1 //===- polly/ScopInfo.h -----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Store the polyhedral model representation of a static control flow region,
10 // also called SCoP (Static Control Part).
11 //
12 // This representation is shared among several tools in the polyhedral
13 // community, which are e.g. CLooG, Pluto, Loopo, Graphite.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef POLLY_SCOPINFO_H
18 #define POLLY_SCOPINFO_H
19 
20 #include "polly/ScopDetection.h"
21 #include "polly/Support/SCEVAffinator.h"
22 #include "polly/Support/ScopHelper.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/Analysis/RegionPass.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/PassManager.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Pass.h"
33 #include "isl/isl-noexceptions.h"
34 #include <cassert>
35 #include <cstddef>
36 #include <forward_list>
37 #include <optional>
38 
39 namespace polly {
40 using llvm::AnalysisInfoMixin;
41 using llvm::ArrayRef;
42 using llvm::AssertingVH;
43 using llvm::AssumptionCache;
44 using llvm::cast;
45 using llvm::DataLayout;
46 using llvm::DenseMap;
47 using llvm::DenseSet;
48 using llvm::function_ref;
49 using llvm::isa;
50 using llvm::iterator_range;
51 using llvm::LoadInst;
52 using llvm::make_range;
53 using llvm::MapVector;
54 using llvm::MemIntrinsic;
55 using llvm::PassInfoMixin;
56 using llvm::PHINode;
57 using llvm::RegionNode;
58 using llvm::RegionPass;
59 using llvm::RGPassManager;
60 using llvm::SetVector;
61 using llvm::SmallPtrSetImpl;
62 using llvm::SmallVector;
63 using llvm::SmallVectorImpl;
64 using llvm::StringMap;
65 using llvm::Type;
66 using llvm::Use;
67 using llvm::Value;
68 using llvm::ValueToValueMap;
69 
70 class MemoryAccess;
71 
72 //===---------------------------------------------------------------------===//
73 
74 extern bool UseInstructionNames;
75 
76 // The maximal number of basic sets we allow during domain construction to
77 // be created. More complex scops will result in very high compile time and
78 // are also unlikely to result in good code.
79 extern unsigned const MaxDisjunctsInDomain;
80 
81 /// The different memory kinds used in Polly.
82 ///
83 /// We distinguish between arrays and various scalar memory objects. We use
84 /// the term ``array'' to describe memory objects that consist of a set of
85 /// individual data elements arranged in a multi-dimensional grid. A scalar
86 /// memory object describes an individual data element and is used to model
87 /// the definition and uses of llvm::Values.
88 ///
89 /// The polyhedral model does traditionally not reason about SSA values. To
90 /// reason about llvm::Values we model them "as if" they were zero-dimensional
91 /// memory objects, even though they were not actually allocated in (main)
92 /// memory.  Memory for such objects is only alloca[ed] at CodeGeneration
93 /// time. To relate the memory slots used during code generation with the
94 /// llvm::Values they belong to the new names for these corresponding stack
95 /// slots are derived by appending suffixes (currently ".s2a" and ".phiops")
96 /// to the name of the original llvm::Value. To describe how def/uses are
97 /// modeled exactly we use these suffixes here as well.
98 ///
99 /// There are currently four different kinds of memory objects:
100 enum class MemoryKind {
101   /// MemoryKind::Array: Models a one or multi-dimensional array
102   ///
103   /// A memory object that can be described by a multi-dimensional array.
104   /// Memory objects of this type are used to model actual multi-dimensional
105   /// arrays as they exist in LLVM-IR, but they are also used to describe
106   /// other objects:
107   ///   - A single data element allocated on the stack using 'alloca' is
108   ///     modeled as a one-dimensional, single-element array.
109   ///   - A single data element allocated as a global variable is modeled as
110   ///     one-dimensional, single-element array.
111   ///   - Certain multi-dimensional arrays with variable size, which in
112   ///     LLVM-IR are commonly expressed as a single-dimensional access with a
113   ///     complicated access function, are modeled as multi-dimensional
114   ///     memory objects (grep for "delinearization").
115   Array,
116 
117   /// MemoryKind::Value: Models an llvm::Value
118   ///
119   /// Memory objects of type MemoryKind::Value are used to model the data flow
120   /// induced by llvm::Values. For each llvm::Value that is used across
121   /// BasicBlocks, one ScopArrayInfo object is created. A single memory WRITE
122   /// stores the llvm::Value at its definition into the memory object and at
123   /// each use of the llvm::Value (ignoring trivial intra-block uses) a
124   /// corresponding READ is added. For instance, the use/def chain of a
125   /// llvm::Value %V depicted below
126   ///              ______________________
127   ///              |DefBB:              |
128   ///              |  %V = float op ... |
129   ///              ----------------------
130   ///               |                  |
131   /// _________________               _________________
132   /// |UseBB1:        |               |UseBB2:        |
133   /// |  use float %V |               |  use float %V |
134   /// -----------------               -----------------
135   ///
136   /// is modeled as if the following memory accesses occurred:
137   ///
138   ///                        __________________________
139   ///                        |entry:                  |
140   ///                        |  %V.s2a = alloca float |
141   ///                        --------------------------
142   ///                                     |
143   ///                    ___________________________________
144   ///                    |DefBB:                           |
145   ///                    |  store %float %V, float* %V.s2a |
146   ///                    -----------------------------------
147   ///                           |                   |
148   /// ____________________________________ ___________________________________
149   /// |UseBB1:                           | |UseBB2:                          |
150   /// |  %V.reload1 = load float* %V.s2a | |  %V.reload2 = load float* %V.s2a|
151   /// |  use float %V.reload1            | |  use float %V.reload2           |
152   /// ------------------------------------ -----------------------------------
153   ///
154   Value,
155 
156   /// MemoryKind::PHI: Models PHI nodes within the SCoP
157   ///
158   /// Besides the MemoryKind::Value memory object used to model the normal
159   /// llvm::Value dependences described above, PHI nodes require an additional
160   /// memory object of type MemoryKind::PHI to describe the forwarding of values
161   /// to
162   /// the PHI node.
163   ///
164   /// As an example, a PHIInst instructions
165   ///
166   /// %PHI = phi float [ %Val1, %IncomingBlock1 ], [ %Val2, %IncomingBlock2 ]
167   ///
168   /// is modeled as if the accesses occurred this way:
169   ///
170   ///                    _______________________________
171   ///                    |entry:                       |
172   ///                    |  %PHI.phiops = alloca float |
173   ///                    -------------------------------
174   ///                           |              |
175   /// __________________________________  __________________________________
176   /// |IncomingBlock1:                 |  |IncomingBlock2:                 |
177   /// |  ...                           |  |  ...                           |
178   /// |  store float %Val1 %PHI.phiops |  |  store float %Val2 %PHI.phiops |
179   /// |  br label % JoinBlock          |  |  br label %JoinBlock           |
180   /// ----------------------------------  ----------------------------------
181   ///                             \            /
182   ///                              \          /
183   ///               _________________________________________
184   ///               |JoinBlock:                             |
185   ///               |  %PHI = load float, float* PHI.phiops |
186   ///               -----------------------------------------
187   ///
188   /// Note that there can also be a scalar write access for %PHI if used in a
189   /// different BasicBlock, i.e. there can be a memory object %PHI.phiops as
190   /// well as a memory object %PHI.s2a.
191   PHI,
192 
193   /// MemoryKind::ExitPHI: Models PHI nodes in the SCoP's exit block
194   ///
195   /// For PHI nodes in the Scop's exit block a special memory object kind is
196   /// used. The modeling used is identical to MemoryKind::PHI, with the
197   /// exception
198   /// that there are no READs from these memory objects. The PHINode's
199   /// llvm::Value is treated as a value escaping the SCoP. WRITE accesses
200   /// write directly to the escaping value's ".s2a" alloca.
201   ExitPHI
202 };
203 
204 /// Maps from a loop to the affine function expressing its backedge taken count.
205 /// The backedge taken count already enough to express iteration domain as we
206 /// only allow loops with canonical induction variable.
207 /// A canonical induction variable is:
208 /// an integer recurrence that starts at 0 and increments by one each time
209 /// through the loop.
210 using LoopBoundMapType = std::map<const Loop *, const SCEV *>;
211 
212 using AccFuncVector = std::vector<std::unique_ptr<MemoryAccess>>;
213 
214 /// A class to store information about arrays in the SCoP.
215 ///
216 /// Objects are accessible via the ScoP, MemoryAccess or the id associated with
217 /// the MemoryAccess access function.
218 ///
219 class ScopArrayInfo final {
220 public:
221   /// Construct a ScopArrayInfo object.
222   ///
223   /// @param BasePtr        The array base pointer.
224   /// @param ElementType    The type of the elements stored in the array.
225   /// @param IslCtx         The isl context used to create the base pointer id.
226   /// @param DimensionSizes A vector containing the size of each dimension.
