1// Copyright 2015 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// This file implements rat-to-string conversion functions.
6
7package big
8
9import (
10	"errors"
11	"fmt"
12	"io"
13	"strconv"
14	"strings"
15)
16
17func ratTok(ch rune) bool {
18	return strings.ContainsRune("+-/0123456789.eE", ch)
19}
20
21var ratZero Rat
22var _ fmt.Scanner = &ratZero // *Rat must implement fmt.Scanner
23
24// Scan is a support routine for fmt.Scanner. It accepts the formats
25// 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent.
26func (z *Rat) Scan(s fmt.ScanState, ch rune) error {
27	tok, err := s.Token(true, ratTok)
28	if err != nil {
29		return err
30	}
31	if !strings.ContainsRune("efgEFGv", ch) {
32		return errors.New("Rat.Scan: invalid verb")
33	}
34	if _, ok := z.SetString(string(tok)); !ok {
35		return errors.New("Rat.Scan: invalid syntax")
36	}
37	return nil
38}
39
40// SetString sets z to the value of s and returns z and a boolean indicating
41// success. s can be given as a (possibly signed) fraction "a/b", or as a
42// floating-point number optionally followed by an exponent.
43// If a fraction is provided, both the dividend and the divisor may be a
44// decimal integer or independently use a prefix of “0b”, “0” or “0o”,
45// or “0x” (or their upper-case variants) to denote a binary, octal, or
46// hexadecimal integer, respectively. The divisor may not be signed.
47// If a floating-point number is provided, it may be in decimal form or
48// use any of the same prefixes as above but for “0” to denote a non-decimal
49// mantissa. A leading “0” is considered a decimal leading 0; it does not
50// indicate octal representation in this case.
51// An optional base-10 “e” or base-2 “p” (or their upper-case variants)
52// exponent may be provided as well, except for hexadecimal floats which
53// only accept an (optional) “p” exponent (because an “e” or “E” cannot
54// be distinguished from a mantissa digit). If the exponent's absolute value
55// is too large, the operation may fail.
56// The entire string, not just a prefix, must be valid for success. If the
57// operation failed, the value of z is undefined but the returned value is nil.
58func (z *Rat) SetString(s string) (*Rat, bool) {
59	if len(s) == 0 {
60		return nil, false
61	}
62	// len(s) > 0
63
64	// parse fraction a/b, if any
65	if sep := strings.Index(s, "/"); sep >= 0 {
66		if _, ok := z.a.SetString(s[:sep], 0); !ok {
67			return nil, false
68		}
69		r := strings.NewReader(s[sep+1:])
70		var err error
71		if z.b.abs, _, _, err = z.b.abs.scan(r, 0, false); err != nil {
72			return nil, false
73		}
74		// entire string must have been consumed
75		if _, err = r.ReadByte(); err != io.EOF {
76			return nil, false
77		}
78		if len(z.b.abs) == 0 {
79			return nil, false
80		}
81		return z.norm(), true
82	}
83
84	// parse floating-point number
85	r := strings.NewReader(s)
86
87	// sign
88	neg, err := scanSign(r)
89	if err != nil {
90		return nil, false
91	}
92
93	// mantissa
94	var base int
95	var fcount int // fractional digit count; valid if <= 0
96	z.a.abs, base, fcount, err = z.a.abs.scan(r, 0, true)
97	if err != nil {
98		return nil, false
99	}
100
101	// exponent
102	var exp int64
103	var ebase int
104	exp, ebase, err = scanExponent(r, true, true)
105	if err != nil {
106		return nil, false
107	}
108
109	// there should be no unread characters left
110	if _, err = r.ReadByte(); err != io.EOF {
111		return nil, false
112	}
113
114	// special-case 0 (see also issue #16176)
115	if len(z.a.abs) == 0 {
116		return z.norm(), true
117	}
118	// len(z.a.abs) > 0
119
120	// The mantissa may have a radix point (fcount <= 0) and there
121	// may be a nonzero exponent exp. The radix point amounts to a
122	// division by base**(-fcount), which equals a multiplication by
123	// base**fcount. An exponent means multiplication by ebase**exp.
124	// Multiplications are commutative, so we can apply them in any
125	// order. We only have powers of 2 and 10, and we split powers
126	// of 10 into the product of the same powers of 2 and 5. This
127	// may reduce the size of shift/multiplication factors or
128	// divisors required to create the final fraction, depending
129	// on the actual floating-point value.
130
131	// determine binary or decimal exponent contribution of radix point
132	var exp2, exp5 int64
133	if fcount < 0 {
134		// The mantissa has a radix point ddd.dddd; and
135		// -fcount is the number of digits to the right
136		// of '.'. Adjust relevant exponent accordingly.
