1// Copyright 2015 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// This file implements Float-to-string conversion functions. 6// It is closely following the corresponding implementation 7// in strconv/ftoa.go, but modified and simplified for Float. 8 9package big 10 11import ( 12 "bytes" 13 "fmt" 14 "strconv" 15) 16 17// Text converts the floating-point number x to a string according 18// to the given format and precision prec. The format is one of: 19// 20// 'e' -d.dddde±dd, decimal exponent, at least two (possibly 0) exponent digits 21// 'E' -d.ddddE±dd, decimal exponent, at least two (possibly 0) exponent digits 22// 'f' -ddddd.dddd, no exponent 23// 'g' like 'e' for large exponents, like 'f' otherwise 24// 'G' like 'E' for large exponents, like 'f' otherwise 25// 'x' -0xd.dddddp±dd, hexadecimal mantissa, decimal power of two exponent 26// 'p' -0x.dddp±dd, hexadecimal mantissa, decimal power of two exponent (non-standard) 27// 'b' -ddddddp±dd, decimal mantissa, decimal power of two exponent (non-standard) 28// 29// For the power-of-two exponent formats, the mantissa is printed in normalized form: 30// 31// 'x' hexadecimal mantissa in [1, 2), or 0 32// 'p' hexadecimal mantissa in [½, 1), or 0 33// 'b' decimal integer mantissa using x.Prec() bits, or 0 34// 35// Note that the 'x' form is the one used by most other languages and libraries. 36// 37// If format is a different character, Text returns a "%" followed by the 38// unrecognized format character. 39// 40// The precision prec controls the number of digits (excluding the exponent) 41// printed by the 'e', 'E', 'f', 'g', 'G', and 'x' formats. 42// For 'e', 'E', 'f', and 'x', it is the number of digits after the decimal point. 43// For 'g' and 'G' it is the total number of digits. A negative precision selects 44// the smallest number of decimal digits necessary to identify the value x uniquely 45// using x.Prec() mantissa bits. 46// The prec value is ignored for the 'b' and 'p' formats. 47func (x *Float) Text(format byte, prec int) string { 48 cap := 10 // TODO(gri) determine a good/better value here 49 if prec > 0 { 50 cap += prec 51 } 52 return string(x.Append(make([]byte, 0, cap), format, prec)) 53} 54 55// String formats x like x.Text('g', 10). 56// (String must be called explicitly, [Float.Format] does not support %s verb.) 57func (x *Float) String() string { 58 return x.Text('g', 10) 59} 60 61// Append appends to buf the string form of the floating-point number x, 62// as generated by x.Text, and returns the extended buffer. 63func (x *Float) Append(buf []byte, fmt byte, prec int) []byte { 64 // sign 65 if x.neg { 66 buf = append(buf, '-') 67 } 68 69 // Inf 70 if x.form == inf { 71 if !x.neg { 72 buf = append(buf, '+') 73 } 74 return append(buf, "Inf"...) 75 } 76 77 // pick off easy formats 78 switch fmt { 79 case 'b': 80 return x.fmtB(buf) 81 case 'p': 82 return x.fmtP(buf) 83 case 'x': 84 return x.fmtX(buf, prec) 85 } 86 87 // Algorithm: 88 // 1) convert Float to multiprecision decimal 89 // 2) round to desired precision 90 // 3) read digits out and format 91 92 // 1) convert Float to multiprecision decimal 93 var d decimal // == 0.0 94 if x.form == finite { 95 // x != 0 96 d.init(x.mant, int(x.exp)-x.mant.bitLen()) 97 } 98 99 // 2) round to desired precision 100 shortest := false 101 if prec < 0 { 102 shortest = true 103 roundShortest(&d, x) 104 // Precision for shortest representation mode. 105 switch fmt { 106 case 'e', 'E': 107 prec = len(d.mant) - 1 108 case 'f': 109 prec = max(len(d.mant)-d.exp, 0) 110 case 'g', 'G': 111 prec = len(d.mant) 112 } 113 } else { 114 // round appropriately 115 switch fmt { 116 case 'e', 'E': 117 // one digit before and number of digits after decimal point 118 d.round(1 + prec) 119 case 'f': 120 // number of digits before and after decimal point 121 d.round(d.exp + prec) 122 case 'g', 'G': 123 if prec == 0 { 124 prec = 1 125 } 126 d.round(prec) 127 } 128 } 129 130 // 3) read digits out and format 131 switch fmt { 132 case 'e', 'E': 133 return fmtE(buf, fmt, prec, d) 134 case 'f': 135 return fmtF(buf, prec, d) 136 case 'g', 'G': 137 // trim trailing fractional zeros in %e format 138 eprec := prec 139 if eprec > len(d.mant) && len(d.mant) >= d.exp { 140 eprec = len(d.mant) 141 } 142 // %e is used if the exponent from the conversion 143 // is less than -4 or greater than or equal to the precision. 144 // If precision was the shortest possible, use eprec = 6 for 145 // this decision. 146 if shortest { 147 eprec = 6 148 } 149 exp := d.exp - 1 150 if exp < -4 || exp >= eprec { 151 if prec > len(d.mant) { 152 prec = len(d.mant) 153 } 154 return fmtE(buf, fmt+'e'-'g', prec-1, d) 155 } 156 if prec > d.exp { 157 prec = len(d.mant) 158 } 159 return fmtF(buf, max(prec-d.exp, 0), d) 160 } 161 162 // unknown format 163 if x.neg { 164 buf = buf[:len(buf)-1] // sign was added prematurely - remove it again 165 } 166 return append(buf, '%', fmt) 167} 168 169func roundShortest(d *decimal, x *Float) { 170 // if the mantissa is zero, the number is zero - stop now 171 if len(d.mant) == 0 { 172 return 173 } 174 175 // Approach: All numbers in the interval [x - 1/2ulp, x + 1/2ulp] 176 // (possibly exclusive) round to x for the given precision of x. 177 // Compute the lower and upper bound in decimal form and find the 178 // shortest decimal number d such that lower <= d <= upper. 179 180 // TODO(gri) strconv/ftoa.do describes a shortcut in some cases. 181 // See if we can use it (in adjusted form) here as well. 182 183 // 1) Compute normalized mantissa mant and exponent exp for x such 184 // that the lsb of mant corresponds to 1/2 ulp for the precision of 185 // x (i.e., for mant we want x.prec + 1 bits). 186 mant := nat(nil).set(x.mant) 187 exp := int(x.exp) - mant.bitLen() 188 s := mant.bitLen() - int(x.prec+1) 189 switch { 190 case s < 0: 191 mant = mant.shl(mant, uint(-s)) 192 case s > 0: 193 mant = mant.shr(mant, uint(+s)) 194 } 195 exp += s 196 // x = mant * 2**exp with lsb(mant) == 1/2 ulp of x.prec 197 198 // 2) Compute lower bound by subtracting 1/2 ulp. 199 var lower decimal 200 var tmp nat 201 lower.init(tmp.sub(mant, natOne), exp) 202 203 // 3) Compute upper bound by adding 1/2 ulp. 204 var upper decimal 205 upper.init(tmp.add(mant, natOne), exp) 206 207 // The upper and lower bounds are possible outputs only if 208 // the original mantissa is even, so that ToNearestEven rounding 209 // would round to the original mantissa and not the neighbors. 210 inclusive := mant[0]&2 == 0 // test bit 1 since original mantissa was shifted by 1 211 212 // Now we can figure out the minimum number of digits required. 213 // Walk along until d has distinguished itself from upper and lower. 214 for i, m := range d.mant { 215 l := lower.at(i) 216 u := upper.at(i) 217 218 // Okay to round down (truncate) if lower has a different digit 219 // or if lower is inclusive and is exactly the result of rounding 220 // down (i.e., and we have reached the final digit of lower). 221 okdown := l != m || inclusive && i+1 == len(lower.mant) 222 223 // Okay to round up if upper has a different digit and either upper 224 // is inclusive or upper is bigger than the result of rounding up. 225 okup := m != u && (inclusive || m+1 < u || i+1 < len(upper.mant)) 226 227 // If it's okay to do either, then round to the nearest one. 228 // If it's okay to do only one, do it. 229 switch { 230 case okdown && okup: 231 d.round(i + 1) 232 return 233 case okdown: 234 d.roundDown(i + 1) 235 return 236 case okup: 237 d.roundUp(i + 1) 238 return 239 } 240 } 241} 242 243// %e: d.ddddde±dd 244func fmtE(buf []byte, fmt byte, prec int, d decimal) []byte { 245 // first digit 246 ch := byte('0') 247 if len(d.mant) > 0 { 248 ch = d.mant[0] 249 } 250 buf = append(buf, ch) 251 252 // .moredigits 253 if prec > 0 { 254 buf = append(buf, '.') 