1// Copyright 2019 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package math 6 7import "math/bits" 8 9func zero(x uint64) uint64 { 10 if x == 0 { 11 return 1 12 } 13 return 0 14 // branchless: 15 // return ((x>>1 | x&1) - 1) >> 63 16} 17 18func nonzero(x uint64) uint64 { 19 if x != 0 { 20 return 1 21 } 22 return 0 23 // branchless: 24 // return 1 - ((x>>1|x&1)-1)>>63 25} 26 27func shl(u1, u2 uint64, n uint) (r1, r2 uint64) { 28 r1 = u1<<n | u2>>(64-n) | u2<<(n-64) 29 r2 = u2 << n 30 return 31} 32 33func shr(u1, u2 uint64, n uint) (r1, r2 uint64) { 34 r2 = u2>>n | u1<<(64-n) | u1>>(n-64) 35 r1 = u1 >> n 36 return 37} 38 39// shrcompress compresses the bottom n+1 bits of the two-word 40// value into a single bit. the result is equal to the value 41// shifted to the right by n, except the result's 0th bit is 42// set to the bitwise OR of the bottom n+1 bits. 43func shrcompress(u1, u2 uint64, n uint) (r1, r2 uint64) { 44 // TODO: Performance here is really sensitive to the 45 // order/placement of these branches. n == 0 is common 46 // enough to be in the fast path. Perhaps more measurement 47 // needs to be done to find the optimal order/placement? 48 switch { 49 case n == 0: 50 return u1, u2 51 case n == 64: 52 return 0, u1 | nonzero(u2) 53 case n >= 128: 54 return 0, nonzero(u1 | u2) 55 case n < 64: 56 r1, r2 = shr(u1, u2, n) 57 r2 |= nonzero(u2 & (1<<n - 1)) 58 case n < 128: 59 r1, r2 = shr(u1, u2, n) 60 r2 |= nonzero(u1&(1<<(n-64)-1) | u2) 61 } 62 return 63} 64 65func lz(u1, u2 uint64) (l int32) { 66 l = int32(bits.LeadingZeros64(u1)) 67 if l == 64 { 68 l += int32(bits.LeadingZeros64(u2)) 69 } 70 return l 71} 72 73// split splits b into sign, biased exponent, and mantissa. 74// It adds the implicit 1 bit to the mantissa for normal values, 75// and normalizes subnormal values. 76func split(b uint64) (sign uint32, exp int32, mantissa uint64) { 77 sign = uint32(b >> 63) 78 exp = int32(b>>52) & mask 79 mantissa = b & fracMask 80 81 if exp == 0 { 82 // Normalize value if subnormal. 83 shift := uint(bits.LeadingZeros64(mantissa) - 11) 84 mantissa <<= shift 85 exp = 1 - int32(shift) 86 } else { 87 // Add implicit 1 bit 88 mantissa |= 1 << 52 89 } 90 return 91} 92 93// FMA returns x * y + z, computed with only one rounding. 94// (That is, FMA returns the fused multiply-add of x, y, and z.) 95func FMA(x, y, z float64) float64 { 96 bx, by, bz := Float64bits(x), Float64bits(y), Float64bits(z) 97 98 // Inf or NaN or zero involved. At most one rounding will occur. 99 if x == 0.0 || y == 0.0 || z == 0.0 || bx&uvinf == uvinf || by&uvinf == uvinf { 100 return x*y + z 101 } 102 // Handle non-finite z separately. Evaluating x*y+z where 103 // x and y are finite, but z is infinite, should always result in z. 104 if bz&uvinf == uvinf { 105 return z 106 } 107 108 // Inputs are (sub)normal. 109 // Split x, y, z into sign, exponent, mantissa. 110 xs, xe, xm := split(bx) 111 ys, ye, ym := split(by) 112 zs, ze, zm := split(bz) 113 114 // Compute product p = x*y as sign, exponent, two-word mantissa. 115 // Start with exponent. "is normal" bit isn't subtracted yet. 116 pe := xe + ye - bias + 1 117 118 // pm1:pm2 is the double-word mantissa for the product p. 119 // Shift left to leave top bit in product. Effectively 120 // shifts the 106-bit product to the left by 21. 121 pm1, pm2 := bits.Mul64(xm<<10, ym<<11) 122 zm1, zm2 := zm<<10, uint64(0) 123 ps := xs ^ ys // product sign 124 125 // normalize to 62nd bit 126 is62zero := uint((^pm1 >> 62) & 1) 127 pm1, pm2 = shl(pm1, pm2, is62zero) 128 pe -= int32(is62zero) 129 130 // Swap addition operands so |p| >= |z| 131 if pe < ze || pe == ze && pm1 < zm1 { 132 ps, pe, pm1, pm2, zs, ze, zm1, zm2 = zs, ze, zm1, zm2, ps, pe, pm1, pm2 133 } 134 135 // Special case: if p == -z the result is always +0 since neither operand is zero. 136 if ps != zs && pe == ze && pm1 == zm1 && pm2 == zm2 { 137 return 0 138 } 139 140 // Align significands 141 zm1, zm2 = shrcompress(zm1, zm2, uint(pe-ze)) 142 143 // Compute resulting significands, normalizing if necessary. 144 var m, c uint64 145 if ps == zs { 146 // Adding (pm1:pm2) + (zm1:zm2) 147 pm2, c = bits.Add64(pm2, zm2, 0) 148 pm1, _ = bits.Add64(pm1, zm1, c) 149 pe -= int32(^pm1 >> 63) 150 pm1, m = shrcompress(pm1, pm2, uint(64+pm1>>63)) 151 } else { 152 // Subtracting (pm1:pm2) - (zm1:zm2) 153 // TODO: should we special-case cancellation? 154 pm2, c = bits.Sub64(pm2, zm2, 0) 155 pm1, _ = bits.Sub64(pm1, zm1, c) 156 nz := lz(pm1, pm2) 157 pe -= nz 158 m, pm2 = shl(pm1, pm2, uint(nz-1)) 159 m |= nonzero(pm2) 160 } 161 162 // Round and break ties to even 163 if pe > 1022+bias || pe == 1022+bias && (m+1<<9)>>63 == 1 { 164 // rounded value overflows exponent range 165 return Float64frombits(uint64(ps)<<63 | uvinf) 166 } 167 if pe < 0 { 168 n := uint(-pe) 169 m = m>>n | nonzero(m&(1<<n-1)) 170 pe = 0 171 } 172 m = ((m + 1<<9) >> 10) & ^zero((m&(1<<10-1))^1<<9) 173 pe &= -int32(nonzero(m)) 174 return Float64frombits(uint64(ps)<<63 + uint64(pe)<<52 + m) 175} 176