1// Copyright 2011 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4// 5// The inlining facility makes 2 passes: first CanInline determines which 6// functions are suitable for inlining, and for those that are it 7// saves a copy of the body. Then InlineCalls walks each function body to 8// expand calls to inlinable functions. 9// 10// The Debug.l flag controls the aggressiveness. Note that main() swaps level 0 and 1, 11// making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and 12// are not supported. 13// 0: disabled 14// 1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default) 15// 2: (unassigned) 16// 3: (unassigned) 17// 4: allow non-leaf functions 18// 19// At some point this may get another default and become switch-offable with -N. 20// 21// The -d typcheckinl flag enables early typechecking of all imported bodies, 22// which is useful to flush out bugs. 23// 24// The Debug.m flag enables diagnostic output. a single -m is useful for verifying 25// which calls get inlined or not, more is for debugging, and may go away at any point. 26 27package inline 28 29import ( 30 "fmt" 31 "go/constant" 32 "internal/buildcfg" 33 "strconv" 34 35 "cmd/compile/internal/base" 36 "cmd/compile/internal/inline/inlheur" 37 "cmd/compile/internal/ir" 38 "cmd/compile/internal/logopt" 39 "cmd/compile/internal/pgoir" 40 "cmd/compile/internal/typecheck" 41 "cmd/compile/internal/types" 42 "cmd/internal/obj" 43 "cmd/internal/pgo" 44) 45 46// Inlining budget parameters, gathered in one place 47const ( 48 inlineMaxBudget = 80 49 inlineExtraAppendCost = 0 50 // default is to inline if there's at most one call. -l=4 overrides this by using 1 instead. 51 inlineExtraCallCost = 57 // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742 52 inlineExtraPanicCost = 1 // do not penalize inlining panics. 53 inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help. 54 55 inlineBigFunctionNodes = 5000 // Functions with this many nodes are considered "big". 56 inlineBigFunctionMaxCost = 20 // Max cost of inlinee when inlining into a "big" function. 57) 58 59var ( 60 // List of all hot callee nodes. 61 // TODO(prattmic): Make this non-global. 62 candHotCalleeMap = make(map[*pgoir.IRNode]struct{}) 63 64 // Set of functions that contain hot call sites. 65 hasHotCall = make(map[*ir.Func]struct{}) 66 67 // List of all hot call sites. CallSiteInfo.Callee is always nil. 68 // TODO(prattmic): Make this non-global. 69 candHotEdgeMap = make(map[pgoir.CallSiteInfo]struct{}) 70 71 // Threshold in percentage for hot callsite inlining. 72 inlineHotCallSiteThresholdPercent float64 73 74 // Threshold in CDF percentage for hot callsite inlining, 75 // that is, for a threshold of X the hottest callsites that 76 // make up the top X% of total edge weight will be 77 // considered hot for inlining candidates. 78 inlineCDFHotCallSiteThresholdPercent = float64(99) 79 80 // Budget increased due to hotness. 81 inlineHotMaxBudget int32 = 2000 82) 83 84func IsPgoHotFunc(fn *ir.Func, profile *pgoir.Profile) bool { 85 if profile == nil { 86 return false 87 } 88 if n, ok := profile.WeightedCG.IRNodes[ir.LinkFuncName(fn)]; ok { 89 _, ok := candHotCalleeMap[n] 90 return ok 91 } 92 return false 93} 94 95func HasPgoHotInline(fn *ir.Func) bool { 96 _, has := hasHotCall[fn] 97 return has 98} 99 100// PGOInlinePrologue records the hot callsites from ir-graph. 101func PGOInlinePrologue(p *pgoir.Profile) { 102 if base.Debug.PGOInlineCDFThreshold != "" { 103 if s, err := strconv.ParseFloat(base.Debug.PGOInlineCDFThreshold, 64); err == nil && s >= 0 && s <= 100 { 104 inlineCDFHotCallSiteThresholdPercent = s 105 } else { 106 base.Fatalf("invalid PGOInlineCDFThreshold, must be between 0 and 100") 107 } 108 } 109 var hotCallsites []pgo.NamedCallEdge 110 inlineHotCallSiteThresholdPercent, hotCallsites = hotNodesFromCDF(p) 111 if base.Debug.PGODebug > 0 { 112 fmt.Printf("hot-callsite-thres-from-CDF=%v\n", inlineHotCallSiteThresholdPercent) 113 } 114 115 if x := base.Debug.PGOInlineBudget; x != 0 { 116 inlineHotMaxBudget = int32(x) 117 } 118 119 for _, n := range hotCallsites { 120 // mark inlineable callees from hot edges 121 if callee := p.WeightedCG.IRNodes[n.CalleeName]; callee != nil { 122 candHotCalleeMap[callee] = struct{}{} 123 } 124 // mark hot call sites 125 if caller := p.WeightedCG.IRNodes[n.CallerName]; caller != nil && caller.AST != nil { 126 csi := pgoir.CallSiteInfo{LineOffset: n.CallSiteOffset, Caller: caller.AST} 127 candHotEdgeMap[csi] = struct{}{} 128 } 129 } 130 131 if base.Debug.PGODebug >= 3 { 132 fmt.Printf("hot-cg before inline in dot format:") 133 p.PrintWeightedCallGraphDOT(inlineHotCallSiteThresholdPercent) 134 } 135} 136 137// hotNodesFromCDF computes an edge weight threshold and the list of hot 138// nodes that make up the given percentage of the CDF. The threshold, as 139// a percent, is the lower bound of weight for nodes to be considered hot 140// (currently only used in debug prints) (in case of equal weights, 141// comparing with the threshold may not accurately reflect which nodes are 142// considered hot). 143func hotNodesFromCDF(p *pgoir.Profile) (float64, []pgo.NamedCallEdge) { 144 cum := int64(0) 145 for i, n := range p.NamedEdgeMap.ByWeight { 146 w := p.NamedEdgeMap.Weight[n] 147 cum += w 148 if pgo.WeightInPercentage(cum, p.TotalWeight) > inlineCDFHotCallSiteThresholdPercent { 149 // nodes[:i+1] to include the very last node that makes it to go over the threshold. 