1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package jpeg implements a JPEG image decoder and encoder.
6//
7// JPEG is defined in ITU-T T.81: https://www.w3.org/Graphics/JPEG/itu-t81.pdf.
8package jpeg
9
10import (
11	"image"
12	"image/color"
13	"image/internal/imageutil"
14	"io"
15)
16
17// A FormatError reports that the input is not a valid JPEG.
18type FormatError string
19
20func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) }
21
22// An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature.
23type UnsupportedError string
24
25func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) }
26
27var errUnsupportedSubsamplingRatio = UnsupportedError("luma/chroma subsampling ratio")
28
29// Component specification, specified in section B.2.2.
30type component struct {
31	h  int   // Horizontal sampling factor.
32	v  int   // Vertical sampling factor.
33	c  uint8 // Component identifier.
34	tq uint8 // Quantization table destination selector.
35}
36
37const (
38	dcTable = 0
39	acTable = 1
40	maxTc   = 1
41	maxTh   = 3
42	maxTq   = 3
43
44	maxComponents = 4
45)
46
47const (
48	sof0Marker = 0xc0 // Start Of Frame (Baseline Sequential).
49	sof1Marker = 0xc1 // Start Of Frame (Extended Sequential).
50	sof2Marker = 0xc2 // Start Of Frame (Progressive).
51	dhtMarker  = 0xc4 // Define Huffman Table.
52	rst0Marker = 0xd0 // ReSTart (0).
53	rst7Marker = 0xd7 // ReSTart (7).
54	soiMarker  = 0xd8 // Start Of Image.
55	eoiMarker  = 0xd9 // End Of Image.
56	sosMarker  = 0xda // Start Of Scan.
57	dqtMarker  = 0xdb // Define Quantization Table.
58	driMarker  = 0xdd // Define Restart Interval.
59	comMarker  = 0xfe // COMment.
60	// "APPlication specific" markers aren't part of the JPEG spec per se,
61	// but in practice, their use is described at
62	// https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html
63	app0Marker  = 0xe0
64	app14Marker = 0xee
65	app15Marker = 0xef
66)
67
68// See https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
69const (
70	adobeTransformUnknown = 0
71	adobeTransformYCbCr   = 1
72	adobeTransformYCbCrK  = 2
73)
74
75// unzig maps from the zig-zag ordering to the natural ordering. For example,
76// unzig[3] is the column and row of the fourth element in zig-zag order. The
77// value is 16, which means first column (16%8 == 0) and third row (16/8 == 2).
78var unzig = [blockSize]int{
79	0, 1, 8, 16, 9, 2, 3, 10,
80	17, 24, 32, 25, 18, 11, 4, 5,
81	12, 19, 26, 33, 40, 48, 41, 34,
82	27, 20, 13, 6, 7, 14, 21, 28,
83	35, 42, 49, 56, 57, 50, 43, 36,
84	29, 22, 15, 23, 30, 37, 44, 51,
85	58, 59, 52, 45, 38, 31, 39, 46,
86	53, 60, 61, 54, 47, 55, 62, 63,
87}
88
89// Deprecated: Reader is not used by the [image/jpeg] package and should
90// not be used by others. It is kept for compatibility.
91type Reader interface {
92	io.ByteReader
93	io.Reader
94}
95
96// bits holds the unprocessed bits that have been taken from the byte-stream.
97// The n least significant bits of a form the unread bits, to be read in MSB to
98// LSB order.
99type bits struct {
100	a uint32 // accumulator.
101	m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0.
102	n int32  // the number of unread bits in a.
103}
104
105type decoder struct {
106	r    io.Reader
107	bits bits
108	// bytes is a byte buffer, similar to a bufio.Reader, except that it
109	// has to be able to unread more than 1 byte, due to byte stuffing.
110	// Byte stuffing is specified in section F.1.2.3.
111	bytes struct {
112		// buf[i:j] are the buffered bytes read from the underlying
113		// io.Reader that haven't yet been passed further on.
114		buf  [4096]byte
115		i, j int
116		// nUnreadable is the number of bytes to back up i after
117		// overshooting. It can be 0, 1 or 2.
118		nUnreadable int
119	}
120	width, height int
121
122	img1        *image.Gray
123	img3        *image.YCbCr
124	blackPix    []byte
125	blackStride int
126
127	ri    int // Restart Interval.
