1// Copyright 2011 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package des 6 7import ( 8 "internal/byteorder" 9 "sync" 10) 11 12func cryptBlock(subkeys []uint64, dst, src []byte, decrypt bool) { 13 b := byteorder.BeUint64(src) 14 b = permuteInitialBlock(b) 15 left, right := uint32(b>>32), uint32(b) 16 17 left = (left << 1) | (left >> 31) 18 right = (right << 1) | (right >> 31) 19 20 if decrypt { 21 for i := 0; i < 8; i++ { 22 left, right = feistel(left, right, subkeys[15-2*i], subkeys[15-(2*i+1)]) 23 } 24 } else { 25 for i := 0; i < 8; i++ { 26 left, right = feistel(left, right, subkeys[2*i], subkeys[2*i+1]) 27 } 28 } 29 30 left = (left << 31) | (left >> 1) 31 right = (right << 31) | (right >> 1) 32 33 // switch left & right and perform final permutation 34 preOutput := (uint64(right) << 32) | uint64(left) 35 byteorder.BePutUint64(dst, permuteFinalBlock(preOutput)) 36} 37 38// DES Feistel function. feistelBox must be initialized via 39// feistelBoxOnce.Do(initFeistelBox) first. 40func feistel(l, r uint32, k0, k1 uint64) (lout, rout uint32) { 41 var t uint32 42 43 t = r ^ uint32(k0>>32) 44 l ^= feistelBox[7][t&0x3f] ^ 45 feistelBox[5][(t>>8)&0x3f] ^ 46 feistelBox[3][(t>>16)&0x3f] ^ 47 feistelBox[1][(t>>24)&0x3f] 48 49 t = ((r << 28) | (r >> 4)) ^ uint32(k0) 50 l ^= feistelBox[6][(t)&0x3f] ^ 51 feistelBox[4][(t>>8)&0x3f] ^ 52 feistelBox[2][(t>>16)&0x3f] ^ 53 feistelBox[0][(t>>24)&0x3f] 54 55 t = l ^ uint32(k1>>32) 56 r ^= feistelBox[7][t&0x3f] ^ 57 feistelBox[5][(t>>8)&0x3f] ^ 58 feistelBox[3][(t>>16)&0x3f] ^ 59 feistelBox[1][(t>>24)&0x3f] 60 61 t = ((l << 28) | (l >> 4)) ^ uint32(k1) 62 r ^= feistelBox[6][(t)&0x3f] ^ 63 feistelBox[4][(t>>8)&0x3f] ^ 64 feistelBox[2][(t>>16)&0x3f] ^ 65 feistelBox[0][(t>>24)&0x3f] 66 67 return l, r 68} 69 70// feistelBox[s][16*i+j] contains the output of permutationFunction 71// for sBoxes[s][i][j] << 4*(7-s) 72var feistelBox [8][64]uint32 73 74var feistelBoxOnce sync.Once 75 76// general purpose function to perform DES block permutations. 77func permuteBlock(src uint64, permutation []uint8) (block uint64) { 78 for position, n := range permutation { 79 bit := (src >> n) & 1 80 block |= bit << uint((len(permutation)-1)-position) 81 } 82 return 83} 84 85func initFeistelBox() { 86 for s := range sBoxes { 87 for i := 0; i < 4; i++ { 88 for j := 0; j < 16; j++ { 89 f := uint64(sBoxes[s][i][j]) << (4 * (7 - uint(s))) 90 f = permuteBlock(f, permutationFunction[:]) 91 92 // Row is determined by the 1st and 6th bit. 93 // Column is the middle four bits. 94 row := uint8(((i & 2) << 4) | i&1) 95 col := uint8(j << 1) 96 t := row | col 97 98 // The rotation was performed in the feistel rounds, being factored out and now mixed into the feistelBox. 99 f = (f << 1) | (f >> 31) 100 101 feistelBox[s][t] = uint32(f) 102 } 103 } 104 } 105} 106 107// permuteInitialBlock is equivalent to the permutation defined 108// by initialPermutation. 109func permuteInitialBlock(block uint64) uint64 { 110 // block = b7 b6 b5 b4 b3 b2 b1 b0 (8 bytes) 111 b1 := block >> 48 112 b2 := block << 48 113 block ^= b1 ^ b2 ^ b1<<48 ^ b2>>48 114 115 // block = b1 b0 b5 b4 b3 b2 b7 b6 116 b1 = block >> 32 & 0xff00ff 117 b2 = (block & 0xff00ff00) 118 block ^= b1<<32 ^ b2 ^ b1<<8 ^ b2<<24 // exchange b0 b4 with b3 b7 119 120 // block is now b1 b3 b5 b7 b0 b2 b4 b6, the permutation: 121 // ... 8 122 // ... 24 123 // ... 40 124 // ... 56 125 // 7 6 5 4 3 2 1 0 126 // 23 22 21 20 19 18 17 16 127 // ... 32 128 // ... 