1// Copyright 2010 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package math
6
7/*
8	Floating-point error function and complementary error function.
9*/
10
11// The original C code and the long comment below are
12// from FreeBSD's /usr/src/lib/msun/src/s_erf.c and
13// came with this notice. The go code is a simplified
14// version of the original C.
15//
16// ====================================================
17// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
18//
19// Developed at SunPro, a Sun Microsystems, Inc. business.
20// Permission to use, copy, modify, and distribute this
21// software is freely granted, provided that this notice
22// is preserved.
23// ====================================================
24//
25//
26// double erf(double x)
27// double erfc(double x)
28//                           x
29//                    2      |\
30//     erf(x)  =  ---------  | exp(-t*t)dt
31//                 sqrt(pi) \|
32//                           0
33//
34//     erfc(x) =  1-erf(x)
35//  Note that
36//              erf(-x) = -erf(x)
37//              erfc(-x) = 2 - erfc(x)
38//
39// Method:
40//      1. For |x| in [0, 0.84375]
41//          erf(x)  = x + x*R(x**2)
42//          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
43//                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
44//         where R = P/Q where P is an odd poly of degree 8 and
45//         Q is an odd poly of degree 10.
46//                                               -57.90
47//                      | R - (erf(x)-x)/x | <= 2
48//
49//
50//         Remark. The formula is derived by noting
51//          erf(x) = (2/sqrt(pi))*(x - x**3/3 + x**5/10 - x**7/42 + ....)
52//         and that
53//          2/sqrt(pi) = 1.128379167095512573896158903121545171688
54//         is close to one. The interval is chosen because the fix
55//         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
56//         near 0.6174), and by some experiment, 0.84375 is chosen to
57//         guarantee the error is less than one ulp for erf.
58//
59//      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
60//         c = 0.84506291151 rounded to single (24 bits)
61//              erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
62//              erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
63//                        1+(c+P1(s)/Q1(s))    if x < 0
64//              |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
65//         Remark: here we use the taylor series expansion at x=1.
66//              erf(1+s) = erf(1) + s*Poly(s)
67//                       = 0.845.. + P1(s)/Q1(s)
68//         That is, we use rational approximation to approximate
69//                      erf(1+s) - (c = (single)0.84506291151)
70//         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
71//         where
72//              P1(s) = degree 6 poly in s
73//              Q1(s) = degree 6 poly in s
74//
75//      3. For x in [1.25,1/0.35(~2.857143)],
76//              erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
77//              erf(x)  = 1 - erfc(x)
78//         where
79//              R1(z) = degree 7 poly in z, (z=1/x**2)
80//              S1(z) = degree 8 poly in z
81//
82//      4. For x in [1/0.35,28]
83//              erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
84//                      = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
85//                      = 2.0 - tiny            (if x <= -6)
86//              erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
87//              erf(x)  = sign(x)*(1.0 - tiny)
88//         where
89//              R2(z) = degree 6 poly in z, (z=1/x**2)
90//              S2(z) = degree 7 poly in z
91//
92//      Note1:
93//         To compute exp(-x*x-0.5625+R/S), let s be a single
94//         precision number and s := x; then
95//              -x*x = -s*s + (s-x)*(s+x)
96//              exp(-x*x-0.5626+R/S) =
97//                      exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
98//      Note2:
99//         Here 4 and 5 make use of the asymptotic series
100//                        exp(-x*x)
101//              erfc(x) ~ ---------- * ( 1 + Poly(1/x**2) )
102//                        x*sqrt(pi)
103//         We use rational approximation to approximate