150 // (Say, if the CDF threshold is 50% and one hot node takes 60% of weight, we want to 151 // include that node instead of excluding it.) 152 return pgo.WeightInPercentage(w, p.TotalWeight), p.NamedEdgeMap.ByWeight[:i+1] 153 } 154 } 155 return 0, p.NamedEdgeMap.ByWeight 156} 157 158// CanInlineFuncs computes whether a batch of functions are inlinable. 159func CanInlineFuncs(funcs []*ir.Func, profile *pgoir.Profile) { 160 if profile != nil { 161 PGOInlinePrologue(profile) 162 } 163 164 if base.Flag.LowerL == 0 { 165 return 166 } 167 168 ir.VisitFuncsBottomUp(funcs, func(funcs []*ir.Func, recursive bool) { 169 numfns := numNonClosures(funcs) 170 171 for _, fn := range funcs { 172 if !recursive || numfns > 1 { 173 // We allow inlining if there is no 174 // recursion, or the recursion cycle is 175 // across more than one function. 176 CanInline(fn, profile) 177 } else { 178 if base.Flag.LowerM > 1 && fn.OClosure == nil { 179 fmt.Printf("%v: cannot inline %v: recursive\n", ir.Line(fn), fn.Nname) 180 } 181 } 182 if inlheur.Enabled() { 183 analyzeFuncProps(fn, profile) 184 } 185 } 186 }) 187} 188 189// GarbageCollectUnreferencedHiddenClosures makes a pass over all the 190// top-level (non-hidden-closure) functions looking for nested closure 191// functions that are reachable, then sweeps through the Target.Decls 192// list and marks any non-reachable hidden closure function as dead. 193// See issues #59404 and #59638 for more context. 194func GarbageCollectUnreferencedHiddenClosures() { 195 196 liveFuncs := make(map[*ir.Func]bool) 197 198 var markLiveFuncs func(fn *ir.Func) 199 markLiveFuncs = func(fn *ir.Func) { 200 if liveFuncs[fn] { 201 return 202 } 203 liveFuncs[fn] = true 204 ir.Visit(fn, func(n ir.Node) { 205 if clo, ok := n.(*ir.ClosureExpr); ok { 206 markLiveFuncs(clo.Func) 207 } 208 }) 209 } 210 211 for i := 0; i < len(typecheck.Target.Funcs); i++ { 212 fn := typecheck.Target.Funcs[i] 213 if fn.IsHiddenClosure() { 214 continue 215 } 216 markLiveFuncs(fn) 217 } 218 219 for i := 0; i < len(typecheck.Target.Funcs); i++ { 220 fn := typecheck.Target.Funcs[i] 221 if !fn.IsHiddenClosure() { 222 continue 223 } 224 if fn.IsDeadcodeClosure() { 225 continue 226 } 227 if liveFuncs[fn] { 228 continue 229 } 230 fn.SetIsDeadcodeClosure(true) 231 if base.Flag.LowerM > 2 { 232 fmt.Printf("%v: unreferenced closure %v marked as dead\n", ir.Line(fn), fn) 233 } 234 if fn.Inl != nil && fn.LSym == nil { 235 ir.InitLSym(fn, true) 236 } 237 } 238} 239 240// inlineBudget determines the max budget for function 'fn' prior to 241// analyzing the hairiness of the body of 'fn'. We pass in the pgo 242// profile if available (which can change the budget), also a 243// 'relaxed' flag, which expands the budget slightly to allow for the 244// possibility that a call to the function might have its score 245// adjusted downwards. If 'verbose' is set, then print a remark where 246// we boost the budget due to PGO. 247func inlineBudget(fn *ir.Func, profile *pgoir.Profile, relaxed bool, verbose bool) int32 { 248 // Update the budget for profile-guided inlining. 249 budget := int32(inlineMaxBudget) 250 if IsPgoHotFunc(fn, profile) { 251 budget = inlineHotMaxBudget 252 if verbose { 253 fmt.Printf("hot-node enabled increased budget=%v for func=%v\n", budget, ir.PkgFuncName(fn)) 254 } 255 } 256 if relaxed { 257 budget += inlheur.BudgetExpansion(inlineMaxBudget) 258 } 259 return budget 260} 261 262// CanInline determines whether fn is inlineable. 263// If so, CanInline saves copies of fn.Body and fn.Dcl in fn.Inl. 264// fn and fn.Body will already have been typechecked. 265func CanInline(fn *ir.Func, profile *pgoir.Profile) { 266 if fn.Nname == nil { 267 base.Fatalf("CanInline no nname %+v", fn) 268 } 269 270 var reason string // reason, if any, that the function was not inlined 271 if base.Flag.LowerM > 1 || logopt.Enabled() { 272 defer func() { 273 if reason != "" { 274 if base.Flag.LowerM > 1 { 275 fmt.Printf("%v: cannot inline %v: %s\n", ir.Line(fn), fn.Nname, reason) 276 } 277 if logopt.Enabled() { 278 logopt.LogOpt(fn.Pos(), "cannotInlineFunction", "inline", ir.FuncName(fn), reason) 279 } 280 } 281 }() 282 } 283 284 reason = InlineImpossible(fn) 285 if reason != "" { 286 return 287 } 288 if fn.Typecheck() == 0 { 289 base.Fatalf("CanInline on non-typechecked function %v", fn) 290 } 291 292 n := fn.Nname 293 if n.Func.InlinabilityChecked() { 294 return 295 } 296 defer n.Func.SetInlinabilityChecked(true) 297 298 cc := int32(inlineExtraCallCost) 299 if base.Flag.LowerL == 4 { 300 cc = 1 // this appears to yield better performance than 0. 301 } 302 303 // Used a "relaxed" inline budget if the new inliner is enabled. 304 relaxed := inlheur.Enabled() 305 306 // Compute the inline budget for this func. 307 budget := inlineBudget(fn, profile, relaxed, base.Debug.PGODebug > 0) 308 309 // At this point in the game the function we're looking at may 310 // have "stale" autos, vars that still appear in the Dcl list, but 311 // which no longer have any uses in the function body (due to 312 // elimination by deadcode). We'd like to exclude these dead vars 313 // when creating the "Inline.Dcl" field below; to accomplish this, 314 // the hairyVisitor below builds up a map of used/referenced 315 // locals, and we use this map to produce a pruned Inline.Dcl 316 // list. See issue 25459 for more context. 