255 i := 1 256 m := min(len(d.mant), prec+1) 257 if i < m { 258 buf = append(buf, d.mant[i:m]...) 259 i = m 260 } 261 for ; i <= prec; i++ { 262 buf = append(buf, '0') 263 } 264 } 265 266 // e± 267 buf = append(buf, fmt) 268 var exp int64 269 if len(d.mant) > 0 { 270 exp = int64(d.exp) - 1 // -1 because first digit was printed before '.' 271 } 272 if exp < 0 { 273 ch = '-' 274 exp = -exp 275 } else { 276 ch = '+' 277 } 278 buf = append(buf, ch) 279 280 // dd...d 281 if exp < 10 { 282 buf = append(buf, '0') // at least 2 exponent digits 283 } 284 return strconv.AppendInt(buf, exp, 10) 285} 286 287// %f: ddddddd.ddddd 288func fmtF(buf []byte, prec int, d decimal) []byte { 289 // integer, padded with zeros as needed 290 if d.exp > 0 { 291 m := min(len(d.mant), d.exp) 292 buf = append(buf, d.mant[:m]...) 293 for ; m < d.exp; m++ { 294 buf = append(buf, '0') 295 } 296 } else { 297 buf = append(buf, '0') 298 } 299 300 // fraction 301 if prec > 0 { 302 buf = append(buf, '.') 303 for i := 0; i < prec; i++ { 304 buf = append(buf, d.at(d.exp+i)) 305 } 306 } 307 308 return buf 309} 310 311// fmtB appends the string of x in the format mantissa "p" exponent 312// with a decimal mantissa and a binary exponent, or 0" if x is zero, 313// and returns the extended buffer. 314// The mantissa is normalized such that is uses x.Prec() bits in binary 315// representation. 316// The sign of x is ignored, and x must not be an Inf. 317// (The caller handles Inf before invoking fmtB.) 318func (x *Float) fmtB(buf []byte) []byte { 319 if x.form == zero { 320 return append(buf, '0') 321 } 322 323 if debugFloat && x.form != finite { 324 panic("non-finite float") 325 } 326 // x != 0 327 328 // adjust mantissa to use exactly x.prec bits 329 m := x.mant 330 switch w := uint32(len(x.mant)) * _W; { 331 case w < x.prec: 332 m = nat(nil).shl(m, uint(x.prec-w)) 333 case w > x.prec: 334 m = nat(nil).shr(m, uint(w-x.prec)) 335 } 336 337 buf = append(buf, m.utoa(10)...) 338 buf = append(buf, 'p') 339 e := int64(x.exp) - int64(x.prec) 340 if e >= 0 { 341 buf = append(buf, '+') 342 } 343 return strconv.AppendInt(buf, e, 10) 344} 345 346// fmtX appends the string of x in the format "0x1." mantissa "p" exponent 347// with a hexadecimal mantissa and a binary exponent, or "0x0p0" if x is zero, 348// and returns the extended buffer. 349// A non-zero mantissa is normalized such that 1.0 <= mantissa < 2.0. 350// The sign of x is ignored, and x must not be an Inf. 351// (The caller handles Inf before invoking fmtX.) 352func (x *Float) fmtX(buf []byte, prec int) []byte { 353 if x.form == zero { 354 buf = append(buf, "0x0"...) 355 if prec > 0 { 356 buf = append(buf, '.') 357 for i := 0; i < prec; i++ { 358 buf = append(buf, '0') 359 } 360 } 361 buf = append(buf, "p+00"...) 362 return buf 363 } 364 365 if debugFloat && x.form != finite { 366 panic("non-finite float") 367 } 368 369 // round mantissa to n bits 370 var n uint 371 if prec < 0 { 372 n = 1 + (x.MinPrec()-1+3)/4*4 // round MinPrec up to 1 mod 4 373 } else { 374 n = 1 + 4*uint(prec) 375 } 376 // n%4 == 1 377 x = new(Float).SetPrec(n).SetMode(x.mode).Set(x) 378 379 // adjust mantissa to use exactly n bits 380 m := x.mant 381 switch w := uint(len(x.mant)) * _W; { 382 case w < n: 383 m = nat(nil).shl(m, n-w) 384 case w > n: 385 m = nat(nil).shr(m, w-n) 386 } 387 exp64 := int64(x.exp) - 1 // avoid wrap-around 388 389 hm := m.utoa(16) 390 if debugFloat && hm[0] != '1' { 391 panic("incorrect mantissa: " + string(hm)) 392 } 393 buf = append(buf, "0x1"...) 