227   /// @param Kind           The kind of the array object.
228   /// @param DL             The data layout of the module.
229   /// @param S              The scop this array object belongs to.
230   /// @param BaseName       The optional name of this memory reference.
231   ScopArrayInfo(Value *BasePtr, Type *ElementType, isl::ctx IslCtx,
232                 ArrayRef<const SCEV *> DimensionSizes, MemoryKind Kind,
233                 const DataLayout &DL, Scop *S, const char *BaseName = nullptr);
234 
235   /// Destructor to free the isl id of the base pointer.
236   ~ScopArrayInfo();
237 
238   ///  Update the element type of the ScopArrayInfo object.
239   ///
240   ///  Memory accesses referencing this ScopArrayInfo object may use
241   ///  different element sizes. This function ensures the canonical element type
242   ///  stored is small enough to model accesses to the current element type as
243   ///  well as to @p NewElementType.
244   ///
245   ///  @param NewElementType An element type that is used to access this array.
246   void updateElementType(Type *NewElementType);
247 
248   ///  Update the sizes of the ScopArrayInfo object.
249   ///
250   ///  A ScopArrayInfo object may be created without all outer dimensions being
251   ///  available. This function is called when new memory accesses are added for
252   ///  this ScopArrayInfo object. It verifies that sizes are compatible and adds
253   ///  additional outer array dimensions, if needed.
254   ///
255   ///  @param Sizes       A vector of array sizes where the rightmost array
256   ///                     sizes need to match the innermost array sizes already
257   ///                     defined in SAI.
258   ///  @param CheckConsistency Update sizes, even if new sizes are inconsistent
259   ///                          with old sizes
260   bool updateSizes(ArrayRef<const SCEV *> Sizes, bool CheckConsistency = true);
261 
262   /// Set the base pointer to @p BP.
setBasePtr(Value * BP)263   void setBasePtr(Value *BP) { BasePtr = BP; }
264 
265   /// Return the base pointer.
getBasePtr()266   Value *getBasePtr() const { return BasePtr; }
267 
268   // Set IsOnHeap to the value in parameter.
setIsOnHeap(bool value)269   void setIsOnHeap(bool value) { IsOnHeap = value; }
270 
271   /// For indirect accesses return the origin SAI of the BP, else null.
getBasePtrOriginSAI()272   const ScopArrayInfo *getBasePtrOriginSAI() const { return BasePtrOriginSAI; }
273 
274   /// The set of derived indirect SAIs for this origin SAI.
getDerivedSAIs()275   const SmallSetVector<ScopArrayInfo *, 2> &getDerivedSAIs() const {
276     return DerivedSAIs;
277   }
278 
279   /// Return the number of dimensions.
getNumberOfDimensions()280   unsigned getNumberOfDimensions() const {
281     if (Kind == MemoryKind::PHI || Kind == MemoryKind::ExitPHI ||
282         Kind == MemoryKind::Value)
283       return 0;
284     return DimensionSizes.size();
285   }
286 
287   /// Return the size of dimension @p dim as SCEV*.
288   //
289   //  Scalars do not have array dimensions and the first dimension of
290   //  a (possibly multi-dimensional) array also does not carry any size
291   //  information, in case the array is not newly created.
getDimensionSize(unsigned Dim)292   const SCEV *getDimensionSize(unsigned Dim) const {
293     assert(Dim < getNumberOfDimensions() && "Invalid dimension");
294     return DimensionSizes[Dim];
295   }
296 
297   /// Return the size of dimension @p dim as isl::pw_aff.
298   //
299   //  Scalars do not have array dimensions and the first dimension of
300   //  a (possibly multi-dimensional) array also does not carry any size
301   //  information, in case the array is not newly created.
getDimensionSizePw(unsigned Dim)302   isl::pw_aff getDimensionSizePw(unsigned Dim) const {
303     assert(Dim < getNumberOfDimensions() && "Invalid dimension");
304     return DimensionSizesPw[Dim];
305   }
306 
307   /// Get the canonical element type of this array.
308   ///
309   /// @returns The canonical element type of this array.
getElementType()310   Type *getElementType() const { return ElementType; }
311 
312   /// Get element size in bytes.
313   int getElemSizeInBytes() const;
314 
315   /// Get the name of this memory reference.
316   std::string getName() const;
317 
318   /// Return the isl id for the base pointer.
319   isl::id getBasePtrId() const;
320 
321   /// Return what kind of memory this represents.
getKind()322   MemoryKind getKind() const { return Kind; }
323 
324   /// Is this array info modeling an llvm::Value?
isValueKind()325   bool isValueKind() const { return Kind == MemoryKind::Value; }
326 
327   /// Is this array info modeling special PHI node memory?
328   ///
329   /// During code generation of PHI nodes, there is a need for two kinds of
330   /// virtual storage. The normal one as it is used for all scalar dependences,
331   /// where the result of the PHI node is stored and later loaded from as well
332   /// as a second one where the incoming values of the PHI nodes are stored
333   /// into and reloaded when the PHI is executed. As both memories use the
334   /// original PHI node as virtual base pointer, we have this additional
335   /// attribute to distinguish the PHI node specific array modeling from the
336   /// normal scalar array modeling.
isPHIKind()337   bool isPHIKind() const { return Kind == MemoryKind::PHI; }
338 
339   /// Is this array info modeling an MemoryKind::ExitPHI?
isExitPHIKind()340   bool isExitPHIKind() const { return Kind == MemoryKind::ExitPHI; }
341 
342   /// Is this array info modeling an array?
isArrayKind()343   bool isArrayKind() const { return Kind == MemoryKind::Array; }
344 
345   /// Is this array allocated on heap
346   ///
347   /// This property is only relevant if the array is allocated by Polly instead
348   /// of pre-existing. If false, it is allocated using alloca instead malloca.
isOnHeap()349   bool isOnHeap() const { return IsOnHeap; }
350 
351 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
352   /// Dump a readable representation to stderr.
353   void dump() const;
354 #endif
355 
356   /// Print a readable representation to @p OS.
357   ///
358   /// @param SizeAsPwAff Print the size as isl::pw_aff
359   void print(raw_ostream &OS, bool SizeAsPwAff = false) const;
360 
361   /// Access the ScopArrayInfo associated with an access function.
362   static const ScopArrayInfo *getFromAccessFunction(isl::pw_multi_aff PMA);
363 
364   /// Access the ScopArrayInfo associated with an isl Id.
365   static const ScopArrayInfo *getFromId(isl::id Id);
366 
367   /// Get the space of this array access.
368   isl::space getSpace() const;
369 
370   /// If the array is read only
371   bool isReadOnly();
372 
373   /// Verify that @p Array is compatible to this ScopArrayInfo.
374   ///
375   /// Two arrays are compatible if their dimensionality, the sizes of their
376   /// dimensions, and their element sizes match.
377   ///
378   /// @param Array The array to compare against.
379   ///
380   /// @returns True, if the arrays are compatible, False otherwise.
381   bool isCompatibleWith(const ScopArrayInfo *Array) const;
382 
383 private:
addDerivedSAI(ScopArrayInfo * DerivedSAI)384   void addDerivedSAI(ScopArrayInfo *DerivedSAI) {
385     DerivedSAIs.insert(DerivedSAI);
386   }
387 
388   /// For indirect accesses this is the SAI of the BP origin.
389   const ScopArrayInfo *BasePtrOriginSAI;
390 
391   /// For origin SAIs the set of derived indirect SAIs.
392   SmallSetVector<ScopArrayInfo *, 2> DerivedSAIs;
393 
394   /// The base pointer.
395   AssertingVH<Value> BasePtr;
396 
397   /// The canonical element type of this array.
398   ///
399   /// The canonical element type describes the minimal accessible element in
400   /// this array. Not all elements accessed, need to be of the very same type,
401   /// but the allocation size of the type of the elements loaded/stored from/to
402   /// this array needs to be a multiple of the allocation size of the canonical
403   /// type.
404   Type *ElementType;
405 
406   /// The isl id for the base pointer.
407   isl::id Id;
408 
409   /// True if the newly allocated array is on heap.
410   bool IsOnHeap = false;
411 
412   /// The sizes of each dimension as SCEV*.
413   SmallVector<const SCEV *, 4> DimensionSizes;
414 
415   /// The sizes of each dimension as isl::pw_aff.
416   SmallVector<isl::pw_aff, 4> DimensionSizesPw;
417 
418   /// The type of this scop array info object.
419   ///
420   /// We distinguish between SCALAR, PHI and ARRAY objects.
421   MemoryKind Kind;
422 
423   /// The data layout of the module.
424   const DataLayout &DL;
425 
426   /// The scop this SAI object belongs to.
427   Scop &S;
428 };
429 
430 /// Represent memory accesses in statements.
