1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// This file implements signed multi-precision integers.
6
7package big
8
9import (
10	"fmt"
11	"io"
12	"math/rand"
13	"strings"
14)
15
16// An Int represents a signed multi-precision integer.
17// The zero value for an Int represents the value 0.
18//
19// Operations always take pointer arguments (*Int) rather
20// than Int values, and each unique Int value requires
21// its own unique *Int pointer. To "copy" an Int value,
22// an existing (or newly allocated) Int must be set to
23// a new value using the [Int.Set] method; shallow copies
24// of Ints are not supported and may lead to errors.
25//
26// Note that methods may leak the Int's value through timing side-channels.
27// Because of this and because of the scope and complexity of the
28// implementation, Int is not well-suited to implement cryptographic operations.
29// The standard library avoids exposing non-trivial Int methods to
30// attacker-controlled inputs and the determination of whether a bug in math/big
31// is considered a security vulnerability might depend on the impact on the
32// standard library.
33type Int struct {
34	neg bool // sign
35	abs nat  // absolute value of the integer
36}
37
38var intOne = &Int{false, natOne}
39
40// Sign returns:
41//   - -1 if x < 0;
42//   - 0 if x == 0;
43//   - +1 if x > 0.
44func (x *Int) Sign() int {
45	// This function is used in cryptographic operations. It must not leak
46	// anything but the Int's sign and bit size through side-channels. Any
47	// changes must be reviewed by a security expert.
48	if len(x.abs) == 0 {
49		return 0
50	}
51	if x.neg {
52		return -1
53	}
54	return 1
55}
56
57// SetInt64 sets z to x and returns z.
58func (z *Int) SetInt64(x int64) *Int {
59	neg := false
60	if x < 0 {
61		neg = true
62		x = -x
63	}
64	z.abs = z.abs.setUint64(uint64(x))
65	z.neg = neg
66	return z
67}
68
69// SetUint64 sets z to x and returns z.
70func (z *Int) SetUint64(x uint64) *Int {
71	z.abs = z.abs.setUint64(x)
72	z.neg = false
73	return z
74}
75
76// NewInt allocates and returns a new [Int] set to x.
77func NewInt(x int64) *Int {
78	// This code is arranged to be inlineable and produce
79	// zero allocations when inlined. See issue 29951.
80	u := uint64(x)
81	if x < 0 {
82		u = -u
83	}
84	var abs []Word
85	if x == 0 {
86	} else if _W == 32 && u>>32 != 0 {
87		abs = []Word{Word(u), Word(u >> 32)}
88	} else {
89		abs = []Word{Word(u)}
90	}
91	return &Int{neg: x < 0, abs: abs}
92}
93
94// Set sets z to x and returns z.
95func (z *Int) Set(x *Int) *Int {
96	if z != x {
97		z.abs = z.abs.set(x.abs)
98		z.neg = x.neg
99	}
100	return z
101}
102
103// Bits provides raw (unchecked but fast) access to x by returning its
104// absolute value as a little-endian [Word] slice. The result and x share
105// the same underlying array.
106// Bits is intended to support implementation of missing low-level [Int]
107// functionality outside this package; it should be avoided otherwise.
108func (x *Int) Bits() []Word {
109	// This function is used in cryptographic operations. It must not leak
110	// anything but the Int's sign and bit size through side-channels. Any
111	// changes must be reviewed by a security expert.
112	return x.abs
113}
114
115// SetBits provides raw (unchecked but fast) access to z by setting its
116// value to abs, interpreted as a little-endian [Word] slice, and returning
117// z. The result and abs share the same underlying array.
118// SetBits is intended to support implementation of missing low-level [Int]
119// functionality outside this package; it should be avoided otherwise.
120func (z *Int) SetBits(abs []Word) *Int {
121	z.abs = nat(abs).norm()
122	z.neg = false
123	return z
124}
125
126// Abs sets z to |x| (the absolute value of x) and returns z.
127func (z *Int) Abs(x *Int) *Int {
128	z.Set(x)
129	z.neg = false
130	return z
131}
132
133// Neg sets z to -x and returns z.
134func (z *Int) Neg(x *Int) *Int {
135	z.Set(x)
136	z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
137	return z
138}
139
140// Add sets z to the sum x+y and returns z.
141func (z *Int) Add(x, y *Int) *Int {
142	neg := x.neg
143	if x.neg == y.neg {
144		// x + y == x + y
145		// (-x) + (-y) == -(x + y)
146		z.abs = z.abs.add(x.abs, y.abs)
147	} else {
148		// x + (-y) == x - y == -(y - x)
149		// (-x) + y == y - x == -(x - y)
150		if x.abs.cmp(y.abs) >= 0 {
151			z.abs = z.abs.sub(x.abs, y.abs)
152		} else {
153			neg = !neg
154			z.abs = z.abs.sub(y.abs, x.abs)
155		}
156	}
157	z.neg = len(z.abs) > 0 && neg // 0 has no sign
158	return z
159}
160
161// Sub sets z to the difference x-y and returns z.
162func (z *Int) Sub(x, y *Int) *Int {
163	neg := x.neg
164	if x.neg != y.neg {
165		// x - (-y) == x + y
166		// (-x) - y == -(x + y)
167		z.abs = z.abs.add(x.abs, y.abs)
168	} else {
169		// x - y == x - y == -(y - x)
170		// (-x) - (-y) == y - x == -(x - y)
171		if x.abs.cmp(y.abs) >= 0 {
172			z.abs = z.abs.sub(x.abs, y.abs)
173		} else {
174			neg = !neg
175			z.abs = z.abs.sub(y.abs, x.abs)
176		}
177	}
178	z.neg = len(z.abs) > 0 && neg // 0 has no sign
179	return z
180}
181
182// Mul sets z to the product x*y and returns z.
