1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4//
5// The inlining facility makes 2 passes: first CanInline determines which
6// functions are suitable for inlining, and for those that are it
7// saves a copy of the body. Then InlineCalls walks each function body to
8// expand calls to inlinable functions.
9//
10// The Debug.l flag controls the aggressiveness. Note that main() swaps level 0 and 1,
11// making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and
12// are not supported.
13//      0: disabled
14//      1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default)
15//      2: (unassigned)
16//      3: (unassigned)
17//      4: allow non-leaf functions
18//
19// At some point this may get another default and become switch-offable with -N.
20//
21// The -d typcheckinl flag enables early typechecking of all imported bodies,
22// which is useful to flush out bugs.
23//
24// The Debug.m flag enables diagnostic output.  a single -m is useful for verifying
25// which calls get inlined or not, more is for debugging, and may go away at any point.
26
27package inline
28
29import (
30	"fmt"
31	"go/constant"
32	"internal/buildcfg"
33	"strconv"
34
35	"cmd/compile/internal/base"
36	"cmd/compile/internal/inline/inlheur"
37	"cmd/compile/internal/ir"
38	"cmd/compile/internal/logopt"
39	"cmd/compile/internal/pgoir"
40	"cmd/compile/internal/typecheck"
41	"cmd/compile/internal/types"
42	"cmd/internal/obj"
43	"cmd/internal/pgo"
44)
45
46// Inlining budget parameters, gathered in one place
47const (
48	inlineMaxBudget       = 80
49	inlineExtraAppendCost = 0
50	// default is to inline if there's at most one call. -l=4 overrides this by using 1 instead.
51	inlineExtraCallCost  = 57              // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742
52	inlineExtraPanicCost = 1               // do not penalize inlining panics.
53	inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help.
54
55	inlineBigFunctionNodes   = 5000 // Functions with this many nodes are considered "big".
56	inlineBigFunctionMaxCost = 20   // Max cost of inlinee when inlining into a "big" function.
57)
58
59var (
60	// List of all hot callee nodes.
61	// TODO(prattmic): Make this non-global.
62	candHotCalleeMap = make(map[*pgoir.IRNode]struct{})
63
64	// Set of functions that contain hot call sites.
65	hasHotCall = make(map[*ir.Func]struct{})
66
67	// List of all hot call sites. CallSiteInfo.Callee is always nil.
68	// TODO(prattmic): Make this non-global.
69	candHotEdgeMap = make(map[pgoir.CallSiteInfo]struct{})
70
71	// Threshold in percentage for hot callsite inlining.
72	inlineHotCallSiteThresholdPercent float64
73
74	// Threshold in CDF percentage for hot callsite inlining,
75	// that is, for a threshold of X the hottest callsites that
76	// make up the top X% of total edge weight will be
77	// considered hot for inlining candidates.
78	inlineCDFHotCallSiteThresholdPercent = float64(99)
79
80	// Budget increased due to hotness.
81	inlineHotMaxBudget int32 = 2000
82)
83
84func IsPgoHotFunc(fn *ir.Func, profile *pgoir.Profile) bool {
85	if profile == nil {
86		return false
87	}
88	if n, ok := profile.WeightedCG.IRNodes[ir.LinkFuncName(fn)]; ok {
89		_, ok := candHotCalleeMap[n]
90		return ok
91	}
92	return false
93}
94
95func HasPgoHotInline(fn *ir.Func) bool {
96	_, has := hasHotCall[fn]
97	return has
98}
99
100// PGOInlinePrologue records the hot callsites from ir-graph.
101func PGOInlinePrologue(p *pgoir.Profile) {
102	if base.Debug.PGOInlineCDFThreshold != "" {
103		if s, err := strconv.ParseFloat(base.Debug.PGOInlineCDFThreshold, 64); err == nil && s >= 0 && s <= 100 {
104			inlineCDFHotCallSiteThresholdPercent = s
105		} else {
106			base.Fatalf("invalid PGOInlineCDFThreshold, must be between 0 and 100")
107		}
108	}
109	var hotCallsites []pgo.NamedCallEdge
110	inlineHotCallSiteThresholdPercent, hotCallsites = hotNodesFromCDF(p)
111	if base.Debug.PGODebug > 0 {
112		fmt.Printf("hot-callsite-thres-from-CDF=%v\n", inlineHotCallSiteThresholdPercent)
113	}
114
115	if x := base.Debug.PGOInlineBudget; x != 0 {
116		inlineHotMaxBudget = int32(x)
117	}
118
119	for _, n := range hotCallsites {
120		// mark inlineable callees from hot edges
121		if callee := p.WeightedCG.IRNodes[n.CalleeName]; callee != nil {
122			candHotCalleeMap[callee] = struct{}{}
123		}
124		// mark hot call sites
125		if caller := p.WeightedCG.IRNodes[n.CallerName]; caller != nil && caller.AST != nil {
126			csi := pgoir.CallSiteInfo{LineOffset: n.CallSiteOffset, Caller: caller.AST}
127			candHotEdgeMap[csi] = struct{}{}
128		}
129	}
130
131	if base.Debug.PGODebug >= 3 {
132		fmt.Printf("hot-cg before inline in dot format:")
133		p.PrintWeightedCallGraphDOT(inlineHotCallSiteThresholdPercent)
134	}
135}
136
137// hotNodesFromCDF computes an edge weight threshold and the list of hot
138// nodes that make up the given percentage of the CDF. The threshold, as
139// a percent, is the lower bound of weight for nodes to be considered hot
140// (currently only used in debug prints) (in case of equal weights,
141// comparing with the threshold may not accurately reflect which nodes are
142// considered hot).
143func hotNodesFromCDF(p *pgoir.Profile) (float64, []pgo.NamedCallEdge) {
144	cum := int64(0)
145	for i, n := range p.NamedEdgeMap.ByWeight {
146		w := p.NamedEdgeMap.Weight[n]
147		cum += w
148		if pgo.WeightInPercentage(cum, p.TotalWeight) > inlineCDFHotCallSiteThresholdPercent {
149			// nodes[:i+1] to include the very last node that makes it to go over the threshold.