431 class MemoryAccess final {
432   friend class Scop;
433   friend class ScopStmt;
434   friend class ScopBuilder;
435 
436 public:
437   /// The access type of a memory access
438   ///
439   /// There are three kind of access types:
440   ///
441   /// * A read access
442   ///
443   /// A certain set of memory locations are read and may be used for internal
444   /// calculations.
445   ///
446   /// * A must-write access
447   ///
448   /// A certain set of memory locations is definitely written. The old value is
449   /// replaced by a newly calculated value. The old value is not read or used at
450   /// all.
451   ///
452   /// * A may-write access
453   ///
454   /// A certain set of memory locations may be written. The memory location may
455   /// contain a new value if there is actually a write or the old value may
456   /// remain, if no write happens.
457   enum AccessType {
458     READ = 0x1,
459     MUST_WRITE = 0x2,
460     MAY_WRITE = 0x3,
461   };
462 
463   /// Reduction access type
464   ///
465   /// Commutative and associative binary operations suitable for reductions
466   enum ReductionType {
467     RT_NONE, ///< Indicate no reduction at all
468     RT_ADD,  ///< Addition
469     RT_MUL,  ///< Multiplication
470     RT_BOR,  ///< Bitwise Or
471     RT_BXOR, ///< Bitwise XOr
472     RT_BAND, ///< Bitwise And
473   };
474 
475   using SubscriptsTy = SmallVector<const SCEV *, 4>;
476 
477 private:
478   /// A unique identifier for this memory access.
479   ///
480   /// The identifier is unique between all memory accesses belonging to the same
481   /// scop statement.
482   isl::id Id;
483 
484   /// What is modeled by this MemoryAccess.
485   /// @see MemoryKind
486   MemoryKind Kind;
487 
488   /// Whether it a reading or writing access, and if writing, whether it
489   /// is conditional (MAY_WRITE).
490   enum AccessType AccType;
491 
492   /// Reduction type for reduction like accesses, RT_NONE otherwise
493   ///
494   /// An access is reduction like if it is part of a load-store chain in which
495   /// both access the same memory location (use the same LLVM-IR value
496   /// as pointer reference). Furthermore, between the load and the store there
497   /// is exactly one binary operator which is known to be associative and
498   /// commutative.
499   ///
500   /// TODO:
501   ///
502   /// We can later lift the constraint that the same LLVM-IR value defines the
503   /// memory location to handle scops such as the following:
504   ///
505   ///    for i
506   ///      for j
507   ///        sum[i+j] = sum[i] + 3;
508   ///
509   /// Here not all iterations access the same memory location, but iterations
510   /// for which j = 0 holds do. After lifting the equality check in ScopBuilder,
511   /// subsequent transformations do not only need check if a statement is
512   /// reduction like, but they also need to verify that the reduction
513   /// property is only exploited for statement instances that load from and
514   /// store to the same data location. Doing so at dependence analysis time
515   /// could allow us to handle the above example.
516   ReductionType RedType = RT_NONE;
517 
518   /// Parent ScopStmt of this access.
519   ScopStmt *Statement;
520 
521   /// The domain under which this access is not modeled precisely.
522   ///
523   /// The invalid domain for an access describes all parameter combinations
524   /// under which the statement looks to be executed but is in fact not because
525   /// some assumption/restriction makes the access invalid.
526   isl::set InvalidDomain;
527 
528   // Properties describing the accessed array.
529   // TODO: It might be possible to move them to ScopArrayInfo.
530   // @{
531 
532   /// The base address (e.g., A for A[i+j]).
533   ///
534   /// The #BaseAddr of a memory access of kind MemoryKind::Array is the base
535   /// pointer of the memory access.
536   /// The #BaseAddr of a memory access of kind MemoryKind::PHI or
537   /// MemoryKind::ExitPHI is the PHI node itself.
538   /// The #BaseAddr of a memory access of kind MemoryKind::Value is the
539   /// instruction defining the value.
540   AssertingVH<Value> BaseAddr;
541 
542   /// Type a single array element wrt. this access.
543   Type *ElementType;
544 
545   /// Size of each dimension of the accessed array.
546   SmallVector<const SCEV *, 4> Sizes;
547   // @}
548 
549   // Properties describing the accessed element.
550   // @{
551 
552   /// The access instruction of this memory access.
553   ///
554   /// For memory accesses of kind MemoryKind::Array the access instruction is
555   /// the Load or Store instruction performing the access.
556   ///
557   /// For memory accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI the
558   /// access instruction of a load access is the PHI instruction. The access
559   /// instruction of a PHI-store is the incoming's block's terminator
560   /// instruction.
561   ///
562   /// For memory accesses of kind MemoryKind::Value the access instruction of a
563   /// load access is nullptr because generally there can be multiple
564   /// instructions in the statement using the same llvm::Value. The access
565   /// instruction of a write access is the instruction that defines the
566   /// llvm::Value.
567   Instruction *AccessInstruction = nullptr;
568 
569   /// Incoming block and value of a PHINode.
570   SmallVector<std::pair<BasicBlock *, Value *>, 4> Incoming;
571 
572   /// The value associated with this memory access.
573   ///
574   ///  - For array memory accesses (MemoryKind::Array) it is the loaded result
575   ///    or the stored value. If the access instruction is a memory intrinsic it
576   ///    the access value is also the memory intrinsic.
577   ///  - For accesses of kind MemoryKind::Value it is the access instruction
578   ///    itself.
579   ///  - For accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI it is the
580   ///    PHI node itself (for both, READ and WRITE accesses).
581   ///
582   AssertingVH<Value> AccessValue;
583 
584   /// Are all the subscripts affine expression?
585   bool IsAffine = true;
586 
587   /// Subscript expression for each dimension.
588   SubscriptsTy Subscripts;
589 
590   /// Relation from statement instances to the accessed array elements.
591   ///
592   /// In the common case this relation is a function that maps a set of loop
593   /// indices to the memory address from which a value is loaded/stored:
594   ///
595   ///      for i
596   ///        for j
597   ///    S:     A[i + 3 j] = ...
598   ///
599   ///    => { S[i,j] -> A[i + 3j] }
600   ///
601   /// In case the exact access function is not known, the access relation may
602   /// also be a one to all mapping { S[i,j] -> A[o] } describing that any
603   /// element accessible through A might be accessed.
604   ///
605   /// In case of an access to a larger element belonging to an array that also
606   /// contains smaller elements, the access relation models the larger access
607   /// with multiple smaller accesses of the size of the minimal array element
608   /// type:
609   ///
610   ///      short *A;
611   ///
612   ///      for i
613   ///    S:     A[i] = *((double*)&A[4 * i]);
614   ///
615   ///    => { S[i] -> A[i]; S[i] -> A[o] : 4i <= o <= 4i + 3 }
616   isl::map AccessRelation;
617 
618   /// Updated access relation read from JSCOP file.
619   isl::map NewAccessRelation;
620   // @}
621 
622   isl::basic_map createBasicAccessMap(ScopStmt *Statement);
623 
624   isl::set assumeNoOutOfBound();
625 
626   /// Compute bounds on an over approximated  access relation.
627   ///
628   /// @param ElementSize The size of one element accessed.
629   void computeBoundsOnAccessRelation(unsigned ElementSize);
630 
631   /// Get the original access function as read from IR.
632   isl::map getOriginalAccessRelation() const;
633 
634   /// Return the space in which the access relation lives in.
635   isl::space getOriginalAccessRelationSpace() const;
636 
637   /// Get the new access function imported or set by a pass
638   isl::map getNewAccessRelation() const;
639 
640   /// Fold the memory access to consider parametric offsets
641   ///
642   /// To recover memory accesses with array size parameters in the subscript
643   /// expression we post-process the delinearization results.
644   ///
645   /// We would normally recover from an access A[exp0(i) * N + exp1(i)] into an
646   /// array A[][N] the 2D access A[exp0(i)][exp1(i)]. However, another valid
647   /// delinearization is A[exp0(i) - 1][exp1(i) + N] which - depending on the
648   /// range of exp1(i) - may be preferable. Specifically, for cases where we
649   /// know exp1(i) is negative, we want to choose the latter expression.
650   ///
651   /// As we commonly do not have any information about the range of exp1(i),
652   /// we do not choose one of the two options, but instead create a piecewise
653   /// access function that adds the (-1, N) offsets as soon as exp1(i) becomes
654   /// negative. For a 2D array such an access function is created by applying
655   /// the piecewise map:
656   ///
657   /// [i,j] -> [i, j] :      j >= 0
658   /// [i,j] -> [i-1, j+N] :  j <  0
659   ///
660   /// We can generalize this mapping to arbitrary dimensions by applying this
661   /// piecewise mapping pairwise from the rightmost to the leftmost access
662   /// dimension. It would also be possible to cover a wider range by introducing
663   /// more cases and adding multiple of Ns to these cases. However, this has
664   /// not yet been necessary.