128	nComp int
129
130	// As per section 4.5, there are four modes of operation (selected by the
131	// SOF? markers): sequential DCT, progressive DCT, lossless and
132	// hierarchical, although this implementation does not support the latter
133	// two non-DCT modes. Sequential DCT is further split into baseline and
134	// extended, as per section 4.11.
135	baseline    bool
136	progressive bool
137
138	jfif                bool
139	adobeTransformValid bool
140	adobeTransform      uint8
141	eobRun              uint16 // End-of-Band run, specified in section G.1.2.2.
142
143	comp       [maxComponents]component
144	progCoeffs [maxComponents][]block // Saved state between progressive-mode scans.
145	huff       [maxTc + 1][maxTh + 1]huffman
146	quant      [maxTq + 1]block // Quantization tables, in zig-zag order.
147	tmp        [2 * blockSize]byte
148}
149
150// fill fills up the d.bytes.buf buffer from the underlying io.Reader. It
151// should only be called when there are no unread bytes in d.bytes.
152func (d *decoder) fill() error {
153	if d.bytes.i != d.bytes.j {
154		panic("jpeg: fill called when unread bytes exist")
155	}
156	// Move the last 2 bytes to the start of the buffer, in case we need
157	// to call unreadByteStuffedByte.
158	if d.bytes.j > 2 {
159		d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2]
160		d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1]
161		d.bytes.i, d.bytes.j = 2, 2
162	}
163	// Fill in the rest of the buffer.
164	n, err := d.r.Read(d.bytes.buf[d.bytes.j:])
165	d.bytes.j += n
166	if n > 0 {
167		return nil
168	}
169	if err == io.EOF {
170		err = io.ErrUnexpectedEOF
171	}
172	return err
173}
174
175// unreadByteStuffedByte undoes the most recent readByteStuffedByte call,
176// giving a byte of data back from d.bits to d.bytes. The Huffman look-up table
177// requires at least 8 bits for look-up, which means that Huffman decoding can
178// sometimes overshoot and read one or two too many bytes. Two-byte overshoot
179// can happen when expecting to read a 0xff 0x00 byte-stuffed byte.
180func (d *decoder) unreadByteStuffedByte() {
181	d.bytes.i -= d.bytes.nUnreadable
182	d.bytes.nUnreadable = 0
183	if d.bits.n >= 8 {
184		d.bits.a >>= 8
185		d.bits.n -= 8
186		d.bits.m >>= 8
187	}
188}
189
190// readByte returns the next byte, whether buffered or not buffered. It does
191// not care about byte stuffing.
192func (d *decoder) readByte() (x byte, err error) {
193	for d.bytes.i == d.bytes.j {
194		if err = d.fill(); err != nil {
195			return 0, err
196		}
197	}
198	x = d.bytes.buf[d.bytes.i]
199	d.bytes.i++
200	d.bytes.nUnreadable = 0
201	return x, nil
202}
203
204// errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a
205// marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00.
206var errMissingFF00 = FormatError("missing 0xff00 sequence")
207
208// readByteStuffedByte is like readByte but is for byte-stuffed Huffman data.
209func (d *decoder) readByteStuffedByte() (x byte, err error) {
210	// Take the fast path if d.bytes.buf contains at least two bytes.
211	if d.bytes.i+2 <= d.bytes.j {
212		x = d.bytes.buf[d.bytes.i]
213		d.bytes.i++
214		d.bytes.nUnreadable = 1
215		if x != 0xff {
216			return x, err
217		}
218		if d.bytes.buf[d.bytes.i] != 0x00 {
219			return 0, errMissingFF00
220		}
221		d.bytes.i++
222		d.bytes.nUnreadable = 2
223		return 0xff, nil
224	}
225
226	d.bytes.nUnreadable = 0
227
228	x, err = d.readByte()
229	if err != nil {
230		return 0, err
231	}
232	d.bytes.nUnreadable = 1
233	if x != 0xff {
234		return x, nil
235	}
236
237	x, err = d.readByte()
238	if err != nil {
239		return 0, err
240	}
241	d.bytes.nUnreadable = 2
242	if x != 0x00 {
243		return 0, errMissingFF00
244	}
245	return 0xff, nil
246}
247
248// readFull reads exactly len(p) bytes into p. It does not care about byte
249// stuffing.
250func (d *decoder) readFull(p []byte) error {
251	// Unread the overshot bytes, if any.
252	if d.bytes.nUnreadable != 0 {
253		if d.bits.n >= 8 {
254			d.unreadByteStuffedByte()
255		}
256		d.bytes.nUnreadable = 0
257	}
258
259	for {
260		n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j])
261		p = p[n:]
262		d.bytes.i += n
263		if len(p) == 0 {
264			break
265		}
266		if err := d.fill(); err != nil {
267			return err
268		}
269	}
270	return nil
271}
272
273// ignore ignores the next n bytes.
