1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package rand implements pseudo-random number generators suitable for tasks
6// such as simulation, but it should not be used for security-sensitive work.
7//
8// Random numbers are generated by a [Source], usually wrapped in a [Rand].
9// Both types should be used by a single goroutine at a time: sharing among
10// multiple goroutines requires some kind of synchronization.
11//
12// Top-level functions, such as [Float64] and [Int],
13// are safe for concurrent use by multiple goroutines.
14//
15// This package's outputs might be easily predictable regardless of how it's
16// seeded. For random numbers suitable for security-sensitive work, see the
17// [crypto/rand] package.
18package rand
19
20import (
21	"math/bits"
22	_ "unsafe" // for go:linkname
23)
24
25// A Source is a source of uniformly-distributed
26// pseudo-random uint64 values in the range [0, 1<<64).
27//
28// A Source is not safe for concurrent use by multiple goroutines.
29type Source interface {
30	Uint64() uint64
31}
32
33// A Rand is a source of random numbers.
34type Rand struct {
35	src Source
36}
37
38// New returns a new Rand that uses random values from src
39// to generate other random values.
40func New(src Source) *Rand {
41	return &Rand{src: src}
42}
43
44// Int64 returns a non-negative pseudo-random 63-bit integer as an int64.
45func (r *Rand) Int64() int64 { return int64(r.src.Uint64() &^ (1 << 63)) }
46
47// Uint32 returns a pseudo-random 32-bit value as a uint32.
48func (r *Rand) Uint32() uint32 { return uint32(r.src.Uint64() >> 32) }
49
50// Uint64 returns a pseudo-random 64-bit value as a uint64.
51func (r *Rand) Uint64() uint64 { return r.src.Uint64() }
52
53// Int32 returns a non-negative pseudo-random 31-bit integer as an int32.
54func (r *Rand) Int32() int32 { return int32(r.src.Uint64() >> 33) }
55
56// Int returns a non-negative pseudo-random int.
57func (r *Rand) Int() int { return int(uint(r.src.Uint64()) << 1 >> 1) }
58
59// Uint returns a pseudo-random uint.
60func (r *Rand) Uint() uint { return uint(r.src.Uint64()) }
61
62// Int64N returns, as an int64, a non-negative pseudo-random number in the half-open interval [0,n).
63// It panics if n <= 0.
64func (r *Rand) Int64N(n int64) int64 {
65	if n <= 0 {
66		panic("invalid argument to Int64N")
67	}
68	return int64(r.uint64n(uint64(n)))
69}
70
71// Uint64N returns, as a uint64, a non-negative pseudo-random number in the half-open interval [0,n).
72// It panics if n == 0.
73func (r *Rand) Uint64N(n uint64) uint64 {
74	if n == 0 {
75		panic("invalid argument to Uint64N")
76	}
77	return r.uint64n(n)
78}
79
80// uint64n is the no-bounds-checks version of Uint64N.
81func (r *Rand) uint64n(n uint64) uint64 {
82	if is32bit && uint64(uint32(n)) == n {
83		return uint64(r.uint32n(uint32(n)))
84	}
85	if n&(n-1) == 0 { // n is power of two, can mask
86		return r.Uint64() & (n - 1)
87	}
88
89	// Suppose we have a uint64 x uniform in the range [0,2⁶⁴)
90	// and want to reduce it to the range [0,n) preserving exact uniformity.
91	// We can simulate a scaling arbitrary precision x * (n/2⁶⁴) by
92	// the high bits of a double-width multiply of x*n, meaning (x*n)/2⁶⁴.
93	// Since there are 2⁶⁴ possible inputs x and only n possible outputs,
94	// the output is necessarily biased if n does not divide 2⁶⁴.
95	// In general (x*n)/2⁶⁴ = k for x*n in [k*2⁶⁴,(k+1)*2⁶⁴).
96	// There are either floor(2⁶⁴/n) or ceil(2⁶⁴/n) possible products
97	// in that range, depending on k.
98	// But suppose we reject the sample and try again when
99	// x*n is in [k*2⁶⁴, k*2⁶⁴+(2⁶⁴%n)), meaning rejecting fewer than n possible
100	// outcomes out of the 2⁶⁴.
101	// Now there are exactly floor(2⁶⁴/n) possible ways to produce
102	// each output value k, so we've restored uniformity.
103	// To get valid uint64 math, 2⁶⁴ % n = (2⁶⁴ - n) % n = -n % n,
104	// so the direct implementation of this algorithm would be:
105	//
106	//	hi, lo := bits.Mul64(r.Uint64(), n)
107	//	thresh := -n % n
108	//	for lo < thresh {
109	//		hi, lo = bits.Mul64(r.Uint64(), n)
110	//	}
111	//
112	// That still leaves an expensive 64-bit division that we would rather avoid.
113	// We know that thresh < n, and n is usually much less than 2⁶⁴, so we can
114	// avoid the last four lines unless lo < n.