665   /// The introduction of different cases necessarily complicates the memory
666   /// access function, but cases that can be statically proven to not happen
667   /// will be eliminated later on.
668   void foldAccessRelation();
669 
670   /// Create the access relation for the underlying memory intrinsic.
671   void buildMemIntrinsicAccessRelation();
672 
673   /// Assemble the access relation from all available information.
674   ///
675   /// In particular, used the information passes in the constructor and the
676   /// parent ScopStmt set by setStatment().
677   ///
678   /// @param SAI Info object for the accessed array.
679   void buildAccessRelation(const ScopArrayInfo *SAI);
680 
681   /// Carry index overflows of dimensions with constant size to the next higher
682   /// dimension.
683   ///
684   /// For dimensions that have constant size, modulo the index by the size and
685   /// add up the carry (floored division) to the next higher dimension. This is
686   /// how overflow is defined in row-major order.
687   /// It happens e.g. when ScalarEvolution computes the offset to the base
688   /// pointer and would algebraically sum up all lower dimensions' indices of
689   /// constant size.
690   ///
691   /// Example:
692   ///   float (*A)[4];
693   ///   A[1][6] -> A[2][2]
694   void wrapConstantDimensions();
695 
696 public:
697   /// Create a new MemoryAccess.
698   ///
699   /// @param Stmt       The parent statement.
700   /// @param AccessInst The instruction doing the access.
701   /// @param BaseAddr   The accessed array's address.
702   /// @param ElemType   The type of the accessed array elements.
703   /// @param AccType    Whether read or write access.
704   /// @param IsAffine   Whether the subscripts are affine expressions.
705   /// @param Kind       The kind of memory accessed.
706   /// @param Subscripts Subscript expressions
707   /// @param Sizes      Dimension lengths of the accessed array.
708   MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst, AccessType AccType,
709                Value *BaseAddress, Type *ElemType, bool Affine,
710                ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes,
711                Value *AccessValue, MemoryKind Kind);
712 
713   /// Create a new MemoryAccess that corresponds to @p AccRel.
714   ///
715   /// Along with @p Stmt and @p AccType it uses information about dimension
716   /// lengths of the accessed array, the type of the accessed array elements,
717   /// the name of the accessed array that is derived from the object accessible
718   /// via @p AccRel.
719   ///
720   /// @param Stmt       The parent statement.
721   /// @param AccType    Whether read or write access.
722   /// @param AccRel     The access relation that describes the memory access.
723   MemoryAccess(ScopStmt *Stmt, AccessType AccType, isl::map AccRel);
724 
725   MemoryAccess(const MemoryAccess &) = delete;
726   MemoryAccess &operator=(const MemoryAccess &) = delete;
727   ~MemoryAccess();
728 
729   /// Add a new incoming block/value pairs for this PHI/ExitPHI access.
730   ///
731   /// @param IncomingBlock The PHI's incoming block.
732   /// @param IncomingValue The value when reaching the PHI from the @p
733   ///                      IncomingBlock.
addIncoming(BasicBlock * IncomingBlock,Value * IncomingValue)734   void addIncoming(BasicBlock *IncomingBlock, Value *IncomingValue) {
735     assert(!isRead());
736     assert(isAnyPHIKind());
737     Incoming.emplace_back(std::make_pair(IncomingBlock, IncomingValue));
738   }
739 
740   /// Return the list of possible PHI/ExitPHI values.
741   ///
742   /// After code generation moves some PHIs around during region simplification,
743   /// we cannot reliably locate the original PHI node and its incoming values
744   /// anymore. For this reason we remember these explicitly for all PHI-kind
745   /// accesses.
getIncoming()746   ArrayRef<std::pair<BasicBlock *, Value *>> getIncoming() const {
747     assert(isAnyPHIKind());
748     return Incoming;
749   }
750 
751   /// Get the type of a memory access.
getType()752   enum AccessType getType() { return AccType; }
753 
754   /// Is this a reduction like access?
isReductionLike()755   bool isReductionLike() const { return RedType != RT_NONE; }
756 
757   /// Is this a read memory access?
isRead()758   bool isRead() const { return AccType == MemoryAccess::READ; }
759 
760   /// Is this a must-write memory access?
isMustWrite()761   bool isMustWrite() const { return AccType == MemoryAccess::MUST_WRITE; }
762 
763   /// Is this a may-write memory access?
isMayWrite()764   bool isMayWrite() const { return AccType == MemoryAccess::MAY_WRITE; }
765 
766   /// Is this a write memory access?
isWrite()767   bool isWrite() const { return isMustWrite() || isMayWrite(); }
768 
769   /// Is this a memory intrinsic access (memcpy, memset, memmove)?
isMemoryIntrinsic()770   bool isMemoryIntrinsic() const {
771     return isa<MemIntrinsic>(getAccessInstruction());
772   }
773 
774   /// Check if a new access relation was imported or set by a pass.
hasNewAccessRelation()775   bool hasNewAccessRelation() const { return !NewAccessRelation.is_null(); }
776 
777   /// Return the newest access relation of this access.
778   ///
779   /// There are two possibilities:
780   ///   1) The original access relation read from the LLVM-IR.
781   ///   2) A new access relation imported from a json file or set by another
782   ///      pass (e.g., for privatization).
783   ///
784   /// As 2) is by construction "newer" than 1) we return the new access
785   /// relation if present.
786   ///
getLatestAccessRelation()787   isl::map getLatestAccessRelation() const {
788     return hasNewAccessRelation() ? getNewAccessRelation()
789                                   : getOriginalAccessRelation();
790   }
791 
792   /// Old name of getLatestAccessRelation().
getAccessRelation()793   isl::map getAccessRelation() const { return getLatestAccessRelation(); }
794 
795   /// Get an isl map describing the memory address accessed.
796   ///
797   /// In most cases the memory address accessed is well described by the access
798   /// relation obtained with getAccessRelation. However, in case of arrays
799   /// accessed with types of different size the access relation maps one access
800   /// to multiple smaller address locations. This method returns an isl map that
801   /// relates each dynamic statement instance to the unique memory location
802   /// that is loaded from / stored to.
803   ///
804   /// For an access relation { S[i] -> A[o] : 4i <= o <= 4i + 3 } this method
805   /// will return the address function { S[i] -> A[4i] }.
806   ///
807   /// @returns The address function for this memory access.
808   isl::map getAddressFunction() const;
809 
810   /// Return the access relation after the schedule was applied.
811   isl::pw_multi_aff
812   applyScheduleToAccessRelation(isl::union_map Schedule) const;
813 
814   /// Get an isl string representing the access function read from IR.
815   std::string getOriginalAccessRelationStr() const;
816 
817   /// Get an isl string representing a new access function, if available.
818   std::string getNewAccessRelationStr() const;
819 
820   /// Get an isl string representing the latest access relation.
821   std::string getAccessRelationStr() const;
822 
823   /// Get the original base address of this access (e.g. A for A[i+j]) when
824   /// detected.
825   ///
826   /// This address may differ from the base address referenced by the original
827   /// ScopArrayInfo to which this array belongs, as this memory access may
828   /// have been canonicalized to a ScopArrayInfo which has a different but
829   /// identically-valued base pointer in case invariant load hoisting is
830   /// enabled.
getOriginalBaseAddr()831   Value *getOriginalBaseAddr() const { return BaseAddr; }
832 
833   /// Get the detection-time base array isl::id for this access.
834   isl::id getOriginalArrayId() const;
835 
836   /// Get the base array isl::id for this access, modifiable through
837   /// setNewAccessRelation().
838   isl::id getLatestArrayId() const;
839 
840   /// Old name of getOriginalArrayId().
getArrayId()841   isl::id getArrayId() const { return getOriginalArrayId(); }
842 
843   /// Get the detection-time ScopArrayInfo object for the base address.
844   const ScopArrayInfo *getOriginalScopArrayInfo() const;
845 
846   /// Get the ScopArrayInfo object for the base address, or the one set
847   /// by setNewAccessRelation().
848   const ScopArrayInfo *getLatestScopArrayInfo() const;
849 
850   /// Legacy name of getOriginalScopArrayInfo().
getScopArrayInfo()851   const ScopArrayInfo *getScopArrayInfo() const {
852     return getOriginalScopArrayInfo();
853   }
854 
855   /// Return a string representation of the access's reduction type.
856   const std::string getReductionOperatorStr() const;
857 
858   /// Return a string representation of the reduction type @p RT.
859   static const std::string getReductionOperatorStr(ReductionType RT);
860 
861   /// Return the element type of the accessed array wrt. this access.
getElementType()862   Type *getElementType() const { return ElementType; }
863 
864   /// Return the access value of this memory access.
getAccessValue()865   Value *getAccessValue() const { return AccessValue; }
866 
867   /// Return llvm::Value that is stored by this access, if available.
