1// Copyright 2015 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Garbage collector: write barriers.
6//
7// For the concurrent garbage collector, the Go compiler implements
8// updates to pointer-valued fields that may be in heap objects by
9// emitting calls to write barriers. The main write barrier for
10// individual pointer writes is gcWriteBarrier and is implemented in
11// assembly. This file contains write barrier entry points for bulk
12// operations. See also mwbbuf.go.
13
14package runtime
15
16import (
17	"internal/abi"
18	"internal/goarch"
19	"internal/goexperiment"
20	"unsafe"
21)
22
23// Go uses a hybrid barrier that combines a Yuasa-style deletion
24// barrier—which shades the object whose reference is being
25// overwritten—with Dijkstra insertion barrier—which shades the object
26// whose reference is being written. The insertion part of the barrier
27// is necessary while the calling goroutine's stack is grey. In
28// pseudocode, the barrier is:
29//
30//     writePointer(slot, ptr):
31//         shade(*slot)
32//         if current stack is grey:
33//             shade(ptr)
34//         *slot = ptr
35//
36// slot is the destination in Go code.
37// ptr is the value that goes into the slot in Go code.
38//
39// Shade indicates that it has seen a white pointer by adding the referent
40// to wbuf as well as marking it.
41//
42// The two shades and the condition work together to prevent a mutator
43// from hiding an object from the garbage collector:
44//
45// 1. shade(*slot) prevents a mutator from hiding an object by moving
46// the sole pointer to it from the heap to its stack. If it attempts
47// to unlink an object from the heap, this will shade it.
48//
49// 2. shade(ptr) prevents a mutator from hiding an object by moving
50// the sole pointer to it from its stack into a black object in the
51// heap. If it attempts to install the pointer into a black object,
52// this will shade it.
53//
54// 3. Once a goroutine's stack is black, the shade(ptr) becomes
55// unnecessary. shade(ptr) prevents hiding an object by moving it from
56// the stack to the heap, but this requires first having a pointer
57// hidden on the stack. Immediately after a stack is scanned, it only
58// points to shaded objects, so it's not hiding anything, and the
59// shade(*slot) prevents it from hiding any other pointers on its
60// stack.
61//
62// For a detailed description of this barrier and proof of
63// correctness, see https://github.com/golang/proposal/blob/master/design/17503-eliminate-rescan.md
64//
65//
66//
67// Dealing with memory ordering:
68//
69// Both the Yuasa and Dijkstra barriers can be made conditional on the
70// color of the object containing the slot. We chose not to make these
71// conditional because the cost of ensuring that the object holding
72// the slot doesn't concurrently change color without the mutator
73// noticing seems prohibitive.
74//
75// Consider the following example where the mutator writes into
76// a slot and then loads the slot's mark bit while the GC thread
77// writes to the slot's mark bit and then as part of scanning reads
78// the slot.
79//
80// Initially both [slot] and [slotmark] are 0 (nil)
81// Mutator thread          GC thread
82// st [slot], ptr          st [slotmark], 1
83//
84// ld r1, [slotmark]       ld r2, [slot]
85//
86// Without an expensive memory barrier between the st and the ld, the final
87// result on most HW (including 386/amd64) can be r1==r2==0. This is a classic
88// example of what can happen when loads are allowed to be reordered with older
89// stores (avoiding such reorderings lies at the heart of the classic
90// Peterson/Dekker algorithms for mutual exclusion). Rather than require memory
91// barriers, which will slow down both the mutator and the GC, we always grey
92// the ptr object regardless of the slot's color.
93//
94// Another place where we intentionally omit memory barriers is when
95// accessing mheap_.arena_used to check if a pointer points into the
96// heap. On relaxed memory machines, it's possible for a mutator to
97// extend the size of the heap by updating arena_used, allocate an
98// object from this new region, and publish a pointer to that object,
99// but for tracing running on another processor to observe the pointer
100// but use the old value of arena_used. In this case, tracing will not
101// mark the object, even though it's reachable. However, the mutator
102// is guaranteed to execute a write barrier when it publishes the
103// pointer, so it will take care of marking the object. A general
104// consequence of this is that the garbage collector may cache the
105// value of mheap_.arena_used. (See issue #9984.)
106//
107//
108// Stack writes:
109//
110// The compiler omits write barriers for writes to the current frame,
111// but if a stack pointer has been passed down the call stack, the
112// compiler will generate a write barrier for writes through that
113// pointer (because it doesn't know it's not a heap pointer).