104//              g(s)=f(1/x**2) = log(erfc(x)*x) - x*x + 0.5625
105//         Here is the error bound for R1/S1 and R2/S2
106//              |R1/S1 - f(x)|  < 2**(-62.57)
107//              |R2/S2 - f(x)|  < 2**(-61.52)
108//
109//      5. For inf > x >= 28
110//              erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
111//              erfc(x) = tiny*tiny (raise underflow) if x > 0
112//                      = 2 - tiny if x<0
113//
114//      7. Special case:
115//              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
116//              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
117//              erfc/erf(NaN) is NaN
118
119const (
120	erx = 8.45062911510467529297e-01 // 0x3FEB0AC160000000
121	// Coefficients for approximation to  erf in [0, 0.84375]
122	efx  = 1.28379167095512586316e-01  // 0x3FC06EBA8214DB69
123	efx8 = 1.02703333676410069053e+00  // 0x3FF06EBA8214DB69
124	pp0  = 1.28379167095512558561e-01  // 0x3FC06EBA8214DB68
125	pp1  = -3.25042107247001499370e-01 // 0xBFD4CD7D691CB913
126	pp2  = -2.84817495755985104766e-02 // 0xBF9D2A51DBD7194F
127	pp3  = -5.77027029648944159157e-03 // 0xBF77A291236668E4
128	pp4  = -2.37630166566501626084e-05 // 0xBEF8EAD6120016AC
129	qq1  = 3.97917223959155352819e-01  // 0x3FD97779CDDADC09
130	qq2  = 6.50222499887672944485e-02  // 0x3FB0A54C5536CEBA
131	qq3  = 5.08130628187576562776e-03  // 0x3F74D022C4D36B0F
132	qq4  = 1.32494738004321644526e-04  // 0x3F215DC9221C1A10
133	qq5  = -3.96022827877536812320e-06 // 0xBED09C4342A26120
134	// Coefficients for approximation to  erf  in [0.84375, 1.25]
135	pa0 = -2.36211856075265944077e-03 // 0xBF6359B8BEF77538
136	pa1 = 4.14856118683748331666e-01  // 0x3FDA8D00AD92B34D
137	pa2 = -3.72207876035701323847e-01 // 0xBFD7D240FBB8C3F1
138	pa3 = 3.18346619901161753674e-01  // 0x3FD45FCA805120E4
139	pa4 = -1.10894694282396677476e-01 // 0xBFBC63983D3E28EC
140	pa5 = 3.54783043256182359371e-02  // 0x3FA22A36599795EB
141	pa6 = -2.16637559486879084300e-03 // 0xBF61BF380A96073F
142	qa1 = 1.06420880400844228286e-01  // 0x3FBB3E6618EEE323
143	qa2 = 5.40397917702171048937e-01  // 0x3FE14AF092EB6F33
144	qa3 = 7.18286544141962662868e-02  // 0x3FB2635CD99FE9A7
145	qa4 = 1.26171219808761642112e-01  // 0x3FC02660E763351F
146	qa5 = 1.36370839120290507362e-02  // 0x3F8BEDC26B51DD1C
147	qa6 = 1.19844998467991074170e-02  // 0x3F888B545735151D
148	// Coefficients for approximation to  erfc in [1.25, 1/0.35]
149	ra0 = -9.86494403484714822705e-03 // 0xBF843412600D6435
150	ra1 = -6.93858572707181764372e-01 // 0xBFE63416E4BA7360
151	ra2 = -1.05586262253232909814e+01 // 0xC0251E0441B0E726
152	ra3 = -6.23753324503260060396e+01 // 0xC04F300AE4CBA38D
153	ra4 = -1.62396669462573470355e+02 // 0xC0644CB184282266
154	ra5 = -1.84605092906711035994e+02 // 0xC067135CEBCCABB2
155	ra6 = -8.12874355063065934246e+01 // 0xC054526557E4D2F2
156	ra7 = -9.81432934416914548592e+00 // 0xC023A0EFC69AC25C
157	sa1 = 1.96512716674392571292e+01  // 0x4033A6B9BD707687
158	sa2 = 1.37657754143519042600e+02  // 0x4061350C526AE721
159	sa3 = 4.34565877475229228821e+02  // 0x407B290DD58A1A71
160	sa4 = 6.45387271733267880336e+02  // 0x40842B1921EC2868
161	sa5 = 4.29008140027567833386e+02  // 0x407AD02157700314
162	sa6 = 1.08635005541779435134e+02  // 0x405B28A3EE48AE2C
163	sa7 = 6.57024977031928170135e+00  // 0x401A47EF8E484A93
164	sa8 = -6.04244152148580987438e-02 // 0xBFAEEFF2EE749A62
165	// Coefficients for approximation to  erfc in [1/.35, 28]
166	rb0 = -9.86494292470009928597e-03 // 0xBF84341239E86F4A
167	rb1 = -7.99283237680523006574e-01 // 0xBFE993BA70C285DE
168	rb2 = -1.77579549177547519889e+01 // 0xC031C209555F995A
169	rb3 = -1.60636384855821916062e+02 // 0xC064145D43C5ED98
170	rb4 = -6.37566443368389627722e+02 // 0xC083EC881375F228
171	rb5 = -1.02509513161107724954e+03 // 0xC09004616A2E5992
172	rb6 = -4.83519191608651397019e+02 // 0xC07E384E9BDC383F
173	sb1 = 3.03380607434824582924e+01  // 0x403E568B261D5190
174	sb2 = 3.25792512996573918826e+02  // 0x40745CAE221B9F0A
175	sb3 = 1.53672958608443695994e+03  // 0x409802EB189D5118
176	sb4 = 3.19985821950859553908e+03  // 0x40A8FFB7688C246A
177	sb5 = 2.55305040643316442583e+03  // 0x40A3F219CEDF3BE6
178	sb6 = 4.74528541206955367215e+02  // 0x407DA874E79FE763
179	sb7 = -2.24409524465858183362e+01 // 0xC03670E242712D62
180)
181
182// Erf returns the error function of x.
