1// Copyright 2010 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// Package suffixarray implements substring search in logarithmic time using 6// an in-memory suffix array. 7// 8// Example use: 9// 10// // create index for some data 11// index := suffixarray.New(data) 12// 13// // lookup byte slice s 14// offsets1 := index.Lookup(s, -1) // the list of all indices where s occurs in data 15// offsets2 := index.Lookup(s, 3) // the list of at most 3 indices where s occurs in data 16package suffixarray 17 18import ( 19 "bytes" 20 "encoding/binary" 21 "errors" 22 "io" 23 "math" 24 "regexp" 25 "slices" 26 "sort" 27) 28 29// Can change for testing 30var maxData32 int = realMaxData32 31 32const realMaxData32 = math.MaxInt32 33 34// Index implements a suffix array for fast substring search. 35type Index struct { 36 data []byte 37 sa ints // suffix array for data; sa.len() == len(data) 38} 39 40// An ints is either an []int32 or an []int64. 41// That is, one of them is empty, and one is the real data. 42// The int64 form is used when len(data) > maxData32 43type ints struct { 44 int32 []int32 45 int64 []int64 46} 47 48func (a *ints) len() int { 49 return len(a.int32) + len(a.int64) 50} 51 52func (a *ints) get(i int) int64 { 53 if a.int32 != nil { 54 return int64(a.int32[i]) 55 } 56 return a.int64[i] 57} 58 59func (a *ints) set(i int, v int64) { 60 if a.int32 != nil { 61 a.int32[i] = int32(v) 62 } else { 63 a.int64[i] = v 64 } 65} 66 67func (a *ints) slice(i, j int) ints { 68 if a.int32 != nil { 69 return ints{a.int32[i:j], nil} 70 } 71 return ints{nil, a.int64[i:j]} 72} 73 74// New creates a new [Index] for data. 75// [Index] creation time is O(N) for N = len(data). 76func New(data []byte) *Index { 77 ix := &Index{data: data} 78 if len(data) <= maxData32 { 79 ix.sa.int32 = make([]int32, len(data)) 80 text_32(data, ix.sa.int32) 81 } else { 82 ix.sa.int64 = make([]int64, len(data)) 83 text_64(data, ix.sa.int64) 84 } 85 return ix 86} 87 88// writeInt writes an int x to w using buf to buffer the write. 89func writeInt(w io.Writer, buf []byte, x int) error { 90 binary.PutVarint(buf, int64(x)) 91 _, err := w.Write(buf[0:binary.MaxVarintLen64]) 92 return err 93} 94 95// readInt reads an int x from r using buf to buffer the read and returns x. 96func readInt(r io.Reader, buf []byte) (int64, error) { 97 _, err := io.ReadFull(r, buf[0:binary.MaxVarintLen64]) // ok to continue with error 98 x, _ := binary.Varint(buf) 99 return x, err 100} 101 102// writeSlice writes data[:n] to w and returns n. 103// It uses buf to buffer the write. 104func writeSlice(w io.Writer, buf []byte, data ints) (n int, err error) { 105 // encode as many elements as fit into buf 106 p := binary.MaxVarintLen64 107 m := data.len() 108 for ; n < m && p+binary.MaxVarintLen64 <= len(buf); n++ { 109 p += binary.PutUvarint(buf[p:], uint64(data.get(n))) 110 } 111 112 // update buffer size 113 binary.PutVarint(buf, int64(p)) 114 115 // write buffer 116 _, err = w.Write(buf[0:p]) 117 return 118} 119 120var errTooBig = errors.New("suffixarray: data too large") 121 122// readSlice reads data[:n] from r and returns n. 123// It uses buf to buffer the read. 124func readSlice(r io.Reader, buf []byte, data ints) (n int, err error) { 125 // read buffer size 126 var size64 int64 127 size64, err = readInt(r, buf) 128 if err != nil { 129 return 130 } 131 if int64(int(size64)) != size64 || int(size64) < 0 { 132 // We never write chunks this big anyway. 