137		d := int64(fcount)
138		switch base {
139		case 10:
140			exp5 = d
141			fallthrough // 10**e == 5**e * 2**e
142		case 2:
143			exp2 = d
144		case 8:
145			exp2 = d * 3 // octal digits are 3 bits each
146		case 16:
147			exp2 = d * 4 // hexadecimal digits are 4 bits each
148		default:
149			panic("unexpected mantissa base")
150		}
151		// fcount consumed - not needed anymore
152	}
153
154	// take actual exponent into account
155	switch ebase {
156	case 10:
157		exp5 += exp
158		fallthrough // see fallthrough above
159	case 2:
160		exp2 += exp
161	default:
162		panic("unexpected exponent base")
163	}
164	// exp consumed - not needed anymore
165
166	// apply exp5 contributions
167	// (start with exp5 so the numbers to multiply are smaller)
168	if exp5 != 0 {
169		n := exp5
170		if n < 0 {
171			n = -n
172			if n < 0 {
173				// This can occur if -n overflows. -(-1 << 63) would become
174				// -1 << 63, which is still negative.
175				return nil, false
176			}
177		}
178		if n > 1e6 {
179			return nil, false // avoid excessively large exponents
180		}
181		pow5 := z.b.abs.expNN(natFive, nat(nil).setWord(Word(n)), nil, false) // use underlying array of z.b.abs
182		if exp5 > 0 {
183			z.a.abs = z.a.abs.mul(z.a.abs, pow5)
184			z.b.abs = z.b.abs.setWord(1)
185		} else {
186			z.b.abs = pow5
187		}
188	} else {
189		z.b.abs = z.b.abs.setWord(1)
190	}
191
192	// apply exp2 contributions
193	if exp2 < -1e7 || exp2 > 1e7 {
194		return nil, false // avoid excessively large exponents
195	}
196	if exp2 > 0 {
197		z.a.abs = z.a.abs.shl(z.a.abs, uint(exp2))
198	} else if exp2 < 0 {
199		z.b.abs = z.b.abs.shl(z.b.abs, uint(-exp2))
200	}
201
202	z.a.neg = neg && len(z.a.abs) > 0 // 0 has no sign
203
204	return z.norm(), true
205}
206
207// scanExponent scans the longest possible prefix of r representing a base 10
208// (“e”, “E”) or a base 2 (“p”, “P”) exponent, if any. It returns the
209// exponent, the exponent base (10 or 2), or a read or syntax error, if any.
210//
211// If sepOk is set, an underscore character “_” may appear between successive
212// exponent digits; such underscores do not change the value of the exponent.
213// Incorrect placement of underscores is reported as an error if there are no
214// other errors. If sepOk is not set, underscores are not recognized and thus
215// terminate scanning like any other character that is not a valid digit.
216//
217//	exponent = ( "e" | "E" | "p" | "P" ) [ sign ] digits .
218//	sign     = "+" | "-" .
219//	digits   = digit { [ '_' ] digit } .
220//	digit    = "0" ... "9" .
221//
222// A base 2 exponent is only permitted if base2ok is set.
223func scanExponent(r io.ByteScanner, base2ok, sepOk bool) (exp int64, base int, err error) {
224	// one char look-ahead
225	ch, err := r.ReadByte()
226	if err != nil {
227		if err == io.EOF {
228			err = nil
229		}
230		return 0, 10, err
231	}
232
233	// exponent char
234	switch ch {
235	case 'e', 'E':
236		base = 10
237	case 'p', 'P':
238		if base2ok {
239			base = 2
240			break // ok
241		}
242		fallthrough // binary exponent not permitted
243	default:
244		r.UnreadByte() // ch does not belong to exponent anymore
245		return 0, 10, nil
246	}
247
248	// sign
249	var digits []byte
250	ch, err = r.ReadByte()
251	if err == nil && (ch == '+' || ch == '-') {
252		if ch == '-' {
253			digits = append(digits, '-')
254		}
255		ch, err = r.ReadByte()
256	}
257
258	// prev encodes the previously seen char: it is one
259	// of '_', '0' (a digit), or '.' (anything else). A
260	// valid separator '_' may only occur after a digit.
261	prev := '.'
262	invalSep := false
263
264	// exponent value
265	hasDigits := false
266	for err == nil {
267		if '0' <= ch && ch <= '9' {
268			digits = append(digits, ch)
269			prev = '0'
270			hasDigits = true
271		} else if ch == '_' && sepOk {
272			if prev != '0' {
273				invalSep = true
274			}
275			prev = '_'
276		} else {
277			r.UnreadByte() // ch does not belong to number anymore
278			break
279		}
280		ch, err = r.ReadByte()
281	}
282
283	if err == io.EOF {
284		err = nil
285	}
286	if err == nil && !hasDigits {
287		err = errNoDigits
288	}
289	if err == nil {
290		exp, err = strconv.ParseInt(string(digits), 10, 64)
291	}
292	// other errors take precedence over invalid separators
293	if err == nil && (invalSep || prev == '_') {
294		err = errInvalSep
295	}
296
297	return
298}
299
300// String returns a string representation of x in the form "a/b" (even if b == 1).
301func (x *Rat) String() string {
302	return string(x.marshal())
303}
304
305// marshal implements String returning a slice of bytes
306func (x *Rat) marshal() []byte {
307	var buf []byte
308	buf = x.a.Append(buf, 10)
309	buf = append(buf, '/')
310	if len(x.b.abs) != 0 {
311		buf = x.b.Append(buf, 10)
312	} else {
313		buf = append(buf, '1')
314	}
315	return buf
316}
317
318// RatString returns a string representation of x in the form "a/b" if b != 1,
319// and in the form "a" if b == 1.
