1// Copyright 2020 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package abi 6 7import ( 8 "cmd/compile/internal/base" 9 "cmd/compile/internal/ir" 10 "cmd/compile/internal/types" 11 "cmd/internal/obj" 12 "cmd/internal/src" 13 "fmt" 14 "math" 15 "sync" 16) 17 18//...................................................................... 19// 20// Public/exported bits of the ABI utilities. 21// 22 23// ABIParamResultInfo stores the results of processing a given 24// function type to compute stack layout and register assignments. For 25// each input and output parameter we capture whether the param was 26// register-assigned (and to which register(s)) or the stack offset 27// for the param if is not going to be passed in registers according 28// to the rules in the Go internal ABI specification (1.17). 29type ABIParamResultInfo struct { 30 inparams []ABIParamAssignment // Includes receiver for method calls. Does NOT include hidden closure pointer. 31 outparams []ABIParamAssignment 32 offsetToSpillArea int64 33 spillAreaSize int64 34 inRegistersUsed int 35 outRegistersUsed int 36 config *ABIConfig // to enable String() method 37} 38 39func (a *ABIParamResultInfo) Config() *ABIConfig { 40 return a.config 41} 42 43func (a *ABIParamResultInfo) InParams() []ABIParamAssignment { 44 return a.inparams 45} 46 47func (a *ABIParamResultInfo) OutParams() []ABIParamAssignment { 48 return a.outparams 49} 50 51func (a *ABIParamResultInfo) InRegistersUsed() int { 52 return a.inRegistersUsed 53} 54 55func (a *ABIParamResultInfo) OutRegistersUsed() int { 56 return a.outRegistersUsed 57} 58 59func (a *ABIParamResultInfo) InParam(i int) *ABIParamAssignment { 60 return &a.inparams[i] 61} 62 63func (a *ABIParamResultInfo) OutParam(i int) *ABIParamAssignment { 64 return &a.outparams[i] 65} 66 67func (a *ABIParamResultInfo) SpillAreaOffset() int64 { 68 return a.offsetToSpillArea 69} 70 71func (a *ABIParamResultInfo) SpillAreaSize() int64 { 72 return a.spillAreaSize 73} 74 75// ArgWidth returns the amount of stack needed for all the inputs 76// and outputs of a function or method, including ABI-defined parameter 77// slots and ABI-defined spill slots for register-resident parameters. 78// The name is inherited from (*Type).ArgWidth(), which it replaces. 79func (a *ABIParamResultInfo) ArgWidth() int64 { 80 return a.spillAreaSize + a.offsetToSpillArea - a.config.LocalsOffset() 81} 82 83// RegIndex stores the index into the set of machine registers used by 84// the ABI on a specific architecture for parameter passing. RegIndex 85// values 0 through N-1 (where N is the number of integer registers 86// used for param passing according to the ABI rules) describe integer 87// registers; values N through M (where M is the number of floating 88// point registers used). Thus if the ABI says there are 5 integer 89// registers and 7 floating point registers, then RegIndex value of 4 90// indicates the 5th integer register, and a RegIndex value of 11 91// indicates the 7th floating point register. 92type RegIndex uint8 93 94// ABIParamAssignment holds information about how a specific param or 95// result will be passed: in registers (in which case 'Registers' is 96// populated) or on the stack (in which case 'Offset' is set to a 97// non-negative stack offset). The values in 'Registers' are indices 98// (as described above), not architected registers. 99type ABIParamAssignment struct { 100 Type *types.Type 101 Name *ir.Name 102 Registers []RegIndex 103 offset int32 104} 105 106// Offset returns the stack offset for addressing the parameter that "a" describes. 107// This will panic if "a" describes a register-allocated parameter. 108func (a *ABIParamAssignment) Offset() int32 { 109 if len(a.Registers) > 0 { 110 base.Fatalf("register allocated parameters have no offset") 111 } 112 return a.offset 113} 114 115// RegisterTypes returns a slice of the types of the registers 116// corresponding to a slice of parameters. The returned slice 117// has capacity for one more, likely a memory type. 118func RegisterTypes(apa []ABIParamAssignment) []*types.Type { 119 rcount := 0 120 for _, pa := range apa { 121 rcount += len(pa.Registers) 122 } 123 if rcount == 0 { 124 // Note that this catches top-level struct{} and [0]Foo, which are stack allocated. 