133 return 0, errTooBig 134 } 135 size := int(size64) 136 137 // read buffer w/o the size 138 if _, err = io.ReadFull(r, buf[binary.MaxVarintLen64:size]); err != nil { 139 return 140 } 141 142 // decode as many elements as present in buf 143 for p := binary.MaxVarintLen64; p < size; n++ { 144 x, w := binary.Uvarint(buf[p:]) 145 data.set(n, int64(x)) 146 p += w 147 } 148 149 return 150} 151 152const bufSize = 16 << 10 // reasonable for BenchmarkSaveRestore 153 154// Read reads the index from r into x; x must not be nil. 155func (x *Index) Read(r io.Reader) error { 156 // buffer for all reads 157 buf := make([]byte, bufSize) 158 159 // read length 160 n64, err := readInt(r, buf) 161 if err != nil { 162 return err 163 } 164 if int64(int(n64)) != n64 || int(n64) < 0 { 165 return errTooBig 166 } 167 n := int(n64) 168 169 // allocate space 170 if 2*n < cap(x.data) || cap(x.data) < n || x.sa.int32 != nil && n > maxData32 || x.sa.int64 != nil && n <= maxData32 { 171 // new data is significantly smaller or larger than 172 // existing buffers - allocate new ones 173 x.data = make([]byte, n) 174 x.sa.int32 = nil 175 x.sa.int64 = nil 176 if n <= maxData32 { 177 x.sa.int32 = make([]int32, n) 178 } else { 179 x.sa.int64 = make([]int64, n) 180 } 181 } else { 182 // re-use existing buffers 183 x.data = x.data[0:n] 184 x.sa = x.sa.slice(0, n) 185 } 186 187 // read data 188 if _, err := io.ReadFull(r, x.data); err != nil { 189 return err 190 } 191 192 // read index 193 sa := x.sa 194 for sa.len() > 0 { 195 n, err := readSlice(r, buf, sa) 196 if err != nil { 197 return err 198 } 199 sa = sa.slice(n, sa.len()) 200 } 201 return nil 202} 203 204// Write writes the index x to w. 205func (x *Index) Write(w io.Writer) error { 206 // buffer for all writes 207 buf := make([]byte, bufSize) 208 209 // write length 210 if err := writeInt(w, buf, len(x.data)); err != nil { 211 return err 212 } 213 214 // write data 215 if _, err := w.Write(x.data); err != nil { 216 return err 217 } 218 219 // write index 220 sa := x.sa 221 for sa.len() > 0 { 222 n, err := writeSlice(w, buf, sa) 223 if err != nil { 224 return err 225 } 226 sa = sa.slice(n, sa.len()) 227 } 228 return nil 229} 230 231// Bytes returns the data over which the index was created. 232// It must not be modified. 233func (x *Index) Bytes() []byte { 234 return x.data 235} 236 237func (x *Index) at(i int) []byte { 238 return x.data[x.sa.get(i):] 239} 240 241// lookupAll returns a slice into the matching region of the index. 242// The runtime is O(log(N)*len(s)). 243func (x *Index) lookupAll(s []byte) ints { 244 // find matching suffix index range [i:j] 245 // find the first index where s would be the prefix 246 i := sort.Search(x.sa.len(), func(i int) bool { return bytes.Compare(x.at(i), s) >= 0 }) 247 // starting at i, find the first index at which s is not a prefix 248 j := i + sort.Search(x.sa.len()-i, func(j int) bool { return !bytes.HasPrefix(x.at(j+i), s) }) 249 return x.sa.slice(i, j) 250} 251 252// Lookup returns an unsorted list of at most n indices where the byte string s 253// occurs in the indexed data. If n < 0, all occurrences are returned. 254// The result is nil if s is empty, s is not found, or n == 0. 