183func (z *Int) Mul(x, y *Int) *Int {
184	// x * y == x * y
185	// x * (-y) == -(x * y)
186	// (-x) * y == -(x * y)
187	// (-x) * (-y) == x * y
188	if x == y {
189		z.abs = z.abs.sqr(x.abs)
190		z.neg = false
191		return z
192	}
193	z.abs = z.abs.mul(x.abs, y.abs)
194	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
195	return z
196}
197
198// MulRange sets z to the product of all integers
199// in the range [a, b] inclusively and returns z.
200// If a > b (empty range), the result is 1.
201func (z *Int) MulRange(a, b int64) *Int {
202	switch {
203	case a > b:
204		return z.SetInt64(1) // empty range
205	case a <= 0 && b >= 0:
206		return z.SetInt64(0) // range includes 0
207	}
208	// a <= b && (b < 0 || a > 0)
209
210	neg := false
211	if a < 0 {
212		neg = (b-a)&1 == 0
213		a, b = -b, -a
214	}
215
216	z.abs = z.abs.mulRange(uint64(a), uint64(b))
217	z.neg = neg
218	return z
219}
220
221// Binomial sets z to the binomial coefficient C(n, k) and returns z.
222func (z *Int) Binomial(n, k int64) *Int {
223	if k > n {
224		return z.SetInt64(0)
225	}
226	// reduce the number of multiplications by reducing k
227	if k > n-k {
228		k = n - k // C(n, k) == C(n, n-k)
229	}
230	// C(n, k) == n * (n-1) * ... * (n-k+1) / k * (k-1) * ... * 1
231	//         == n * (n-1) * ... * (n-k+1) / 1 * (1+1) * ... * k
232	//
233	// Using the multiplicative formula produces smaller values
234	// at each step, requiring fewer allocations and computations:
235	//
236	// z = 1
237	// for i := 0; i < k; i = i+1 {
238	//     z *= n-i
239	//     z /= i+1
240	// }
241	//
242	// finally to avoid computing i+1 twice per loop:
243	//
244	// z = 1
245	// i := 0
246	// for i < k {
247	//     z *= n-i
248	//     i++
249	//     z /= i
250	// }
251	var N, K, i, t Int
252	N.SetInt64(n)
253	K.SetInt64(k)
254	z.Set(intOne)
255	for i.Cmp(&K) < 0 {
256		z.Mul(z, t.Sub(&N, &i))
257		i.Add(&i, intOne)
258		z.Quo(z, &i)
259	}
260	return z
261}
262
263// Quo sets z to the quotient x/y for y != 0 and returns z.
264// If y == 0, a division-by-zero run-time panic occurs.
265// Quo implements truncated division (like Go); see [Int.QuoRem] for more details.
266func (z *Int) Quo(x, y *Int) *Int {
267	z.abs, _ = z.abs.div(nil, x.abs, y.abs)
268	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
269	return z
270}
271
272// Rem sets z to the remainder x%y for y != 0 and returns z.
273// If y == 0, a division-by-zero run-time panic occurs.
274// Rem implements truncated modulus (like Go); see [Int.QuoRem] for more details.
275func (z *Int) Rem(x, y *Int) *Int {
276	_, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
277	z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
278	return z
279}
280
281// QuoRem sets z to the quotient x/y and r to the remainder x%y
282// and returns the pair (z, r) for y != 0.
283// If y == 0, a division-by-zero run-time panic occurs.
284//
285// QuoRem implements T-division and modulus (like Go):
286//
287//	q = x/y      with the result truncated to zero
288//	r = x - y*q
289//
290// (See Daan Leijen, “Division and Modulus for Computer Scientists”.)
291// See [DivMod] for Euclidean division and modulus (unlike Go).
292func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
293	z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
294	z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
295	return z, r
296}
297
298// Div sets z to the quotient x/y for y != 0 and returns z.
299// If y == 0, a division-by-zero run-time panic occurs.
300// Div implements Euclidean division (unlike Go); see [Int.DivMod] for more details.
301func (z *Int) Div(x, y *Int) *Int {
302	y_neg := y.neg // z may be an alias for y
303	var r Int
304	z.QuoRem(x, y, &r)
305	if r.neg {
306		if y_neg {
307			z.Add(z, intOne)
308		} else {
309			z.Sub(z, intOne)
310		}
311	}
312	return z
313}
314
315// Mod sets z to the modulus x%y for y != 0 and returns z.
316// If y == 0, a division-by-zero run-time panic occurs.
317// Mod implements Euclidean modulus (unlike Go); see [Int.DivMod] for more details.
318func (z *Int) Mod(x, y *Int) *Int {
319	y0 := y // save y
320	if z == y || alias(z.abs, y.abs) {
321		y0 = new(Int).Set(y)
322	}
323	var q Int
324	q.QuoRem(x, y, z)
325	if z.neg {
326		if y0.neg {
327			z.Sub(z, y0)
328		} else {
329			z.Add(z, y0)
330		}
331	}
332	return z
333}
334
335// DivMod sets z to the quotient x div y and m to the modulus x mod y
336// and returns the pair (z, m) for y != 0.
337// If y == 0, a division-by-zero run-time panic occurs.