114//
115//
116// Global writes:
117//
118// The Go garbage collector requires write barriers when heap pointers
119// are stored in globals. Many garbage collectors ignore writes to
120// globals and instead pick up global -> heap pointers during
121// termination. This increases pause time, so we instead rely on write
122// barriers for writes to globals so that we don't have to rescan
123// global during mark termination.
124//
125//
126// Publication ordering:
127//
128// The write barrier is *pre-publication*, meaning that the write
129// barrier happens prior to the *slot = ptr write that may make ptr
130// reachable by some goroutine that currently cannot reach it.
131//
132//
133// Signal handler pointer writes:
134//
135// In general, the signal handler cannot safely invoke the write
136// barrier because it may run without a P or even during the write
137// barrier.
138//
139// There is exactly one exception: profbuf.go omits a barrier during
140// signal handler profile logging. That's safe only because of the
141// deletion barrier. See profbuf.go for a detailed argument. If we
142// remove the deletion barrier, we'll have to work out a new way to
143// handle the profile logging.
144
145// typedmemmove copies a value of type typ to dst from src.
146// Must be nosplit, see #16026.
147//
148// TODO: Perfect for go:nosplitrec since we can't have a safe point
149// anywhere in the bulk barrier or memmove.
150//
151// typedmemmove should be an internal detail,
152// but widely used packages access it using linkname.
153// Notable members of the hall of shame include:
154//   - github.com/RomiChan/protobuf
155//   - github.com/segmentio/encoding
156//
157// Do not remove or change the type signature.
158// See go.dev/issue/67401.
159//
160//go:linkname typedmemmove
161//go:nosplit
162func typedmemmove(typ *abi.Type, dst, src unsafe.Pointer) {
163	if dst == src {
164		return
165	}
166	if writeBarrier.enabled && typ.Pointers() {
167		// This always copies a full value of type typ so it's safe
168		// to pass typ along as an optimization. See the comment on
169		// bulkBarrierPreWrite.
170		bulkBarrierPreWrite(uintptr(dst), uintptr(src), typ.PtrBytes, typ)
171	}
172	// There's a race here: if some other goroutine can write to
173	// src, it may change some pointer in src after we've
174	// performed the write barrier but before we perform the
175	// memory copy. This safe because the write performed by that
176	// other goroutine must also be accompanied by a write
177	// barrier, so at worst we've unnecessarily greyed the old
178	// pointer that was in src.
179	memmove(dst, src, typ.Size_)
180	if goexperiment.CgoCheck2 {
181		cgoCheckMemmove2(typ, dst, src, 0, typ.Size_)
182	}
183}
184
185// wbZero performs the write barrier operations necessary before
186// zeroing a region of memory at address dst of type typ.
187// Does not actually do the zeroing.
188//
189//go:nowritebarrierrec
190//go:nosplit
191func wbZero(typ *_type, dst unsafe.Pointer) {
192	// This always copies a full value of type typ so it's safe
193	// to pass typ along as an optimization. See the comment on
194	// bulkBarrierPreWrite.
195	bulkBarrierPreWrite(uintptr(dst), 0, typ.PtrBytes, typ)
196}
197
198// wbMove performs the write barrier operations necessary before
199// copying a region of memory from src to dst of type typ.
200// Does not actually do the copying.
201//
202//go:nowritebarrierrec
203//go:nosplit
204func wbMove(typ *_type, dst, src unsafe.Pointer) {
205	// This always copies a full value of type typ so it's safe to
206	// pass a type here.
207	//
208	// See the comment on bulkBarrierPreWrite.
209	bulkBarrierPreWrite(uintptr(dst), uintptr(src), typ.PtrBytes, typ)
210}
211
212// reflect_typedmemmove is meant for package reflect,
213// but widely used packages access it using linkname.
214// Notable members of the hall of shame include:
215//   - gitee.com/quant1x/gox
216//   - github.com/goccy/json
217//   - github.com/modern-go/reflect2
218//   - github.com/ugorji/go/codec
219//   - github.com/v2pro/plz
220//
221// Do not remove or change the type signature.
222// See go.dev/issue/67401.