320func (x *Rat) RatString() string {
321	if x.IsInt() {
322		return x.a.String()
323	}
324	return x.String()
325}
326
327// FloatString returns a string representation of x in decimal form with prec
328// digits of precision after the radix point. The last digit is rounded to
329// nearest, with halves rounded away from zero.
330func (x *Rat) FloatString(prec int) string {
331	var buf []byte
332
333	if x.IsInt() {
334		buf = x.a.Append(buf, 10)
335		if prec > 0 {
336			buf = append(buf, '.')
337			for i := prec; i > 0; i-- {
338				buf = append(buf, '0')
339			}
340		}
341		return string(buf)
342	}
343	// x.b.abs != 0
344
345	q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs)
346
347	p := natOne
348	if prec > 0 {
349		p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil, false)
350	}
351
352	r = r.mul(r, p)
353	r, r2 := r.div(nat(nil), r, x.b.abs)
354
355	// see if we need to round up
356	r2 = r2.add(r2, r2)
357	if x.b.abs.cmp(r2) <= 0 {
358		r = r.add(r, natOne)
359		if r.cmp(p) >= 0 {
360			q = nat(nil).add(q, natOne)
361			r = nat(nil).sub(r, p)
362		}
363	}
364
365	if x.a.neg {
366		buf = append(buf, '-')
367	}
368	buf = append(buf, q.utoa(10)...) // itoa ignores sign if q == 0
369
370	if prec > 0 {
371		buf = append(buf, '.')
372		rs := r.utoa(10)
373		for i := prec - len(rs); i > 0; i-- {
374			buf = append(buf, '0')
375		}
376		buf = append(buf, rs...)
377	}
378
379	return string(buf)
380}
381
382// Note: FloatPrec (below) is in this file rather than rat.go because
383//       its results are relevant for decimal representation/printing.
384
385// FloatPrec returns the number n of non-repeating digits immediately
386// following the decimal point of the decimal representation of x.
387// The boolean result indicates whether a decimal representation of x
388// with that many fractional digits is exact or rounded.
389//
390// Examples:
391//
392//	x      n    exact    decimal representation n fractional digits
393//	0      0    true     0
394//	1      0    true     1
395//	1/2    1    true     0.5
396//	1/3    0    false    0       (0.333... rounded)
397//	1/4    2    true     0.25
398//	1/6    1    false    0.2     (0.166... rounded)
399func (x *Rat) FloatPrec() (n int, exact bool) {
400	// Determine q and largest p2, p5 such that d = q·2^p2·5^p5.
401	// The results n, exact are:
402	//
403	//     n = max(p2, p5)
404	//     exact = q == 1
405	//
406	// For details see:
407	// https://en.wikipedia.org/wiki/Repeating_decimal#Reciprocals_of_integers_not_coprime_to_10
408	d := x.Denom().abs // d >= 1
409
410	// Determine p2 by counting factors of 2.
411	// p2 corresponds to the trailing zero bits in d.
412	// Do this first to reduce q as much as possible.
413	var q nat
414	p2 := d.trailingZeroBits()
415	q = q.shr(d, p2)
416
417	// Determine p5 by counting factors of 5.
418	// Build a table starting with an initial power of 5,
419	// and use repeated squaring until the factor doesn't
420	// divide q anymore. Then use the table to determine
421	// the power of 5 in q.
422	const fp = 13        // f == 5^fp
423	var tab []nat        // tab[i] == (5^fp)^(2^i) == 5^(fp·2^i)
424	f := nat{1220703125} // == 5^fp (must fit into a uint32 Word)
425	var t, r nat         // temporaries
426	for {
427		if _, r = t.div(r, q, f); len(r) != 0 {
428			break // f doesn't divide q evenly
429		}
430		tab = append(tab, f)
431		f = nat(nil).sqr(f) // nat(nil) to ensure a new f for each table entry
432	}
433
434	// Factor q using the table entries, if any.
435	// We start with the largest factor f = tab[len(tab)-1]
436	// that evenly divides q. It does so at most once because
437	// otherwise f·f would also divide q. That can't be true
438	// because f·f is the next higher table entry, contradicting
439	// how f was chosen in the first place.
440	// The same reasoning applies to the subsequent factors.
441	var p5 uint
442	for i := len(tab) - 1; i >= 0; i-- {
443		if t, r = t.div(r, q, tab[i]); len(r) == 0 {
444			p5 += fp * (1 << i) // tab[i] == 5^(fp·2^i)
445			q = q.set(t)
446		}
447	}
448
449	// If fp != 1, we may still have multiples of 5 left.
450	for {
451		if t, r = t.div(r, q, natFive); len(r) != 0 {
452			break
453		}
454		p5++
455		q = q.set(t)
456	}
457
458	return int(max(p2, p5)), q.cmp(natOne) == 0
459}
460