338//
339// DivMod implements Euclidean division and modulus (unlike Go):
340//
341//	q = x div y  such that
342//	m = x - y*q  with 0 <= m < |y|
343//
344// (See Raymond T. Boute, “The Euclidean definition of the functions
345// div and mod”. ACM Transactions on Programming Languages and
346// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
347// ACM press.)
348// See [Int.QuoRem] for T-division and modulus (like Go).
349func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
350	y0 := y // save y
351	if z == y || alias(z.abs, y.abs) {
352		y0 = new(Int).Set(y)
353	}
354	z.QuoRem(x, y, m)
355	if m.neg {
356		if y0.neg {
357			z.Add(z, intOne)
358			m.Sub(m, y0)
359		} else {
360			z.Sub(z, intOne)
361			m.Add(m, y0)
362		}
363	}
364	return z, m
365}
366
367// Cmp compares x and y and returns:
368//   - -1 if x < y;
369//   - 0 if x == y;
370//   - +1 if x > y.
371func (x *Int) Cmp(y *Int) (r int) {
372	// x cmp y == x cmp y
373	// x cmp (-y) == x
374	// (-x) cmp y == y
375	// (-x) cmp (-y) == -(x cmp y)
376	switch {
377	case x == y:
378		// nothing to do
379	case x.neg == y.neg:
380		r = x.abs.cmp(y.abs)
381		if x.neg {
382			r = -r
383		}
384	case x.neg:
385		r = -1
386	default:
387		r = 1
388	}
389	return
390}
391
392// CmpAbs compares the absolute values of x and y and returns:
393//   - -1 if |x| < |y|;
394//   - 0 if |x| == |y|;
395//   - +1 if |x| > |y|.
396func (x *Int) CmpAbs(y *Int) int {
397	return x.abs.cmp(y.abs)
398}
399
400// low32 returns the least significant 32 bits of x.
401func low32(x nat) uint32 {
402	if len(x) == 0 {
403		return 0
404	}
405	return uint32(x[0])
406}
407
408// low64 returns the least significant 64 bits of x.
409func low64(x nat) uint64 {
410	if len(x) == 0 {
411		return 0
412	}
413	v := uint64(x[0])
414	if _W == 32 && len(x) > 1 {
415		return uint64(x[1])<<32 | v
416	}
417	return v
418}
419
420// Int64 returns the int64 representation of x.
421// If x cannot be represented in an int64, the result is undefined.
422func (x *Int) Int64() int64 {
423	v := int64(low64(x.abs))
424	if x.neg {
425		v = -v
426	}
427	return v
428}
429
430// Uint64 returns the uint64 representation of x.
431// If x cannot be represented in a uint64, the result is undefined.
432func (x *Int) Uint64() uint64 {
433	return low64(x.abs)
434}
435
436// IsInt64 reports whether x can be represented as an int64.
437func (x *Int) IsInt64() bool {
438	if len(x.abs) <= 64/_W {
439		w := int64(low64(x.abs))
440		return w >= 0 || x.neg && w == -w
441	}
442	return false
443}
444
445// IsUint64 reports whether x can be represented as a uint64.
446func (x *Int) IsUint64() bool {
447	return !x.neg && len(x.abs) <= 64/_W
448}
449
450// Float64 returns the float64 value nearest x,
451// and an indication of any rounding that occurred.
452func (x *Int) Float64() (float64, Accuracy) {
453	n := x.abs.bitLen() // NB: still uses slow crypto impl!
454	if n == 0 {
455		return 0.0, Exact
456	}
457
458	// Fast path: no more than 53 significant bits.
459	if n <= 53 || n < 64 && n-int(x.abs.trailingZeroBits()) <= 53 {
460		f := float64(low64(x.abs))
461		if x.neg {
462			f = -f
463		}
464		return f, Exact
465	}
466
467	return new(Float).SetInt(x).Float64()
468}
469
470// SetString sets z to the value of s, interpreted in the given base,
471// and returns z and a boolean indicating success. The entire string
472// (not just a prefix) must be valid for success. If SetString fails,
473// the value of z is undefined but the returned value is nil.
474//
475// The base argument must be 0 or a value between 2 and [MaxBase].
476// For base 0, the number prefix determines the actual base: A prefix of
477// “0b” or “0B” selects base 2, “0”, “0o” or “0O” selects base 8,
478// and “0x” or “0X” selects base 16. Otherwise, the selected base is 10
479// and no prefix is accepted.
480//
481// For bases <= 36, lower and upper case letters are considered the same:
482// The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35.
483// For bases > 36, the upper case letters 'A' to 'Z' represent the digit
484// values 36 to 61.
485//
486// For base 0, an underscore character “_” may appear between a base
487// prefix and an adjacent digit, and between successive digits; such
488// underscores do not change the value of the number.
489// Incorrect placement of underscores is reported as an error if there
490// are no other errors. If base != 0, underscores are not recognized
491// and act like any other character that is not a valid digit.
492func (z *Int) SetString(s string, base int) (*Int, bool) {
493	return z.setFromScanner(strings.NewReader(s), base)
494}
495
496// setFromScanner implements SetString given an io.ByteScanner.
497// For documentation see comments of SetString.
498func (z *Int) setFromScanner(r io.ByteScanner, base int) (*Int, bool) {
499	if _, _, err := z.scan(r, base); err != nil {
500		return nil, false
501	}
502	// entire content must have been consumed
503	if _, err := r.ReadByte(); err != io.EOF {
504		return nil, false
505	}
506	return z, true // err == io.EOF => scan consumed all content of r
507}
508
509// SetBytes interprets buf as the bytes of a big-endian unsigned
510// integer, sets z to that value, and returns z.