317 318 visitor := hairyVisitor{ 319 curFunc: fn, 320 isBigFunc: IsBigFunc(fn), 321 budget: budget, 322 maxBudget: budget, 323 extraCallCost: cc, 324 profile: profile, 325 } 326 if visitor.tooHairy(fn) { 327 reason = visitor.reason 328 return 329 } 330 331 n.Func.Inl = &ir.Inline{ 332 Cost: budget - visitor.budget, 333 Dcl: pruneUnusedAutos(n.Func.Dcl, &visitor), 334 HaveDcl: true, 335 CanDelayResults: canDelayResults(fn), 336 } 337 if base.Flag.LowerM != 0 || logopt.Enabled() { 338 noteInlinableFunc(n, fn, budget-visitor.budget) 339 } 340} 341 342// noteInlinableFunc issues a message to the user that the specified 343// function is inlinable. 344func noteInlinableFunc(n *ir.Name, fn *ir.Func, cost int32) { 345 if base.Flag.LowerM > 1 { 346 fmt.Printf("%v: can inline %v with cost %d as: %v { %v }\n", ir.Line(fn), n, cost, fn.Type(), ir.Nodes(fn.Body)) 347 } else if base.Flag.LowerM != 0 { 348 fmt.Printf("%v: can inline %v\n", ir.Line(fn), n) 349 } 350 // JSON optimization log output. 351 if logopt.Enabled() { 352 logopt.LogOpt(fn.Pos(), "canInlineFunction", "inline", ir.FuncName(fn), fmt.Sprintf("cost: %d", cost)) 353 } 354} 355 356// InlineImpossible returns a non-empty reason string if fn is impossible to 357// inline regardless of cost or contents. 358func InlineImpossible(fn *ir.Func) string { 359 var reason string // reason, if any, that the function can not be inlined. 360 if fn.Nname == nil { 361 reason = "no name" 362 return reason 363 } 364 365 // If marked "go:noinline", don't inline. 366 if fn.Pragma&ir.Noinline != 0 { 367 reason = "marked go:noinline" 368 return reason 369 } 370 371 // If marked "go:norace" and -race compilation, don't inline. 372 if base.Flag.Race && fn.Pragma&ir.Norace != 0 { 373 reason = "marked go:norace with -race compilation" 374 return reason 375 } 376 377 // If marked "go:nocheckptr" and -d checkptr compilation, don't inline. 378 if base.Debug.Checkptr != 0 && fn.Pragma&ir.NoCheckPtr != 0 { 379 reason = "marked go:nocheckptr" 380 return reason 381 } 382 383 // If marked "go:cgo_unsafe_args", don't inline, since the function 384 // makes assumptions about its argument frame layout. 385 if fn.Pragma&ir.CgoUnsafeArgs != 0 { 386 reason = "marked go:cgo_unsafe_args" 387 return reason 388 } 389 390 // If marked as "go:uintptrkeepalive", don't inline, since the keep 391 // alive information is lost during inlining. 392 // 393 // TODO(prattmic): This is handled on calls during escape analysis, 394 // which is after inlining. Move prior to inlining so the keep-alive is 395 // maintained after inlining. 396 if fn.Pragma&ir.UintptrKeepAlive != 0 { 397 reason = "marked as having a keep-alive uintptr argument" 398 return reason 399 } 400 401 // If marked as "go:uintptrescapes", don't inline, since the escape 402 // information is lost during inlining. 403 if fn.Pragma&ir.UintptrEscapes != 0 { 404 reason = "marked as having an escaping uintptr argument" 405 return reason 406 } 407 408 // The nowritebarrierrec checker currently works at function 409 // granularity, so inlining yeswritebarrierrec functions can confuse it 410 // (#22342). As a workaround, disallow inlining them for now. 411 if fn.Pragma&ir.Yeswritebarrierrec != 0 { 412 reason = "marked go:yeswritebarrierrec" 413 return reason 414 } 415 416 // If a local function has no fn.Body (is defined outside of Go), cannot inline it. 417 // Imported functions don't have fn.Body but might have inline body in fn.Inl. 418 if len(fn.Body) == 0 && !typecheck.HaveInlineBody(fn) { 419 reason = "no function body" 420 return reason 421 } 422 423 return "" 424} 425 426// canDelayResults reports whether inlined calls to fn can delay 427// declaring the result parameter until the "return" statement. 428func canDelayResults(fn *ir.Func) bool { 429 // We can delay declaring+initializing result parameters if: 430 // (1) there's exactly one "return" statement in the inlined function; 431 // (2) it's not an empty return statement (#44355); and 432 // (3) the result parameters aren't named. 433 434 nreturns := 0 435 ir.VisitList(fn.Body, func(n ir.Node) { 436 if n, ok := n.(*ir.ReturnStmt); ok { 437 nreturns++ 438 if len(n.Results) == 0 { 439 nreturns++ // empty return statement (case 2) 440 } 441 } 442 }) 443 444 if nreturns != 1 { 445 return false // not exactly one return statement (case 1) 446 } 447 448 // temporaries for return values. 449 for _, param := range fn.Type().Results() { 450 if sym := param.Sym; sym != nil && !sym.IsBlank() { 451 return false // found a named result parameter (case 3) 452 } 453 } 454 455 return true 456} 457 458// hairyVisitor visits a function body to determine its inlining 459// hairiness and whether or not it can be inlined. 460type hairyVisitor struct { 461 // This is needed to access the current caller in the doNode function. 