93// 94// Another place where we intentionally omit memory barriers is when 95// accessing mheap_.arena_used to check if a pointer points into the 96// heap. On relaxed memory machines, it's possible for a mutator to 97// extend the size of the heap by updating arena_used, allocate an 98// object from this new region, and publish a pointer to that object, 99// but for tracing running on another processor to observe the pointer 100// but use the old value of arena_used. In this case, tracing will not 101// mark the object, even though it's reachable. However, the mutator 102// is guaranteed to execute a write barrier when it publishes the 103// pointer, so it will take care of marking the object. A general 104// consequence of this is that the garbage collector may cache the 105// value of mheap_.arena_used. (See issue #9984.) 106// 107// 108// Stack writes: 109// 110// The compiler omits write barriers for writes to the current frame, 111// but if a stack pointer has been passed down the call stack, the 112// compiler will generate a write barrier for writes through that 113// pointer (because it doesn't know it's not a heap pointer). 114// 115// 116// Global writes: 117// 118// The Go garbage collector requires write barriers when heap pointers 119// are stored in globals. Many garbage collectors ignore writes to 120// globals and instead pick up global -> heap pointers during 121// termination. This increases pause time, so we instead rely on write 122// barriers for writes to globals so that we don't have to rescan 123// global during mark termination. 124// 125// 126// Publication ordering: 127// 128// The write barrier is *pre-publication*, meaning that the write 129// barrier happens prior to the *slot = ptr write that may make ptr 130// reachable by some goroutine that currently cannot reach it. 131// 132// 133// Signal handler pointer writes: 134// 135// In general, the signal handler cannot safely invoke the write 136// barrier because it may run without a P or even during the write 137// barrier. 138// 139// There is exactly one exception: profbuf.go omits a barrier during 140// signal handler profile logging. That's safe only because of the 141// deletion barrier. See profbuf.go for a detailed argument. If we 142// remove the deletion barrier, we'll have to work out a new way to 143// handle the profile logging. 144 145// typedmemmove copies a value of type typ to dst from src. 146// Must be nosplit, see #16026. 147// 148// TODO: Perfect for go:nosplitrec since we can't have a safe point 149// anywhere in the bulk barrier or memmove. 150// 151// typedmemmove should be an internal detail, 152// but widely used packages access it using linkname. 153// Notable members of the hall of shame include: 154// - github.com/RomiChan/protobuf 155// - github.com/segmentio/encoding 156// 157// Do not remove or change the type signature. 158// See go.dev/issue/67401. 159// 160//go:linkname typedmemmove 161//go:nosplit 162func typedmemmove(typ *abi.Type, dst, src unsafe.Pointer) { 163 if dst == src { 164 return 165 } 166 if writeBarrier.enabled && typ.Pointers() { 167 // This always copies a full value of type typ so it's safe 168 // to pass typ along as an optimization. See the comment on 169 // bulkBarrierPreWrite. 170 bulkBarrierPreWrite(uintptr(dst), uintptr(src), typ.PtrBytes, typ) 171 } 172 // There's a race here: if some other goroutine can write to 173 // src, it may change some pointer in src after we've 174 // performed the write barrier but before we perform the 175 // memory copy. This safe because the write performed by that 176 // other goroutine must also be accompanied by a write 177 // barrier, so at worst we've unnecessarily greyed the old 178 // pointer that was in src. 179 memmove(dst, src, typ.Size_) 180 if goexperiment.CgoCheck2 { 181 cgoCheckMemmove2(typ, dst, src, 0, typ.Size_) 182 } 183} 184 185// wbZero performs the write barrier operations necessary before 186// zeroing a region of memory at address dst of type typ. 187// Does not actually do the zeroing. 188// 189//go:nowritebarrierrec 190//go:nosplit 191func wbZero(typ *_type, dst unsafe.Pointer) { 192 // This always copies a full value of type typ so it's safe 193 // to pass typ along as an optimization. See the comment on 194 // bulkBarrierPreWrite. 