1// Copyright 2015 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// This file implements string-to-Float conversion functions.
6
7package big
8
9import (
10	"fmt"
11	"io"
12	"strings"
13)
14
15var floatZero Float
16
17// SetString sets z to the value of s and returns z and a boolean indicating
18// success. s must be a floating-point number of the same format as accepted
19// by [Float.Parse], with base argument 0. The entire string (not just a prefix) must
20// be valid for success. If the operation failed, the value of z is undefined
21// but the returned value is nil.
22func (z *Float) SetString(s string) (*Float, bool) {
23	if f, _, err := z.Parse(s, 0); err == nil {
24		return f, true
25	}
26	return nil, false
27}
28
29// scan is like Parse but reads the longest possible prefix representing a valid
30// floating point number from an io.ByteScanner rather than a string. It serves
31// as the implementation of Parse. It does not recognize ±Inf and does not expect
32// EOF at the end.
33func (z *Float) scan(r io.ByteScanner, base int) (f *Float, b int, err error) {
34	prec := z.prec
35	if prec == 0 {
36		prec = 64
37	}
38
39	// A reasonable value in case of an error.
40	z.form = zero
41
42	// sign
43	z.neg, err = scanSign(r)
44	if err != nil {
45		return
46	}
47
48	// mantissa
49	var fcount int // fractional digit count; valid if <= 0
50	z.mant, b, fcount, err = z.mant.scan(r, base, true)
51	if err != nil {
52		return
53	}
54
55	// exponent
56	var exp int64
57	var ebase int
58	exp, ebase, err = scanExponent(r, true, base == 0)
59	if err != nil {
60		return
61	}
62
63	// special-case 0
64	if len(z.mant) == 0 {
65		z.prec = prec
66		z.acc = Exact
67		z.form = zero
68		f = z
69		return
70	}
71	// len(z.mant) > 0
72
73	// The mantissa may have a radix point (fcount <= 0) and there
74	// may be a nonzero exponent exp. The radix point amounts to a
75	// division by b**(-fcount). An exponent means multiplication by
76	// ebase**exp. Finally, mantissa normalization (shift left) requires
77	// a correcting multiplication by 2**(-shiftcount). Multiplications
78	// are commutative, so we can apply them in any order as long as there
79	// is no loss of precision. We only have powers of 2 and 10, and
80	// we split powers of 10 into the product of the same powers of
81	// 2 and 5. This reduces the size of the multiplication factor
82	// needed for base-10 exponents.
83
84	// normalize mantissa and determine initial exponent contributions
85	exp2 := int64(len(z.mant))*_W - fnorm(z.mant)
86	exp5 := int64(0)
87
88	// determine binary or decimal exponent contribution of radix point
89	if fcount < 0 {
90		// The mantissa has a radix point ddd.dddd; and
91		// -fcount is the number of digits to the right
92		// of '.'. Adjust relevant exponent accordingly.
93		d := int64(fcount)
94		switch b {
95		case 10:
96			exp5 = d
97			fallthrough // 10**e == 5**e * 2**e
98		case 2:
99			exp2 += d
100		case 8:
101			exp2 += d * 3 // octal digits are 3 bits each
102		case 16:
103			exp2 += d * 4 // hexadecimal digits are 4 bits each
104		default:
105			panic("unexpected mantissa base")
106		}
107		// fcount consumed - not needed anymore
108	}
109
110	// take actual exponent into account
111	switch ebase {
112	case 10:
113		exp5 += exp
114		fallthrough // see fallthrough above
115	case 2:
116		exp2 += exp
117	default:
118		panic("unexpected exponent base")
119	}
120	// exp consumed - not needed anymore
121
122	// apply 2**exp2
123	if MinExp <= exp2 && exp2 <= MaxExp {
124		z.prec = prec
125		z.form = finite
126		z.exp = int32(exp2)
127		f = z
128	} else {
129		err = fmt.Errorf("exponent overflow")
130		return
131	}
132
133	if exp5 == 0 {
134		// no decimal exponent contribution
135		z.round(0)
136		return
137	}
138	// exp5 != 0
139
140	// apply 5**exp5
141	p := new(Float).SetPrec(z.Prec() + 64) // use more bits for p -- TODO(gri) what is the right number?
142	if exp5 < 0 {
143		z.Quo(z, p.pow5(uint64(-exp5)))
144	} else {
145		z.Mul(z, p.pow5(uint64(exp5)))
146	}
147
148	return
149}
150
151// These powers of 5 fit into a uint64.
152//
153//	for p, q := uint64(0), uint64(1); p < q; p, q = q, q*5 {
154//		fmt.Println(q)
155//	}
156var pow5tab = [...]uint64{
157	1,
158	5,
159	25,
160	125,
161	625,
162	3125,
163	15625,
164	78125,
165	390625,
166	1953125,
167	9765625,
168	48828125,
169	244140625,
170	1220703125,
171	6103515625,
172	30517578125,
173	152587890625,
174	762939453125,
175	3814697265625,
176	19073486328125,
177	95367431640625,
178	476837158203125,
179	2384185791015625,
180	11920928955078125,
181	59604644775390625,
182	298023223876953125,
183	1490116119384765625,
184	7450580596923828125,
185}
186
187// pow5 sets z to 5**n and returns z.