462 curFunc *ir.Func 463 isBigFunc bool 464 budget int32 465 maxBudget int32 466 reason string 467 extraCallCost int32 468 usedLocals ir.NameSet 469 do func(ir.Node) bool 470 profile *pgoir.Profile 471} 472 473func (v *hairyVisitor) tooHairy(fn *ir.Func) bool { 474 v.do = v.doNode // cache closure 475 if ir.DoChildren(fn, v.do) { 476 return true 477 } 478 if v.budget < 0 { 479 v.reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", v.maxBudget-v.budget, v.maxBudget) 480 return true 481 } 482 return false 483} 484 485// doNode visits n and its children, updates the state in v, and returns true if 486// n makes the current function too hairy for inlining. 487func (v *hairyVisitor) doNode(n ir.Node) bool { 488 if n == nil { 489 return false 490 } 491opSwitch: 492 switch n.Op() { 493 // Call is okay if inlinable and we have the budget for the body. 494 case ir.OCALLFUNC: 495 n := n.(*ir.CallExpr) 496 // Functions that call runtime.getcaller{pc,sp} can not be inlined 497 // because getcaller{pc,sp} expect a pointer to the caller's first argument. 498 // 499 // runtime.throw is a "cheap call" like panic in normal code. 500 var cheap bool 501 if n.Fun.Op() == ir.ONAME { 502 name := n.Fun.(*ir.Name) 503 if name.Class == ir.PFUNC { 504 switch fn := types.RuntimeSymName(name.Sym()); fn { 505 case "getcallerpc", "getcallersp": 506 v.reason = "call to " + fn 507 return true 508 case "throw": 509 v.budget -= inlineExtraThrowCost 510 break opSwitch 511 case "panicrangestate": 512 cheap = true 513 } 514 // Special case for reflect.noescape. It does just type 515 // conversions to appease the escape analysis, and doesn't 516 // generate code. 517 if types.ReflectSymName(name.Sym()) == "noescape" { 518 cheap = true 519 } 520 } 521 // Special case for coverage counter updates; although 522 // these correspond to real operations, we treat them as 523 // zero cost for the moment. This is due to the existence 524 // of tests that are sensitive to inlining-- if the 525 // insertion of coverage instrumentation happens to tip a 526 // given function over the threshold and move it from 527 // "inlinable" to "not-inlinable", this can cause changes 528 // in allocation behavior, which can then result in test 529 // failures (a good example is the TestAllocations in 530 // crypto/ed25519). 531 if isAtomicCoverageCounterUpdate(n) { 532 return false 533 } 534 } 535 if n.Fun.Op() == ir.OMETHEXPR { 536 if meth := ir.MethodExprName(n.Fun); meth != nil { 537 if fn := meth.Func; fn != nil { 538 s := fn.Sym() 539 if types.RuntimeSymName(s) == "heapBits.nextArena" { 540 // Special case: explicitly allow mid-stack inlining of 541 // runtime.heapBits.next even though it calls slow-path 542 // runtime.heapBits.nextArena. 543 cheap = true 544 } 545 // Special case: on architectures that can do unaligned loads, 546 // explicitly mark encoding/binary methods as cheap, 547 // because in practice they are, even though our inlining 548 // budgeting system does not see that. See issue 42958. 549 if base.Ctxt.Arch.CanMergeLoads && s.Pkg.Path == "encoding/binary" { 550 switch s.Name { 551 case "littleEndian.Uint64", "littleEndian.Uint32", "littleEndian.Uint16", 552 "bigEndian.Uint64", "bigEndian.Uint32", "bigEndian.Uint16", 553 "littleEndian.PutUint64", "littleEndian.PutUint32", "littleEndian.PutUint16", 554 "bigEndian.PutUint64", "bigEndian.PutUint32", "bigEndian.PutUint16", 555 "littleEndian.AppendUint64", "littleEndian.AppendUint32", "littleEndian.AppendUint16", 556 "bigEndian.AppendUint64", "bigEndian.AppendUint32", "bigEndian.AppendUint16": 557 cheap = true 558 } 559 } 560 } 561 } 562 } 563 564 if n.Fun.Op() == ir.ONAME { 565 name := n.Fun.(*ir.Name) 566 if name.Class == ir.PFUNC { 567 // Special case: on architectures that can do unaligned loads, 568 // explicitly mark internal/byteorder methods as cheap, 569 // because in practice they are, even though our inlining 570 // budgeting system does not see that. See issue 42958. 571 if base.Ctxt.Arch.CanMergeLoads && name.Sym().Pkg.Path == "internal/byteorder" { 572 switch name.Sym().Name { 573 case "LeUint64", "LeUint32", "LeUint16", 574 "BeUint64", "BeUint32", "BeUint16", 575 "LePutUint64", "LePutUint32", "LePutUint16", 576 "BePutUint64", "BePutUint32", "BePutUint16", 577 "LeAppendUint64", "LeAppendUint32", "LeAppendUint16", 578 "BeAppendUint64", "BeAppendUint32", "BeAppendUint16": 579 cheap = true 580 } 581 } 582 } 583 } 584 585 if cheap { 586 break // treat like any other node, that is, cost of 1 587 } 588 589 if ir.IsIntrinsicCall(n) { 590 // Treat like any other node. 591 break 592 } 593 594 if callee := inlCallee(v.curFunc, n.Fun, v.profile); callee != nil && typecheck.HaveInlineBody(callee) { 595 // Check whether we'd actually inline this call. Set 596 // log == false since we aren't actually doing inlining 597 // yet. 598 if ok, _, _ := canInlineCallExpr(v.curFunc, n, callee, v.isBigFunc, false); ok { 599 // mkinlcall would inline this call [1], so use 600 // the cost of the inline body as the cost of 601 // the call, as that is what will actually 602 // appear in the code. 603 // 604 // [1] This is almost a perfect match to the 605 // mkinlcall logic, except that 606 // canInlineCallExpr considers inlining cycles 607 // by looking at what has already been inlined. 608 // Since we haven't done any inlining yet we 609 // will miss those. 610 v.budget -= callee.Inl.Cost 611 break 612 } 613 } 614 615 // Call cost for non-leaf inlining. 616 v.budget -= v.extraCallCost 617 618 case ir.OCALLMETH: 619 base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck") 620 621 // Things that are too hairy, irrespective of the budget 622 case ir.OCALL, ir.OCALLINTER: 623 // Call cost for non-leaf inlining. 