195 bulkBarrierPreWrite(uintptr(dst), 0, typ.PtrBytes, typ) 196} 197 198// wbMove performs the write barrier operations necessary before 199// copying a region of memory from src to dst of type typ. 200// Does not actually do the copying. 201// 202//go:nowritebarrierrec 203//go:nosplit 204func wbMove(typ *_type, dst, src unsafe.Pointer) { 205 // This always copies a full value of type typ so it's safe to 206 // pass a type here. 207 // 208 // See the comment on bulkBarrierPreWrite. 209 bulkBarrierPreWrite(uintptr(dst), uintptr(src), typ.PtrBytes, typ) 210} 211 212// reflect_typedmemmove is meant for package reflect, 213// but widely used packages access it using linkname. 214// Notable members of the hall of shame include: 215// - gitee.com/quant1x/gox 216// - github.com/goccy/json 217// - github.com/modern-go/reflect2 218// - github.com/ugorji/go/codec 219// - github.com/v2pro/plz 220// 221// Do not remove or change the type signature. 222// See go.dev/issue/67401. 223// 224//go:linkname reflect_typedmemmove reflect.typedmemmove 225func reflect_typedmemmove(typ *_type, dst, src unsafe.Pointer) { 226 if raceenabled { 227 raceWriteObjectPC(typ, dst, getcallerpc(), abi.FuncPCABIInternal(reflect_typedmemmove)) 228 raceReadObjectPC(typ, src, getcallerpc(), abi.FuncPCABIInternal(reflect_typedmemmove)) 229 } 230 if msanenabled { 231 msanwrite(dst, typ.Size_) 232 msanread(src, typ.Size_) 233 } 234 if asanenabled { 235 asanwrite(dst, typ.Size_) 236 asanread(src, typ.Size_) 237 } 238 typedmemmove(typ, dst, src) 239} 240 241//go:linkname reflectlite_typedmemmove internal/reflectlite.typedmemmove 242func reflectlite_typedmemmove(typ *_type, dst, src unsafe.Pointer) { 243 reflect_typedmemmove(typ, dst, src) 244} 245 246// reflectcallmove is invoked by reflectcall to copy the return values 247// out of the stack and into the heap, invoking the necessary write 248// barriers. dst, src, and size describe the return value area to 249// copy. typ describes the entire frame (not just the return values). 250// typ may be nil, which indicates write barriers are not needed. 251// 252// It must be nosplit and must only call nosplit functions because the 253// stack map of reflectcall is wrong. 254// 255//go:nosplit 256func reflectcallmove(typ *_type, dst, src unsafe.Pointer, size uintptr, regs *abi.RegArgs) { 257 if writeBarrier.enabled && typ != nil && typ.Pointers() && size >= goarch.PtrSize { 258 // Pass nil for the type. dst does not point to value of type typ, 259 // but rather points into one, so applying the optimization is not 260 // safe. See the comment on this function. 261 bulkBarrierPreWrite(uintptr(dst), uintptr(src), size, nil) 262 } 263 memmove(dst, src, size) 264 265 // Move pointers returned in registers to a place where the GC can see them. 266 for i := range regs.Ints { 267 if regs.ReturnIsPtr.Get(i) { 268 regs.Ptrs[i] = unsafe.Pointer(regs.Ints[i]) 269 } 270 } 271} 272 273// typedslicecopy should be an internal detail, 274// but widely used packages access it using linkname. 275// Notable members of the hall of shame include: 276// - github.com/segmentio/encoding 277// 278// Do not remove or change the type signature. 279// See go.dev/issue/67401. 280// 281//go:linkname typedslicecopy 282//go:nosplit 283func typedslicecopy(typ *_type, dstPtr unsafe.Pointer, dstLen int, srcPtr unsafe.Pointer, srcLen int) int { 284 n := dstLen 285 if n > srcLen { 286 n = srcLen 287 } 288 if n == 0 { 289 return 0 290 } 291 292 // The compiler emits calls to typedslicecopy before 293 // instrumentation runs, so unlike the other copying and 294 // assignment operations, it's not instrumented in the calling 295 // code and needs its own instrumentation. 296 if raceenabled { 297 callerpc := getcallerpc() 298 pc := abi.FuncPCABIInternal(slicecopy) 299 racewriterangepc(dstPtr, uintptr(n)*typ.Size_, callerpc, pc) 300 racereadrangepc(srcPtr, uintptr(n)*typ.Size_, callerpc, pc) 301 } 302 if msanenabled { 303 msanwrite(dstPtr, uintptr(n)*typ.Size_) 304 msanread(srcPtr, uintptr(n)*typ.Size_) 305 } 306 if asanenabled { 307 asanwrite(dstPtr, uintptr(n)*typ.Size_) 308 asanread(srcPtr, uintptr(n)*typ.Size_) 309 } 310 311 if goexperiment.CgoCheck2 { 312 cgoCheckSliceCopy(typ, dstPtr, srcPtr, n) 313 } 314 315 if dstPtr == srcPtr { 316 return n 317 } 318 319 // Note: No point in checking typ.PtrBytes here: 320 // compiler only emits calls to typedslicecopy for types with pointers, 321 // and growslice and reflect_typedslicecopy check for pointers 322 // before calling typedslicecopy. 