48 129 130 // exchange 4,5,6,7 with 32,33,34,35 etc. 131 b1 = block & 0x0f0f00000f0f0000 132 b2 = block & 0x0000f0f00000f0f0 133 block ^= b1 ^ b2 ^ b1>>12 ^ b2<<12 134 135 // block is the permutation: 136 // 137 // [+8] [+40] 138 // 139 // 7 6 5 4 140 // 23 22 21 20 141 // 3 2 1 0 142 // 19 18 17 16 [+32] 143 144 // exchange 0,1,4,5 with 18,19,22,23 145 b1 = block & 0x3300330033003300 146 b2 = block & 0x00cc00cc00cc00cc 147 block ^= b1 ^ b2 ^ b1>>6 ^ b2<<6 148 149 // block is the permutation: 150 // 15 14 151 // 13 12 152 // 11 10 153 // 9 8 154 // 7 6 155 // 5 4 156 // 3 2 157 // 1 0 [+16] [+32] [+64] 158 159 // exchange 0,2,4,6 with 9,11,13,15: 160 b1 = block & 0xaaaaaaaa55555555 161 block ^= b1 ^ b1>>33 ^ b1<<33 162 163 // block is the permutation: 164 // 6 14 22 30 38 46 54 62 165 // 4 12 20 28 36 44 52 60 166 // 2 10 18 26 34 42 50 58 167 // 0 8 16 24 32 40 48 56 168 // 7 15 23 31 39 47 55 63 169 // 5 13 21 29 37 45 53 61 170 // 3 11 19 27 35 43 51 59 171 // 1 9 17 25 33 41 49 57 172 return block 173} 174 175// permuteFinalBlock is equivalent to the permutation defined 176// by finalPermutation. 177func permuteFinalBlock(block uint64) uint64 { 178 // Perform the same bit exchanges as permuteInitialBlock 179 // but in reverse order. 180 b1 := block & 0xaaaaaaaa55555555 181 block ^= b1 ^ b1>>33 ^ b1<<33 182 183 b1 = block & 0x3300330033003300 184 b2 := block & 0x00cc00cc00cc00cc 185 block ^= b1 ^ b2 ^ b1>>6 ^ b2<<6 186 187 b1 = block & 0x0f0f00000f0f0000 188 b2 = block & 0x0000f0f00000f0f0 189 block ^= b1 ^ b2 ^ b1>>12 ^ b2<<12 190 191 b1 = block >> 32 & 0xff00ff 192 b2 = (block & 0xff00ff00) 193 block ^= b1<<32 ^ b2 ^ b1<<8 ^ b2<<24 194 195 b1 = block >> 48 196 b2 = block << 48 197 block ^= b1 ^ b2 ^ b1<<48 ^ b2>>48 198 return block 199} 200 201// creates 16 28-bit blocks rotated according 202// to the rotation schedule. 203func ksRotate(in uint32) (out []uint32) { 204 out = make([]uint32, 16) 205 last := in 206 for i := 0; i < 16; i++ { 207 // 28-bit circular left shift 208 left := (last << (4 + ksRotations[i])) >> 4 209 right := (last << 4) >> (32 - ksRotations[i]) 210 out[i] = left | right 211 last = out[i] 212 } 213 return 214} 215 216// creates 16 56-bit subkeys from the original key. 217func (c *desCipher) generateSubkeys(keyBytes []byte) { 218 feistelBoxOnce.Do(initFeistelBox) 219 220 // apply PC1 permutation to key 221 key := byteorder.BeUint64(keyBytes) 222 permutedKey := permuteBlock(key, permutedChoice1[:]) 223 224 // rotate halves of permuted key according to the rotation schedule 225 leftRotations := ksRotate(uint32(permutedKey >> 28)) 226 rightRotations := ksRotate(uint32(permutedKey<<4) >> 4) 227 228 // generate subkeys 229 for i := 0; i < 16; i++ { 230 // combine halves to form 56-bit input to PC2 231 pc2Input := uint64(leftRotations[i])<<28 | uint64(rightRotations[i]) 232 // apply PC2 permutation to 7 byte input 233 c.subkeys[i] = unpack(permuteBlock(pc2Input, permutedChoice2[:])) 234 } 235} 236 237// Expand 48-bit input to 64-bit, with each 6-bit block padded by extra two bits at the top. 238// By doing so, we can have the input blocks (four bits each), and the key blocks (six bits each) well-aligned without 239// extra shifts/rotations for alignments. 240func unpack(x uint64) uint64 { 241 return ((x>>(6*1))&0xff)<<(8*0) | 242 ((x>>(6*3))&0xff)<<(8*1) | 243 ((x>>(6*5))&0xff)<<(8*2) | 244 ((x>>(6*7))&0xff)<<(8*3) | 245 ((x>>(6*0))&0xff)<<(8*4) | 246 ((x>>(6*2))&0xff)<<(8*5) | 247 ((x>>(6*4))&0xff)<<(8*6) | 248 ((x>>(6*6))&0xff)<<(8*7) 249} 250