1// Copyright 2010 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package math
6
7/*
8	Bessel function of the first and second kinds of order n.
9*/
10
11// The original C code and the long comment below are
12// from FreeBSD's /usr/src/lib/msun/src/e_jn.c and
13// came with this notice. The go code is a simplified
14// version of the original C.
15//
16// ====================================================
17// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
18//
19// Developed at SunPro, a Sun Microsystems, Inc. business.
20// Permission to use, copy, modify, and distribute this
21// software is freely granted, provided that this notice
22// is preserved.
23// ====================================================
24//
25// __ieee754_jn(n, x), __ieee754_yn(n, x)
26// floating point Bessel's function of the 1st and 2nd kind
27// of order n
28//
29// Special cases:
30//      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
31//      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
32// Note 2. About jn(n,x), yn(n,x)
33//      For n=0, j0(x) is called,
34//      for n=1, j1(x) is called,
35//      for n<x, forward recursion is used starting
36//      from values of j0(x) and j1(x).
37//      for n>x, a continued fraction approximation to
38//      j(n,x)/j(n-1,x) is evaluated and then backward
39//      recursion is used starting from a supposed value
40//      for j(n,x). The resulting value of j(0,x) is
41//      compared with the actual value to correct the
42//      supposed value of j(n,x).
43//
44//      yn(n,x) is similar in all respects, except
45//      that forward recursion is used for all
46//      values of n>1.
47
48// Jn returns the order-n Bessel function of the first kind.
49//
50// Special cases are:
51//
52//	Jn(n, ±Inf) = 0
53//	Jn(n, NaN) = NaN
54func Jn(n int, x float64) float64 {
55	const (
56		TwoM29 = 1.0 / (1 << 29) // 2**-29 0x3e10000000000000
57		Two302 = 1 << 302        // 2**302 0x52D0000000000000
58	)
59	// special cases
60	switch {
61	case IsNaN(x):
62		return x
63	case IsInf(x, 0):
64		return 0
65	}
66	// J(-n, x) = (-1)**n * J(n, x), J(n, -x) = (-1)**n * J(n, x)
67	// Thus, J(-n, x) = J(n, -x)
68
69	if n == 0 {
70		return J0(x)
71	}
72	if x == 0 {
73		return 0
74	}
75	if n < 0 {
76		n, x = -n, -x
77	}
78	if n == 1 {
79		return J1(x)
80	}
81	sign := false
82	if x < 0 {
83		x = -x
84		if n&1 == 1 {
85			sign = true // odd n and negative x
86		}
87	}
88	var b float64
89	if float64(n) <= x {
90		// Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
91		if x >= Two302 { // x > 2**302
92
93			// (x >> n**2)
94			//          Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
95			//          Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
96			//          Let s=sin(x), c=cos(x),
97			//              xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
98			//
99			//                 n    sin(xn)*sqt2    cos(xn)*sqt2
100			//              ----------------------------------
101			//                 0     s-c             c+s
102			//                 1    -s-c            -c+s
103			//                 2    -s+c            -c-s
104			//                 3     s+c             c-s
105
106			var temp float64
107			switch s, c := Sincos(x); n & 3 {
108			case 0:
109				temp = c + s
110			case 1:
111				temp = -c + s
112			case 2:
113				temp = -c - s
114			case 3:
115				temp = c - s
116			}
117			b = (1 / SqrtPi) * temp / Sqrt(x)
118		} else {
119			b = J1(x)
120			for i, a := 1, J0(x); i < n; i++ {
121				a, b = b, b*(float64(i+i)/x)-a // avoid underflow
122			}
123		}
124	} else {
125		if x < TwoM29 { // x < 2**-29
126			// x is tiny, return the first Taylor expansion of J(n,x)
127			// J(n,x) = 1/n!*(x/2)**n  - ...
128
129			if n > 33 { // underflow
130				b = 0
131			} else {
132				temp := x * 0.5
133				b = temp
134				a := 1.0
135				for i := 2; i <= n; i++ {
136					a *= float64(i) // a = n!
137					b *= temp       // b = (x/2)**n
138				}
139				b /= a
140			}
141		} else {
142			// use backward recurrence
143			//                      x      x**2      x**2
144			//  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
145			//                      2n  - 2(n+1) - 2(n+2)
146			//
147			//                      1      1        1
148			//  (for large x)   =  ----  ------   ------   .....