323 size := uintptr(n) * typ.Size_ 324 if writeBarrier.enabled { 325 // This always copies one or more full values of type typ so 326 // it's safe to pass typ along as an optimization. See the comment on 327 // bulkBarrierPreWrite. 328 pwsize := size - typ.Size_ + typ.PtrBytes 329 bulkBarrierPreWrite(uintptr(dstPtr), uintptr(srcPtr), pwsize, typ) 330 } 331 // See typedmemmove for a discussion of the race between the 332 // barrier and memmove. 333 memmove(dstPtr, srcPtr, size) 334 return n 335} 336 337// reflect_typedslicecopy is meant for package reflect, 338// but widely used packages access it using linkname. 339// Notable members of the hall of shame include: 340// - gitee.com/quant1x/gox 341// - github.com/modern-go/reflect2 342// - github.com/RomiChan/protobuf 343// - github.com/segmentio/encoding 344// - github.com/v2pro/plz 345// 346// Do not remove or change the type signature. 347// See go.dev/issue/67401. 348// 349//go:linkname reflect_typedslicecopy reflect.typedslicecopy 350func reflect_typedslicecopy(elemType *_type, dst, src slice) int { 351 if !elemType.Pointers() { 352 return slicecopy(dst.array, dst.len, src.array, src.len, elemType.Size_) 353 } 354 return typedslicecopy(elemType, dst.array, dst.len, src.array, src.len) 355} 356 357// typedmemclr clears the typed memory at ptr with type typ. The 358// memory at ptr must already be initialized (and hence in type-safe 359// state). If the memory is being initialized for the first time, see 360// memclrNoHeapPointers. 361// 362// If the caller knows that typ has pointers, it can alternatively 363// call memclrHasPointers. 364// 365// TODO: A "go:nosplitrec" annotation would be perfect for this. 366// 367//go:nosplit 368func typedmemclr(typ *_type, ptr unsafe.Pointer) { 369 if writeBarrier.enabled && typ.Pointers() { 370 // This always clears a whole value of type typ, so it's 371 // safe to pass a type here and apply the optimization. 372 // See the comment on bulkBarrierPreWrite. 373 bulkBarrierPreWrite(uintptr(ptr), 0, typ.PtrBytes, typ) 374 } 375 memclrNoHeapPointers(ptr, typ.Size_) 376} 377 378// reflect_typedslicecopy is meant for package reflect, 379// but widely used packages access it using linkname. 380// Notable members of the hall of shame include: 381// - github.com/ugorji/go/codec 382// 383// Do not remove or change the type signature. 384// See go.dev/issue/67401. 385// 386//go:linkname reflect_typedmemclr reflect.typedmemclr 387func reflect_typedmemclr(typ *_type, ptr unsafe.Pointer) { 388 typedmemclr(typ, ptr) 389} 390 391//go:linkname reflect_typedmemclrpartial reflect.typedmemclrpartial 392func reflect_typedmemclrpartial(typ *_type, ptr unsafe.Pointer, off, size uintptr) { 393 if writeBarrier.enabled && typ.Pointers() { 394 // Pass nil for the type. ptr does not point to value of type typ, 395 // but rather points into one so it's not safe to apply the optimization. 396 // See the comment on this function in the reflect package and the 397 // comment on bulkBarrierPreWrite. 398 bulkBarrierPreWrite(uintptr(ptr), 0, size, nil) 399 } 400 memclrNoHeapPointers(ptr, size) 401} 402 403//go:linkname reflect_typedarrayclear reflect.typedarrayclear 404func reflect_typedarrayclear(typ *_type, ptr unsafe.Pointer, len int) { 405 size := typ.Size_ * uintptr(len) 406 if writeBarrier.enabled && typ.Pointers() { 407 // This always clears whole elements of an array, so it's 408 // safe to pass a type here. See the comment on bulkBarrierPreWrite. 409 bulkBarrierPreWrite(uintptr(ptr), 0, size, typ) 410 } 411 memclrNoHeapPointers(ptr, size) 412} 413 414// memclrHasPointers clears n bytes of typed memory starting at ptr. 415// The caller must ensure that the type of the object at ptr has 416// pointers, usually by checking typ.PtrBytes. However, ptr 417// does not have to point to the start of the allocation. 418// 419// memclrHasPointers should be an internal detail, 420// but widely used packages access it using linkname. 421// Notable members of the hall of shame include: 422// - github.com/bytedance/sonic 423// 424// Do not remove or change the type signature. 425// See go.dev/issue/67401. 426// 427//go:linkname memclrHasPointers 428//go:nosplit 429func memclrHasPointers(ptr unsafe.Pointer, n uintptr) { 430 // Pass nil for the type since we don't have one here anyway. 431 bulkBarrierPreWrite(uintptr(ptr), 0, n, nil) 432 memclrNoHeapPointers(ptr, n) 433} 434