624 v.budget -= v.extraCallCost 625 626 case ir.OPANIC: 627 n := n.(*ir.UnaryExpr) 628 if n.X.Op() == ir.OCONVIFACE && n.X.(*ir.ConvExpr).Implicit() { 629 // Hack to keep reflect.flag.mustBe inlinable for TestIntendedInlining. 630 // Before CL 284412, these conversions were introduced later in the 631 // compiler, so they didn't count against inlining budget. 632 v.budget++ 633 } 634 v.budget -= inlineExtraPanicCost 635 636 case ir.ORECOVER: 637 base.FatalfAt(n.Pos(), "ORECOVER missed typecheck") 638 case ir.ORECOVERFP: 639 // recover matches the argument frame pointer to find 640 // the right panic value, so it needs an argument frame. 641 v.reason = "call to recover" 642 return true 643 644 case ir.OCLOSURE: 645 if base.Debug.InlFuncsWithClosures == 0 { 646 v.reason = "not inlining functions with closures" 647 return true 648 } 649 650 // TODO(danscales): Maybe make budget proportional to number of closure 651 // variables, e.g.: 652 //v.budget -= int32(len(n.(*ir.ClosureExpr).Func.ClosureVars) * 3) 653 // TODO(austin): However, if we're able to inline this closure into 654 // v.curFunc, then we actually pay nothing for the closure captures. We 655 // should try to account for that if we're going to account for captures. 656 v.budget -= 15 657 658 case ir.OGO, ir.ODEFER, ir.OTAILCALL: 659 v.reason = "unhandled op " + n.Op().String() 660 return true 661 662 case ir.OAPPEND: 663 v.budget -= inlineExtraAppendCost 664 665 case ir.OADDR: 666 n := n.(*ir.AddrExpr) 667 // Make "&s.f" cost 0 when f's offset is zero. 668 if dot, ok := n.X.(*ir.SelectorExpr); ok && (dot.Op() == ir.ODOT || dot.Op() == ir.ODOTPTR) { 669 if _, ok := dot.X.(*ir.Name); ok && dot.Selection.Offset == 0 { 670 v.budget += 2 // undo ir.OADDR+ir.ODOT/ir.ODOTPTR 671 } 672 } 673 674 case ir.ODEREF: 675 // *(*X)(unsafe.Pointer(&x)) is low-cost 676 n := n.(*ir.StarExpr) 677 678 ptr := n.X 679 for ptr.Op() == ir.OCONVNOP { 680 ptr = ptr.(*ir.ConvExpr).X 681 } 682 if ptr.Op() == ir.OADDR { 683 v.budget += 1 // undo half of default cost of ir.ODEREF+ir.OADDR 684 } 685 686 case ir.OCONVNOP: 687 // This doesn't produce code, but the children might. 688 v.budget++ // undo default cost 689 690 case ir.OFALL, ir.OTYPE: 691 // These nodes don't produce code; omit from inlining budget. 692 return false 693 694 case ir.OIF: 695 n := n.(*ir.IfStmt) 696 if ir.IsConst(n.Cond, constant.Bool) { 697 // This if and the condition cost nothing. 698 if doList(n.Init(), v.do) { 699 return true 700 } 701 if ir.BoolVal(n.Cond) { 702 return doList(n.Body, v.do) 703 } else { 704 return doList(n.Else, v.do) 705 } 706 } 707 708 case ir.ONAME: 709 n := n.(*ir.Name) 710 if n.Class == ir.PAUTO { 711 v.usedLocals.Add(n) 712 } 713 714 case ir.OBLOCK: 715 // The only OBLOCK we should see at this point is an empty one. 716 // In any event, let the visitList(n.List()) below take care of the statements, 717 // and don't charge for the OBLOCK itself. The ++ undoes the -- below. 718 v.budget++ 719 720 case ir.OMETHVALUE, ir.OSLICELIT: 721 v.budget-- // Hack for toolstash -cmp. 722 723 case ir.OMETHEXPR: 724 v.budget++ // Hack for toolstash -cmp. 725 726 case ir.OAS2: 727 n := n.(*ir.AssignListStmt) 728 729 // Unified IR unconditionally rewrites: 730 // 731 // a, b = f() 732 // 733 // into: 734 // 735 // DCL tmp1 736 // DCL tmp2 737 // tmp1, tmp2 = f() 738 // a, b = tmp1, tmp2 739 // 740 // so that it can insert implicit conversions as necessary. To 741 // minimize impact to the existing inlining heuristics (in 742 // particular, to avoid breaking the existing inlinability regress 743 // tests), we need to compensate for this here. 744 // 745 // See also identical logic in IsBigFunc. 746 if len(n.Rhs) > 0 { 747 if init := n.Rhs[0].Init(); len(init) == 1 { 748 if _, ok := init[0].(*ir.AssignListStmt); ok { 749 // 4 for each value, because each temporary variable now 750 // appears 3 times (DCL, LHS, RHS), plus an extra DCL node. 751 // 752 // 1 for the extra "tmp1, tmp2 = f()" assignment statement. 753 v.budget += 4*int32(len(n.Lhs)) + 1 754 } 755 } 756 } 757 758 case ir.OAS: 759 // Special case for coverage counter updates and coverage 760 // function registrations. Although these correspond to real 761 // operations, we treat them as zero cost for the moment. This 762 // is primarily due to the existence of tests that are 763 // sensitive to inlining-- if the insertion of coverage 764 // instrumentation happens to tip a given function over the 765 // threshold and move it from "inlinable" to "not-inlinable", 766 // this can cause changes in allocation behavior, which can 767 // then result in test failures (a good example is the 768 // TestAllocations in crypto/ed25519). 769 n := n.(*ir.AssignStmt) 770 if n.X.Op() == ir.OINDEX && isIndexingCoverageCounter(n.X) { 771 return false 772 } 773 } 774 775 v.budget-- 776 777 // When debugging, don't stop early, to get full cost of inlining this function 778 if v.budget < 0 && base.Flag.LowerM < 2 && !logopt.Enabled() { 779 v.reason = "too expensive" 780 return true 781 } 782 783 return ir.DoChildren(n, v.do) 784} 785 786// IsBigFunc reports whether fn is a "big" function. 787// 788// Note: The criteria for "big" is heuristic and subject to change. 