150			// (Say, if the CDF threshold is 50% and one hot node takes 60% of weight, we want to
151			// include that node instead of excluding it.)
152			return pgo.WeightInPercentage(w, p.TotalWeight), p.NamedEdgeMap.ByWeight[:i+1]
153		}
154	}
155	return 0, p.NamedEdgeMap.ByWeight
156}
157
158// CanInlineFuncs computes whether a batch of functions are inlinable.
159func CanInlineFuncs(funcs []*ir.Func, profile *pgoir.Profile) {
160	if profile != nil {
161		PGOInlinePrologue(profile)
162	}
163
164	if base.Flag.LowerL == 0 {
165		return
166	}
167
168	ir.VisitFuncsBottomUp(funcs, func(funcs []*ir.Func, recursive bool) {
169		numfns := numNonClosures(funcs)
170
171		for _, fn := range funcs {
172			if !recursive || numfns > 1 {
173				// We allow inlining if there is no
174				// recursion, or the recursion cycle is
175				// across more than one function.
176				CanInline(fn, profile)
177			} else {
178				if base.Flag.LowerM > 1 && fn.OClosure == nil {
179					fmt.Printf("%v: cannot inline %v: recursive\n", ir.Line(fn), fn.Nname)
180				}
181			}
182			if inlheur.Enabled() {
183				analyzeFuncProps(fn, profile)
184			}
185		}
186	})
187}
188
189// GarbageCollectUnreferencedHiddenClosures makes a pass over all the
190// top-level (non-hidden-closure) functions looking for nested closure
191// functions that are reachable, then sweeps through the Target.Decls
192// list and marks any non-reachable hidden closure function as dead.
193// See issues #59404 and #59638 for more context.
194func GarbageCollectUnreferencedHiddenClosures() {
195
196	liveFuncs := make(map[*ir.Func]bool)
197
198	var markLiveFuncs func(fn *ir.Func)
199	markLiveFuncs = func(fn *ir.Func) {
200		if liveFuncs[fn] {
201			return
202		}
203		liveFuncs[fn] = true
204		ir.Visit(fn, func(n ir.Node) {
205			if clo, ok := n.(*ir.ClosureExpr); ok {
206				markLiveFuncs(clo.Func)
207			}
208		})
209	}
210
211	for i := 0; i < len(typecheck.Target.Funcs); i++ {
212		fn := typecheck.Target.Funcs[i]
213		if fn.IsHiddenClosure() {
214			continue
215		}
216		markLiveFuncs(fn)
217	}
218
219	for i := 0; i < len(typecheck.Target.Funcs); i++ {
220		fn := typecheck.Target.Funcs[i]
221		if !fn.IsHiddenClosure() {
222			continue
223		}
224		if fn.IsDeadcodeClosure() {
225			continue
226		}
227		if liveFuncs[fn] {
228			continue
229		}
230		fn.SetIsDeadcodeClosure(true)
231		if base.Flag.LowerM > 2 {
232			fmt.Printf("%v: unreferenced closure %v marked as dead\n", ir.Line(fn), fn)
233		}
234		if fn.Inl != nil && fn.LSym == nil {
235			ir.InitLSym(fn, true)
236		}
237	}
238}
239
240// inlineBudget determines the max budget for function 'fn' prior to
241// analyzing the hairiness of the body of 'fn'. We pass in the pgo
242// profile if available (which can change the budget), also a
243// 'relaxed' flag, which expands the budget slightly to allow for the
244// possibility that a call to the function might have its score
245// adjusted downwards. If 'verbose' is set, then print a remark where
246// we boost the budget due to PGO.
247func inlineBudget(fn *ir.Func, profile *pgoir.Profile, relaxed bool, verbose bool) int32 {
248	// Update the budget for profile-guided inlining.
249	budget := int32(inlineMaxBudget)
250	if IsPgoHotFunc(fn, profile) {
251		budget = inlineHotMaxBudget
252		if verbose {
253			fmt.Printf("hot-node enabled increased budget=%v for func=%v\n", budget, ir.PkgFuncName(fn))
254		}
255	}
256	if relaxed {
257		budget += inlheur.BudgetExpansion(inlineMaxBudget)
258	}
259	return budget
260}
261
262// CanInline determines whether fn is inlineable.
263// If so, CanInline saves copies of fn.Body and fn.Dcl in fn.Inl.
264// fn and fn.Body will already have been typechecked.
265func CanInline(fn *ir.Func, profile *pgoir.Profile) {
266	if fn.Nname == nil {
267		base.Fatalf("CanInline no nname %+v", fn)
268	}
269
270	var reason string // reason, if any, that the function was not inlined
271	if base.Flag.LowerM > 1 || logopt.Enabled() {
272		defer func() {
273			if reason != "" {
274				if base.Flag.LowerM > 1 {
275					fmt.Printf("%v: cannot inline %v: %s\n", ir.Line(fn), fn.Nname, reason)
276				}
277				if logopt.Enabled() {
278					logopt.LogOpt(fn.Pos(), "cannotInlineFunction", "inline", ir.FuncName(fn), reason)
279				}
280			}
281		}()
282	}
283
284	reason = InlineImpossible(fn)
285	if reason != "" {
286		return
287	}
288	if fn.Typecheck() == 0 {
289		base.Fatalf("CanInline on non-typechecked function %v", fn)
290	}
291
292	n := fn.Nname
293	if n.Func.InlinabilityChecked() {
294		return
295	}
296	defer n.Func.SetInlinabilityChecked(true)
297
298	cc := int32(inlineExtraCallCost)
299	if base.Flag.LowerL == 4 {
300		cc = 1 // this appears to yield better performance than 0.
301	}
302
303	// Used a "relaxed" inline budget if the new inliner is enabled.
304	relaxed := inlheur.Enabled()
305
306	// Compute the inline budget for this func.
307	budget := inlineBudget(fn, profile, relaxed, base.Debug.PGODebug > 0)
308
309	// At this point in the game the function we're looking at may
310	// have "stale" autos, vars that still appear in the Dcl list, but
311	// which no longer have any uses in the function body (due to
312	// elimination by deadcode). We'd like to exclude these dead vars
313	// when creating the "Inline.Dcl" field below; to accomplish this,
314	// the hairyVisitor below builds up a map of used/referenced
315	// locals, and we use this map to produce a pruned Inline.Dcl
316	// list. See issue 25459 for more context.
