1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package math
6
7func isOddInt(x float64) bool {
8	if Abs(x) >= (1 << 53) {
9		// 1 << 53 is the largest exact integer in the float64 format.
10		// Any number outside this range will be truncated before the decimal point and therefore will always be
11		// an even integer.
12		// Without this check and if x overflows int64 the int64(xi) conversion below may produce incorrect results
13		// on some architectures (and does so on arm64). See issue #57465.
14		return false
15	}
16
17	xi, xf := Modf(x)
18	return xf == 0 && int64(xi)&1 == 1
19}
20
21// Special cases taken from FreeBSD's /usr/src/lib/msun/src/e_pow.c
22// updated by IEEE Std. 754-2008 "Section 9.2.1 Special values".
23
24// Pow returns x**y, the base-x exponential of y.
25//
26// Special cases are (in order):
27//
28//	Pow(x, ±0) = 1 for any x
29//	Pow(1, y) = 1 for any y
30//	Pow(x, 1) = x for any x
31//	Pow(NaN, y) = NaN
32//	Pow(x, NaN) = NaN
33//	Pow(±0, y) = ±Inf for y an odd integer < 0
34//	Pow(±0, -Inf) = +Inf
35//	Pow(±0, +Inf) = +0
36//	Pow(±0, y) = +Inf for finite y < 0 and not an odd integer
37//	Pow(±0, y) = ±0 for y an odd integer > 0
38//	Pow(±0, y) = +0 for finite y > 0 and not an odd integer
39//	Pow(-1, ±Inf) = 1
40//	Pow(x, +Inf) = +Inf for |x| > 1
41//	Pow(x, -Inf) = +0 for |x| > 1
42//	Pow(x, +Inf) = +0 for |x| < 1
43//	Pow(x, -Inf) = +Inf for |x| < 1
44//	Pow(+Inf, y) = +Inf for y > 0
45//	Pow(+Inf, y) = +0 for y < 0
46//	Pow(-Inf, y) = Pow(-0, -y)
47//	Pow(x, y) = NaN for finite x < 0 and finite non-integer y
48func Pow(x, y float64) float64 {
49	if haveArchPow {
50		return archPow(x, y)
51	}
52	return pow(x, y)
53}
54
55func pow(x, y float64) float64 {
56	switch {
57	case y == 0 || x == 1:
58		return 1
59	case y == 1:
60		return x
61	case IsNaN(x) || IsNaN(y):
62		return NaN()
63	case x == 0:
64		switch {
65		case y < 0:
66			if Signbit(x) && isOddInt(y) {
67				return Inf(-1)
68			}
69			return Inf(1)
70		case y > 0:
71			if Signbit(x) && isOddInt(y) {
72				return x
73			}
74			return 0
75		}
76	case IsInf(y, 0):
77		switch {
78		case x == -1:
79			return 1
80		case (Abs(x) < 1) == IsInf(y, 1):
81			return 0
82		default:
83			return Inf(1)
84		}
85	case IsInf(x, 0):
86		if IsInf(x, -1) {
87			return Pow(1/x, -y) // Pow(-0, -y)
88		}
89		switch {
90		case y < 0:
91			return 0
92		case y > 0:
93			return Inf(1)
94		}
95	case y == 0.5:
96		return Sqrt(x)
97	case y == -0.5:
98		return 1 / Sqrt(x)
99	}
100
101	yi, yf := Modf(Abs(y))
102	if yf != 0 && x < 0 {
103		return NaN()
104	}
105	if yi >= 1<<63 {
106		// yi is a large even int that will lead to overflow (or underflow to 0)
107		// for all x except -1 (x == 1 was handled earlier)
108		switch {
109		case x == -1:
110			return 1
111		case (Abs(x) < 1) == (y > 0):
112			return 0
113		default:
114			return Inf(1)
115		}
116	}
117
118	// ans = a1 * 2**ae (= 1 for now).
119	a1 := 1.0
120	ae := 0
121
122	// ans *= x**yf
123	if yf != 0 {
124		if yf > 0.5 {
125			yf--
126			yi++
127		}
128		a1 = Exp(yf * Log(x))
129	}
130
131	// ans *= x**yi
132	// by multiplying in successive squarings
133	// of x according to bits of yi.
134	// accumulate powers of two into exp.
135	x1, xe := Frexp(x)
136	for i := int64(yi); i != 0; i >>= 1 {
137		if xe < -1<<12 || 1<<12 < xe {
138			// catch xe before it overflows the left shift below
139			// Since i !=0 it has at least one bit still set, so ae will accumulate xe
140			// on at least one more iteration, ae += xe is a lower bound on ae
141			// the lower bound on ae exceeds the size of a float64 exp
142			// so the final call to Ldexp will produce under/overflow (0/Inf)
143			ae += xe
144			break
145		}
146		if i&1 == 1 {
147			a1 *= x1
148			ae += xe
149		}
150		x1 *= x1
151		xe <<= 1
152		if x1 < .5 {
153			x1 += x1
154			xe--
155		}
156	}
157
158	// ans = a1*2**ae
159	// if y < 0 { ans = 1 / ans }
160	// but in the opposite order
161	if y < 0 {
162		a1 = 1 / a1
163		ae = -ae
164	}
165	return Ldexp(a1, ae)
166}
167