274func (d *decoder) ignore(n int) error {
275	// Unread the overshot bytes, if any.
276	if d.bytes.nUnreadable != 0 {
277		if d.bits.n >= 8 {
278			d.unreadByteStuffedByte()
279		}
280		d.bytes.nUnreadable = 0
281	}
282
283	for {
284		m := d.bytes.j - d.bytes.i
285		if m > n {
286			m = n
287		}
288		d.bytes.i += m
289		n -= m
290		if n == 0 {
291			break
292		}
293		if err := d.fill(); err != nil {
294			return err
295		}
296	}
297	return nil
298}
299
300// Specified in section B.2.2.
301func (d *decoder) processSOF(n int) error {
302	if d.nComp != 0 {
303		return FormatError("multiple SOF markers")
304	}
305	switch n {
306	case 6 + 3*1: // Grayscale image.
307		d.nComp = 1
308	case 6 + 3*3: // YCbCr or RGB image.
309		d.nComp = 3
310	case 6 + 3*4: // YCbCrK or CMYK image.
311		d.nComp = 4
312	default:
313		return UnsupportedError("number of components")
314	}
315	if err := d.readFull(d.tmp[:n]); err != nil {
316		return err
317	}
318	// We only support 8-bit precision.
319	if d.tmp[0] != 8 {
320		return UnsupportedError("precision")
321	}
322	d.height = int(d.tmp[1])<<8 + int(d.tmp[2])
323	d.width = int(d.tmp[3])<<8 + int(d.tmp[4])
324	if int(d.tmp[5]) != d.nComp {
325		return FormatError("SOF has wrong length")
326	}
327
328	for i := 0; i < d.nComp; i++ {
329		d.comp[i].c = d.tmp[6+3*i]
330		// Section B.2.2 states that "the value of C_i shall be different from
331		// the values of C_1 through C_(i-1)".
332		for j := 0; j < i; j++ {
333			if d.comp[i].c == d.comp[j].c {
334				return FormatError("repeated component identifier")
335			}
336		}
337
338		d.comp[i].tq = d.tmp[8+3*i]
339		if d.comp[i].tq > maxTq {
340			return FormatError("bad Tq value")
341		}
342
343		hv := d.tmp[7+3*i]
344		h, v := int(hv>>4), int(hv&0x0f)
345		if h < 1 || 4 < h || v < 1 || 4 < v {
346			return FormatError("luma/chroma subsampling ratio")
347		}
348		if h == 3 || v == 3 {
349			return errUnsupportedSubsamplingRatio
350		}
351		switch d.nComp {
352		case 1:
353			// If a JPEG image has only one component, section A.2 says "this data
354			// is non-interleaved by definition" and section A.2.2 says "[in this
355			// case...] the order of data units within a scan shall be left-to-right
356			// and top-to-bottom... regardless of the values of H_1 and V_1". Section
357			// 4.8.2 also says "[for non-interleaved data], the MCU is defined to be
358			// one data unit". Similarly, section A.1.1 explains that it is the ratio
359			// of H_i to max_j(H_j) that matters, and similarly for V. For grayscale
360			// images, H_1 is the maximum H_j for all components j, so that ratio is
361			// always 1. The component's (h, v) is effectively always (1, 1): even if
362			// the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8
363			// MCUs, not two 16x8 MCUs.
364			h, v = 1, 1
365
366		case 3:
367			// For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2, 4:2:0,
368			// 4:1:1 or 4:1:0 chroma subsampling ratios. This implies that the
369			// (h, v) values for the Y component are either (1, 1), (1, 2),
370			// (2, 1), (2, 2), (4, 1) or (4, 2), and the Y component's values
371			// must be a multiple of the Cb and Cr component's values. We also
372			// assume that the two chroma components have the same subsampling
373			// ratio.
374			switch i {
375			case 0: // Y.
376				// We have already verified, above, that h and v are both
377				// either 1, 2 or 4, so invalid (h, v) combinations are those
378				// with v == 4.
379				if v == 4 {
380					return errUnsupportedSubsamplingRatio
381				}
382			case 1: // Cb.
383				if d.comp[0].h%h != 0 || d.comp[0].v%v != 0 {
384					return errUnsupportedSubsamplingRatio
385				}
386			case 2: // Cr.