317
318	visitor := hairyVisitor{
319		curFunc:       fn,
320		isBigFunc:     IsBigFunc(fn),
321		budget:        budget,
322		maxBudget:     budget,
323		extraCallCost: cc,
324		profile:       profile,
325	}
326	if visitor.tooHairy(fn) {
327		reason = visitor.reason
328		return
329	}
330
331	n.Func.Inl = &ir.Inline{
332		Cost:            budget - visitor.budget,
333		Dcl:             pruneUnusedAutos(n.Func.Dcl, &visitor),
334		HaveDcl:         true,
335		CanDelayResults: canDelayResults(fn),
336	}
337	if base.Flag.LowerM != 0 || logopt.Enabled() {
338		noteInlinableFunc(n, fn, budget-visitor.budget)
339	}
340}
341
342// noteInlinableFunc issues a message to the user that the specified
343// function is inlinable.
344func noteInlinableFunc(n *ir.Name, fn *ir.Func, cost int32) {
345	if base.Flag.LowerM > 1 {
346		fmt.Printf("%v: can inline %v with cost %d as: %v { %v }\n", ir.Line(fn), n, cost, fn.Type(), ir.Nodes(fn.Body))
347	} else if base.Flag.LowerM != 0 {
348		fmt.Printf("%v: can inline %v\n", ir.Line(fn), n)
349	}
350	// JSON optimization log output.
351	if logopt.Enabled() {
352		logopt.LogOpt(fn.Pos(), "canInlineFunction", "inline", ir.FuncName(fn), fmt.Sprintf("cost: %d", cost))
353	}
354}
355
356// InlineImpossible returns a non-empty reason string if fn is impossible to
357// inline regardless of cost or contents.
358func InlineImpossible(fn *ir.Func) string {
359	var reason string // reason, if any, that the function can not be inlined.
360	if fn.Nname == nil {
361		reason = "no name"
362		return reason
363	}
364
365	// If marked "go:noinline", don't inline.
366	if fn.Pragma&ir.Noinline != 0 {
367		reason = "marked go:noinline"
368		return reason
369	}
370
371	// If marked "go:norace" and -race compilation, don't inline.
372	if base.Flag.Race && fn.Pragma&ir.Norace != 0 {
373		reason = "marked go:norace with -race compilation"
374		return reason
375	}
376
377	// If marked "go:nocheckptr" and -d checkptr compilation, don't inline.
378	if base.Debug.Checkptr != 0 && fn.Pragma&ir.NoCheckPtr != 0 {
379		reason = "marked go:nocheckptr"
380		return reason
381	}
382
383	// If marked "go:cgo_unsafe_args", don't inline, since the function
384	// makes assumptions about its argument frame layout.
385	if fn.Pragma&ir.CgoUnsafeArgs != 0 {
386		reason = "marked go:cgo_unsafe_args"
387		return reason
388	}
389
390	// If marked as "go:uintptrkeepalive", don't inline, since the keep
391	// alive information is lost during inlining.
392	//
393	// TODO(prattmic): This is handled on calls during escape analysis,
394	// which is after inlining. Move prior to inlining so the keep-alive is
395	// maintained after inlining.
396	if fn.Pragma&ir.UintptrKeepAlive != 0 {
397		reason = "marked as having a keep-alive uintptr argument"
398		return reason
399	}
400
401	// If marked as "go:uintptrescapes", don't inline, since the escape
402	// information is lost during inlining.
403	if fn.Pragma&ir.UintptrEscapes != 0 {
404		reason = "marked as having an escaping uintptr argument"
405		return reason
406	}
407
408	// The nowritebarrierrec checker currently works at function
409	// granularity, so inlining yeswritebarrierrec functions can confuse it
410	// (#22342). As a workaround, disallow inlining them for now.
411	if fn.Pragma&ir.Yeswritebarrierrec != 0 {
412		reason = "marked go:yeswritebarrierrec"
413		return reason
414	}
415
416	// If a local function has no fn.Body (is defined outside of Go), cannot inline it.
417	// Imported functions don't have fn.Body but might have inline body in fn.Inl.
418	if len(fn.Body) == 0 && !typecheck.HaveInlineBody(fn) {
419		reason = "no function body"
420		return reason
421	}
422
423	return ""
424}
425
426// canDelayResults reports whether inlined calls to fn can delay
427// declaring the result parameter until the "return" statement.
428func canDelayResults(fn *ir.Func) bool {
429	// We can delay declaring+initializing result parameters if:
430	// (1) there's exactly one "return" statement in the inlined function;
431	// (2) it's not an empty return statement (#44355); and
432	// (3) the result parameters aren't named.
433
434	nreturns := 0
435	ir.VisitList(fn.Body, func(n ir.Node) {
436		if n, ok := n.(*ir.ReturnStmt); ok {
437			nreturns++
438			if len(n.Results) == 0 {
439				nreturns++ // empty return statement (case 2)
440			}
441		}
442	})
443
444	if nreturns != 1 {
445		return false // not exactly one return statement (case 1)
446	}
447
448	// temporaries for return values.
449	for _, param := range fn.Type().Results() {
450		if sym := param.Sym; sym != nil && !sym.IsBlank() {
451			return false // found a named result parameter (case 3)
452		}
453	}
454
455	return true
456}
457
458// hairyVisitor visits a function body to determine its inlining
459// hairiness and whether or not it can be inlined.
460type hairyVisitor struct {
461	// This is needed to access the current caller in the doNode function.
462	curFunc       *ir.Func
463	isBigFunc     bool
464	budget        int32
465	maxBudget     int32
466	reason        string
467	extraCallCost int32
468	usedLocals    ir.NameSet
469	do            func(ir.Node) bool
470	profile       *pgoir.Profile
471}
472
473func (v *hairyVisitor) tooHairy(fn *ir.Func) bool {
474	v.do = v.doNode // cache closure
475	if ir.DoChildren(fn, v.do) {
476		return true
477	}
478	if v.budget < 0 {
479		v.reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", v.maxBudget-v.budget, v.maxBudget)
480		return true
481	}
482	return false
483}
484
485// doNode visits n and its children, updates the state in v, and returns true if
486// n makes the current function too hairy for inlining.