511func (z *Int) SetBytes(buf []byte) *Int {
512	z.abs = z.abs.setBytes(buf)
513	z.neg = false
514	return z
515}
516
517// Bytes returns the absolute value of x as a big-endian byte slice.
518//
519// To use a fixed length slice, or a preallocated one, use [Int.FillBytes].
520func (x *Int) Bytes() []byte {
521	// This function is used in cryptographic operations. It must not leak
522	// anything but the Int's sign and bit size through side-channels. Any
523	// changes must be reviewed by a security expert.
524	buf := make([]byte, len(x.abs)*_S)
525	return buf[x.abs.bytes(buf):]
526}
527
528// FillBytes sets buf to the absolute value of x, storing it as a zero-extended
529// big-endian byte slice, and returns buf.
530//
531// If the absolute value of x doesn't fit in buf, FillBytes will panic.
532func (x *Int) FillBytes(buf []byte) []byte {
533	// Clear whole buffer.
534	clear(buf)
535	x.abs.bytes(buf)
536	return buf
537}
538
539// BitLen returns the length of the absolute value of x in bits.
540// The bit length of 0 is 0.
541func (x *Int) BitLen() int {
542	// This function is used in cryptographic operations. It must not leak
543	// anything but the Int's sign and bit size through side-channels. Any
544	// changes must be reviewed by a security expert.
545	return x.abs.bitLen()
546}
547
548// TrailingZeroBits returns the number of consecutive least significant zero
549// bits of |x|.
550func (x *Int) TrailingZeroBits() uint {
551	return x.abs.trailingZeroBits()
552}
553
554// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
555// If m == nil or m == 0, z = x**y unless y <= 0 then z = 1. If m != 0, y < 0,
556// and x and m are not relatively prime, z is unchanged and nil is returned.
557//
558// Modular exponentiation of inputs of a particular size is not a
559// cryptographically constant-time operation.
560func (z *Int) Exp(x, y, m *Int) *Int {
561	return z.exp(x, y, m, false)
562}
563
564func (z *Int) expSlow(x, y, m *Int) *Int {
565	return z.exp(x, y, m, true)
566}
567
568func (z *Int) exp(x, y, m *Int, slow bool) *Int {
569	// See Knuth, volume 2, section 4.6.3.
570	xWords := x.abs
571	if y.neg {
572		if m == nil || len(m.abs) == 0 {
573			return z.SetInt64(1)
574		}
575		// for y < 0: x**y mod m == (x**(-1))**|y| mod m
576		inverse := new(Int).ModInverse(x, m)
577		if inverse == nil {
578			return nil
579		}
580		xWords = inverse.abs
581	}
582	yWords := y.abs
583
584	var mWords nat
585	if m != nil {
586		if z == m || alias(z.abs, m.abs) {
587			m = new(Int).Set(m)
588		}
589		mWords = m.abs // m.abs may be nil for m == 0
590	}
591
592	z.abs = z.abs.expNN(xWords, yWords, mWords, slow)
593	z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign
594	if z.neg && len(mWords) > 0 {
595		// make modulus result positive
596		z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m|
597		z.neg = false
598	}
599
600	return z
601}
602
603// GCD sets z to the greatest common divisor of a and b and returns z.
604// If x or y are not nil, GCD sets their value such that z = a*x + b*y.
605//
606// a and b may be positive, zero or negative. (Before Go 1.14 both had
607// to be > 0.) Regardless of the signs of a and b, z is always >= 0.
608//
609// If a == b == 0, GCD sets z = x = y = 0.
610//
611// If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1.
612//
613// If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0.
614func (z *Int) GCD(x, y, a, b *Int) *Int {
615	if len(a.abs) == 0 || len(b.abs) == 0 {
616		lenA, lenB, negA, negB := len(a.abs), len(b.abs), a.neg, b.neg
617		if lenA == 0 {
618			z.Set(b)
619		} else {
620			z.Set(a)
621		}
622		z.neg = false
623		if x != nil {
624			if lenA == 0 {
625				x.SetUint64(0)
626			} else {
627				x.SetUint64(1)
628				x.neg = negA
629			}
630		}
631		if y != nil {
632			if lenB == 0 {
633				y.SetUint64(0)
634			} else {
635				y.SetUint64(1)
636				y.neg = negB
637			}
638		}
639		return z
640	}
641
642	return z.lehmerGCD(x, y, a, b)
643}
644
645// lehmerSimulate attempts to simulate several Euclidean update steps
646// using the leading digits of A and B.  It returns u0, u1, v0, v1
647// such that A and B can be updated as:
648//
649//	A = u0*A + v0*B
650//	B = u1*A + v1*B
651//
652// Requirements: A >= B and len(B.abs) >= 2
653// Since we are calculating with full words to avoid overflow,
654// we use 'even' to track the sign of the cosequences.