149			//                      2n   2(n+1)   2(n+2)
150			//                      -- - ------ - ------ -
151			//                       x     x         x
152			//
153			// Let w = 2n/x and h=2/x, then the above quotient
154			// is equal to the continued fraction:
155			//                  1
156			//      = -----------------------
157			//                     1
158			//         w - -----------------
159			//                        1
160			//              w+h - ---------
161			//                     w+2h - ...
162			//
163			// To determine how many terms needed, let
164			// Q(0) = w, Q(1) = w(w+h) - 1,
165			// Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
166			// When Q(k) > 1e4	good for single
167			// When Q(k) > 1e9	good for double
168			// When Q(k) > 1e17	good for quadruple
169
170			// determine k
171			w := float64(n+n) / x
172			h := 2 / x
173			q0 := w
174			z := w + h
175			q1 := w*z - 1
176			k := 1
177			for q1 < 1e9 {
178				k++
179				z += h
180				q0, q1 = q1, z*q1-q0
181			}
182			m := n + n
183			t := 0.0
184			for i := 2 * (n + k); i >= m; i -= 2 {
185				t = 1 / (float64(i)/x - t)
186			}
187			a := t
188			b = 1
189			//  estimate log((2/x)**n*n!) = n*log(2/x)+n*ln(n)
190			//  Hence, if n*(log(2n/x)) > ...
191			//  single 8.8722839355e+01
192			//  double 7.09782712893383973096e+02
193			//  long double 1.1356523406294143949491931077970765006170e+04
194			//  then recurrent value may overflow and the result is
195			//  likely underflow to zero
196
197			tmp := float64(n)
198			v := 2 / x
199			tmp = tmp * Log(Abs(v*tmp))
200			if tmp < 7.09782712893383973096e+02 {
201				for i := n - 1; i > 0; i-- {
202					di := float64(i + i)
203					a, b = b, b*di/x-a
204				}
205			} else {
206				for i := n - 1; i > 0; i-- {
207					di := float64(i + i)
208					a, b = b, b*di/x-a
209					// scale b to avoid spurious overflow
210					if b > 1e100 {
211						a /= b
212						t /= b
213						b = 1
214					}
215				}
216			}
217			b = t * J0(x) / b
218		}
219	}
220	if sign {
221		return -b
222	}
223	return b
224}
225
226// Yn returns the order-n Bessel function of the second kind.
227//
228// Special cases are:
229//
230//	Yn(n, +Inf) = 0
231//	Yn(n ≥ 0, 0) = -Inf
232//	Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
233//	Yn(n, x < 0) = NaN
234//	Yn(n, NaN) = NaN
235func Yn(n int, x float64) float64 {
236	const Two302 = 1 << 302 // 2**302 0x52D0000000000000
237	// special cases
238	switch {
239	case x < 0 || IsNaN(x):
240		return NaN()
241	case IsInf(x, 1):
242		return 0
243	}
244
245	if n == 0 {
246		return Y0(x)
247	}
248	if x == 0 {
249		if n < 0 && n&1 == 1 {
250			return Inf(1)
251		}
252		return Inf(-1)
253	}
254	sign := false
255	if n < 0 {
256		n = -n
257		if n&1 == 1 {
258			sign = true // sign true if n < 0 && |n| odd
259		}
260	}
261	if n == 1 {
262		if sign {
263			return -Y1(x)
264		}
265		return Y1(x)
266	}
267	var b float64
268	if x >= Two302 { // x > 2**302
269		// (x >> n**2)
270		//	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
271		//	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
272		//	    Let s=sin(x), c=cos(x),
273		//		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
274		//
275		//		   n	sin(xn)*sqt2	cos(xn)*sqt2
276		//		----------------------------------
277		//		   0	 s-c		 c+s
278		//		   1	-s-c 		-c+s
279		//		   2	-s+c		-c-s
280		//		   3	 s+c		 c-s
281
282		var temp float64
283		switch s, c := Sincos(x); n & 3 {
284		case 0:
285			temp = s - c
286		case 1:
287			temp = -s - c
288		case 2:
289			temp = -s + c
290		case 3:
291			temp = s + c
292		}
293		b = (1 / SqrtPi) * temp / Sqrt(x)
294	} else {
295		a := Y0(x)
296		b = Y1(x)
297		// quit if b is -inf
298		for i := 1; i < n && !IsInf(b, -1); i++ {
299			a, b = b, (float64(i+i)/x)*b-a
300		}
301	}
302	if sign {
303		return -b
304	}
305	return b
306}
307