487func (v *hairyVisitor) doNode(n ir.Node) bool {
488	if n == nil {
489		return false
490	}
491opSwitch:
492	switch n.Op() {
493	// Call is okay if inlinable and we have the budget for the body.
494	case ir.OCALLFUNC:
495		n := n.(*ir.CallExpr)
496		// Functions that call runtime.getcaller{pc,sp} can not be inlined
497		// because getcaller{pc,sp} expect a pointer to the caller's first argument.
498		//
499		// runtime.throw is a "cheap call" like panic in normal code.
500		var cheap bool
501		if n.Fun.Op() == ir.ONAME {
502			name := n.Fun.(*ir.Name)
503			if name.Class == ir.PFUNC {
504				switch fn := types.RuntimeSymName(name.Sym()); fn {
505				case "getcallerpc", "getcallersp":
506					v.reason = "call to " + fn
507					return true
508				case "throw":
509					v.budget -= inlineExtraThrowCost
510					break opSwitch
511				case "panicrangestate":
512					cheap = true
513				}
514				// Special case for reflect.noescape. It does just type
515				// conversions to appease the escape analysis, and doesn't
516				// generate code.
517				if types.ReflectSymName(name.Sym()) == "noescape" {
518					cheap = true
519				}
520			}
521			// Special case for coverage counter updates; although
522			// these correspond to real operations, we treat them as
523			// zero cost for the moment. This is due to the existence
524			// of tests that are sensitive to inlining-- if the
525			// insertion of coverage instrumentation happens to tip a
526			// given function over the threshold and move it from
527			// "inlinable" to "not-inlinable", this can cause changes
528			// in allocation behavior, which can then result in test
529			// failures (a good example is the TestAllocations in
530			// crypto/ed25519).
531			if isAtomicCoverageCounterUpdate(n) {
532				return false
533			}
534		}
535		if n.Fun.Op() == ir.OMETHEXPR {
536			if meth := ir.MethodExprName(n.Fun); meth != nil {
537				if fn := meth.Func; fn != nil {
538					s := fn.Sym()
539					if types.RuntimeSymName(s) == "heapBits.nextArena" {
540						// Special case: explicitly allow mid-stack inlining of
541						// runtime.heapBits.next even though it calls slow-path
542						// runtime.heapBits.nextArena.
543						cheap = true
544					}
545					// Special case: on architectures that can do unaligned loads,
546					// explicitly mark encoding/binary methods as cheap,
547					// because in practice they are, even though our inlining
548					// budgeting system does not see that. See issue 42958.
549					if base.Ctxt.Arch.CanMergeLoads && s.Pkg.Path == "encoding/binary" {
550						switch s.Name {
551						case "littleEndian.Uint64", "littleEndian.Uint32", "littleEndian.Uint16",
552							"bigEndian.Uint64", "bigEndian.Uint32", "bigEndian.Uint16",
553							"littleEndian.PutUint64", "littleEndian.PutUint32", "littleEndian.PutUint16",
554							"bigEndian.PutUint64", "bigEndian.PutUint32", "bigEndian.PutUint16",
555							"littleEndian.AppendUint64", "littleEndian.AppendUint32", "littleEndian.AppendUint16",
556							"bigEndian.AppendUint64", "bigEndian.AppendUint32", "bigEndian.AppendUint16":
557							cheap = true
558						}
559					}
560				}
561			}
562		}
563
564		if n.Fun.Op() == ir.ONAME {
565			name := n.Fun.(*ir.Name)
566			if name.Class == ir.PFUNC {
567				// Special case: on architectures that can do unaligned loads,
568				// explicitly mark internal/byteorder methods as cheap,
569				// because in practice they are, even though our inlining
570				// budgeting system does not see that. See issue 42958.
571				if base.Ctxt.Arch.CanMergeLoads && name.Sym().Pkg.Path == "internal/byteorder" {
572					switch name.Sym().Name {
573					case "LeUint64", "LeUint32", "LeUint16",
574						"BeUint64", "BeUint32", "BeUint16",
575						"LePutUint64", "LePutUint32", "LePutUint16",
576						"BePutUint64", "BePutUint32", "BePutUint16",
577						"LeAppendUint64", "LeAppendUint32", "LeAppendUint16",
578						"BeAppendUint64", "BeAppendUint32", "BeAppendUint16":
579						cheap = true
580					}
581				}
582			}
583		}
584
585		if cheap {
586			break // treat like any other node, that is, cost of 1
587		}
588
589		if ir.IsIntrinsicCall(n) {
590			// Treat like any other node.
591			break
592		}
593
594		if callee := inlCallee(v.curFunc, n.Fun, v.profile); callee != nil && typecheck.HaveInlineBody(callee) {
595			// Check whether we'd actually inline this call. Set
596			// log == false since we aren't actually doing inlining
597			// yet.
598			if ok, _, _ := canInlineCallExpr(v.curFunc, n, callee, v.isBigFunc, false); ok {
599				// mkinlcall would inline this call [1], so use
600				// the cost of the inline body as the cost of
601				// the call, as that is what will actually
602				// appear in the code.
603				//
604				// [1] This is almost a perfect match to the
605				// mkinlcall logic, except that
606				// canInlineCallExpr considers inlining cycles
607				// by looking at what has already been inlined.
608				// Since we haven't done any inlining yet we
609				// will miss those.
610				v.budget -= callee.Inl.Cost
611				break
612			}
613		}
614
615		// Call cost for non-leaf inlining.
616		v.budget -= v.extraCallCost
617
618	case ir.OCALLMETH:
619		base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck")
620
621	// Things that are too hairy, irrespective of the budget
622	case ir.OCALL, ir.OCALLINTER:
623		// Call cost for non-leaf inlining.
624		v.budget -= v.extraCallCost
625
626	case ir.OPANIC:
627		n := n.(*ir.UnaryExpr)
628		if n.X.Op() == ir.OCONVIFACE && n.X.(*ir.ConvExpr).Implicit() {
629			// Hack to keep reflect.flag.mustBe inlinable for TestIntendedInlining.
