1// Copyright 2010 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package cmplx 6 7import "math" 8 9// The original C code, the long comment, and the constants 10// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. 11// The go code is a simplified version of the original C. 12// 13// Cephes Math Library Release 2.8: June, 2000 14// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier 15// 16// The readme file at http://netlib.sandia.gov/cephes/ says: 17// Some software in this archive may be from the book _Methods and 18// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster 19// International, 1989) or from the Cephes Mathematical Library, a 20// commercial product. In either event, it is copyrighted by the author. 21// What you see here may be used freely but it comes with no support or 22// guarantee. 23// 24// The two known misprints in the book are repaired here in the 25// source listings for the gamma function and the incomplete beta 26// integral. 27// 28// Stephen L. Moshier 29// [email protected] 30 31// Complex exponential function 32// 33// DESCRIPTION: 34// 35// Returns the complex exponential of the complex argument z. 36// 37// If 38// z = x + iy, 39// r = exp(x), 40// then 41// w = r cos y + i r sin y. 42// 43// ACCURACY: 44// 45// Relative error: 46// arithmetic domain # trials peak rms 47// DEC -10,+10 8700 3.7e-17 1.1e-17 48// IEEE -10,+10 30000 3.0e-16 8.7e-17 49 50// Exp returns e**x, the base-e exponential of x. 51func Exp(x complex128) complex128 { 52 switch re, im := real(x), imag(x); { 53 case math.IsInf(re, 0): 54 switch { 55 case re > 0 && im == 0: 56 return x 57 case math.IsInf(im, 0) || math.IsNaN(im): 58 if re < 0 { 59 return complex(0, math.Copysign(0, im)) 60 } else { 61 return complex(math.Inf(1.0), math.NaN()) 62 } 63 } 64 case math.IsNaN(re): 65 if im == 0 { 66 return complex(math.NaN(), im) 67 } 68 } 69 r := math.Exp(real(x)) 70 s, c := math.Sincos(imag(x)) 71 return complex(r*c, r*s) 72} 73