868   ///
869   /// PHI nodes may not have a unique value available that is stored, as in
870   /// case of region statements one out of possibly several llvm::Values
871   /// might be stored. In this case nullptr is returned.
tryGetValueStored()872   Value *tryGetValueStored() {
873     assert(isWrite() && "Only write statement store values");
874     if (isAnyPHIKind()) {
875       if (Incoming.size() == 1)
876         return Incoming[0].second;
877       return nullptr;
878     }
879     return AccessValue;
880   }
881 
882   /// Return the access instruction of this memory access.
getAccessInstruction()883   Instruction *getAccessInstruction() const { return AccessInstruction; }
884 
885   ///  Return an iterator range containing the subscripts.
subscripts()886   iterator_range<SubscriptsTy::const_iterator> subscripts() const {
887     return make_range(Subscripts.begin(), Subscripts.end());
888   }
889 
890   /// Return the number of access function subscript.
getNumSubscripts()891   unsigned getNumSubscripts() const { return Subscripts.size(); }
892 
893   /// Return the access function subscript in the dimension @p Dim.
getSubscript(unsigned Dim)894   const SCEV *getSubscript(unsigned Dim) const { return Subscripts[Dim]; }
895 
896   /// Compute the isl representation for the SCEV @p E wrt. this access.
897   ///
898   /// Note that this function will also adjust the invalid context accordingly.
899   isl::pw_aff getPwAff(const SCEV *E);
900 
901   /// Get the invalid domain for this access.
getInvalidDomain()902   isl::set getInvalidDomain() const { return InvalidDomain; }
903 
904   /// Get the invalid context for this access.
getInvalidContext()905   isl::set getInvalidContext() const { return getInvalidDomain().params(); }
906 
907   /// Get the stride of this memory access in the specified Schedule. Schedule
908   /// is a map from the statement to a schedule where the innermost dimension is
909   /// the dimension of the innermost loop containing the statement.
910   isl::set getStride(isl::map Schedule) const;
911 
912   /// Is the stride of the access equal to a certain width? Schedule is a map
913   /// from the statement to a schedule where the innermost dimension is the
914   /// dimension of the innermost loop containing the statement.
915   bool isStrideX(isl::map Schedule, int StrideWidth) const;
916 
917   /// Is consecutive memory accessed for a given statement instance set?
918   /// Schedule is a map from the statement to a schedule where the innermost
919   /// dimension is the dimension of the innermost loop containing the
920   /// statement.
921   bool isStrideOne(isl::map Schedule) const;
922 
923   /// Is always the same memory accessed for a given statement instance set?
924   /// Schedule is a map from the statement to a schedule where the innermost
925   /// dimension is the dimension of the innermost loop containing the
926   /// statement.
927   bool isStrideZero(isl::map Schedule) const;
928 
929   /// Return the kind when this access was first detected.
getOriginalKind()930   MemoryKind getOriginalKind() const {
931     assert(!getOriginalScopArrayInfo() /* not yet initialized */ ||
932            getOriginalScopArrayInfo()->getKind() == Kind);
933     return Kind;
934   }
935 
936   /// Return the kind considering a potential setNewAccessRelation.
getLatestKind()937   MemoryKind getLatestKind() const {
938     return getLatestScopArrayInfo()->getKind();
939   }
940 
941   /// Whether this is an access of an explicit load or store in the IR.
isOriginalArrayKind()942   bool isOriginalArrayKind() const {
943     return getOriginalKind() == MemoryKind::Array;
944   }
945 
946   /// Whether storage memory is either an custom .s2a/.phiops alloca
947   /// (false) or an existing pointer into an array (true).
isLatestArrayKind()948   bool isLatestArrayKind() const {
949     return getLatestKind() == MemoryKind::Array;
950   }
951 
952   /// Old name of isOriginalArrayKind.
isArrayKind()953   bool isArrayKind() const { return isOriginalArrayKind(); }
954 
955   /// Whether this access is an array to a scalar memory object, without
956   /// considering changes by setNewAccessRelation.
957   ///
958   /// Scalar accesses are accesses to MemoryKind::Value, MemoryKind::PHI or
959   /// MemoryKind::ExitPHI.
isOriginalScalarKind()960   bool isOriginalScalarKind() const {
961     return getOriginalKind() != MemoryKind::Array;
962   }
963 
964   /// Whether this access is an array to a scalar memory object, also
965   /// considering changes by setNewAccessRelation.
isLatestScalarKind()966   bool isLatestScalarKind() const {
967     return getLatestKind() != MemoryKind::Array;
968   }
969 
970   /// Old name of isOriginalScalarKind.
isScalarKind()971   bool isScalarKind() const { return isOriginalScalarKind(); }
972 
973   /// Was this MemoryAccess detected as a scalar dependences?
isOriginalValueKind()974   bool isOriginalValueKind() const {
975     return getOriginalKind() == MemoryKind::Value;
976   }
977 
978   /// Is this MemoryAccess currently modeling scalar dependences?
isLatestValueKind()979   bool isLatestValueKind() const {
980     return getLatestKind() == MemoryKind::Value;
981   }
982 
983   /// Old name of isOriginalValueKind().
isValueKind()984   bool isValueKind() const { return isOriginalValueKind(); }
985 
986   /// Was this MemoryAccess detected as a special PHI node access?
isOriginalPHIKind()987   bool isOriginalPHIKind() const {
988     return getOriginalKind() == MemoryKind::PHI;
989   }
990 
991   /// Is this MemoryAccess modeling special PHI node accesses, also
992   /// considering a potential change by setNewAccessRelation?
isLatestPHIKind()993   bool isLatestPHIKind() const { return getLatestKind() == MemoryKind::PHI; }
994 
995   /// Old name of isOriginalPHIKind.
isPHIKind()996   bool isPHIKind() const { return isOriginalPHIKind(); }
997 
998   /// Was this MemoryAccess detected as the accesses of a PHI node in the
999   /// SCoP's exit block?
isOriginalExitPHIKind()1000   bool isOriginalExitPHIKind() const {
1001     return getOriginalKind() == MemoryKind::ExitPHI;
1002   }
1003 
1004   /// Is this MemoryAccess modeling the accesses of a PHI node in the
1005   /// SCoP's exit block? Can be changed to an array access using
1006   /// setNewAccessRelation().
isLatestExitPHIKind()1007   bool isLatestExitPHIKind() const {
1008     return getLatestKind() == MemoryKind::ExitPHI;
1009   }
1010 
1011   /// Old name of isOriginalExitPHIKind().
isExitPHIKind()1012   bool isExitPHIKind() const { return isOriginalExitPHIKind(); }
1013 
1014   /// Was this access detected as one of the two PHI types?
isOriginalAnyPHIKind()1015   bool isOriginalAnyPHIKind() const {
1016     return isOriginalPHIKind() || isOriginalExitPHIKind();
1017   }
1018 
1019   /// Does this access originate from one of the two PHI types? Can be
1020   /// changed to an array access using setNewAccessRelation().
isLatestAnyPHIKind()1021   bool isLatestAnyPHIKind() const {
1022     return isLatestPHIKind() || isLatestExitPHIKind();
1023   }
1024 
1025   /// Old name of isOriginalAnyPHIKind().
isAnyPHIKind()1026   bool isAnyPHIKind() const { return isOriginalAnyPHIKind(); }
1027 
1028   /// Get the statement that contains this memory access.
getStatement()1029   ScopStmt *getStatement() const { return Statement; }
1030 
1031   /// Get the reduction type of this access
getReductionType()1032   ReductionType getReductionType() const { return RedType; }
1033 
1034   /// Update the original access relation.
1035   ///
1036   /// We need to update the original access relation during scop construction,
1037   /// when unifying the memory accesses that access the same scop array info
1038   /// object. After the scop has been constructed, the original access relation
1039   /// should not be changed any more. Instead setNewAccessRelation should
1040   /// be called.
1041   void setAccessRelation(isl::map AccessRelation);
1042 
1043   /// Set the updated access relation read from JSCOP file.
1044   void setNewAccessRelation(isl::map NewAccessRelation);
1045 
1046   /// Return whether the MemoryyAccess is a partial access. That is, the access
1047   /// is not executed in some instances of the parent statement's domain.
1048   bool isLatestPartialAccess() const;
1049 
1050   /// Mark this a reduction like access
markAsReductionLike(ReductionType RT)1051   void markAsReductionLike(ReductionType RT) { RedType = RT; }
1052 
1053   /// Align the parameters in the access relation to the scop context
1054   void realignParams();
1055 
1056   /// Update the dimensionality of the memory access.
1057   ///
1058   /// During scop construction some memory accesses may not be constructed with
1059   /// their full dimensionality, but outer dimensions may have been omitted if
1060   /// they took the value 'zero'. By updating the dimensionality of the
1061   /// statement we add additional zero-valued dimensions to match the
1062   /// dimensionality of the ScopArrayInfo object that belongs to this memory
1063   /// access.
1064   void updateDimensionality();
1065 
1066   /// Get identifier for the memory access.