789func IsBigFunc(fn *ir.Func) bool { 790 budget := inlineBigFunctionNodes 791 return ir.Any(fn, func(n ir.Node) bool { 792 // See logic in hairyVisitor.doNode, explaining unified IR's 793 // handling of "a, b = f()" assignments. 794 if n, ok := n.(*ir.AssignListStmt); ok && n.Op() == ir.OAS2 && len(n.Rhs) > 0 { 795 if init := n.Rhs[0].Init(); len(init) == 1 { 796 if _, ok := init[0].(*ir.AssignListStmt); ok { 797 budget += 4*len(n.Lhs) + 1 798 } 799 } 800 } 801 802 budget-- 803 return budget <= 0 804 }) 805} 806 807// TryInlineCall returns an inlined call expression for call, or nil 808// if inlining is not possible. 809func TryInlineCall(callerfn *ir.Func, call *ir.CallExpr, bigCaller bool, profile *pgoir.Profile) *ir.InlinedCallExpr { 810 if base.Flag.LowerL == 0 { 811 return nil 812 } 813 if call.Op() != ir.OCALLFUNC { 814 return nil 815 } 816 if call.GoDefer || call.NoInline { 817 return nil 818 } 819 820 // Prevent inlining some reflect.Value methods when using checkptr, 821 // even when package reflect was compiled without it (#35073). 822 if base.Debug.Checkptr != 0 && call.Fun.Op() == ir.OMETHEXPR { 823 if method := ir.MethodExprName(call.Fun); method != nil { 824 switch types.ReflectSymName(method.Sym()) { 825 case "Value.UnsafeAddr", "Value.Pointer": 826 return nil 827 } 828 } 829 } 830 831 if base.Flag.LowerM > 3 { 832 fmt.Printf("%v:call to func %+v\n", ir.Line(call), call.Fun) 833 } 834 if ir.IsIntrinsicCall(call) { 835 return nil 836 } 837 if fn := inlCallee(callerfn, call.Fun, profile); fn != nil && typecheck.HaveInlineBody(fn) { 838 return mkinlcall(callerfn, call, fn, bigCaller) 839 } 840 return nil 841} 842 843// inlCallee takes a function-typed expression and returns the underlying function ONAME 844// that it refers to if statically known. Otherwise, it returns nil. 845func inlCallee(caller *ir.Func, fn ir.Node, profile *pgoir.Profile) (res *ir.Func) { 846 fn = ir.StaticValue(fn) 847 switch fn.Op() { 848 case ir.OMETHEXPR: 849 fn := fn.(*ir.SelectorExpr) 850 n := ir.MethodExprName(fn) 851 // Check that receiver type matches fn.X. 852 // TODO(mdempsky): Handle implicit dereference 853 // of pointer receiver argument? 854 if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) { 855 return nil 856 } 857 return n.Func 858 case ir.ONAME: 859 fn := fn.(*ir.Name) 860 if fn.Class == ir.PFUNC { 861 return fn.Func 862 } 863 case ir.OCLOSURE: 864 fn := fn.(*ir.ClosureExpr) 865 c := fn.Func 866 if len(c.ClosureVars) != 0 && c.ClosureVars[0].Outer.Curfn != caller { 867 return nil // inliner doesn't support inlining across closure frames 868 } 869 CanInline(c, profile) 870 return c 871 } 872 return nil 873} 874 875var inlgen int 876 877// SSADumpInline gives the SSA back end a chance to dump the function 878// when producing output for debugging the compiler itself. 879var SSADumpInline = func(*ir.Func) {} 880 881// InlineCall allows the inliner implementation to be overridden. 882// If it returns nil, the function will not be inlined. 883var InlineCall = func(callerfn *ir.Func, call *ir.CallExpr, fn *ir.Func, inlIndex int) *ir.InlinedCallExpr { 884 base.Fatalf("inline.InlineCall not overridden") 885 panic("unreachable") 886} 887 888// inlineCostOK returns true if call n from caller to callee is cheap enough to 889// inline. bigCaller indicates that caller is a big function. 890// 891// In addition to the "cost OK" boolean, it also returns 892// - the "max cost" limit used to make the decision (which may differ depending on func size) 893// - the score assigned to this specific callsite 894// - whether the inlined function is "hot" according to PGO. 895func inlineCostOK(n *ir.CallExpr, caller, callee *ir.Func, bigCaller bool) (bool, int32, int32, bool) { 896 maxCost := int32(inlineMaxBudget) 897 if bigCaller { 898 // We use this to restrict inlining into very big functions. 899 // See issue 26546 and 17566. 900 maxCost = inlineBigFunctionMaxCost 901 } 902 903 metric := callee.Inl.Cost 904 if inlheur.Enabled() { 905 score, ok := inlheur.GetCallSiteScore(caller, n) 906 if ok { 907 metric = int32(score) 908 } 909 } 910 911 lineOffset := pgoir.NodeLineOffset(n, caller) 912 csi := pgoir.CallSiteInfo{LineOffset: lineOffset, Caller: caller} 913 _, hot := candHotEdgeMap[csi] 914 915 if metric <= maxCost { 916 // Simple case. Function is already cheap enough. 917 return true, 0, metric, hot 918 } 919 920 // We'll also allow inlining of hot functions below inlineHotMaxBudget, 921 // but only in small functions. 922 923 if !hot { 924 // Cold 925 return false, maxCost, metric, false 926 } 927 928 // Hot 929 930 if bigCaller { 931 if base.Debug.PGODebug > 0 { 932 fmt.Printf("hot-big check disallows inlining for call %s (cost %d) at %v in big function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller)) 933 } 934 return false, maxCost, metric, false 935 } 936 937 if metric > inlineHotMaxBudget { 938 return false, inlineHotMaxBudget, metric, false 939 } 940 941 if !base.PGOHash.MatchPosWithInfo(n.Pos(), "inline", nil) { 942 // De-selected by PGO Hash. 943 return false, maxCost, metric, false 944 } 945 946 if base.Debug.PGODebug > 0 { 947 fmt.Printf("hot-budget check allows inlining for call %s (cost %d) at %v in function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller)) 948 } 949 950 return true, 0, metric, hot 951} 952 953// canInlineCallExpr returns true if the call n from caller to callee 954// can be inlined, plus the score computed for the call expr in question, 955// and whether the callee is hot according to PGO. 956// bigCaller indicates that caller is a big function. log 957// indicates that the 'cannot inline' reason should be logged. 