655// For even iterations: u0, v1 >= 0 && u1, v0 <= 0
656// For odd  iterations: u0, v1 <= 0 && u1, v0 >= 0
657func lehmerSimulate(A, B *Int) (u0, u1, v0, v1 Word, even bool) {
658	// initialize the digits
659	var a1, a2, u2, v2 Word
660
661	m := len(B.abs) // m >= 2
662	n := len(A.abs) // n >= m >= 2
663
664	// extract the top Word of bits from A and B
665	h := nlz(A.abs[n-1])
666	a1 = A.abs[n-1]<<h | A.abs[n-2]>>(_W-h)
667	// B may have implicit zero words in the high bits if the lengths differ
668	switch {
669	case n == m:
670		a2 = B.abs[n-1]<<h | B.abs[n-2]>>(_W-h)
671	case n == m+1:
672		a2 = B.abs[n-2] >> (_W - h)
673	default:
674		a2 = 0
675	}
676
677	// Since we are calculating with full words to avoid overflow,
678	// we use 'even' to track the sign of the cosequences.
679	// For even iterations: u0, v1 >= 0 && u1, v0 <= 0
680	// For odd  iterations: u0, v1 <= 0 && u1, v0 >= 0
681	// The first iteration starts with k=1 (odd).
682	even = false
683	// variables to track the cosequences
684	u0, u1, u2 = 0, 1, 0
685	v0, v1, v2 = 0, 0, 1
686
687	// Calculate the quotient and cosequences using Collins' stopping condition.
688	// Note that overflow of a Word is not possible when computing the remainder
689	// sequence and cosequences since the cosequence size is bounded by the input size.
690	// See section 4.2 of Jebelean for details.
691	for a2 >= v2 && a1-a2 >= v1+v2 {
692		q, r := a1/a2, a1%a2
693		a1, a2 = a2, r
694		u0, u1, u2 = u1, u2, u1+q*u2
695		v0, v1, v2 = v1, v2, v1+q*v2
696		even = !even
697	}
698	return
699}
700
701// lehmerUpdate updates the inputs A and B such that:
702//
703//	A = u0*A + v0*B
704//	B = u1*A + v1*B
705//
706// where the signs of u0, u1, v0, v1 are given by even
707// For even == true: u0, v1 >= 0 && u1, v0 <= 0
708// For even == false: u0, v1 <= 0 && u1, v0 >= 0
709// q, r, s, t are temporary variables to avoid allocations in the multiplication.
710func lehmerUpdate(A, B, q, r, s, t *Int, u0, u1, v0, v1 Word, even bool) {
711
712	t.abs = t.abs.setWord(u0)
713	s.abs = s.abs.setWord(v0)
714	t.neg = !even
715	s.neg = even
716
717	t.Mul(A, t)
718	s.Mul(B, s)
719
720	r.abs = r.abs.setWord(u1)
721	q.abs = q.abs.setWord(v1)
722	r.neg = even
723	q.neg = !even
724
725	r.Mul(A, r)
726	q.Mul(B, q)
727
728	A.Add(t, s)
729	B.Add(r, q)
730}
731
732// euclidUpdate performs a single step of the Euclidean GCD algorithm
733// if extended is true, it also updates the cosequence Ua, Ub.
734func euclidUpdate(A, B, Ua, Ub, q, r, s, t *Int, extended bool) {
735	q, r = q.QuoRem(A, B, r)
736
737	*A, *B, *r = *B, *r, *A
738
739	if extended {
740		// Ua, Ub = Ub, Ua - q*Ub
741		t.Set(Ub)
742		s.Mul(Ub, q)
743		Ub.Sub(Ua, s)
744		Ua.Set(t)
745	}
746}
747
748// lehmerGCD sets z to the greatest common divisor of a and b,
749// which both must be != 0, and returns z.
750// If x or y are not nil, their values are set such that z = a*x + b*y.
751// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm L.
752// This implementation uses the improved condition by Collins requiring only one
753// quotient and avoiding the possibility of single Word overflow.
754// See Jebelean, "Improving the multiprecision Euclidean algorithm",
755// Design and Implementation of Symbolic Computation Systems, pp 45-58.
756// The cosequences are updated according to Algorithm 10.45 from
757// Cohen et al. "Handbook of Elliptic and Hyperelliptic Curve Cryptography" pp 192.
758func (z *Int) lehmerGCD(x, y, a, b *Int) *Int {
759	var A, B, Ua, Ub *Int
760
761	A = new(Int).Abs(a)
762	B = new(Int).Abs(b)
763
764	extended := x != nil || y != nil
765
766	if extended {
767		// Ua (Ub) tracks how many times input a has been accumulated into A (B).
768		Ua = new(Int).SetInt64(1)
769		Ub = new(Int)
770	}
771
772	// temp variables for multiprecision update
773	q := new(Int)
774	r := new(Int)
775	s := new(Int)
776	t := new(Int)
777
778	// ensure A >= B
779	if A.abs.cmp(B.abs) < 0 {
780		A, B = B, A
781		Ub, Ua = Ua, Ub
782	}
783
784	// loop invariant A >= B
785	for len(B.abs) > 1 {
786		// Attempt to calculate in single-precision using leading words of A and B.
787		u0, u1, v0, v1, even := lehmerSimulate(A, B)
788
789		// multiprecision Step
790		if v0 != 0 {
791			// Simulate the effect of the single-precision steps using the cosequences.
792			// A = u0*A + v0*B
793			// B = u1*A + v1*B
794			lehmerUpdate(A, B, q, r, s, t, u0, u1, v0, v1, even)
795
796			if extended {
797				// Ua = u0*Ua + v0*Ub
798				// Ub = u1*Ua + v1*Ub
799				lehmerUpdate(Ua, Ub, q, r, s, t, u0, u1, v0, v1, even)
800			}
801
802		} else {
803			// Single-digit calculations failed to simulate any quotients.
804			// Do a standard Euclidean step.