1067   ///
1068   /// This identifier is unique for all accesses that belong to the same scop
1069   /// statement.
1070   isl::id getId() const;
1071 
1072   /// Print the MemoryAccess.
1073   ///
1074   /// @param OS The output stream the MemoryAccess is printed to.
1075   void print(raw_ostream &OS) const;
1076 
1077 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1078   /// Print the MemoryAccess to stderr.
1079   void dump() const;
1080 #endif
1081 
1082   /// Is the memory access affine?
isAffine()1083   bool isAffine() const { return IsAffine; }
1084 };
1085 
1086 raw_ostream &operator<<(raw_ostream &OS, MemoryAccess::ReductionType RT);
1087 
1088 /// Ordered list type to hold accesses.
1089 using MemoryAccessList = std::forward_list<MemoryAccess *>;
1090 
1091 /// Helper structure for invariant memory accesses.
1092 struct InvariantAccess {
1093   /// The memory access that is (partially) invariant.
1094   MemoryAccess *MA;
1095 
1096   /// The context under which the access is not invariant.
1097   isl::set NonHoistableCtx;
1098 };
1099 
1100 /// Ordered container type to hold invariant accesses.
1101 using InvariantAccessesTy = SmallVector<InvariantAccess, 8>;
1102 
1103 /// Type for equivalent invariant accesses and their domain context.
1104 struct InvariantEquivClassTy {
1105   /// The pointer that identifies this equivalence class
1106   const SCEV *IdentifyingPointer;
1107 
1108   /// Memory accesses now treated invariant
1109   ///
1110   /// These memory accesses access the pointer location that identifies
1111   /// this equivalence class. They are treated as invariant and hoisted during
1112   /// code generation.
1113   MemoryAccessList InvariantAccesses;
1114 
1115   /// The execution context under which the memory location is accessed
1116   ///
1117   /// It is the union of the execution domains of the memory accesses in the
1118   /// InvariantAccesses list.
1119   isl::set ExecutionContext;
1120 
1121   /// The type of the invariant access
1122   ///
1123   /// It is used to differentiate between differently typed invariant loads from
1124   /// the same location.
1125   Type *AccessType;
1126 };
1127 
1128 /// Type for invariant accesses equivalence classes.
1129 using InvariantEquivClassesTy = SmallVector<InvariantEquivClassTy, 8>;
1130 
1131 /// Statement of the Scop
1132 ///
1133 /// A Scop statement represents an instruction in the Scop.
1134 ///
1135 /// It is further described by its iteration domain, its schedule and its data
1136 /// accesses.
1137 /// At the moment every statement represents a single basic block of LLVM-IR.
1138 class ScopStmt final {
1139   friend class ScopBuilder;
1140 
1141 public:
1142   /// Create the ScopStmt from a BasicBlock.
1143   ScopStmt(Scop &parent, BasicBlock &bb, StringRef Name, Loop *SurroundingLoop,
1144            std::vector<Instruction *> Instructions);
1145 
1146   /// Create an overapproximating ScopStmt for the region @p R.
1147   ///
1148   /// @param EntryBlockInstructions The list of instructions that belong to the
1149   ///                               entry block of the region statement.
1150   ///                               Instructions are only tracked for entry
1151   ///                               blocks for now. We currently do not allow
1152   ///                               to modify the instructions of blocks later
1153   ///                               in the region statement.
1154   ScopStmt(Scop &parent, Region &R, StringRef Name, Loop *SurroundingLoop,
1155            std::vector<Instruction *> EntryBlockInstructions);
1156 
1157   /// Create a copy statement.
1158   ///
1159   /// @param Stmt       The parent statement.
1160   /// @param SourceRel  The source location.
1161   /// @param TargetRel  The target location.
1162   /// @param Domain     The original domain under which the copy statement would
1163   ///                   be executed.
1164   ScopStmt(Scop &parent, isl::map SourceRel, isl::map TargetRel,
1165            isl::set Domain);
1166 
1167   ScopStmt(const ScopStmt &) = delete;
1168   const ScopStmt &operator=(const ScopStmt &) = delete;
1169   ~ScopStmt();
1170 
1171 private:
1172   /// Polyhedral description
1173   //@{
1174 
1175   /// The Scop containing this ScopStmt.
1176   Scop &Parent;
1177 
1178   /// The domain under which this statement is not modeled precisely.
1179   ///
1180   /// The invalid domain for a statement describes all parameter combinations
1181   /// under which the statement looks to be executed but is in fact not because
1182   /// some assumption/restriction makes the statement/scop invalid.
1183   isl::set InvalidDomain;
1184 
1185   /// The iteration domain describes the set of iterations for which this
1186   /// statement is executed.
1187   ///
1188   /// Example:
1189   ///     for (i = 0; i < 100 + b; ++i)
1190   ///       for (j = 0; j < i; ++j)
1191   ///         S(i,j);
1192   ///
1193   /// 'S' is executed for different values of i and j. A vector of all
1194   /// induction variables around S (i, j) is called iteration vector.
1195   /// The domain describes the set of possible iteration vectors.
1196   ///
1197   /// In this case it is:
1198   ///
1199   ///     Domain: 0 <= i <= 100 + b
1200   ///             0 <= j <= i
1201   ///
1202   /// A pair of statement and iteration vector (S, (5,3)) is called statement
1203   /// instance.
1204   isl::set Domain;
1205 
1206   /// The memory accesses of this statement.
1207   ///
1208   /// The only side effects of a statement are its memory accesses.
1209   using MemoryAccessVec = llvm::SmallVector<MemoryAccess *, 8>;
1210   MemoryAccessVec MemAccs;
1211 
1212   /// Mapping from instructions to (scalar) memory accesses.
1213   DenseMap<const Instruction *, MemoryAccessList> InstructionToAccess;
1214 
1215   /// The set of values defined elsewhere required in this ScopStmt and
1216   ///        their MemoryKind::Value READ MemoryAccesses.
1217   DenseMap<Value *, MemoryAccess *> ValueReads;
1218 
1219   /// The set of values defined in this ScopStmt that are required
1220   ///        elsewhere, mapped to their MemoryKind::Value WRITE MemoryAccesses.
1221   DenseMap<Instruction *, MemoryAccess *> ValueWrites;
1222 
1223   /// Map from PHI nodes to its incoming value when coming from this
1224   ///        statement.
1225   ///
1226   /// Non-affine subregions can have multiple exiting blocks that are incoming
1227   /// blocks of the PHI nodes. This map ensures that there is only one write
1228   /// operation for the complete subregion. A PHI selecting the relevant value
1229   /// will be inserted.
1230   DenseMap<PHINode *, MemoryAccess *> PHIWrites;
1231 
1232   /// Map from PHI nodes to its read access in this statement.
1233   DenseMap<PHINode *, MemoryAccess *> PHIReads;
1234 
1235   //@}
1236 
1237   /// A SCoP statement represents either a basic block (affine/precise case) or
1238   /// a whole region (non-affine case).
1239   ///
1240   /// Only one of the following two members will therefore be set and indicate
1241   /// which kind of statement this is.
1242   ///
1243   ///{
1244 
1245   /// The BasicBlock represented by this statement (in the affine case).
1246   BasicBlock *BB = nullptr;
1247 
1248   /// The region represented by this statement (in the non-affine case).
1249   Region *R = nullptr;
1250 
1251   ///}
1252 
1253   /// The isl AST build for the new generated AST.
1254   isl::ast_build Build;
1255 
1256   SmallVector<Loop *, 4> NestLoops;
1257 
1258   std::string BaseName;
1259 
1260   /// The closest loop that contains this statement.
1261   Loop *SurroundingLoop;
1262 
1263   /// Vector for Instructions in this statement.
1264   std::vector<Instruction *> Instructions;
1265 
1266   /// Remove @p MA from dictionaries pointing to them.
1267   void removeAccessData(MemoryAccess *MA);
1268 
1269 public:
1270   /// Get an isl_ctx pointer.
1271   isl::ctx getIslCtx() const;
1272 
1273   /// Get the iteration domain of this ScopStmt.
1274   ///
1275   /// @return The iteration domain of this ScopStmt.
1276   isl::set getDomain() const;
1277 
1278   /// Get the space of the iteration domain
1279   ///
1280   /// @return The space of the iteration domain
1281   isl::space getDomainSpace() const;
1282 
1283   /// Get the id of the iteration domain space
1284   ///
1285   /// @return The id of the iteration domain space
1286   isl::id getDomainId() const;
1287 
1288   /// Get an isl string representing this domain.
1289   std::string getDomainStr() const;
1290 
1291   /// Get the schedule function of this ScopStmt.
1292   ///
1293   /// @return The schedule function of this ScopStmt, if it does not contain
1294   /// extension nodes, and nullptr, otherwise.
1295   isl::map getSchedule() const;
1296 
1297   /// Get an isl string representing this schedule.