115	//
116	// See also:
117	// https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction
118	// https://lemire.me/blog/2016/06/30/fast-random-shuffling
119	hi, lo := bits.Mul64(r.Uint64(), n)
120	if lo < n {
121		thresh := -n % n
122		for lo < thresh {
123			hi, lo = bits.Mul64(r.Uint64(), n)
124		}
125	}
126	return hi
127}
128
129// uint32n is an identical computation to uint64n
130// but optimized for 32-bit systems.
131func (r *Rand) uint32n(n uint32) uint32 {
132	if n&(n-1) == 0 { // n is power of two, can mask
133		return uint32(r.Uint64()) & (n - 1)
134	}
135	// On 64-bit systems we still use the uint64 code below because
136	// the probability of a random uint64 lo being < a uint32 n is near zero,
137	// meaning the unbiasing loop almost never runs.
138	// On 32-bit systems, here we need to implement that same logic in 32-bit math,
139	// both to preserve the exact output sequence observed on 64-bit machines
140	// and to preserve the optimization that the unbiasing loop almost never runs.
141	//
142	// We want to compute
143	// 	hi, lo := bits.Mul64(r.Uint64(), n)
144	// In terms of 32-bit halves, this is:
145	// 	x1:x0 := r.Uint64()
146	// 	0:hi, lo1:lo0 := bits.Mul64(x1:x0, 0:n)
147	// Writing out the multiplication in terms of bits.Mul32 allows
148	// using direct hardware instructions and avoiding
149	// the computations involving these zeros.
150	x := r.Uint64()
151	lo1a, lo0 := bits.Mul32(uint32(x), n)
152	hi, lo1b := bits.Mul32(uint32(x>>32), n)
153	lo1, c := bits.Add32(lo1a, lo1b, 0)
154	hi += c
155	if lo1 == 0 && lo0 < uint32(n) {
156		n64 := uint64(n)
157		thresh := uint32(-n64 % n64)
158		for lo1 == 0 && lo0 < thresh {
159			x := r.Uint64()
160			lo1a, lo0 = bits.Mul32(uint32(x), n)
161			hi, lo1b = bits.Mul32(uint32(x>>32), n)
162			lo1, c = bits.Add32(lo1a, lo1b, 0)
163			hi += c
164		}
165	}
166	return hi
167}
168
169// Int32N returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n).
170// It panics if n <= 0.
171func (r *Rand) Int32N(n int32) int32 {
172	if n <= 0 {
173		panic("invalid argument to Int32N")
174	}
175	return int32(r.uint64n(uint64(n)))
176}
177
178// Uint32N returns, as a uint32, a non-negative pseudo-random number in the half-open interval [0,n).
179// It panics if n == 0.
180func (r *Rand) Uint32N(n uint32) uint32 {
181	if n == 0 {
182		panic("invalid argument to Uint32N")
183	}
184	return uint32(r.uint64n(uint64(n)))
185}
186
187const is32bit = ^uint(0)>>32 == 0
188
189// IntN returns, as an int, a non-negative pseudo-random number in the half-open interval [0,n).
190// It panics if n <= 0.
191func (r *Rand) IntN(n int) int {
192	if n <= 0 {
193		panic("invalid argument to IntN")
194	}
195	return int(r.uint64n(uint64(n)))
196}
197
198// UintN returns, as a uint, a non-negative pseudo-random number in the half-open interval [0,n).
199// It panics if n == 0.
200func (r *Rand) UintN(n uint) uint {
201	if n == 0 {
202		panic("invalid argument to UintN")
203	}
204	return uint(r.uint64n(uint64(n)))
205}
206
207// Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0).
208func (r *Rand) Float64() float64 {
209	// There are exactly 1<<53 float64s in [0,1). Use Intn(1<<53) / (1<<53).
210	return float64(r.Uint64()<<11>>11) / (1 << 53)
211}
212
213// Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0).
214func (r *Rand) Float32() float32 {
215	// There are exactly 1<<24 float32s in [0,1). Use Intn(1<<24) / (1<<24).
216	return float32(r.Uint32()<<8>>8) / (1 << 24)
217}
218
219// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers
220// in the half-open interval [0,n).
221func (r *Rand) Perm(n int) []int {
222	p := make([]int, n)
223	for i := range p {
224		p[i] = i
225	}
226	r.Shuffle(len(p), func(i, j int) { p[i], p[j] = p[j], p[i] })
227	return p
228}
229
230// Shuffle pseudo-randomizes the order of elements.
231// n is the number of elements. Shuffle panics if n < 0.
232// swap swaps the elements with indexes i and j.
233func (r *Rand) Shuffle(n int, swap func(i, j int)) {
234	if n < 0 {
235		panic("invalid argument to Shuffle")
236	}
237
238	// Fisher-Yates shuffle: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
239	// Shuffle really ought not be called with n that doesn't fit in 32 bits.
240	// Not only will it take a very long time, but with 2³¹! possible permutations,
241	// there's no way that any PRNG can have a big enough internal state to
242	// generate even a minuscule percentage of the possible permutations.