255// Lookup time is O(log(N)*len(s) + len(result)) where N is the 256// size of the indexed data. 257func (x *Index) Lookup(s []byte, n int) (result []int) { 258 if len(s) > 0 && n != 0 { 259 matches := x.lookupAll(s) 260 count := matches.len() 261 if n < 0 || count < n { 262 n = count 263 } 264 // 0 <= n <= count 265 if n > 0 { 266 result = make([]int, n) 267 if matches.int32 != nil { 268 for i := range result { 269 result[i] = int(matches.int32[i]) 270 } 271 } else { 272 for i := range result { 273 result[i] = int(matches.int64[i]) 274 } 275 } 276 } 277 } 278 return 279} 280 281// FindAllIndex returns a sorted list of non-overlapping matches of the 282// regular expression r, where a match is a pair of indices specifying 283// the matched slice of x.Bytes(). If n < 0, all matches are returned 284// in successive order. Otherwise, at most n matches are returned and 285// they may not be successive. The result is nil if there are no matches, 286// or if n == 0. 287func (x *Index) FindAllIndex(r *regexp.Regexp, n int) (result [][]int) { 288 // a non-empty literal prefix is used to determine possible 289 // match start indices with Lookup 290 prefix, complete := r.LiteralPrefix() 291 lit := []byte(prefix) 292 293 // worst-case scenario: no literal prefix 294 if prefix == "" { 295 return r.FindAllIndex(x.data, n) 296 } 297 298 // if regexp is a literal just use Lookup and convert its 299 // result into match pairs 300 if complete { 301 // Lookup returns indices that may belong to overlapping matches. 302 // After eliminating them, we may end up with fewer than n matches. 303 // If we don't have enough at the end, redo the search with an 304 // increased value n1, but only if Lookup returned all the requested 305 // indices in the first place (if it returned fewer than that then 306 // there cannot be more). 307 for n1 := n; ; n1 += 2 * (n - len(result)) /* overflow ok */ { 308 indices := x.Lookup(lit, n1) 309 if len(indices) == 0 { 310 return 311 } 312 slices.Sort(indices) 313 pairs := make([]int, 2*len(indices)) 314 result = make([][]int, len(indices)) 315 count := 0 316 prev := 0 317 for _, i := range indices { 318 if count == n { 319 break 320 } 321 // ignore indices leading to overlapping matches 322 if prev <= i { 323 j := 2 * count 324 pairs[j+0] = i 325 pairs[j+1] = i + len(lit) 326 result[count] = pairs[j : j+2] 327 count++ 328 prev = i + len(lit) 329 } 330 } 331 result = result[0:count] 332 if len(result) >= n || len(indices) != n1 { 333 // found all matches or there's no chance to find more 334 // (n and n1 can be negative) 335 break 336 } 337 } 338 if len(result) == 0 { 339 result = nil 340 } 341 return 342 } 343 344 // regexp has a non-empty literal prefix; Lookup(lit) computes 345 // the indices of possible complete matches; use these as starting 346 // points for anchored searches 347 // (regexp "^" matches beginning of input, not beginning of line) 348 r = regexp.MustCompile("^" + r.String()) // compiles because r compiled 349 350 // same comment about Lookup applies here as in the loop above 351 for n1 := n; ; n1 += 2 * (n - len(result)) /* overflow ok */ { 352 indices := x.Lookup(lit, n1) 353 if len(indices) == 0 { 354 return 355 } 356 slices.Sort(indices) 357 result = result[0:0] 358 prev := 0 359 for _, i := range indices { 360 if len(result) == n { 361 break 362 } 363 m := r.FindIndex(x.data[i:]) // anchored search - will not run off 364 // ignore indices leading to overlapping matches 365 if m != nil && prev <= i { 366 m[0] = i // correct m 367 m[1] += i 368 result = append(result, m) 369 prev = m[1] 370 } 371 } 372 if len(result) >= n || len(indices) != n1 { 373 // found all matches or there's no chance to find more 374 // (n and n1 can be negative) 375 break 376 } 377 } 378 if len(result) == 0 { 379 result = nil 380 } 381 return 382} 383