125 return make([]*types.Type, 0, 1) 126 } 127 rts := make([]*types.Type, 0, rcount+1) 128 for _, pa := range apa { 129 if len(pa.Registers) == 0 { 130 continue 131 } 132 rts = appendParamTypes(rts, pa.Type) 133 } 134 return rts 135} 136 137func (pa *ABIParamAssignment) RegisterTypesAndOffsets() ([]*types.Type, []int64) { 138 l := len(pa.Registers) 139 if l == 0 { 140 return nil, nil 141 } 142 typs := make([]*types.Type, 0, l) 143 offs := make([]int64, 0, l) 144 offs, _ = appendParamOffsets(offs, 0, pa.Type) // 0 is aligned for everything. 145 return appendParamTypes(typs, pa.Type), offs 146} 147 148func appendParamTypes(rts []*types.Type, t *types.Type) []*types.Type { 149 w := t.Size() 150 if w == 0 { 151 return rts 152 } 153 if t.IsScalar() || t.IsPtrShaped() { 154 if t.IsComplex() { 155 c := types.FloatForComplex(t) 156 return append(rts, c, c) 157 } else { 158 if int(t.Size()) <= types.RegSize { 159 return append(rts, t) 160 } 161 // assume 64bit int on 32-bit machine 162 // TODO endianness? Should high-order (sign bits) word come first? 163 if t.IsSigned() { 164 rts = append(rts, types.Types[types.TINT32]) 165 } else { 166 rts = append(rts, types.Types[types.TUINT32]) 167 } 168 return append(rts, types.Types[types.TUINT32]) 169 } 170 } else { 171 typ := t.Kind() 172 switch typ { 173 case types.TARRAY: 174 for i := int64(0); i < t.NumElem(); i++ { // 0 gets no registers, plus future-proofing. 175 rts = appendParamTypes(rts, t.Elem()) 176 } 177 case types.TSTRUCT: 178 for _, f := range t.Fields() { 179 if f.Type.Size() > 0 { // embedded zero-width types receive no registers 180 rts = appendParamTypes(rts, f.Type) 181 } 182 } 183 case types.TSLICE: 184 return appendParamTypes(rts, synthSlice) 185 case types.TSTRING: 186 return appendParamTypes(rts, synthString) 187 case types.TINTER: 188 return appendParamTypes(rts, synthIface) 189 } 190 } 191 return rts 192} 193 194// appendParamOffsets appends the offset(s) of type t, starting from "at", 195// to input offsets, and returns the longer slice and the next unused offset. 196// at should already be aligned for t. 197func appendParamOffsets(offsets []int64, at int64, t *types.Type) ([]int64, int64) { 198 w := t.Size() 199 if w == 0 { 200 return offsets, at 201 } 202 if t.IsScalar() || t.IsPtrShaped() { 203 if t.IsComplex() || int(t.Size()) > types.RegSize { // complex and *int64 on 32-bit 204 s := w / 2 205 return append(offsets, at, at+s), at + w 206 } else { 207 return append(offsets, at), at + w 208 } 209 } else { 210 typ := t.Kind() 211 switch typ { 212 case types.TARRAY: 213 te := t.Elem() 214 for i := int64(0); i < t.NumElem(); i++ { 215 at = align(at, te) 216 offsets, at = appendParamOffsets(offsets, at, te) 217 } 218 case types.TSTRUCT: 219 at0 := at 220 for i, f := range t.Fields() { 221 at = at0 + f.Offset // Fields may be over-aligned, see wasm32. 222 offsets, at = appendParamOffsets(offsets, at, f.Type) 223 if f.Type.Size() == 0 && i == t.NumFields()-1 { 224 at++ // last field has zero width 225 } 226 } 227 at = align(at, t) // type size is rounded up to its alignment 228 case types.TSLICE: 229 return appendParamOffsets(offsets, at, synthSlice) 230 case types.TSTRING: 231 return appendParamOffsets(offsets, at, synthString) 232 case types.TINTER: 233 return appendParamOffsets(offsets, at, synthIface) 234 } 235 } 236 return offsets, at 237} 238 239// FrameOffset returns the frame-pointer-relative location that a function 240// would spill its input or output parameter to, if such a spill slot exists. 241// If there is none defined (e.g., register-allocated outputs) it panics. 242// For register-allocated inputs that is their spill offset reserved for morestack; 243// for stack-allocated inputs and outputs, that is their location on the stack. 244// (In a future version of the ABI, register-resident inputs may lose their defined 245// spill area to help reduce stack sizes.) 