630			// Before CL 284412, these conversions were introduced later in the
631			// compiler, so they didn't count against inlining budget.
632			v.budget++
633		}
634		v.budget -= inlineExtraPanicCost
635
636	case ir.ORECOVER:
637		base.FatalfAt(n.Pos(), "ORECOVER missed typecheck")
638	case ir.ORECOVERFP:
639		// recover matches the argument frame pointer to find
640		// the right panic value, so it needs an argument frame.
641		v.reason = "call to recover"
642		return true
643
644	case ir.OCLOSURE:
645		if base.Debug.InlFuncsWithClosures == 0 {
646			v.reason = "not inlining functions with closures"
647			return true
648		}
649
650		// TODO(danscales): Maybe make budget proportional to number of closure
651		// variables, e.g.:
652		//v.budget -= int32(len(n.(*ir.ClosureExpr).Func.ClosureVars) * 3)
653		// TODO(austin): However, if we're able to inline this closure into
654		// v.curFunc, then we actually pay nothing for the closure captures. We
655		// should try to account for that if we're going to account for captures.
656		v.budget -= 15
657
658	case ir.OGO, ir.ODEFER, ir.OTAILCALL:
659		v.reason = "unhandled op " + n.Op().String()
660		return true
661
662	case ir.OAPPEND:
663		v.budget -= inlineExtraAppendCost
664
665	case ir.OADDR:
666		n := n.(*ir.AddrExpr)
667		// Make "&s.f" cost 0 when f's offset is zero.
668		if dot, ok := n.X.(*ir.SelectorExpr); ok && (dot.Op() == ir.ODOT || dot.Op() == ir.ODOTPTR) {
669			if _, ok := dot.X.(*ir.Name); ok && dot.Selection.Offset == 0 {
670				v.budget += 2 // undo ir.OADDR+ir.ODOT/ir.ODOTPTR
671			}
672		}
673
674	case ir.ODEREF:
675		// *(*X)(unsafe.Pointer(&x)) is low-cost
676		n := n.(*ir.StarExpr)
677
678		ptr := n.X
679		for ptr.Op() == ir.OCONVNOP {
680			ptr = ptr.(*ir.ConvExpr).X
681		}
682		if ptr.Op() == ir.OADDR {
683			v.budget += 1 // undo half of default cost of ir.ODEREF+ir.OADDR
684		}
685
686	case ir.OCONVNOP:
687		// This doesn't produce code, but the children might.
688		v.budget++ // undo default cost
689
690	case ir.OFALL, ir.OTYPE:
691		// These nodes don't produce code; omit from inlining budget.
692		return false
693
694	case ir.OIF:
695		n := n.(*ir.IfStmt)
696		if ir.IsConst(n.Cond, constant.Bool) {
697			// This if and the condition cost nothing.
698			if doList(n.Init(), v.do) {
699				return true
700			}
701			if ir.BoolVal(n.Cond) {
702				return doList(n.Body, v.do)
703			} else {
704				return doList(n.Else, v.do)
705			}
706		}
707
708	case ir.ONAME:
709		n := n.(*ir.Name)
710		if n.Class == ir.PAUTO {
711			v.usedLocals.Add(n)
712		}
713
714	case ir.OBLOCK:
715		// The only OBLOCK we should see at this point is an empty one.
716		// In any event, let the visitList(n.List()) below take care of the statements,
717		// and don't charge for the OBLOCK itself. The ++ undoes the -- below.
718		v.budget++
719
720	case ir.OMETHVALUE, ir.OSLICELIT:
721		v.budget-- // Hack for toolstash -cmp.
722
723	case ir.OMETHEXPR:
724		v.budget++ // Hack for toolstash -cmp.
725
726	case ir.OAS2:
727		n := n.(*ir.AssignListStmt)
728
729		// Unified IR unconditionally rewrites:
730		//
731		//	a, b = f()
732		//
733		// into:
734		//
735		//	DCL tmp1
736		//	DCL tmp2
737		//	tmp1, tmp2 = f()
738		//	a, b = tmp1, tmp2
739		//
740		// so that it can insert implicit conversions as necessary. To
741		// minimize impact to the existing inlining heuristics (in
742		// particular, to avoid breaking the existing inlinability regress
743		// tests), we need to compensate for this here.
744		//
745		// See also identical logic in IsBigFunc.
746		if len(n.Rhs) > 0 {
747			if init := n.Rhs[0].Init(); len(init) == 1 {
748				if _, ok := init[0].(*ir.AssignListStmt); ok {
749					// 4 for each value, because each temporary variable now
750					// appears 3 times (DCL, LHS, RHS), plus an extra DCL node.
751					//
752					// 1 for the extra "tmp1, tmp2 = f()" assignment statement.
753					v.budget += 4*int32(len(n.Lhs)) + 1
754				}
755			}
756		}
757
758	case ir.OAS:
759		// Special case for coverage counter updates and coverage
760		// function registrations. Although these correspond to real
761		// operations, we treat them as zero cost for the moment. This
762		// is primarily due to the existence of tests that are
763		// sensitive to inlining-- if the insertion of coverage
764		// instrumentation happens to tip a given function over the
765		// threshold and move it from "inlinable" to "not-inlinable",
766		// this can cause changes in allocation behavior, which can
767		// then result in test failures (a good example is the
768		// TestAllocations in crypto/ed25519).
769		n := n.(*ir.AssignStmt)
770		if n.X.Op() == ir.OINDEX && isIndexingCoverageCounter(n.X) {
771			return false
772		}
773	}
774
775	v.budget--
776
777	// When debugging, don't stop early, to get full cost of inlining this function
778	if v.budget < 0 && base.Flag.LowerM < 2 && !logopt.Enabled() {
779		v.reason = "too expensive"
780		return true
781	}
782
783	return ir.DoChildren(n, v.do)
784}
785
786// IsBigFunc reports whether fn is a "big" function.
787//
788// Note: The criteria for "big" is heuristic and subject to change.