805			euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended)
806		}
807	}
808
809	if len(B.abs) > 0 {
810		// extended Euclidean algorithm base case if B is a single Word
811		if len(A.abs) > 1 {
812			// A is longer than a single Word, so one update is needed.
813			euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended)
814		}
815		if len(B.abs) > 0 {
816			// A and B are both a single Word.
817			aWord, bWord := A.abs[0], B.abs[0]
818			if extended {
819				var ua, ub, va, vb Word
820				ua, ub = 1, 0
821				va, vb = 0, 1
822				even := true
823				for bWord != 0 {
824					q, r := aWord/bWord, aWord%bWord
825					aWord, bWord = bWord, r
826					ua, ub = ub, ua+q*ub
827					va, vb = vb, va+q*vb
828					even = !even
829				}
830
831				t.abs = t.abs.setWord(ua)
832				s.abs = s.abs.setWord(va)
833				t.neg = !even
834				s.neg = even
835
836				t.Mul(Ua, t)
837				s.Mul(Ub, s)
838
839				Ua.Add(t, s)
840			} else {
841				for bWord != 0 {
842					aWord, bWord = bWord, aWord%bWord
843				}
844			}
845			A.abs[0] = aWord
846		}
847	}
848	negA := a.neg
849	if y != nil {
850		// avoid aliasing b needed in the division below
851		if y == b {
852			B.Set(b)
853		} else {
854			B = b
855		}
856		// y = (z - a*x)/b
857		y.Mul(a, Ua) // y can safely alias a
858		if negA {
859			y.neg = !y.neg
860		}
861		y.Sub(A, y)
862		y.Div(y, B)
863	}
864
865	if x != nil {
866		*x = *Ua
867		if negA {
868			x.neg = !x.neg
869		}
870	}
871
872	*z = *A
873
874	return z
875}
876
877// Rand sets z to a pseudo-random number in [0, n) and returns z.
878//
879// As this uses the [math/rand] package, it must not be used for
880// security-sensitive work. Use [crypto/rand.Int] instead.
881func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
882	// z.neg is not modified before the if check, because z and n might alias.
883	if n.neg || len(n.abs) == 0 {
884		z.neg = false
885		z.abs = nil
886		return z
887	}
888	z.neg = false
889	z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
890	return z
891}
892
893// ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ
894// and returns z. If g and n are not relatively prime, g has no multiplicative
895// inverse in the ring ℤ/nℤ.  In this case, z is unchanged and the return value
896// is nil. If n == 0, a division-by-zero run-time panic occurs.
897func (z *Int) ModInverse(g, n *Int) *Int {
898	// GCD expects parameters a and b to be > 0.
899	if n.neg {
900		var n2 Int
901		n = n2.Neg(n)
902	}
903	if g.neg {
904		var g2 Int
905		g = g2.Mod(g, n)
906	}
907	var d, x Int
908	d.GCD(&x, nil, g, n)
909
910	// if and only if d==1, g and n are relatively prime
911	if d.Cmp(intOne) != 0 {
912		return nil
913	}
914
915	// x and y are such that g*x + n*y = 1, therefore x is the inverse element,
916	// but it may be negative, so convert to the range 0 <= z < |n|
917	if x.neg {
918		z.Add(&x, n)
919	} else {
920		z.Set(&x)
921	}
922	return z
923}
924
925func (z nat) modInverse(g, n nat) nat {
926	// TODO(rsc): ModInverse should be implemented in terms of this function.
927	return (&Int{abs: z}).ModInverse(&Int{abs: g}, &Int{abs: n}).abs
928}
929
930// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
931// The y argument must be an odd integer.
932func Jacobi(x, y *Int) int {
933	if len(y.abs) == 0 || y.abs[0]&1 == 0 {
934		panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y.String()))
935	}
936
937	// We use the formulation described in chapter 2, section 2.4,
938	// "The Yacas Book of Algorithms":
939	// http://yacas.sourceforge.net/Algo.book.pdf
940
941	var a, b, c Int
942	a.Set(x)
943	b.Set(y)
944	j := 1
945
946	if b.neg {
947		if a.neg {
948			j = -1
949		}
950		b.neg = false
951	}
952
953	for {
954		if b.Cmp(intOne) == 0 {
955			return j
956		}
957		if len(a.abs) == 0 {
958			return 0
959		}
960		a.Mod(&a, &b)
961		if len(a.abs) == 0 {
962			return 0
963		}
964		// a > 0
965
966		// handle factors of 2 in 'a'
967		s := a.abs.trailingZeroBits()
968		if s&1 != 0 {
969			bmod8 := b.abs[0] & 7
970			if bmod8 == 3 || bmod8 == 5 {
971				j = -j
972			}
973		}
974		c.Rsh(&a, s) // a = 2^s*c
975
976		// swap numerator and denominator
977		if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 {
978			j = -j
979		}
980		a.Set(&b)
981		b.Set(&c)
982	}
983}
984
985// modSqrt3Mod4 uses the identity
986//
987//	   (a^((p+1)/4))^2  mod p
988//	== u^(p+1)          mod p
989//	== u^2              mod p
990//
991// to calculate the square root of any quadratic residue mod p quickly for 3
992// mod 4 primes.
993func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int {
994	e := new(Int).Add(p, intOne) // e = p + 1
995	e.Rsh(e, 2)                  // e = (p + 1) / 4
996	z.Exp(x, e, p)               // z = x^e mod p
997	return z
998}
999
1000// modSqrt5Mod8Prime uses Atkin's observation that 2 is not a square mod p
1001//
1002//	alpha ==  (2*a)^((p-5)/8)    mod p
1003//	beta  ==  2*a*alpha^2        mod p  is a square root of -1
1004//	b     ==  a*alpha*(beta-1)   mod p  is a square root of a
1005//
1006// to calculate the square root of any quadratic residue mod p quickly for 5
1007// mod 8 primes.
