1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package math 6 7/* 8 Floating-point arctangent. 9*/ 10 11// The original C code, the long comment, and the constants below were 12// from http://netlib.sandia.gov/cephes/cmath/atan.c, available from 13// http://www.netlib.org/cephes/cmath.tgz. 14// The go code is a version of the original C. 15// 16// atan.c 17// Inverse circular tangent (arctangent) 18// 19// SYNOPSIS: 20// double x, y, atan(); 21// y = atan( x ); 22// 23// DESCRIPTION: 24// Returns radian angle between -pi/2 and +pi/2 whose tangent is x. 25// 26// Range reduction is from three intervals into the interval from zero to 0.66. 27// The approximant uses a rational function of degree 4/5 of the form 28// x + x**3 P(x)/Q(x). 29// 30// ACCURACY: 31// Relative error: 32// arithmetic domain # trials peak rms 33// DEC -10, 10 50000 2.4e-17 8.3e-18 34// IEEE -10, 10 10^6 1.8e-16 5.0e-17 35// 36// Cephes Math Library Release 2.8: June, 2000 37// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier 38// 39// The readme file at http://netlib.sandia.gov/cephes/ says: 40// Some software in this archive may be from the book _Methods and 41// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster 42// International, 1989) or from the Cephes Mathematical Library, a 43// commercial product. In either event, it is copyrighted by the author. 44// What you see here may be used freely but it comes with no support or 45// guarantee. 46// 47// The two known misprints in the book are repaired here in the 48// source listings for the gamma function and the incomplete beta 49// integral. 50// 51// Stephen L. Moshier 52// [email protected] 53 54// xatan evaluates a series valid in the range [0, 0.66]. 55func xatan(x float64) float64 { 56 const ( 57 P0 = -8.750608600031904122785e-01 58 P1 = -1.615753718733365076637e+01 59 P2 = -7.500855792314704667340e+01 60 P3 = -1.228866684490136173410e+02 61 P4 = -6.485021904942025371773e+01 62 Q0 = +2.485846490142306297962e+01 63 Q1 = +1.650270098316988542046e+02 64 Q2 = +4.328810604912902668951e+02 65 Q3 = +4.853903996359136964868e+02 66 Q4 = +1.945506571482613964425e+02 67 ) 68 z := x * x 69 z = z * ((((P0*z+P1)*z+P2)*z+P3)*z + P4) / (((((z+Q0)*z+Q1)*z+Q2)*z+Q3)*z + Q4) 70 z = x*z + x 71 return z 72} 73 74// satan reduces its argument (known to be positive) 75// to the range [0, 0.66] and calls xatan. 76func satan(x float64) float64 { 77 const ( 78 Morebits = 6.123233995736765886130e-17 // pi/2 = PIO2 + Morebits 79 Tan3pio8 = 2.41421356237309504880 // tan(3*pi/8) 80 ) 81 if x <= 0.66 { 82 return xatan(x) 83 } 84 if x > Tan3pio8 { 85 return Pi/2 - xatan(1/x) + Morebits 86 } 87 return Pi/4 + xatan((x-1)/(x+1)) + 0.5*Morebits 88} 89 90// Atan returns the arctangent, in radians, of x. 91// 92// Special cases are: 93// 94// Atan(±0) = ±0 95// Atan(±Inf) = ±Pi/2 96func Atan(x float64) float64 { 97 if haveArchAtan { 98 return archAtan(x) 99 } 100 return atan(x) 101} 102 103func atan(x float64) float64 { 104 if x == 0 { 105 return x 106 } 107 if x > 0 { 108 return satan(x) 109 } 110 return -satan(-x) 111} 112