789func IsBigFunc(fn *ir.Func) bool {
790	budget := inlineBigFunctionNodes
791	return ir.Any(fn, func(n ir.Node) bool {
792		// See logic in hairyVisitor.doNode, explaining unified IR's
793		// handling of "a, b = f()" assignments.
794		if n, ok := n.(*ir.AssignListStmt); ok && n.Op() == ir.OAS2 && len(n.Rhs) > 0 {
795			if init := n.Rhs[0].Init(); len(init) == 1 {
796				if _, ok := init[0].(*ir.AssignListStmt); ok {
797					budget += 4*len(n.Lhs) + 1
798				}
799			}
800		}
801
802		budget--
803		return budget <= 0
804	})
805}
806
807// TryInlineCall returns an inlined call expression for call, or nil
808// if inlining is not possible.
809func TryInlineCall(callerfn *ir.Func, call *ir.CallExpr, bigCaller bool, profile *pgoir.Profile) *ir.InlinedCallExpr {
810	if base.Flag.LowerL == 0 {
811		return nil
812	}
813	if call.Op() != ir.OCALLFUNC {
814		return nil
815	}
816	if call.GoDefer || call.NoInline {
817		return nil
818	}
819
820	// Prevent inlining some reflect.Value methods when using checkptr,
821	// even when package reflect was compiled without it (#35073).
822	if base.Debug.Checkptr != 0 && call.Fun.Op() == ir.OMETHEXPR {
823		if method := ir.MethodExprName(call.Fun); method != nil {
824			switch types.ReflectSymName(method.Sym()) {
825			case "Value.UnsafeAddr", "Value.Pointer":
826				return nil
827			}
828		}
829	}
830
831	if base.Flag.LowerM > 3 {
832		fmt.Printf("%v:call to func %+v\n", ir.Line(call), call.Fun)
833	}
834	if ir.IsIntrinsicCall(call) {
835		return nil
836	}
837	if fn := inlCallee(callerfn, call.Fun, profile); fn != nil && typecheck.HaveInlineBody(fn) {
838		return mkinlcall(callerfn, call, fn, bigCaller)
839	}
840	return nil
841}
842
843// inlCallee takes a function-typed expression and returns the underlying function ONAME
844// that it refers to if statically known. Otherwise, it returns nil.
845func inlCallee(caller *ir.Func, fn ir.Node, profile *pgoir.Profile) (res *ir.Func) {
846	fn = ir.StaticValue(fn)
847	switch fn.Op() {
848	case ir.OMETHEXPR:
849		fn := fn.(*ir.SelectorExpr)
850		n := ir.MethodExprName(fn)
851		// Check that receiver type matches fn.X.
852		// TODO(mdempsky): Handle implicit dereference
853		// of pointer receiver argument?
854		if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) {
855			return nil
856		}
857		return n.Func
858	case ir.ONAME:
859		fn := fn.(*ir.Name)
860		if fn.Class == ir.PFUNC {
861			return fn.Func
862		}
863	case ir.OCLOSURE:
864		fn := fn.(*ir.ClosureExpr)
865		c := fn.Func
866		if len(c.ClosureVars) != 0 && c.ClosureVars[0].Outer.Curfn != caller {
867			return nil // inliner doesn't support inlining across closure frames
868		}
869		CanInline(c, profile)
870		return c
871	}
872	return nil
873}
874
875var inlgen int
876
877// SSADumpInline gives the SSA back end a chance to dump the function
878// when producing output for debugging the compiler itself.
879var SSADumpInline = func(*ir.Func) {}
880
881// InlineCall allows the inliner implementation to be overridden.
882// If it returns nil, the function will not be inlined.
883var InlineCall = func(callerfn *ir.Func, call *ir.CallExpr, fn *ir.Func, inlIndex int) *ir.InlinedCallExpr {
884	base.Fatalf("inline.InlineCall not overridden")
885	panic("unreachable")
886}
887
888// inlineCostOK returns true if call n from caller to callee is cheap enough to
889// inline. bigCaller indicates that caller is a big function.
890//
891// In addition to the "cost OK" boolean, it also returns
892//   - the "max cost" limit used to make the decision (which may differ depending on func size)
893//   - the score assigned to this specific callsite
894//   - whether the inlined function is "hot" according to PGO.
895func inlineCostOK(n *ir.CallExpr, caller, callee *ir.Func, bigCaller bool) (bool, int32, int32, bool) {
896	maxCost := int32(inlineMaxBudget)
897	if bigCaller {
898		// We use this to restrict inlining into very big functions.
899		// See issue 26546 and 17566.
900		maxCost = inlineBigFunctionMaxCost
901	}
902
903	metric := callee.Inl.Cost
904	if inlheur.Enabled() {
905		score, ok := inlheur.GetCallSiteScore(caller, n)
906		if ok {
907			metric = int32(score)
908		}
909	}
910
911	lineOffset := pgoir.NodeLineOffset(n, caller)
912	csi := pgoir.CallSiteInfo{LineOffset: lineOffset, Caller: caller}
913	_, hot := candHotEdgeMap[csi]
914
915	if metric <= maxCost {
916		// Simple case. Function is already cheap enough.
917		return true, 0, metric, hot
918	}
919
920	// We'll also allow inlining of hot functions below inlineHotMaxBudget,
921	// but only in small functions.
922
923	if !hot {
924		// Cold
925		return false, maxCost, metric, false
926	}
927
928	// Hot
929
930	if bigCaller {
931		if base.Debug.PGODebug > 0 {
932			fmt.Printf("hot-big check disallows inlining for call %s (cost %d) at %v in big function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller))
933		}
934		return false, maxCost, metric, false
935	}
936
937	if metric > inlineHotMaxBudget {
938		return false, inlineHotMaxBudget, metric, false
939	}
940
941	if !base.PGOHash.MatchPosWithInfo(n.Pos(), "inline", nil) {
942		// De-selected by PGO Hash.
943		return false, maxCost, metric, false
944	}
945
946	if base.Debug.PGODebug > 0 {
947		fmt.Printf("hot-budget check allows inlining for call %s (cost %d) at %v in function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller))
948	}
949
950	return true, 0, metric, hot
951}
952
953// canInlineCallExpr returns true if the call n from caller to callee
954// can be inlined, plus the score computed for the call expr in question,
955// and whether the callee is hot according to PGO.