246func (a *ABIParamAssignment) FrameOffset(i *ABIParamResultInfo) int64 { 247 if a.offset == -1 { 248 base.Fatalf("function parameter has no ABI-defined frame-pointer offset") 249 } 250 if len(a.Registers) == 0 { // passed on stack 251 return int64(a.offset) - i.config.LocalsOffset() 252 } 253 // spill area for registers 254 return int64(a.offset) + i.SpillAreaOffset() - i.config.LocalsOffset() 255} 256 257// RegAmounts holds a specified number of integer/float registers. 258type RegAmounts struct { 259 intRegs int 260 floatRegs int 261} 262 263// ABIConfig captures the number of registers made available 264// by the ABI rules for parameter passing and result returning. 265type ABIConfig struct { 266 // Do we need anything more than this? 267 offsetForLocals int64 // e.g., obj.(*Link).Arch.FixedFrameSize -- extra linkage information on some architectures. 268 regAmounts RegAmounts 269 which obj.ABI 270} 271 272// NewABIConfig returns a new ABI configuration for an architecture with 273// iRegsCount integer/pointer registers and fRegsCount floating point registers. 274func NewABIConfig(iRegsCount, fRegsCount int, offsetForLocals int64, which uint8) *ABIConfig { 275 return &ABIConfig{offsetForLocals: offsetForLocals, regAmounts: RegAmounts{iRegsCount, fRegsCount}, which: obj.ABI(which)} 276} 277 278// Copy returns config. 279// 280// TODO(mdempsky): Remove. 281func (config *ABIConfig) Copy() *ABIConfig { 282 return config 283} 284 285// Which returns the ABI number 286func (config *ABIConfig) Which() obj.ABI { 287 return config.which 288} 289 290// LocalsOffset returns the architecture-dependent offset from SP for args and results. 291// In theory this is only used for debugging; it ought to already be incorporated into 292// results from the ABI-related methods 293func (config *ABIConfig) LocalsOffset() int64 { 294 return config.offsetForLocals 295} 296 297// FloatIndexFor translates r into an index in the floating point parameter 298// registers. If the result is negative, the input index was actually for the 299// integer parameter registers. 300func (config *ABIConfig) FloatIndexFor(r RegIndex) int64 { 301 return int64(r) - int64(config.regAmounts.intRegs) 302} 303 304// NumParamRegs returns the total number of registers used to 305// represent a parameter of the given type, which must be register 306// assignable. 307func (config *ABIConfig) NumParamRegs(typ *types.Type) int { 308 intRegs, floatRegs := typ.Registers() 309 if intRegs == math.MaxUint8 && floatRegs == math.MaxUint8 { 310 base.Fatalf("cannot represent parameters of type %v in registers", typ) 311 } 312 return int(intRegs) + int(floatRegs) 313} 314 315// ABIAnalyzeTypes takes slices of parameter and result types, and returns an ABIParamResultInfo, 316// based on the given configuration. This is the same result computed by config.ABIAnalyze applied to the 317// corresponding method/function type, except that all the embedded parameter names are nil. 318// This is intended for use by ssagen/ssa.go:(*state).rtcall, for runtime functions that lack a parsed function type. 319func (config *ABIConfig) ABIAnalyzeTypes(params, results []*types.Type) *ABIParamResultInfo { 320 setup() 321 s := assignState{ 322 stackOffset: config.offsetForLocals, 323 rTotal: config.regAmounts, 324 } 325 326 assignParams := func(params []*types.Type, isResult bool) []ABIParamAssignment { 327 res := make([]ABIParamAssignment, len(params)) 328 for i, param := range params { 329 res[i] = s.assignParam(param, nil, isResult) 330 } 331 return res 332 } 333 334 info := &ABIParamResultInfo{config: config} 335 336 // Inputs 337 info.inparams = assignParams(params, false) 338 s.stackOffset = types.RoundUp(s.stackOffset, int64(types.RegSize)) 339 info.inRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs 340 341 // Outputs 342 s.rUsed = RegAmounts{} 343 info.outparams = assignParams(results, true) 344 // The spill area is at a register-aligned offset and its size is rounded up to a register alignment. 345 // TODO in theory could align offset only to minimum required by spilled data types. 