387				if d.comp[1].h != h || d.comp[1].v != v {
388					return errUnsupportedSubsamplingRatio
389				}
390			}
391
392		case 4:
393			// For 4-component images (either CMYK or YCbCrK), we only support two
394			// hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22].
395			// Theoretically, 4-component JPEG images could mix and match hv values
396			// but in practice, those two combinations are the only ones in use,
397			// and it simplifies the applyBlack code below if we can assume that:
398			//	- for CMYK, the C and K channels have full samples, and if the M
399			//	  and Y channels subsample, they subsample both horizontally and
400			//	  vertically.
401			//	- for YCbCrK, the Y and K channels have full samples.
402			switch i {
403			case 0:
404				if hv != 0x11 && hv != 0x22 {
405					return errUnsupportedSubsamplingRatio
406				}
407			case 1, 2:
408				if hv != 0x11 {
409					return errUnsupportedSubsamplingRatio
410				}
411			case 3:
412				if d.comp[0].h != h || d.comp[0].v != v {
413					return errUnsupportedSubsamplingRatio
414				}
415			}
416		}
417
418		d.comp[i].h = h
419		d.comp[i].v = v
420	}
421	return nil
422}
423
424// Specified in section B.2.4.1.
425func (d *decoder) processDQT(n int) error {
426loop:
427	for n > 0 {
428		n--
429		x, err := d.readByte()
430		if err != nil {
431			return err
432		}
433		tq := x & 0x0f
434		if tq > maxTq {
435			return FormatError("bad Tq value")
436		}
437		switch x >> 4 {
438		default:
439			return FormatError("bad Pq value")
440		case 0:
441			if n < blockSize {
442				break loop
443			}
444			n -= blockSize
445			if err := d.readFull(d.tmp[:blockSize]); err != nil {
446				return err
447			}
448			for i := range d.quant[tq] {
449				d.quant[tq][i] = int32(d.tmp[i])
450			}
451		case 1:
452			if n < 2*blockSize {
453				break loop
454			}
455			n -= 2 * blockSize
456			if err := d.readFull(d.tmp[:2*blockSize]); err != nil {
457				return err
458			}
459			for i := range d.quant[tq] {
460				d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1])
461			}
462		}
463	}
464	if n != 0 {
465		return FormatError("DQT has wrong length")
466	}
467	return nil
468}
469
470// Specified in section B.2.4.4.
471func (d *decoder) processDRI(n int) error {
472	if n != 2 {
473		return FormatError("DRI has wrong length")
474	}
475	if err := d.readFull(d.tmp[:2]); err != nil {
476		return err
477	}
478	d.ri = int(d.tmp[0])<<8 + int(d.tmp[1])
479	return nil
480}
481
482func (d *decoder) processApp0Marker(n int) error {
483	if n < 5 {
484		return d.ignore(n)
485	}
486	if err := d.readFull(d.tmp[:5]); err != nil {
487		return err
488	}
489	n -= 5
490
491	d.jfif = d.tmp[0] == 'J' && d.tmp[1] == 'F' && d.tmp[2] == 'I' && d.tmp[3] == 'F' && d.tmp[4] == '\x00'
492
493	if n > 0 {
494		return d.ignore(n)
495	}
496	return nil
497}
498
499func (d *decoder) processApp14Marker(n int) error {
500	if n < 12 {
501		return d.ignore(n)
502	}
503	if err := d.readFull(d.tmp[:12]); err != nil {
504		return err
505	}
506	n -= 12
507
508	if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' {
509		d.adobeTransformValid = true
510		d.adobeTransform = d.tmp[11]
511	}
512
513	if n > 0 {
514		return d.ignore(n)
515	}
516	return nil
517}
518
519// decode reads a JPEG image from r and returns it as an image.Image.
520func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) {
521	d.r = r
522
523	// Check for the Start Of Image marker.
524	if err := d.readFull(d.tmp[:2]); err != nil {
525		return nil, err
526	}
527	if d.tmp[0] != 0xff || d.tmp[1] != soiMarker {
528		return nil, FormatError("missing SOI marker")
529	}
530
531	// Process the remaining segments until the End Of Image marker.