243	// Nevertheless, the right API signature accepts an int n, so handle it as best we can.
244	for i := n - 1; i > 0; i-- {
245		j := int(r.uint64n(uint64(i + 1)))
246		swap(i, j)
247	}
248}
249
250/*
251 * Top-level convenience functions
252 */
253
254// globalRand is the source of random numbers for the top-level
255// convenience functions.
256var globalRand = &Rand{src: runtimeSource{}}
257
258//go:linkname runtime_rand runtime.rand
259func runtime_rand() uint64
260
261// runtimeSource is a Source that uses the runtime fastrand functions.
262type runtimeSource struct{}
263
264func (runtimeSource) Uint64() uint64 {
265	return runtime_rand()
266}
267
268// Int64 returns a non-negative pseudo-random 63-bit integer as an int64
269// from the default Source.
270func Int64() int64 { return globalRand.Int64() }
271
272// Uint32 returns a pseudo-random 32-bit value as a uint32
273// from the default Source.
274func Uint32() uint32 { return globalRand.Uint32() }
275
276// Uint64N returns, as a uint64, a pseudo-random number in the half-open interval [0,n)
277// from the default Source.
278// It panics if n <= 0.
279func Uint64N(n uint64) uint64 { return globalRand.Uint64N(n) }
280
281// Uint32N returns, as a uint32, a pseudo-random number in the half-open interval [0,n)
282// from the default Source.
283// It panics if n <= 0.
284func Uint32N(n uint32) uint32 { return globalRand.Uint32N(n) }
285
286// Uint64 returns a pseudo-random 64-bit value as a uint64
287// from the default Source.
288func Uint64() uint64 { return globalRand.Uint64() }
289
290// Int32 returns a non-negative pseudo-random 31-bit integer as an int32
291// from the default Source.
292func Int32() int32 { return globalRand.Int32() }
293
294// Int returns a non-negative pseudo-random int from the default Source.
295func Int() int { return globalRand.Int() }
296
297// Uint returns a pseudo-random uint from the default Source.
298func Uint() uint { return globalRand.Uint() }
299
300// Int64N returns, as an int64, a pseudo-random number in the half-open interval [0,n)
301// from the default Source.
302// It panics if n <= 0.
303func Int64N(n int64) int64 { return globalRand.Int64N(n) }
304
305// Int32N returns, as an int32, a pseudo-random number in the half-open interval [0,n)
306// from the default Source.
307// It panics if n <= 0.
308func Int32N(n int32) int32 { return globalRand.Int32N(n) }
309
310// IntN returns, as an int, a pseudo-random number in the half-open interval [0,n)
311// from the default Source.
312// It panics if n <= 0.
313func IntN(n int) int { return globalRand.IntN(n) }
314
315// UintN returns, as a uint, a pseudo-random number in the half-open interval [0,n)
316// from the default Source.
317// It panics if n <= 0.
318func UintN(n uint) uint { return globalRand.UintN(n) }
319
320// N returns a pseudo-random number in the half-open interval [0,n) from the default Source.
321// The type parameter Int can be any integer type.
322// It panics if n <= 0.
323func N[Int intType](n Int) Int {
324	if n <= 0 {
325		panic("invalid argument to N")
326	}
327	return Int(globalRand.uint64n(uint64(n)))
328}
329
330type intType interface {
331	~int | ~int8 | ~int16 | ~int32 | ~int64 |
332		~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr
333}
334
335// Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0)
336// from the default Source.
337func Float64() float64 { return globalRand.Float64() }
338
339// Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0)
340// from the default Source.
341func Float32() float32 { return globalRand.Float32() }
342
343// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers
344// in the half-open interval [0,n) from the default Source.
345func Perm(n int) []int { return globalRand.Perm(n) }
346
347// Shuffle pseudo-randomizes the order of elements using the default Source.
348// n is the number of elements. Shuffle panics if n < 0.
349// swap swaps the elements with indexes i and j.
350func Shuffle(n int, swap func(i, j int)) { globalRand.Shuffle(n, swap) }
351
352// NormFloat64 returns a normally distributed float64 in the range
353// [-math.MaxFloat64, +math.MaxFloat64] with
354// standard normal distribution (mean = 0, stddev = 1)
355// from the default Source.
356// To produce a different normal distribution, callers can
357// adjust the output using:
358//
359//	sample = NormFloat64() * desiredStdDev + desiredMean
360func NormFloat64() float64 { return globalRand.NormFloat64() }
361
362// ExpFloat64 returns an exponentially distributed float64 in the range
363// (0, +math.MaxFloat64] with an exponential distribution whose rate parameter
364// (lambda) is 1 and whose mean is 1/lambda (1) from the default Source.
365// To produce a distribution with a different rate parameter,
366// callers can adjust the output using:
367//
368//	sample = ExpFloat64() / desiredRateParameter
369func ExpFloat64() float64 { return globalRand.ExpFloat64() }
370