346 info.offsetToSpillArea = alignTo(s.stackOffset, types.RegSize) 347 info.spillAreaSize = alignTo(s.spillOffset, types.RegSize) 348 info.outRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs 349 350 return info 351} 352 353// ABIAnalyzeFuncType takes a function type 'ft' and an ABI rules description 354// 'config' and analyzes the function to determine how its parameters 355// and results will be passed (in registers or on the stack), returning 356// an ABIParamResultInfo object that holds the results of the analysis. 357func (config *ABIConfig) ABIAnalyzeFuncType(ft *types.Type) *ABIParamResultInfo { 358 setup() 359 s := assignState{ 360 stackOffset: config.offsetForLocals, 361 rTotal: config.regAmounts, 362 } 363 364 assignParams := func(params []*types.Field, isResult bool) []ABIParamAssignment { 365 res := make([]ABIParamAssignment, len(params)) 366 for i, param := range params { 367 var name *ir.Name 368 if param.Nname != nil { 369 name = param.Nname.(*ir.Name) 370 } 371 res[i] = s.assignParam(param.Type, name, isResult) 372 } 373 return res 374 } 375 376 info := &ABIParamResultInfo{config: config} 377 378 // Inputs 379 info.inparams = assignParams(ft.RecvParams(), false) 380 s.stackOffset = types.RoundUp(s.stackOffset, int64(types.RegSize)) 381 info.inRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs 382 383 // Outputs 384 s.rUsed = RegAmounts{} 385 info.outparams = assignParams(ft.Results(), true) 386 // The spill area is at a register-aligned offset and its size is rounded up to a register alignment. 387 // TODO in theory could align offset only to minimum required by spilled data types. 388 info.offsetToSpillArea = alignTo(s.stackOffset, types.RegSize) 389 info.spillAreaSize = alignTo(s.spillOffset, types.RegSize) 390 info.outRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs 391 return info 392} 393 394// ABIAnalyze returns the same result as ABIAnalyzeFuncType, but also 395// updates the offsets of all the receiver, input, and output fields. 396// If setNname is true, it also sets the FrameOffset of the Nname for 397// the field(s); this is for use when compiling a function and figuring out 398// spill locations. Doing this for callers can cause races for register 399// outputs because their frame location transitions from BOGUS_FUNARG_OFFSET 400// to zero to an as-if-AUTO offset that has no use for callers. 401func (config *ABIConfig) ABIAnalyze(t *types.Type, setNname bool) *ABIParamResultInfo { 402 result := config.ABIAnalyzeFuncType(t) 403 404 // Fill in the frame offsets for receiver, inputs, results 405 for i, f := range t.RecvParams() { 406 config.updateOffset(result, f, result.inparams[i], false, setNname) 407 } 408 for i, f := range t.Results() { 409 config.updateOffset(result, f, result.outparams[i], true, setNname) 410 } 411 return result 412} 413 414func (config *ABIConfig) updateOffset(result *ABIParamResultInfo, f *types.Field, a ABIParamAssignment, isResult, setNname bool) { 415 if f.Offset != types.BADWIDTH { 416 base.Fatalf("field offset for %s at %s has been set to %d", f.Sym, base.FmtPos(f.Pos), f.Offset) 417 } 418 419 // Everything except return values in registers has either a frame home (if not in a register) or a frame spill location. 420 if !isResult || len(a.Registers) == 0 { 421 // The type frame offset DOES NOT show effects of minimum frame size. 422 // Getting this wrong breaks stackmaps, see liveness/plive.go:WriteFuncMap and typebits/typebits.go:Set 423 off := a.FrameOffset(result) 424 if setNname && f.Nname != nil { 425 f.Nname.(*ir.Name).SetFrameOffset(off) 426 f.Nname.(*ir.Name).SetIsOutputParamInRegisters(false) 427 } 428 } else { 429 if setNname && f.Nname != nil { 430 fname := f.Nname.(*ir.Name) 431 fname.SetIsOutputParamInRegisters(true) 432 fname.SetFrameOffset(0) 433 } 434 } 435} 436 437//...................................................................... 438// 439// Non-public portions. 440 441// regString produces a human-readable version of a RegIndex. 442func (c *RegAmounts) regString(r RegIndex) string { 443 if int(r) < c.intRegs { 444 return fmt.Sprintf("I%d", int(r)) 445 } else if int(r) < c.intRegs+c.floatRegs { 446 return fmt.Sprintf("F%d", int(r)-c.intRegs) 447 } 448 return fmt.Sprintf("<?