1008func (z *Int) modSqrt5Mod8Prime(x, p *Int) *Int {
1009	// p == 5 mod 8 implies p = e*8 + 5
1010	// e is the quotient and 5 the remainder on division by 8
1011	e := new(Int).Rsh(p, 3)  // e = (p - 5) / 8
1012	tx := new(Int).Lsh(x, 1) // tx = 2*x
1013	alpha := new(Int).Exp(tx, e, p)
1014	beta := new(Int).Mul(alpha, alpha)
1015	beta.Mod(beta, p)
1016	beta.Mul(beta, tx)
1017	beta.Mod(beta, p)
1018	beta.Sub(beta, intOne)
1019	beta.Mul(beta, x)
1020	beta.Mod(beta, p)
1021	beta.Mul(beta, alpha)
1022	z.Mod(beta, p)
1023	return z
1024}
1025
1026// modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square
1027// root of a quadratic residue modulo any prime.
1028func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int {
1029	// Break p-1 into s*2^e such that s is odd.
1030	var s Int
1031	s.Sub(p, intOne)
1032	e := s.abs.trailingZeroBits()
1033	s.Rsh(&s, e)
1034
1035	// find some non-square n
1036	var n Int
1037	n.SetInt64(2)
1038	for Jacobi(&n, p) != -1 {
1039		n.Add(&n, intOne)
1040	}
1041
1042	// Core of the Tonelli-Shanks algorithm. Follows the description in
1043	// section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra
1044	// Brown:
1045	// https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
1046	var y, b, g, t Int
1047	y.Add(&s, intOne)
1048	y.Rsh(&y, 1)
1049	y.Exp(x, &y, p)  // y = x^((s+1)/2)
1050	b.Exp(x, &s, p)  // b = x^s
1051	g.Exp(&n, &s, p) // g = n^s
1052	r := e
1053	for {
1054		// find the least m such that ord_p(b) = 2^m
1055		var m uint
1056		t.Set(&b)
1057		for t.Cmp(intOne) != 0 {
1058			t.Mul(&t, &t).Mod(&t, p)
1059			m++
1060		}
1061
1062		if m == 0 {
1063			return z.Set(&y)
1064		}
1065
1066		t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p)
1067		// t = g^(2^(r-m-1)) mod p
1068		g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p
1069		y.Mul(&y, &t).Mod(&y, p)
1070		b.Mul(&b, &g).Mod(&b, p)
1071		r = m
1072	}
1073}
1074
1075// ModSqrt sets z to a square root of x mod p if such a square root exists, and
1076// returns z. The modulus p must be an odd prime. If x is not a square mod p,
1077// ModSqrt leaves z unchanged and returns nil. This function panics if p is
1078// not an odd integer, its behavior is undefined if p is odd but not prime.
1079func (z *Int) ModSqrt(x, p *Int) *Int {
1080	switch Jacobi(x, p) {
1081	case -1:
1082		return nil // x is not a square mod p
1083	case 0:
1084		return z.SetInt64(0) // sqrt(0) mod p = 0
1085	case 1:
1086		break
1087	}
1088	if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p
1089		x = new(Int).Mod(x, p)
1090	}
1091
1092	switch {
1093	case p.abs[0]%4 == 3:
1094		// Check whether p is 3 mod 4, and if so, use the faster algorithm.
1095		return z.modSqrt3Mod4Prime(x, p)
1096	case p.abs[0]%8 == 5:
1097		// Check whether p is 5 mod 8, use Atkin's algorithm.
1098		return z.modSqrt5Mod8Prime(x, p)
1099	default:
1100		// Otherwise, use Tonelli-Shanks.
1101		return z.modSqrtTonelliShanks(x, p)
1102	}
1103}
1104
1105// Lsh sets z = x << n and returns z.
1106func (z *Int) Lsh(x *Int, n uint) *Int {
1107	z.abs = z.abs.shl(x.abs, n)
1108	z.neg = x.neg
1109	return z
1110}
1111
1112// Rsh sets z = x >> n and returns z.
1113func (z *Int) Rsh(x *Int, n uint) *Int {
1114	if x.neg {
1115		// (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
1116		t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
1117		t = t.shr(t, n)
1118		z.abs = t.add(t, natOne)
1119		z.neg = true // z cannot be zero if x is negative
1120		return z
1121	}
1122
1123	z.abs = z.abs.shr(x.abs, n)
1124	z.neg = false
1125	return z
1126}
1127
1128// Bit returns the value of the i'th bit of x. That is, it
1129// returns (x>>i)&1. The bit index i must be >= 0.
1130func (x *Int) Bit(i int) uint {
1131	if i == 0 {
1132		// optimization for common case: odd/even test of x
1133		if len(x.abs) > 0 {
1134			return uint(x.abs[0] & 1) // bit 0 is same for -x
1135		}
1136		return 0
1137	}
1138	if i < 0 {
1139		panic("negative bit index")
1140	}
1141	if x.neg {
1142		t := nat(nil).sub(x.abs, natOne)
1143		return t.bit(uint(i)) ^ 1
1144	}
1145
1146	return x.abs.bit(uint(i))
1147}
1148
1149// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
1150// That is,
1151//   - if b is 1, SetBit sets z = x | (1 << i);
1152//   - if b is 0, SetBit sets z = x &^ (1 << i);
1153//   - if b is not 0 or 1, SetBit will panic.