1298   ///
1299   /// @return An isl string representing this schedule, if it does not contain
1300   /// extension nodes, and an empty string, otherwise.
1301   std::string getScheduleStr() const;
1302 
1303   /// Get the invalid domain for this statement.
getInvalidDomain()1304   isl::set getInvalidDomain() const { return InvalidDomain; }
1305 
1306   /// Get the invalid context for this statement.
getInvalidContext()1307   isl::set getInvalidContext() const { return getInvalidDomain().params(); }
1308 
1309   /// Set the invalid context for this statement to @p ID.
1310   void setInvalidDomain(isl::set ID);
1311 
1312   /// Get the BasicBlock represented by this ScopStmt (if any).
1313   ///
1314   /// @return The BasicBlock represented by this ScopStmt, or null if the
1315   ///         statement represents a region.
getBasicBlock()1316   BasicBlock *getBasicBlock() const { return BB; }
1317 
1318   /// Return true if this statement represents a single basic block.
isBlockStmt()1319   bool isBlockStmt() const { return BB != nullptr; }
1320 
1321   /// Return true if this is a copy statement.
isCopyStmt()1322   bool isCopyStmt() const { return BB == nullptr && R == nullptr; }
1323 
1324   /// Get the region represented by this ScopStmt (if any).
1325   ///
1326   /// @return The region represented by this ScopStmt, or null if the statement
1327   ///         represents a basic block.
getRegion()1328   Region *getRegion() const { return R; }
1329 
1330   /// Return true if this statement represents a whole region.
isRegionStmt()1331   bool isRegionStmt() const { return R != nullptr; }
1332 
1333   /// Return a BasicBlock from this statement.
1334   ///
1335   /// For block statements, it returns the BasicBlock itself. For subregion
1336   /// statements, return its entry block.
1337   BasicBlock *getEntryBlock() const;
1338 
1339   /// Return whether @p L is boxed within this statement.
contains(const Loop * L)1340   bool contains(const Loop *L) const {
1341     // Block statements never contain loops.
1342     if (isBlockStmt())
1343       return false;
1344 
1345     return getRegion()->contains(L);
1346   }
1347 
1348   /// Return whether this statement represents @p BB.
represents(BasicBlock * BB)1349   bool represents(BasicBlock *BB) const {
1350     if (isCopyStmt())
1351       return false;
1352     if (isBlockStmt())
1353       return BB == getBasicBlock();
1354     return getRegion()->contains(BB);
1355   }
1356 
1357   /// Return whether this statement contains @p Inst.
contains(Instruction * Inst)1358   bool contains(Instruction *Inst) const {
1359     if (!Inst)
1360       return false;
1361     if (isBlockStmt())
1362       return llvm::is_contained(Instructions, Inst);
1363     return represents(Inst->getParent());
1364   }
1365 
1366   /// Return the closest innermost loop that contains this statement, but is not
1367   /// contained in it.
1368   ///
1369   /// For block statement, this is just the loop that contains the block. Region
1370   /// statements can contain boxed loops, so getting the loop of one of the
1371   /// region's BBs might return such an inner loop. For instance, the region's
1372   /// entry could be a header of a loop, but the region might extend to BBs
1373   /// after the loop exit. Similarly, the region might only contain parts of the
1374   /// loop body and still include the loop header.
1375   ///
1376   /// Most of the time the surrounding loop is the top element of #NestLoops,
1377   /// except when it is empty. In that case it return the loop that the whole
1378   /// SCoP is contained in. That can be nullptr if there is no such loop.
getSurroundingLoop()1379   Loop *getSurroundingLoop() const {
1380     assert(!isCopyStmt() &&
1381            "No surrounding loop for artificially created statements");
1382     return SurroundingLoop;
1383   }
1384 
1385   /// Return true if this statement does not contain any accesses.
isEmpty()1386   bool isEmpty() const { return MemAccs.empty(); }
1387 
1388   /// Find all array accesses for @p Inst.
1389   ///
1390   /// @param Inst The instruction accessing an array.
1391   ///
1392   /// @return A list of array accesses (MemoryKind::Array) accessed by @p Inst.
1393   ///         If there is no such access, it returns nullptr.
1394   const MemoryAccessList *
lookupArrayAccessesFor(const Instruction * Inst)1395   lookupArrayAccessesFor(const Instruction *Inst) const {
1396     auto It = InstructionToAccess.find(Inst);
1397     if (It == InstructionToAccess.end())
1398       return nullptr;
1399     if (It->second.empty())
1400       return nullptr;
1401     return &It->second;
1402   }
1403 
1404   /// Return the only array access for @p Inst, if existing.
1405   ///
1406   /// @param Inst The instruction for which to look up the access.
1407   /// @returns The unique array memory access related to Inst or nullptr if
1408   ///          no array access exists
getArrayAccessOrNULLFor(const Instruction * Inst)1409   MemoryAccess *getArrayAccessOrNULLFor(const Instruction *Inst) const {
1410     auto It = InstructionToAccess.find(Inst);
1411     if (It == InstructionToAccess.end())
1412       return nullptr;
1413 
1414     MemoryAccess *ArrayAccess = nullptr;
1415 
1416     for (auto Access : It->getSecond()) {
1417       if (!Access->isArrayKind())
1418         continue;
1419 
1420       assert(!ArrayAccess && "More then one array access for instruction");
1421 
1422       ArrayAccess = Access;
1423     }
1424 
1425     return ArrayAccess;
1426   }
1427 
1428   /// Return the only array access for @p Inst.
1429   ///
1430   /// @param Inst The instruction for which to look up the access.
1431   /// @returns The unique array memory access related to Inst.
getArrayAccessFor(const Instruction * Inst)1432   MemoryAccess &getArrayAccessFor(const Instruction *Inst) const {
1433     MemoryAccess *ArrayAccess = getArrayAccessOrNULLFor(Inst);
1434 
1435     assert(ArrayAccess && "No array access found for instruction!");
1436     return *ArrayAccess;
1437   }
1438 
1439   /// Return the MemoryAccess that writes the value of an instruction
1440   ///        defined in this statement, or nullptr if not existing, respectively
1441   ///        not yet added.
lookupValueWriteOf(Instruction * Inst)1442   MemoryAccess *lookupValueWriteOf(Instruction *Inst) const {
1443     assert((isRegionStmt() && R->contains(Inst)) ||
1444            (!isRegionStmt() && Inst->getParent() == BB));
1445     return ValueWrites.lookup(Inst);
1446   }
1447 
1448   /// Return the MemoryAccess that reloads a value, or nullptr if not
1449   ///        existing, respectively not yet added.
lookupValueReadOf(Value * Inst)1450   MemoryAccess *lookupValueReadOf(Value *Inst) const {
1451     return ValueReads.lookup(Inst);
1452   }
1453 
1454   /// Return the MemoryAccess that loads a PHINode value, or nullptr if not
1455   /// existing, respectively not yet added.
lookupPHIReadOf(PHINode * PHI)1456   MemoryAccess *lookupPHIReadOf(PHINode *PHI) const {
1457     return PHIReads.lookup(PHI);
1458   }
1459 
1460   /// Return the PHI write MemoryAccess for the incoming values from any
1461   ///        basic block in this ScopStmt, or nullptr if not existing,
1462   ///        respectively not yet added.
lookupPHIWriteOf(PHINode * PHI)1463   MemoryAccess *lookupPHIWriteOf(PHINode *PHI) const {
1464     assert(isBlockStmt() || R->getExit() == PHI->getParent());
1465     return PHIWrites.lookup(PHI);
1466   }
1467 
1468   /// Return the input access of the value, or null if no such MemoryAccess
1469   /// exists.
1470   ///
1471   /// The input access is the MemoryAccess that makes an inter-statement value
1472   /// available in this statement by reading it at the start of this statement.
1473   /// This can be a MemoryKind::Value if defined in another statement or a
1474   /// MemoryKind::PHI if the value is a PHINode in this statement.
lookupInputAccessOf(Value * Val)1475   MemoryAccess *lookupInputAccessOf(Value *Val) const {
1476     if (isa<PHINode>(Val))
1477       if (auto InputMA = lookupPHIReadOf(cast<PHINode>(Val))) {
1478         assert(!lookupValueReadOf(Val) && "input accesses must be unique; a "
1479                                           "statement cannot read a .s2a and "
1480                                           ".phiops simultaneously");
1481         return InputMA;
1482       }
1483 
1484     if (auto *InputMA = lookupValueReadOf(Val))
1485       return InputMA;
1486 
1487     return nullptr;
1488   }
1489 
1490   /// Add @p Access to this statement's list of accesses.
1491   ///
1492   /// @param Access  The access to add.
1493   /// @param Prepend If true, will add @p Access before all other instructions
1494   ///                (instead of appending it).
1495   void addAccess(MemoryAccess *Access, bool Preprend = false);
1496 
1497   /// Remove a MemoryAccess from this statement.