>%d", r) 449} 450 451// ToString method renders an ABIParamAssignment in human-readable 452// form, suitable for debugging or unit testing. 453func (ri *ABIParamAssignment) ToString(config *ABIConfig, extra bool) string { 454 regs := "R{" 455 offname := "spilloffset" // offset is for spill for register(s) 456 if len(ri.Registers) == 0 { 457 offname = "offset" // offset is for memory arg 458 } 459 for _, r := range ri.Registers { 460 regs += " " + config.regAmounts.regString(r) 461 if extra { 462 regs += fmt.Sprintf("(%d)", r) 463 } 464 } 465 if extra { 466 regs += fmt.Sprintf(" | #I=%d, #F=%d", config.regAmounts.intRegs, config.regAmounts.floatRegs) 467 } 468 return fmt.Sprintf("%s } %s: %d typ: %v", regs, offname, ri.offset, ri.Type) 469} 470 471// String method renders an ABIParamResultInfo in human-readable 472// form, suitable for debugging or unit testing. 473func (ri *ABIParamResultInfo) String() string { 474 res := "" 475 for k, p := range ri.inparams { 476 res += fmt.Sprintf("IN %d: %s\n", k, p.ToString(ri.config, false)) 477 } 478 for k, r := range ri.outparams { 479 res += fmt.Sprintf("OUT %d: %s\n", k, r.ToString(ri.config, false)) 480 } 481 res += fmt.Sprintf("offsetToSpillArea: %d spillAreaSize: %d", 482 ri.offsetToSpillArea, ri.spillAreaSize) 483 return res 484} 485 486// assignState holds intermediate state during the register assigning process 487// for a given function signature. 488type assignState struct { 489 rTotal RegAmounts // total reg amounts from ABI rules 490 rUsed RegAmounts // regs used by params completely assigned so far 491 stackOffset int64 // current stack offset 492 spillOffset int64 // current spill offset 493} 494 495// align returns a rounded up to t's alignment. 496func align(a int64, t *types.Type) int64 { 497 return alignTo(a, int(uint8(t.Alignment()))) 498} 499 500// alignTo returns a rounded up to t, where t must be 0 or a power of 2. 501func alignTo(a int64, t int) int64 { 502 if t == 0 { 503 return a 504 } 505 return types.RoundUp(a, int64(t)) 506} 507 508// nextSlot allocates the next available slot for typ. 509func nextSlot(offsetp *int64, typ *types.Type) int64 { 510 offset := align(*offsetp, typ) 511 *offsetp = offset + typ.Size() 512 return offset 513} 514 515// allocateRegs returns an ordered list of register indices for a parameter or result 516// that we've just determined to be register-assignable. The number of registers 517// needed is assumed to be stored in state.pUsed. 518func (state *assignState) allocateRegs(regs []RegIndex, t *types.Type) []RegIndex { 519 if t.Size() == 0 { 520 return regs 521 } 522 ri := state.rUsed.intRegs 523 rf := state.rUsed.floatRegs 524 if t.IsScalar() || t.IsPtrShaped() { 525 if t.IsComplex() { 526 regs = append(regs, RegIndex(rf+state.rTotal.intRegs), RegIndex(rf+1+state.rTotal.intRegs)) 527 rf += 2 528 } else if t.IsFloat() { 529 regs = append(regs, RegIndex(rf+state.rTotal.intRegs)) 530 rf += 1 531 } else { 532 n := (int(t.Size()) + types.RegSize - 1) / types.RegSize 533 for i := 0; i < n; i++ { // looking ahead to really big integers 534 regs = append(regs, RegIndex(ri)) 535 ri += 1 536 } 537 } 538 state.rUsed.intRegs = ri 539 state.rUsed.floatRegs = rf 540 return regs 541 } else { 542 typ := t.Kind() 543 switch typ { 544 case types.TARRAY: 545 for i := int64(0); i < t.NumElem(); i++ { 546 regs = state.allocateRegs(regs, t.Elem()) 547 } 548 return regs 549 case types.TSTRUCT: 550 for _, f := range t.Fields() { 551 regs = state.allocateRegs(regs, f.Type) 552 } 553 return regs 554 case types.TSLICE: 555 return state.allocateRegs(regs, synthSlice) 556 case types.TSTRING: 557 return state.allocateRegs(regs, synthString) 558 case types.TINTER: 559 return state.allocateRegs(regs, synthIface) 560 } 561 } 562 base.Fatalf("was not expecting type %s", t) 563 panic("unreachable") 564} 565 566// synthOnce ensures that we only create the synth* fake types once. 567var synthOnce sync.Once 568 569// synthSlice, synthString, and syncIface are synthesized struct types 570// meant to capture the underlying implementations of string/slice/interface. 