394 if len(hm) > 1 { 395 buf = append(buf, '.') 396 buf = append(buf, hm[1:]...) 397 } 398 399 buf = append(buf, 'p') 400 if exp64 >= 0 { 401 buf = append(buf, '+') 402 } else { 403 exp64 = -exp64 404 buf = append(buf, '-') 405 } 406 // Force at least two exponent digits, to match fmt. 407 if exp64 < 10 { 408 buf = append(buf, '0') 409 } 410 return strconv.AppendInt(buf, exp64, 10) 411} 412 413// fmtP appends the string of x in the format "0x." mantissa "p" exponent 414// with a hexadecimal mantissa and a binary exponent, or "0" if x is zero, 415// and returns the extended buffer. 416// The mantissa is normalized such that 0.5 <= 0.mantissa < 1.0. 417// The sign of x is ignored, and x must not be an Inf. 418// (The caller handles Inf before invoking fmtP.) 419func (x *Float) fmtP(buf []byte) []byte { 420 if x.form == zero { 421 return append(buf, '0') 422 } 423 424 if debugFloat && x.form != finite { 425 panic("non-finite float") 426 } 427 // x != 0 428 429 // remove trailing 0 words early 430 // (no need to convert to hex 0's and trim later) 431 m := x.mant 432 i := 0 433 for i < len(m) && m[i] == 0 { 434 i++ 435 } 436 m = m[i:] 437 438 buf = append(buf, "0x."...) 439 buf = append(buf, bytes.TrimRight(m.utoa(16), "0")...) 440 buf = append(buf, 'p') 441 if x.exp >= 0 { 442 buf = append(buf, '+') 443 } 444 return strconv.AppendInt(buf, int64(x.exp), 10) 445} 446 447var _ fmt.Formatter = &floatZero // *Float must implement fmt.Formatter 448 449// Format implements [fmt.Formatter]. It accepts all the regular 450// formats for floating-point numbers ('b', 'e', 'E', 'f', 'F', 451// 'g', 'G', 'x') as well as 'p' and 'v'. See (*Float).Text for the 452// interpretation of 'p'. The 'v' format is handled like 'g'. 453// Format also supports specification of the minimum precision 454// in digits, the output field width, as well as the format flags 455// '+' and ' ' for sign control, '0' for space or zero padding, 456// and '-' for left or right justification. See the fmt package 457// for details. 458func (x *Float) Format(s fmt.State, format rune) { 459 prec, hasPrec := s.Precision() 460 if !hasPrec { 461 prec = 6 // default precision for 'e', 'f' 462 } 463 464 switch format { 465 case 'e', 'E', 'f', 'b', 'p', 'x': 466 // nothing to do 467 case 'F': 468 // (*Float).Text doesn't support 'F'; handle like 'f' 469 format = 'f' 470 case 'v': 471 // handle like 'g' 472 format = 'g' 473 fallthrough 474 case 'g', 'G': 475 if !hasPrec { 476 prec = -1 // default precision for 'g', 'G' 477 } 478 default: 479 fmt.Fprintf(s, "%%!%c(*big.Float=%s)", format, x.String()) 480 return 481 } 482 var buf []byte 483 buf = x.Append(buf, byte(format), prec) 484 if len(buf) == 0 { 485 buf = []byte("?") // should never happen, but don't crash 486 } 487 // len(buf) > 0 488 489 var sign string 490 switch { 491 case buf[0] == '-': 492 sign = "-" 493 buf = buf[1:] 494 case buf[0] == '+': 495 // +Inf 496 sign = "+" 497 if s.Flag(' ') { 498 sign = " " 499 } 500 buf = buf[1:] 501 case s.Flag('+'): 502 sign = "+" 503 case s.Flag(' '): 504 sign = " " 505 } 506 507 var padding int 508 if width, hasWidth := s.Width(); hasWidth && width > len(sign)+len(buf) { 509 padding = width - len(sign) - len(buf) 510 } 511 512 switch { 513 case s.Flag('0') && !x.IsInf(): 514 // 0-padding on left 515 writeMultiple(s, sign, 1) 516 writeMultiple(s, "0", padding) 517 s.Write(buf) 518 case s.Flag('-'): 519 // padding on right 520 writeMultiple(s, sign, 1) 521 s.Write(buf) 522 writeMultiple(s, " ", padding) 523 default: 524 // padding on left 525 writeMultiple(s, " ", padding) 526 writeMultiple(s, sign, 1) 527 s.Write(buf) 528 } 529} 530