958// 959// Preconditions: CanInline(callee) has already been called. 960func canInlineCallExpr(callerfn *ir.Func, n *ir.CallExpr, callee *ir.Func, bigCaller bool, log bool) (bool, int32, bool) { 961 if callee.Inl == nil { 962 // callee is never inlinable. 963 if log && logopt.Enabled() { 964 logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn), 965 fmt.Sprintf("%s cannot be inlined", ir.PkgFuncName(callee))) 966 } 967 return false, 0, false 968 } 969 970 ok, maxCost, callSiteScore, hot := inlineCostOK(n, callerfn, callee, bigCaller) 971 if !ok { 972 // callee cost too high for this call site. 973 if log && logopt.Enabled() { 974 logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn), 975 fmt.Sprintf("cost %d of %s exceeds max caller cost %d", callee.Inl.Cost, ir.PkgFuncName(callee), maxCost)) 976 } 977 return false, 0, false 978 } 979 980 if callee == callerfn { 981 // Can't recursively inline a function into itself. 982 if log && logopt.Enabled() { 983 logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", ir.FuncName(callerfn))) 984 } 985 return false, 0, false 986 } 987 988 if base.Flag.Cfg.Instrumenting && types.IsNoInstrumentPkg(callee.Sym().Pkg) { 989 // Runtime package must not be instrumented. 990 // Instrument skips runtime package. However, some runtime code can be 991 // inlined into other packages and instrumented there. To avoid this, 992 // we disable inlining of runtime functions when instrumenting. 993 // The example that we observed is inlining of LockOSThread, 994 // which lead to false race reports on m contents. 995 if log && logopt.Enabled() { 996 logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn), 997 fmt.Sprintf("call to runtime function %s in instrumented build", ir.PkgFuncName(callee))) 998 } 999 return false, 0, false 1000 } 1001 1002 if base.Flag.Race && types.IsNoRacePkg(callee.Sym().Pkg) { 1003 if log && logopt.Enabled() { 1004 logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn), 1005 fmt.Sprintf(`call to into "no-race" package function %s in race build`, ir.PkgFuncName(callee))) 1006 } 1007 return false, 0, false 1008 } 1009 1010 if base.Debug.Checkptr != 0 && types.IsRuntimePkg(callee.Sym().Pkg) { 1011 // We don't intrument runtime packages for checkptr (see base/flag.go). 1012 if log && logopt.Enabled() { 1013 logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn), 1014 fmt.Sprintf(`call to into runtime package function %s in -d=checkptr build`, ir.PkgFuncName(callee))) 1015 } 1016 return false, 0, false 1017 } 1018 1019 // Check if we've already inlined this function at this particular 1020 // call site, in order to stop inlining when we reach the beginning 1021 // of a recursion cycle again. We don't inline immediately recursive 1022 // functions, but allow inlining if there is a recursion cycle of 1023 // many functions. Most likely, the inlining will stop before we 1024 // even hit the beginning of the cycle again, but this catches the 1025 // unusual case. 1026 parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex() 1027 sym := callee.Linksym() 1028 for inlIndex := parent; inlIndex >= 0; inlIndex = base.Ctxt.InlTree.Parent(inlIndex) { 1029 if base.Ctxt.InlTree.InlinedFunction(inlIndex) == sym { 1030 if log { 1031 if base.Flag.LowerM > 1 { 1032 fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", ir.Line(n), callee, ir.FuncName(callerfn)) 1033 } 1034 if logopt.Enabled() { 1035 logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn), 1036 fmt.Sprintf("repeated recursive cycle to %s", ir.PkgFuncName(callee))) 1037 } 1038 } 1039 return false, 0, false 1040 } 1041 } 1042 1043 return true, callSiteScore, hot 1044} 1045 1046// mkinlcall returns an OINLCALL node that can replace OCALLFUNC n, or 1047// nil if it cannot be inlined. callerfn is the function that contains 1048// n, and fn is the function being called. 1049// 1050// The result of mkinlcall MUST be assigned back to n, e.g. 1051// 1052// n.Left = mkinlcall(n.Left, fn, isddd) 1053func mkinlcall(callerfn *ir.Func, n *ir.CallExpr, fn *ir.Func, bigCaller bool) *ir.InlinedCallExpr { 1054 ok, score, hot := canInlineCallExpr(callerfn, n, fn, bigCaller, true) 1055 if !ok { 1056 return nil 1057 } 1058 if hot { 1059 hasHotCall[callerfn] = struct{}{} 1060 } 1061 typecheck.AssertFixedCall(n) 1062 1063 parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex() 1064 sym := fn.Linksym() 1065 inlIndex := base.Ctxt.InlTree.Add(parent, n.Pos(), sym, ir.FuncName(fn)) 1066 1067 closureInitLSym := func(n *ir.CallExpr, fn *ir.Func) { 1068 // The linker needs FuncInfo metadata for all inlined 1069 // functions. This is typically handled by gc.enqueueFunc 1070 // calling ir.InitLSym for all function declarations in 1071 // typecheck.Target.Decls (ir.UseClosure adds all closures to 1072 // Decls). 1073 // 1074 // However, non-trivial closures in Decls are ignored, and are 1075 // instead enqueued when walk of the calling function 1076 // discovers them. 1077 // 1078 // This presents a problem for direct calls to closures. 