223//
224//go:linkname reflect_typedmemmove reflect.typedmemmove
225func reflect_typedmemmove(typ *_type, dst, src unsafe.Pointer) {
226	if raceenabled {
227		raceWriteObjectPC(typ, dst, getcallerpc(), abi.FuncPCABIInternal(reflect_typedmemmove))
228		raceReadObjectPC(typ, src, getcallerpc(), abi.FuncPCABIInternal(reflect_typedmemmove))
229	}
230	if msanenabled {
231		msanwrite(dst, typ.Size_)
232		msanread(src, typ.Size_)
233	}
234	if asanenabled {
235		asanwrite(dst, typ.Size_)
236		asanread(src, typ.Size_)
237	}
238	typedmemmove(typ, dst, src)
239}
240
241//go:linkname reflectlite_typedmemmove internal/reflectlite.typedmemmove
242func reflectlite_typedmemmove(typ *_type, dst, src unsafe.Pointer) {
243	reflect_typedmemmove(typ, dst, src)
244}
245
246// reflectcallmove is invoked by reflectcall to copy the return values
247// out of the stack and into the heap, invoking the necessary write
248// barriers. dst, src, and size describe the return value area to
249// copy. typ describes the entire frame (not just the return values).
250// typ may be nil, which indicates write barriers are not needed.
251//
252// It must be nosplit and must only call nosplit functions because the
253// stack map of reflectcall is wrong.
254//
255//go:nosplit
256func reflectcallmove(typ *_type, dst, src unsafe.Pointer, size uintptr, regs *abi.RegArgs) {
257	if writeBarrier.enabled && typ != nil && typ.Pointers() && size >= goarch.PtrSize {
258		// Pass nil for the type. dst does not point to value of type typ,
259		// but rather points into one, so applying the optimization is not
260		// safe. See the comment on this function.
261		bulkBarrierPreWrite(uintptr(dst), uintptr(src), size, nil)
262	}
263	memmove(dst, src, size)
264
265	// Move pointers returned in registers to a place where the GC can see them.
266	for i := range regs.Ints {
267		if regs.ReturnIsPtr.Get(i) {
268			regs.Ptrs[i] = unsafe.Pointer(regs.Ints[i])
269		}
270	}
271}
272
273// typedslicecopy should be an internal detail,
274// but widely used packages access it using linkname.
275// Notable members of the hall of shame include:
276//   - github.com/segmentio/encoding
277//
278// Do not remove or change the type signature.
279// See go.dev/issue/67401.
280//
281//go:linkname typedslicecopy
282//go:nosplit
283func typedslicecopy(typ *_type, dstPtr unsafe.Pointer, dstLen int, srcPtr unsafe.Pointer, srcLen int) int {
284	n := dstLen
285	if n > srcLen {
286		n = srcLen
287	}
288	if n == 0 {
289		return 0
290	}
291
292	// The compiler emits calls to typedslicecopy before
293	// instrumentation runs, so unlike the other copying and
294	// assignment operations, it's not instrumented in the calling
295	// code and needs its own instrumentation.
296	if raceenabled {
297		callerpc := getcallerpc()
298		pc := abi.FuncPCABIInternal(slicecopy)
299		racewriterangepc(dstPtr, uintptr(n)*typ.Size_, callerpc, pc)
300		racereadrangepc(srcPtr, uintptr(n)*typ.Size_, callerpc, pc)
301	}
302	if msanenabled {
303		msanwrite(dstPtr, uintptr(n)*typ.Size_)
304		msanread(srcPtr, uintptr(n)*typ.Size_)
305	}
306	if asanenabled {
307		asanwrite(dstPtr, uintptr(n)*typ.Size_)
308		asanread(srcPtr, uintptr(n)*typ.Size_)
309	}
310
311	if goexperiment.CgoCheck2 {
312		cgoCheckSliceCopy(typ, dstPtr, srcPtr, n)
313	}
314
315	if dstPtr == srcPtr {
316		return n
317	}
318
319	// Note: No point in checking typ.PtrBytes here:
320	// compiler only emits calls to typedslicecopy for types with pointers,
321	// and growslice and reflect_typedslicecopy check for pointers
322	// before calling typedslicecopy.
323	size := uintptr(n) * typ.Size_
324	if writeBarrier.enabled {
325		// This always copies one or more full values of type typ so
326		// it's safe to pass typ along as an optimization. See the comment on
327		// bulkBarrierPreWrite.
328		pwsize := size - typ.Size_ + typ.PtrBytes
329		bulkBarrierPreWrite(uintptr(dstPtr), uintptr(srcPtr), pwsize, typ)
330	}
331	// See typedmemmove for a discussion of the race between the
332	// barrier and memmove.