956// bigCaller indicates that caller is a big function. log
957// indicates that the 'cannot inline' reason should be logged.
958//
959// Preconditions: CanInline(callee) has already been called.
960func canInlineCallExpr(callerfn *ir.Func, n *ir.CallExpr, callee *ir.Func, bigCaller bool, log bool) (bool, int32, bool) {
961	if callee.Inl == nil {
962		// callee is never inlinable.
963		if log && logopt.Enabled() {
964			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
965				fmt.Sprintf("%s cannot be inlined", ir.PkgFuncName(callee)))
966		}
967		return false, 0, false
968	}
969
970	ok, maxCost, callSiteScore, hot := inlineCostOK(n, callerfn, callee, bigCaller)
971	if !ok {
972		// callee cost too high for this call site.
973		if log && logopt.Enabled() {
974			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
975				fmt.Sprintf("cost %d of %s exceeds max caller cost %d", callee.Inl.Cost, ir.PkgFuncName(callee), maxCost))
976		}
977		return false, 0, false
978	}
979
980	if callee == callerfn {
981		// Can't recursively inline a function into itself.
982		if log && logopt.Enabled() {
983			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", ir.FuncName(callerfn)))
984		}
985		return false, 0, false
986	}
987
988	if base.Flag.Cfg.Instrumenting && types.IsNoInstrumentPkg(callee.Sym().Pkg) {
989		// Runtime package must not be instrumented.
990		// Instrument skips runtime package. However, some runtime code can be
991		// inlined into other packages and instrumented there. To avoid this,
992		// we disable inlining of runtime functions when instrumenting.
993		// The example that we observed is inlining of LockOSThread,
994		// which lead to false race reports on m contents.
995		if log && logopt.Enabled() {
996			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
997				fmt.Sprintf("call to runtime function %s in instrumented build", ir.PkgFuncName(callee)))
998		}
999		return false, 0, false
1000	}
1001
1002	if base.Flag.Race && types.IsNoRacePkg(callee.Sym().Pkg) {
1003		if log && logopt.Enabled() {
1004			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
1005				fmt.Sprintf(`call to into "no-race" package function %s in race build`, ir.PkgFuncName(callee)))
1006		}
1007		return false, 0, false
1008	}
1009
1010	if base.Debug.Checkptr != 0 && types.IsRuntimePkg(callee.Sym().Pkg) {
1011		// We don't intrument runtime packages for checkptr (see base/flag.go).
1012		if log && logopt.Enabled() {
1013			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
1014				fmt.Sprintf(`call to into runtime package function %s in -d=checkptr build`, ir.PkgFuncName(callee)))
1015		}
1016		return false, 0, false
1017	}
1018
1019	// Check if we've already inlined this function at this particular
1020	// call site, in order to stop inlining when we reach the beginning
1021	// of a recursion cycle again. We don't inline immediately recursive
1022	// functions, but allow inlining if there is a recursion cycle of
1023	// many functions. Most likely, the inlining will stop before we
1024	// even hit the beginning of the cycle again, but this catches the
1025	// unusual case.
1026	parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex()
1027	sym := callee.Linksym()
1028	for inlIndex := parent; inlIndex >= 0; inlIndex = base.Ctxt.InlTree.Parent(inlIndex) {
1029		if base.Ctxt.InlTree.InlinedFunction(inlIndex) == sym {
1030			if log {
1031				if base.Flag.LowerM > 1 {
1032					fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", ir.Line(n), callee, ir.FuncName(callerfn))
1033				}
1034				if logopt.Enabled() {
1035					logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
1036						fmt.Sprintf("repeated recursive cycle to %s", ir.PkgFuncName(callee)))
1037				}
1038			}
1039			return false, 0, false
1040		}
1041	}
1042
1043	return true, callSiteScore, hot
1044}
1045
1046// mkinlcall returns an OINLCALL node that can replace OCALLFUNC n, or
1047// nil if it cannot be inlined. callerfn is the function that contains
1048// n, and fn is the function being called.
1049//
1050// The result of mkinlcall MUST be assigned back to n, e.g.
1051//
1052//	n.Left = mkinlcall(n.Left, fn, isddd)
1053func mkinlcall(callerfn *ir.Func, n *ir.CallExpr, fn *ir.Func, bigCaller bool) *ir.InlinedCallExpr {
1054	ok, score, hot := canInlineCallExpr(callerfn, n, fn, bigCaller, true)
1055	if !ok {
1056		return nil
1057	}
1058	if hot {
1059		hasHotCall[callerfn] = struct{}{}
1060	}
1061	typecheck.AssertFixedCall(n)
1062
1063	parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex()
1064	sym := fn.Linksym()
1065	inlIndex := base.Ctxt.InlTree.Add(parent, n.Pos(), sym, ir.FuncName(fn))
1066
1067	closureInitLSym := func(n *ir.CallExpr, fn *ir.Func) {
1068		// The linker needs FuncInfo metadata for all inlined
1069		// functions. This is typically handled by gc.enqueueFunc
1070		// calling ir.InitLSym for all function declarations in
1071		// typecheck.Target.Decls (ir.UseClosure adds all closures to
1072		// Decls).
1073		//
1074		// However, non-trivial closures in Decls are ignored, and are
1075		// instead enqueued when walk of the calling function
1076		// discovers them.
1077		//
1078		// This presents a problem for direct calls to closures.
1079		// Inlining will replace the entire closure definition with its
1080		// body, which hides the closure from walk and thus suppresses
1081		// symbol creation.
1082		//
1083		// Explicitly create a symbol early in this edge case to ensure
1084		// we keep this metadata.
1085		//
1086		// TODO: Refactor to keep a reference so this can all be done
1087		// by enqueueFunc.
1088
1089		if n.Op() != ir.OCALLFUNC {
1090			// Not a standard call.
1091			return
1092		}
1093		if n.Fun.Op() != ir.OCLOSURE {
1094			// Not a direct closure call.