571var synthSlice *types.Type 572var synthString *types.Type 573var synthIface *types.Type 574 575// setup performs setup for the register assignment utilities, manufacturing 576// a small set of synthesized types that we'll need along the way. 577func setup() { 578 synthOnce.Do(func() { 579 fname := types.BuiltinPkg.Lookup 580 nxp := src.NoXPos 581 bp := types.NewPtr(types.Types[types.TUINT8]) 582 it := types.Types[types.TINT] 583 synthSlice = types.NewStruct([]*types.Field{ 584 types.NewField(nxp, fname("ptr"), bp), 585 types.NewField(nxp, fname("len"), it), 586 types.NewField(nxp, fname("cap"), it), 587 }) 588 types.CalcStructSize(synthSlice) 589 synthString = types.NewStruct([]*types.Field{ 590 types.NewField(nxp, fname("data"), bp), 591 types.NewField(nxp, fname("len"), it), 592 }) 593 types.CalcStructSize(synthString) 594 unsp := types.Types[types.TUNSAFEPTR] 595 synthIface = types.NewStruct([]*types.Field{ 596 types.NewField(nxp, fname("f1"), unsp), 597 types.NewField(nxp, fname("f2"), unsp), 598 }) 599 types.CalcStructSize(synthIface) 600 }) 601} 602 603// assignParam processes a given receiver, param, or result 604// of field f to determine whether it can be register assigned. 605// The result of the analysis is recorded in the result 606// ABIParamResultInfo held in 'state'. 607func (state *assignState) assignParam(typ *types.Type, name *ir.Name, isResult bool) ABIParamAssignment { 608 registers := state.tryAllocRegs(typ) 609 610 var offset int64 = -1 611 if registers == nil { // stack allocated; needs stack slot 612 offset = nextSlot(&state.stackOffset, typ) 613 } else if !isResult { // register-allocated param; needs spill slot 614 offset = nextSlot(&state.spillOffset, typ) 615 } 616 617 return ABIParamAssignment{ 618 Type: typ, 619 Name: name, 620 Registers: registers, 621 offset: int32(offset), 622 } 623} 624 625// tryAllocRegs attempts to allocate registers to represent a 626// parameter of the given type. If unsuccessful, it returns nil. 627func (state *assignState) tryAllocRegs(typ *types.Type) []RegIndex { 628 if typ.Size() == 0 { 629 return nil // zero-size parameters are defined as being stack allocated 630 } 631 632 intRegs, floatRegs := typ.Registers() 633 if int(intRegs) > state.rTotal.intRegs-state.rUsed.intRegs || int(floatRegs) > state.rTotal.floatRegs-state.rUsed.floatRegs { 634 return nil // too few available registers 635 } 636 637 regs := make([]RegIndex, 0, int(intRegs)+int(floatRegs)) 638 return state.allocateRegs(regs, typ) 639} 640 641// ComputePadding returns a list of "post element" padding values in 642// the case where we have a structure being passed in registers. Given 643// a param assignment corresponding to a struct, it returns a list 644// containing padding values for each field, e.g. the Kth element in 645// the list is the amount of padding between field K and the following 646// field. For things that are not structs (or structs without padding) 647// it returns a list of zeros. Example: 648// 649// type small struct { 650// x uint16 651// y uint8 652// z int32 653// w int32 654// } 655// 656// For this struct we would return a list [0, 1, 0, 0], meaning that 657// we have one byte of padding after the second field, and no bytes of 658// padding after any of the other fields. Input parameter "storage" is 659// a slice with enough capacity to accommodate padding elements for 660// the architected register set in question. 661func (pa *ABIParamAssignment) ComputePadding(storage []uint64) []uint64 { 662 nr := len(pa.Registers) 663 padding := storage[:nr] 664 for i := 0; i < nr; i++ { 665 padding[i] = 0 666 } 667 if pa.Type.Kind() != types.TSTRUCT || nr == 0 { 668 return padding 669 } 670 types := make([]*types.Type, 0, nr) 671 types = appendParamTypes(types, pa.Type) 672 if len(types) != nr { 673 panic("internal error") 674 } 675 offsets, _ := appendParamOffsets([]int64{}, 0, pa.Type) 676 off := int64(0) 677 for idx, t := range types { 678 ts := t.Size() 679 off += int64(ts) 680 if idx < len(types)-1 { 681 noff := offsets[idx+1] 682 if noff != off { 683 padding[idx] = uint64(noff - off) 684 } 685 } 686 } 687 return padding 688} 689