188// n must not be negative.
189func (z *Float) pow5(n uint64) *Float {
190	const m = uint64(len(pow5tab) - 1)
191	if n <= m {
192		return z.SetUint64(pow5tab[n])
193	}
194	// n > m
195
196	z.SetUint64(pow5tab[m])
197	n -= m
198
199	// use more bits for f than for z
200	// TODO(gri) what is the right number?
201	f := new(Float).SetPrec(z.Prec() + 64).SetUint64(5)
202
203	for n > 0 {
204		if n&1 != 0 {
205			z.Mul(z, f)
206		}
207		f.Mul(f, f)
208		n >>= 1
209	}
210
211	return z
212}
213
214// Parse parses s which must contain a text representation of a floating-
215// point number with a mantissa in the given conversion base (the exponent
216// is always a decimal number), or a string representing an infinite value.
217//
218// For base 0, an underscore character “_” may appear between a base
219// prefix and an adjacent digit, and between successive digits; such
220// underscores do not change the value of the number, or the returned
221// digit count. Incorrect placement of underscores is reported as an
222// error if there are no other errors. If base != 0, underscores are
223// not recognized and thus terminate scanning like any other character
224// that is not a valid radix point or digit.
225//
226// It sets z to the (possibly rounded) value of the corresponding floating-
227// point value, and returns z, the actual base b, and an error err, if any.
228// The entire string (not just a prefix) must be consumed for success.
229// If z's precision is 0, it is changed to 64 before rounding takes effect.
230// The number must be of the form:
231//
232//	number    = [ sign ] ( float | "inf" | "Inf" ) .
233//	sign      = "+" | "-" .
234//	float     = ( mantissa | prefix pmantissa ) [ exponent ] .
235//	prefix    = "0" [ "b" | "B" | "o" | "O" | "x" | "X" ] .
236//	mantissa  = digits "." [ digits ] | digits | "." digits .
237//	pmantissa = [ "_" ] digits "." [ digits ] | [ "_" ] digits | "." digits .
238//	exponent  = ( "e" | "E" | "p" | "P" ) [ sign ] digits .
239//	digits    = digit { [ "_" ] digit } .
240//	digit     = "0" ... "9" | "a" ... "z" | "A" ... "Z" .
241//
242// The base argument must be 0, 2, 8, 10, or 16. Providing an invalid base
243// argument will lead to a run-time panic.
244//
245// For base 0, the number prefix determines the actual base: A prefix of
246// “0b” or “0B” selects base 2, “0o” or “0O” selects base 8, and
247// “0x” or “0X” selects base 16. Otherwise, the actual base is 10 and
248// no prefix is accepted. The octal prefix "0" is not supported (a leading
249// "0" is simply considered a "0").
250//
251// A "p" or "P" exponent indicates a base 2 (rather than base 10) exponent;
252// for instance, "0x1.fffffffffffffp1023" (using base 0) represents the
253// maximum float64 value. For hexadecimal mantissae, the exponent character
254// must be one of 'p' or 'P', if present (an "e" or "E" exponent indicator
255// cannot be distinguished from a mantissa digit).
256//
257// The returned *Float f is nil and the value of z is valid but not
258// defined if an error is reported.
259func (z *Float) Parse(s string, base int) (f *Float, b int, err error) {
260	// scan doesn't handle ±Inf
261	if len(s) == 3 && (s == "Inf" || s == "inf") {
262		f = z.SetInf(false)
263		return
264	}
265	if len(s) == 4 && (s[0] == '+' || s[0] == '-') && (s[1:] == "Inf" || s[1:] == "inf") {
266		f = z.SetInf(s[0] == '-')
267		return
268	}
269
270	r := strings.NewReader(s)
271	if f, b, err = z.scan(r, base); err != nil {
272		return
273	}
274
275	// entire string must have been consumed
276	if ch, err2 := r.ReadByte(); err2 == nil {
277		err = fmt.Errorf("expected end of string, found %q", ch)
278	} else if err2 != io.EOF {
279		err = err2
280	}
281
282	return
283}
284
285// ParseFloat is like f.Parse(s, base) with f set to the given precision
286// and rounding mode.
287func ParseFloat(s string, base int, prec uint, mode RoundingMode) (f *Float, b int, err error) {
288	return new(Float).SetPrec(prec).SetMode(mode).Parse(s, base)
289}
290
291var _ fmt.Scanner = (*Float)(nil) // *Float must implement fmt.Scanner
292
293// Scan is a support routine for [fmt.Scanner]; it sets z to the value of
294// the scanned number. It accepts formats whose verbs are supported by
295// [fmt.Scan] for floating point values, which are:
296// 'b' (binary), 'e', 'E', 'f', 'F', 'g' and 'G'.
297// Scan doesn't handle ±Inf.
298func (z *Float) Scan(s fmt.ScanState, ch rune) error {
299	s.SkipSpace()
300	_, _, err := z.scan(byteReader{s}, 0)
301	return err
302}
303