183//
184// Special cases are:
185//
186//	Erf(+Inf) = 1
187//	Erf(-Inf) = -1
188//	Erf(NaN) = NaN
189func Erf(x float64) float64 {
190	if haveArchErf {
191		return archErf(x)
192	}
193	return erf(x)
194}
195
196func erf(x float64) float64 {
197	const (
198		VeryTiny = 2.848094538889218e-306 // 0x0080000000000000
199		Small    = 1.0 / (1 << 28)        // 2**-28
200	)
201	// special cases
202	switch {
203	case IsNaN(x):
204		return NaN()
205	case IsInf(x, 1):
206		return 1
207	case IsInf(x, -1):
208		return -1
209	}
210	sign := false
211	if x < 0 {
212		x = -x
213		sign = true
214	}
215	if x < 0.84375 { // |x| < 0.84375
216		var temp float64
217		if x < Small { // |x| < 2**-28
218			if x < VeryTiny {
219				temp = 0.125 * (8.0*x + efx8*x) // avoid underflow
220			} else {
221				temp = x + efx*x
222			}
223		} else {
224			z := x * x
225			r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
226			s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
227			y := r / s
228			temp = x + x*y
229		}
230		if sign {
231			return -temp
232		}
233		return temp
234	}
235	if x < 1.25 { // 0.84375 <= |x| < 1.25
236		s := x - 1
237		P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
238		Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
239		if sign {
240			return -erx - P/Q
241		}
242		return erx + P/Q
243	}
244	if x >= 6 { // inf > |x| >= 6
245		if sign {
246			return -1
247		}
248		return 1
249	}
250	s := 1 / (x * x)
251	var R, S float64
252	if x < 1/0.35 { // |x| < 1 / 0.35  ~ 2.857143
253		R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
254		S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
255	} else { // |x| >= 1 / 0.35  ~ 2.857143
256		R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
257		S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
258	}
259	z := Float64frombits(Float64bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precision x
260	r := Exp(-z*z-0.5625) * Exp((z-x)*(z+x)+R/S)
261	if sign {
262		return r/x - 1
263	}
264	return 1 - r/x
265}
266
267// Erfc returns the complementary error function of x.
268//
269// Special cases are:
270//
271//	Erfc(+Inf) = 0
272//	Erfc(-Inf) = 2
273//	Erfc(NaN) = NaN
274func Erfc(x float64) float64 {
275	if haveArchErfc {
276		return archErfc(x)
277	}
278	return erfc(x)
279}
280
281func erfc(x float64) float64 {
282	const Tiny = 1.0 / (1 << 56) // 2**-56
283	// special cases
284	switch {
285	case IsNaN(x):
286		return NaN()
287	case IsInf(x, 1):
288		return 0
289	case IsInf(x, -1):
290		return 2
291	}
292	sign := false
293	if x < 0 {
294		x = -x
295		sign = true
296	}
297	if x < 0.84375 { // |x| < 0.84375
298		var temp float64
299		if x < Tiny { // |x| < 2**-56
300			temp = x
301		} else {
302			z := x * x
303			r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
304			s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
305			y := r / s
306			if x < 0.25 { // |x| < 1/4
307				temp = x + x*y
308			} else {
309				temp = 0.5 + (x*y + (x - 0.5))
310			}
311		}
312		if sign {
313			return 1 + temp
314		}
315		return 1 - temp
316	}
317	if x < 1.25 { // 0.84375 <= |x| < 1.25
318		s := x - 1
319		P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
320		Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
321		if sign {
322			return 1 + erx + P/Q
323		}
324		return 1 - erx - P/Q
325
326	}
327	if x < 28 { // |x| < 28
328		s := 1 / (x * x)
329		var R, S float64
330		if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143
331			R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
332			S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
333		} else { // |x| >= 1 / 0.35 ~ 2.857143
334			if sign && x > 6 {
335				return 2 // x < -6
336			}
337			R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
338			S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
339		}
340		z := Float64frombits(Float64bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precision x
341		r := Exp(-z*z-0.5625) * Exp((z-x)*(z+x)+R/S)
342		if sign {
343			return 2 - r/x
344		}
345		return r / x
346	}
347	if sign {
348		return 2
349	}
350	return 0
351}
352