532	for {
533		err := d.readFull(d.tmp[:2])
534		if err != nil {
535			return nil, err
536		}
537		for d.tmp[0] != 0xff {
538			// Strictly speaking, this is a format error. However, libjpeg is
539			// liberal in what it accepts. As of version 9, next_marker in
540			// jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and
541			// continues to decode the stream. Even before next_marker sees
542			// extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many
543			// bytes as it can, possibly past the end of a scan's data. It
544			// effectively puts back any markers that it overscanned (e.g. an
545			// "\xff\xd9" EOI marker), but it does not put back non-marker data,
546			// and thus it can silently ignore a small number of extraneous
547			// non-marker bytes before next_marker has a chance to see them (and
548			// print a warning).
549			//
550			// We are therefore also liberal in what we accept. Extraneous data
551			// is silently ignored.
552			//
553			// This is similar to, but not exactly the same as, the restart
554			// mechanism within a scan (the RST[0-7] markers).
555			//
556			// Note that extraneous 0xff bytes in e.g. SOS data are escaped as
557			// "\xff\x00", and so are detected a little further down below.
558			d.tmp[0] = d.tmp[1]
559			d.tmp[1], err = d.readByte()
560			if err != nil {
561				return nil, err
562			}
563		}
564		marker := d.tmp[1]
565		if marker == 0 {
566			// Treat "\xff\x00" as extraneous data.
567			continue
568		}
569		for marker == 0xff {
570			// Section B.1.1.2 says, "Any marker may optionally be preceded by any
571			// number of fill bytes, which are bytes assigned code X'FF'".
572			marker, err = d.readByte()
573			if err != nil {
574				return nil, err
575			}
576		}
577		if marker == eoiMarker { // End Of Image.
578			break
579		}
580		if rst0Marker <= marker && marker <= rst7Marker {
581			// Figures B.2 and B.16 of the specification suggest that restart markers should
582			// only occur between Entropy Coded Segments and not after the final ECS.
583			// However, some encoders may generate incorrect JPEGs with a final restart
584			// marker. That restart marker will be seen here instead of inside the processSOS
585			// method, and is ignored as a harmless error. Restart markers have no extra data,
586			// so we check for this before we read the 16-bit length of the segment.
587			continue
588		}
589
590		// Read the 16-bit length of the segment. The value includes the 2 bytes for the
591		// length itself, so we subtract 2 to get the number of remaining bytes.
592		if err = d.readFull(d.tmp[:2]); err != nil {
593			return nil, err
594		}
595		n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2
596		if n < 0 {
597			return nil, FormatError("short segment length")
598		}
599
600		switch marker {
601		case sof0Marker, sof1Marker, sof2Marker:
602			d.baseline = marker == sof0Marker
603			d.progressive = marker == sof2Marker
604			err = d.processSOF(n)
605			if configOnly && d.jfif {
606				return nil, err
607			}
608		case dhtMarker:
609			if configOnly {
610				err = d.ignore(n)
611			} else {
612				err = d.processDHT(n)
613			}
614		case dqtMarker:
615			if configOnly {
616				err = d.ignore(n)
617			} else {
618				err = d.processDQT(n)
619			}
620		case sosMarker:
621			if configOnly {
622				return nil, nil
623			}
624			err = d.processSOS(n)
625		case driMarker:
626			if configOnly {
627				err = d.ignore(n)
628			} else {
629				err = d.processDRI(n)
630			}
631		case app0Marker:
632			err = d.processApp0Marker(n)
633		case app14Marker:
634			err = d.processApp14Marker(n)
635		default:
636			if app0Marker <= marker && marker <= app15Marker || marker == comMarker {
637				err = d.ignore(n)
638			} else if marker < 0xc0 { // See Table B.1 "Marker code assignments".
639				err = FormatError("unknown marker")
640			} else {
641				err = UnsupportedError("unknown marker")
642			}
643		}
644		if err != nil {
645			return nil, err
646		}
647	}
648
649	if d.progressive {
650		if err := d.reconstructProgressiveImage(); err != nil {
651			return nil, err
652		}
653	}
654	if d.img1 != nil {
655		return d.img1, nil
656	}
657	if d.img3 != nil {
658		if d.blackPix != nil {
659			return d.applyBlack()
660		} else if d.isRGB() {
661			return d.convertToRGB()
662		}
663		return d.img3, nil
664	}
665	return nil, FormatError("missing SOS marker")
666}
667
668// applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula
669// used depends on whether the JPEG image is stored as CMYK or YCbCrK,
670// indicated by the APP14 (Adobe) metadata.
671//
672// Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full
673// ink, so we apply "v = 255 - v" at various points. Note that a double
674// inversion is a no-op, so inversions might be implicit in the code below.