333	memmove(dstPtr, srcPtr, size)
334	return n
335}
336
337// reflect_typedslicecopy is meant for package reflect,
338// but widely used packages access it using linkname.
339// Notable members of the hall of shame include:
340//   - gitee.com/quant1x/gox
341//   - github.com/modern-go/reflect2
342//   - github.com/RomiChan/protobuf
343//   - github.com/segmentio/encoding
344//   - github.com/v2pro/plz
345//
346// Do not remove or change the type signature.
347// See go.dev/issue/67401.
348//
349//go:linkname reflect_typedslicecopy reflect.typedslicecopy
350func reflect_typedslicecopy(elemType *_type, dst, src slice) int {
351	if !elemType.Pointers() {
352		return slicecopy(dst.array, dst.len, src.array, src.len, elemType.Size_)
353	}
354	return typedslicecopy(elemType, dst.array, dst.len, src.array, src.len)
355}
356
357// typedmemclr clears the typed memory at ptr with type typ. The
358// memory at ptr must already be initialized (and hence in type-safe
359// state). If the memory is being initialized for the first time, see
360// memclrNoHeapPointers.
361//
362// If the caller knows that typ has pointers, it can alternatively
363// call memclrHasPointers.
364//
365// TODO: A "go:nosplitrec" annotation would be perfect for this.
366//
367//go:nosplit
368func typedmemclr(typ *_type, ptr unsafe.Pointer) {
369	if writeBarrier.enabled && typ.Pointers() {
370		// This always clears a whole value of type typ, so it's
371		// safe to pass a type here and apply the optimization.
372		// See the comment on bulkBarrierPreWrite.
373		bulkBarrierPreWrite(uintptr(ptr), 0, typ.PtrBytes, typ)
374	}
375	memclrNoHeapPointers(ptr, typ.Size_)
376}
377
378// reflect_typedslicecopy is meant for package reflect,
379// but widely used packages access it using linkname.
380// Notable members of the hall of shame include:
381//   - github.com/ugorji/go/codec
382//
383// Do not remove or change the type signature.
384// See go.dev/issue/67401.
385//
386//go:linkname reflect_typedmemclr reflect.typedmemclr
387func reflect_typedmemclr(typ *_type, ptr unsafe.Pointer) {
388	typedmemclr(typ, ptr)
389}
390
391//go:linkname reflect_typedmemclrpartial reflect.typedmemclrpartial
392func reflect_typedmemclrpartial(typ *_type, ptr unsafe.Pointer, off, size uintptr) {
393	if writeBarrier.enabled && typ.Pointers() {
394		// Pass nil for the type. ptr does not point to value of type typ,
395		// but rather points into one so it's not safe to apply the optimization.
396		// See the comment on this function in the reflect package and the
397		// comment on bulkBarrierPreWrite.
398		bulkBarrierPreWrite(uintptr(ptr), 0, size, nil)
399	}
400	memclrNoHeapPointers(ptr, size)
401}
402
403//go:linkname reflect_typedarrayclear reflect.typedarrayclear
404func reflect_typedarrayclear(typ *_type, ptr unsafe.Pointer, len int) {
405	size := typ.Size_ * uintptr(len)
406	if writeBarrier.enabled && typ.Pointers() {
407		// This always clears whole elements of an array, so it's
408		// safe to pass a type here. See the comment on bulkBarrierPreWrite.
409		bulkBarrierPreWrite(uintptr(ptr), 0, size, typ)
410	}
411	memclrNoHeapPointers(ptr, size)
412}
413
414// memclrHasPointers clears n bytes of typed memory starting at ptr.
415// The caller must ensure that the type of the object at ptr has
416// pointers, usually by checking typ.PtrBytes. However, ptr
417// does not have to point to the start of the allocation.
418//
419// memclrHasPointers should be an internal detail,
420// but widely used packages access it using linkname.
421// Notable members of the hall of shame include:
422//   - github.com/bytedance/sonic
423//
424// Do not remove or change the type signature.
425// See go.dev/issue/67401.
426//
427//go:linkname memclrHasPointers
428//go:nosplit
429func memclrHasPointers(ptr unsafe.Pointer, n uintptr) {
430	// Pass nil for the type since we don't have one here anyway.
431	bulkBarrierPreWrite(uintptr(ptr), 0, n, nil)
432	memclrNoHeapPointers(ptr, n)
433}
434