1095			return
1096		}
1097
1098		clo := n.Fun.(*ir.ClosureExpr)
1099		if ir.IsTrivialClosure(clo) {
1100			// enqueueFunc will handle trivial closures anyways.
1101			return
1102		}
1103
1104		ir.InitLSym(fn, true)
1105	}
1106
1107	closureInitLSym(n, fn)
1108
1109	if base.Flag.GenDwarfInl > 0 {
1110		if !sym.WasInlined() {
1111			base.Ctxt.DwFixups.SetPrecursorFunc(sym, fn)
1112			sym.Set(obj.AttrWasInlined, true)
1113		}
1114	}
1115
1116	if base.Flag.LowerM != 0 {
1117		if buildcfg.Experiment.NewInliner {
1118			fmt.Printf("%v: inlining call to %v with score %d\n",
1119				ir.Line(n), fn, score)
1120		} else {
1121			fmt.Printf("%v: inlining call to %v\n", ir.Line(n), fn)
1122		}
1123	}
1124	if base.Flag.LowerM > 2 {
1125		fmt.Printf("%v: Before inlining: %+v\n", ir.Line(n), n)
1126	}
1127
1128	res := InlineCall(callerfn, n, fn, inlIndex)
1129
1130	if res == nil {
1131		base.FatalfAt(n.Pos(), "inlining call to %v failed", fn)
1132	}
1133
1134	if base.Flag.LowerM > 2 {
1135		fmt.Printf("%v: After inlining %+v\n\n", ir.Line(res), res)
1136	}
1137
1138	if inlheur.Enabled() {
1139		inlheur.UpdateCallsiteTable(callerfn, n, res)
1140	}
1141
1142	return res
1143}
1144
1145// CalleeEffects appends any side effects from evaluating callee to init.
1146func CalleeEffects(init *ir.Nodes, callee ir.Node) {
1147	for {
1148		init.Append(ir.TakeInit(callee)...)
1149
1150		switch callee.Op() {
1151		case ir.ONAME, ir.OCLOSURE, ir.OMETHEXPR:
1152			return // done
1153
1154		case ir.OCONVNOP:
1155			conv := callee.(*ir.ConvExpr)
1156			callee = conv.X
1157
1158		case ir.OINLCALL:
1159			ic := callee.(*ir.InlinedCallExpr)
1160			init.Append(ic.Body.Take()...)
1161			callee = ic.SingleResult()
1162
1163		default:
1164			base.FatalfAt(callee.Pos(), "unexpected callee expression: %v", callee)
1165		}
1166	}
1167}
1168
1169func pruneUnusedAutos(ll []*ir.Name, vis *hairyVisitor) []*ir.Name {
1170	s := make([]*ir.Name, 0, len(ll))
1171	for _, n := range ll {
1172		if n.Class == ir.PAUTO {
1173			if !vis.usedLocals.Has(n) {
1174				// TODO(mdempsky): Simplify code after confident that this
1175				// never happens anymore.
1176				base.FatalfAt(n.Pos(), "unused auto: %v", n)
1177				continue
1178			}
1179		}
1180		s = append(s, n)
1181	}
1182	return s
1183}
1184
1185// numNonClosures returns the number of functions in list which are not closures.
1186func numNonClosures(list []*ir.Func) int {
1187	count := 0
1188	for _, fn := range list {
1189		if fn.OClosure == nil {
1190			count++
1191		}
1192	}
1193	return count
1194}
1195
1196func doList(list []ir.Node, do func(ir.Node) bool) bool {
1197	for _, x := range list {
1198		if x != nil {
1199			if do(x) {
1200				return true
1201			}
1202		}
1203	}
1204	return false
1205}
1206
1207// isIndexingCoverageCounter returns true if the specified node 'n' is indexing
1208// into a coverage counter array.
1209func isIndexingCoverageCounter(n ir.Node) bool {
1210	if n.Op() != ir.OINDEX {
1211		return false
1212	}
1213	ixn := n.(*ir.IndexExpr)
1214	if ixn.X.Op() != ir.ONAME || !ixn.X.Type().IsArray() {
1215		return false
1216	}
1217	nn := ixn.X.(*ir.Name)
1218	// CoverageAuxVar implies either a coverage counter or a package
1219	// ID; since the cover tool never emits code to index into ID vars
1220	// this is effectively testing whether nn is a coverage counter.
1221	return nn.CoverageAuxVar()
1222}
1223
1224// isAtomicCoverageCounterUpdate examines the specified node to
1225// determine whether it represents a call to sync/atomic.AddUint32 to
1226// increment a coverage counter.
1227func isAtomicCoverageCounterUpdate(cn *ir.CallExpr) bool {
1228	if cn.Fun.Op() != ir.ONAME {
1229		return false
1230	}
1231	name := cn.Fun.(*ir.Name)
1232	if name.Class != ir.PFUNC {
1233		return false
1234	}
1235	fn := name.Sym().Name
1236	if name.Sym().Pkg.Path != "sync/atomic" ||
1237		(fn != "AddUint32" && fn != "StoreUint32") {
1238		return false
1239	}
1240	if len(cn.Args) != 2 || cn.Args[0].Op() != ir.OADDR {
1241		return false
1242	}
1243	adn := cn.Args[0].(*ir.AddrExpr)
1244	v := isIndexingCoverageCounter(adn.X)
1245	return v
1246}
1247
1248func PostProcessCallSites(profile *pgoir.Profile) {
1249	if base.Debug.DumpInlCallSiteScores != 0 {
1250		budgetCallback := func(fn *ir.Func, prof *pgoir.Profile) (int32, bool) {
1251			v := inlineBudget(fn, prof, false, false)
1252			return v, v == inlineHotMaxBudget
1253		}
1254		inlheur.DumpInlCallSiteScores(profile, budgetCallback)
1255	}
1256}
1257
1258func analyzeFuncProps(fn *ir.Func, p *pgoir.Profile) {
1259	canInline := func(fn *ir.Func) { CanInline(fn, p) }
1260	budgetForFunc := func(fn *ir.Func) int32 {
1261		return inlineBudget(fn, p, true, false)
1262	}
1263	inlheur.AnalyzeFunc(fn, canInline, budgetForFunc, inlineMaxBudget)
1264}
1265