675func (d *decoder) applyBlack() (image.Image, error) {
676	if !d.adobeTransformValid {
677		return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata")
678	}
679
680	// If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB
681	// or CMYK)" as per
682	// https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
683	// we assume that it is YCbCrK. This matches libjpeg's jdapimin.c.
684	if d.adobeTransform != adobeTransformUnknown {
685		// Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get
686		// CMY, and patch in the original K. The RGB to CMY inversion cancels
687		// out the 'Adobe inversion' described in the applyBlack doc comment
688		// above, so in practice, only the fourth channel (black) is inverted.
689		bounds := d.img3.Bounds()
690		img := image.NewRGBA(bounds)
691		imageutil.DrawYCbCr(img, bounds, d.img3, bounds.Min)
692		for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
693			for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
694				img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)]
695			}
696		}
697		return &image.CMYK{
698			Pix:    img.Pix,
699			Stride: img.Stride,
700			Rect:   img.Rect,
701		}, nil
702	}
703
704	// The first three channels (cyan, magenta, yellow) of the CMYK
705	// were decoded into d.img3, but each channel was decoded into a separate
706	// []byte slice, and some channels may be subsampled. We interleave the
707	// separate channels into an image.CMYK's single []byte slice containing 4
708	// contiguous bytes per pixel.
709	bounds := d.img3.Bounds()
710	img := image.NewCMYK(bounds)
711
712	translations := [4]struct {
713		src    []byte
714		stride int
715	}{
716		{d.img3.Y, d.img3.YStride},
717		{d.img3.Cb, d.img3.CStride},
718		{d.img3.Cr, d.img3.CStride},
719		{d.blackPix, d.blackStride},
720	}
721	for t, translation := range translations {
722		subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v
723		for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
724			sy := y - bounds.Min.Y
725			if subsample {
726				sy /= 2
727			}
728			for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
729				sx := x - bounds.Min.X
730				if subsample {
731					sx /= 2
732				}
733				img.Pix[i] = 255 - translation.src[sy*translation.stride+sx]
734			}
735		}
736	}
737	return img, nil
738}
739
740func (d *decoder) isRGB() bool {
741	if d.jfif {
742		return false
743	}
744	if d.adobeTransformValid && d.adobeTransform == adobeTransformUnknown {
745		// https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
746		// says that 0 means Unknown (and in practice RGB) and 1 means YCbCr.
747		return true
748	}
749	return d.comp[0].c == 'R' && d.comp[1].c == 'G' && d.comp[2].c == 'B'
750}
751
752func (d *decoder) convertToRGB() (image.Image, error) {
753	cScale := d.comp[0].h / d.comp[1].h
754	bounds := d.img3.Bounds()
755	img := image.NewRGBA(bounds)
756	for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
757		po := img.PixOffset(bounds.Min.X, y)
758		yo := d.img3.YOffset(bounds.Min.X, y)
759		co := d.img3.COffset(bounds.Min.X, y)
760		for i, iMax := 0, bounds.Max.X-bounds.Min.X; i < iMax; i++ {
761			img.Pix[po+4*i+0] = d.img3.Y[yo+i]
762			img.Pix[po+4*i+1] = d.img3.Cb[co+i/cScale]
763			img.Pix[po+4*i+2] = d.img3.Cr[co+i/cScale]
764			img.Pix[po+4*i+3] = 255
765		}
766	}
767	return img, nil
768}
769
770// Decode reads a JPEG image from r and returns it as an [image.Image].
771func Decode(r io.Reader) (image.Image, error) {
772	var d decoder
773	return d.decode(r, false)
774}
775
776// DecodeConfig returns the color model and dimensions of a JPEG image without
777// decoding the entire image.
778func DecodeConfig(r io.Reader) (image.Config, error) {
779	var d decoder
780	if _, err := d.decode(r, true); err != nil {
781		return image.Config{}, err
782	}
783	switch d.nComp {
784	case 1:
785		return image.Config{
786			ColorModel: color.GrayModel,
787			Width:      d.width,
788			Height:     d.height,
789		}, nil
790	case 3:
791		cm := color.YCbCrModel
792		if d.isRGB() {
793			cm = color.RGBAModel
794		}
795		return image.Config{
796			ColorModel: cm,
797			Width:      d.width,
798			Height:     d.height,
799		}, nil
800	case 4:
801		return image.Config{
802			ColorModel: color.CMYKModel,
803			Width:      d.width,
804			Height:     d.height,
805		}, nil
806	}
807	return image.Config{}, FormatError("missing SOF marker")
808}
809
810func init() {
811	image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig)
812}
813