1079 // Inlining will replace the entire closure definition with its 1080 // body, which hides the closure from walk and thus suppresses 1081 // symbol creation. 1082 // 1083 // Explicitly create a symbol early in this edge case to ensure 1084 // we keep this metadata. 1085 // 1086 // TODO: Refactor to keep a reference so this can all be done 1087 // by enqueueFunc. 1088 1089 if n.Op() != ir.OCALLFUNC { 1090 // Not a standard call. 1091 return 1092 } 1093 if n.Fun.Op() != ir.OCLOSURE { 1094 // Not a direct closure call. 1095 return 1096 } 1097 1098 clo := n.Fun.(*ir.ClosureExpr) 1099 if ir.IsTrivialClosure(clo) { 1100 // enqueueFunc will handle trivial closures anyways. 1101 return 1102 } 1103 1104 ir.InitLSym(fn, true) 1105 } 1106 1107 closureInitLSym(n, fn) 1108 1109 if base.Flag.GenDwarfInl > 0 { 1110 if !sym.WasInlined() { 1111 base.Ctxt.DwFixups.SetPrecursorFunc(sym, fn) 1112 sym.Set(obj.AttrWasInlined, true) 1113 } 1114 } 1115 1116 if base.Flag.LowerM != 0 { 1117 if buildcfg.Experiment.NewInliner { 1118 fmt.Printf("%v: inlining call to %v with score %d\n", 1119 ir.Line(n), fn, score) 1120 } else { 1121 fmt.Printf("%v: inlining call to %v\n", ir.Line(n), fn) 1122 } 1123 } 1124 if base.Flag.LowerM > 2 { 1125 fmt.Printf("%v: Before inlining: %+v\n", ir.Line(n), n) 1126 } 1127 1128 res := InlineCall(callerfn, n, fn, inlIndex) 1129 1130 if res == nil { 1131 base.FatalfAt(n.Pos(), "inlining call to %v failed", fn) 1132 } 1133 1134 if base.Flag.LowerM > 2 { 1135 fmt.Printf("%v: After inlining %+v\n\n", ir.Line(res), res) 1136 } 1137 1138 if inlheur.Enabled() { 1139 inlheur.UpdateCallsiteTable(callerfn, n, res) 1140 } 1141 1142 return res 1143} 1144 1145// CalleeEffects appends any side effects from evaluating callee to init. 1146func CalleeEffects(init *ir.Nodes, callee ir.Node) { 1147 for { 1148 init.Append(ir.TakeInit(callee)...) 1149 1150 switch callee.Op() { 1151 case ir.ONAME, ir.OCLOSURE, ir.OMETHEXPR: 1152 return // done 1153 1154 case ir.OCONVNOP: 1155 conv := callee.(*ir.ConvExpr) 1156 callee = conv.X 1157 1158 case ir.OINLCALL: 1159 ic := callee.(*ir.InlinedCallExpr) 1160 init.Append(ic.Body.Take()...) 1161 callee = ic.SingleResult() 1162 1163 default: 1164 base.FatalfAt(callee.Pos(), "unexpected callee expression: %v", callee) 1165 } 1166 } 1167} 1168 1169func pruneUnusedAutos(ll []*ir.Name, vis *hairyVisitor) []*ir.Name { 1170 s := make([]*ir.Name, 0, len(ll)) 1171 for _, n := range ll { 1172 if n.Class == ir.PAUTO { 1173 if !vis.usedLocals.Has(n) { 1174 // TODO(mdempsky): Simplify code after confident that this 1175 // never happens anymore. 1176 base.FatalfAt(n.Pos(), "unused auto: %v", n) 1177 continue 1178 } 1179 } 1180 s = append(s, n) 1181 } 1182 return s 1183} 1184 1185// numNonClosures returns the number of functions in list which are not closures. 1186func numNonClosures(list []*ir.Func) int { 1187 count := 0 1188 for _, fn := range list { 1189 if fn.OClosure == nil { 1190 count++ 1191 } 1192 } 1193 return count 1194} 1195 1196func doList(list []ir.Node, do func(ir.Node) bool) bool { 1197 for _, x := range list { 1198 if x != nil { 1199 if do(x) { 1200 return true 1201 } 1202 } 1203 } 1204 return false 1205} 1206 1207// isIndexingCoverageCounter returns true if the specified node 'n' is indexing 1208// into a coverage counter array. 1209func isIndexingCoverageCounter(n ir.Node) bool { 1210 if n.Op() != ir.OINDEX { 1211 return false 1212 } 1213 ixn := n.(*ir.IndexExpr) 1214 if ixn.X.Op() != ir.ONAME || !ixn.X.Type().IsArray() { 1215 return false 1216 } 1217 nn := ixn.X.(*ir.Name) 1218 // CoverageAuxVar implies either a coverage counter or a package 1219 // ID; since the cover tool never emits code to index into ID vars 1220 // this is effectively testing whether nn is a coverage counter. 1221 return nn.CoverageAuxVar() 1222} 1223 1224// isAtomicCoverageCounterUpdate examines the specified node to 1225// determine whether it represents a call to sync/atomic.AddUint32 to 1226// increment a coverage counter. 1227func isAtomicCoverageCounterUpdate(cn *ir.CallExpr) bool { 1228 if cn.Fun.Op() != ir.ONAME { 1229 return false 1230 } 1231 name := cn.Fun.(*ir.Name) 1232 if name.Class != ir.PFUNC { 1233 return false 1234 } 1235 fn := name.Sym().Name 1236 if name.Sym().Pkg.Path != "sync/atomic" || 1237 (fn != "AddUint32" && fn != "StoreUint32") { 1238 return false 1239 } 1240 if len(cn.Args) != 2 || cn.Args[0].Op() != ir.OADDR { 1241 return false 1242 } 1243 adn := cn.Args[0].(*ir.AddrExpr) 1244 v := isIndexingCoverageCounter(adn.X) 1245 return v 1246} 1247 1248func PostProcessCallSites(profile *pgoir.Profile) { 1249 if base.Debug.DumpInlCallSiteScores != 0 { 1250 budgetCallback := func(fn *ir.Func, prof *pgoir.Profile) (int32, bool) { 1251 v := inlineBudget(fn, prof, false, false) 1252 return v, v == inlineHotMaxBudget 1253 } 1254 inlheur.DumpInlCallSiteScores(profile, budgetCallback) 1255 } 1256} 1257 1258func analyzeFuncProps(fn *ir.Func, p *pgoir.Profile) { 1259 canInline := func(fn *ir.Func) { CanInline(fn, p) } 1260 budgetForFunc := func(fn *ir.Func) int32 { 1261 return inlineBudget(fn, p, true, false) 1262 } 1263 inlheur.AnalyzeFunc(fn, canInline, budgetForFunc, inlineMaxBudget) 1264} 1265