1154func (z *Int) SetBit(x *Int, i int, b uint) *Int {
1155	if i < 0 {
1156		panic("negative bit index")
1157	}
1158	if x.neg {
1159		t := z.abs.sub(x.abs, natOne)
1160		t = t.setBit(t, uint(i), b^1)
1161		z.abs = t.add(t, natOne)
1162		z.neg = len(z.abs) > 0
1163		return z
1164	}
1165	z.abs = z.abs.setBit(x.abs, uint(i), b)
1166	z.neg = false
1167	return z
1168}
1169
1170// And sets z = x & y and returns z.
1171func (z *Int) And(x, y *Int) *Int {
1172	if x.neg == y.neg {
1173		if x.neg {
1174			// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
1175			x1 := nat(nil).sub(x.abs, natOne)
1176			y1 := nat(nil).sub(y.abs, natOne)
1177			z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
1178			z.neg = true // z cannot be zero if x and y are negative
1179			return z
1180		}
1181
1182		// x & y == x & y
1183		z.abs = z.abs.and(x.abs, y.abs)
1184		z.neg = false
1185		return z
1186	}
1187
1188	// x.neg != y.neg
1189	if x.neg {
1190		x, y = y, x // & is symmetric
1191	}
1192
1193	// x & (-y) == x & ^(y-1) == x &^ (y-1)
1194	y1 := nat(nil).sub(y.abs, natOne)
1195	z.abs = z.abs.andNot(x.abs, y1)
1196	z.neg = false
1197	return z
1198}
1199
1200// AndNot sets z = x &^ y and returns z.
1201func (z *Int) AndNot(x, y *Int) *Int {
1202	if x.neg == y.neg {
1203		if x.neg {
1204			// (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
1205			x1 := nat(nil).sub(x.abs, natOne)
1206			y1 := nat(nil).sub(y.abs, natOne)
1207			z.abs = z.abs.andNot(y1, x1)
1208			z.neg = false
1209			return z
1210		}
1211
1212		// x &^ y == x &^ y
1213		z.abs = z.abs.andNot(x.abs, y.abs)
1214		z.neg = false
1215		return z
1216	}
1217
1218	if x.neg {
1219		// (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
1220		x1 := nat(nil).sub(x.abs, natOne)
1221		z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
1222		z.neg = true // z cannot be zero if x is negative and y is positive
1223		return z
1224	}
1225
1226	// x &^ (-y) == x &^ ^(y-1) == x & (y-1)
1227	y1 := nat(nil).sub(y.abs, natOne)
1228	z.abs = z.abs.and(x.abs, y1)
1229	z.neg = false
1230	return z
1231}
1232
1233// Or sets z = x | y and returns z.
1234func (z *Int) Or(x, y *Int) *Int {
1235	if x.neg == y.neg {
1236		if x.neg {
1237			// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
1238			x1 := nat(nil).sub(x.abs, natOne)
1239			y1 := nat(nil).sub(y.abs, natOne)
1240			z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
1241			z.neg = true // z cannot be zero if x and y are negative
1242			return z
1243		}
1244
1245		// x | y == x | y
1246		z.abs = z.abs.or(x.abs, y.abs)
1247		z.neg = false
1248		return z
1249	}
1250
1251	// x.neg != y.neg
1252	if x.neg {
1253		x, y = y, x // | is symmetric
1254	}
1255
1256	// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
1257	y1 := nat(nil).sub(y.abs, natOne)
1258	z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
1259	z.neg = true // z cannot be zero if one of x or y is negative
1260	return z
1261}
1262
1263// Xor sets z = x ^ y and returns z.
1264func (z *Int) Xor(x, y *Int) *Int {
1265	if x.neg == y.neg {
1266		if x.neg {
1267			// (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
1268			x1 := nat(nil).sub(x.abs, natOne)
1269			y1 := nat(nil).sub(y.abs, natOne)
1270			z.abs = z.abs.xor(x1, y1)
1271			z.neg = false
1272			return z
1273		}
1274
1275		// x ^ y == x ^ y
1276		z.abs = z.abs.xor(x.abs, y.abs)
1277		z.neg = false
1278		return z
1279	}
1280
1281	// x.neg != y.neg
1282	if x.neg {
1283		x, y = y, x // ^ is symmetric
1284	}
1285
1286	// x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
1287	y1 := nat(nil).sub(y.abs, natOne)
1288	z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
1289	z.neg = true // z cannot be zero if only one of x or y is negative
1290	return z
1291}
1292
1293// Not sets z = ^x and returns z.
1294func (z *Int) Not(x *Int) *Int {
1295	if x.neg {
1296		// ^(-x) == ^(^(x-1)) == x-1
1297		z.abs = z.abs.sub(x.abs, natOne)
1298		z.neg = false
1299		return z
1300	}
1301
1302	// ^x == -x-1 == -(x+1)
1303	z.abs = z.abs.add(x.abs, natOne)
1304	z.neg = true // z cannot be zero if x is positive
1305	return z
1306}
1307
1308// Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
1309// It panics if x is negative.
1310func (z *Int) Sqrt(x *Int) *Int {
1311	if x.neg {
1312		panic("square root of negative number")
1313	}
1314	z.neg = false
1315	z.abs = z.abs.sqrt(x.abs)
1316	return z
1317}
1318