1498   ///
1499   /// Note that scalar accesses that are caused by MA will
1500   /// be eliminated too.
1501   void removeMemoryAccess(MemoryAccess *MA);
1502 
1503   /// Remove @p MA from this statement.
1504   ///
1505   /// In contrast to removeMemoryAccess(), no other access will be eliminated.
1506   ///
1507   /// @param MA            The MemoryAccess to be removed.
1508   /// @param AfterHoisting If true, also remove from data access lists.
1509   ///                      These lists are filled during
1510   ///                      ScopBuilder::buildAccessRelations. Therefore, if this
1511   ///                      method is called before buildAccessRelations, false
1512   ///                      must be passed.
1513   void removeSingleMemoryAccess(MemoryAccess *MA, bool AfterHoisting = true);
1514 
1515   using iterator = MemoryAccessVec::iterator;
1516   using const_iterator = MemoryAccessVec::const_iterator;
1517 
begin()1518   iterator begin() { return MemAccs.begin(); }
end()1519   iterator end() { return MemAccs.end(); }
begin()1520   const_iterator begin() const { return MemAccs.begin(); }
end()1521   const_iterator end() const { return MemAccs.end(); }
size()1522   size_t size() const { return MemAccs.size(); }
1523 
1524   unsigned getNumIterators() const;
1525 
getParent()1526   Scop *getParent() { return &Parent; }
getParent()1527   const Scop *getParent() const { return &Parent; }
1528 
getInstructions()1529   const std::vector<Instruction *> &getInstructions() const {
1530     return Instructions;
1531   }
1532 
1533   /// Set the list of instructions for this statement. It replaces the current
1534   /// list.
setInstructions(ArrayRef<Instruction * > Range)1535   void setInstructions(ArrayRef<Instruction *> Range) {
1536     Instructions.assign(Range.begin(), Range.end());
1537   }
1538 
insts_begin()1539   std::vector<Instruction *>::const_iterator insts_begin() const {
1540     return Instructions.begin();
1541   }
1542 
insts_end()1543   std::vector<Instruction *>::const_iterator insts_end() const {
1544     return Instructions.end();
1545   }
1546 
1547   /// The range of instructions in this statement.
insts()1548   iterator_range<std::vector<Instruction *>::const_iterator> insts() const {
1549     return {insts_begin(), insts_end()};
1550   }
1551 
1552   /// Insert an instruction before all other instructions in this statement.
prependInstruction(Instruction * Inst)1553   void prependInstruction(Instruction *Inst) {
1554     Instructions.insert(Instructions.begin(), Inst);
1555   }
1556 
1557   const char *getBaseName() const;
1558 
1559   /// Set the isl AST build.
setAstBuild(isl::ast_build B)1560   void setAstBuild(isl::ast_build B) { Build = B; }
1561 
1562   /// Get the isl AST build.
getAstBuild()1563   isl::ast_build getAstBuild() const { return Build; }
1564 
1565   /// Restrict the domain of the statement.
1566   ///
1567   /// @param NewDomain The new statement domain.
1568   void restrictDomain(isl::set NewDomain);
1569 
1570   /// Get the loop for a dimension.
1571   ///
1572   /// @param Dimension The dimension of the induction variable
1573   /// @return The loop at a certain dimension.
1574   Loop *getLoopForDimension(unsigned Dimension) const;
1575 
1576   /// Align the parameters in the statement to the scop context
1577   void realignParams();
1578 
1579   /// Print the ScopStmt.
1580   ///
1581   /// @param OS                The output stream the ScopStmt is printed to.
1582   /// @param PrintInstructions Whether to print the statement's instructions as
1583   ///                          well.
1584   void print(raw_ostream &OS, bool PrintInstructions) const;
1585 
1586   /// Print the instructions in ScopStmt.
1587   ///
1588   void printInstructions(raw_ostream &OS) const;
1589 
1590   /// Check whether there is a value read access for @p V in this statement, and
1591   /// if not, create one.
1592   ///
1593   /// This allows to add MemoryAccesses after the initial creation of the Scop
1594   /// by ScopBuilder.
1595   ///
1596   /// @return The already existing or newly created MemoryKind::Value READ
1597   /// MemoryAccess.
1598   ///
1599   /// @see ScopBuilder::ensureValueRead(Value*,ScopStmt*)
1600   MemoryAccess *ensureValueRead(Value *V);
1601 
1602 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1603   /// Print the ScopStmt to stderr.
1604   void dump() const;
1605 #endif
1606 };
1607 
1608 /// Print ScopStmt S to raw_ostream OS.
1609 raw_ostream &operator<<(raw_ostream &OS, const ScopStmt &S);
1610 
1611 /// Static Control Part
1612 ///
1613 /// A Scop is the polyhedral representation of a control flow region detected
1614 /// by the Scop detection. It is generated by translating the LLVM-IR and
1615 /// abstracting its effects.
1616 ///
1617 /// A Scop consists of a set of:
1618 ///
1619 ///   * A set of statements executed in the Scop.
1620 ///
1621 ///   * A set of global parameters
1622 ///   Those parameters are scalar integer values, which are constant during
1623 ///   execution.
1624 ///
1625 ///   * A context
1626 ///   This context contains information about the values the parameters
1627 ///   can take and relations between different parameters.
1628 class Scop final {
1629 public:
1630   /// Type to represent a pair of minimal/maximal access to an array.
1631   using MinMaxAccessTy = std::pair<isl::pw_multi_aff, isl::pw_multi_aff>;
1632 
1633   /// Vector of minimal/maximal accesses to different arrays.
1634   using MinMaxVectorTy = SmallVector<MinMaxAccessTy, 4>;
1635 
1636   /// Pair of minimal/maximal access vectors representing
1637   /// read write and read only accesses
1638   using MinMaxVectorPairTy = std::pair<MinMaxVectorTy, MinMaxVectorTy>;
1639 
1640   /// Vector of pair of minimal/maximal access vectors representing
1641   /// non read only and read only accesses for each alias group.
1642   using MinMaxVectorPairVectorTy = SmallVector<MinMaxVectorPairTy, 4>;
1643 
1644 private:
1645   friend class ScopBuilder;
1646 
1647   /// Isl context.
1648   ///
1649   /// We need a shared_ptr with reference counter to delete the context when all
1650   /// isl objects are deleted. We will distribute the shared_ptr to all objects
1651   /// that use the context to create isl objects, and increase the reference
1652   /// counter. By doing this, we guarantee that the context is deleted when we
1653   /// delete the last object that creates isl objects with the context. This
1654   /// declaration needs to be the first in class to gracefully destroy all isl
1655   /// objects before the context.
1656   std::shared_ptr<isl_ctx> IslCtx;
1657 
1658   ScalarEvolution *SE;
1659   DominatorTree *DT;
1660 
1661   /// The underlying Region.
1662   Region &R;
1663 
1664   /// The name of the SCoP (identical to the regions name)
1665   std::optional<std::string> name;
1666 
1667   // Access functions of the SCoP.
1668   //
1669   // This owns all the MemoryAccess objects of the Scop created in this pass.
1670   AccFuncVector AccessFunctions;
1671 
1672   /// Flag to indicate that the scheduler actually optimized the SCoP.
1673   bool IsOptimized = false;
1674 
1675   /// True if the underlying region has a single exiting block.
1676   bool HasSingleExitEdge;
1677 
1678   /// Flag to remember if the SCoP contained an error block or not.
1679   bool HasErrorBlock = false;
1680 
1681   /// Max loop depth.
1682   unsigned MaxLoopDepth = 0;
1683 
1684   /// Number of copy statements.
1685   unsigned CopyStmtsNum = 0;
1686 
1687   using StmtSet = std::list<ScopStmt>;
1688 
1689   /// The statements in this Scop.
1690   StmtSet Stmts;
1691 
1692   /// Parameters of this Scop
1693   ParameterSetTy Parameters;
1694 
1695   /// Mapping from parameters to their ids.
1696   DenseMap<const SCEV *, isl::id> ParameterIds;
1697 
1698   /// The context of the SCoP created during SCoP detection.
1699   ScopDetection::DetectionContext &DC;
1700 
1701   /// OptimizationRemarkEmitter object for displaying diagnostic remarks
1702   OptimizationRemarkEmitter &ORE;
1703 
1704   /// A map from basic blocks to vector of SCoP statements. Currently this
1705   /// vector comprises only of a single statement.
1706   DenseMap<BasicBlock *, std::vector<ScopStmt *>> StmtMap;
1707 
1708   /// A map from instructions to SCoP statements.
1709   DenseMap<Instruction *, ScopStmt *> InstStmtMap;
1710 
1711   /// A map from basic blocks to their domains.
1712   DenseMap<BasicBlock *, isl::set> DomainMap;
1713 
1714   /// Constraints on parameters.
1715   isl::set Context;
1716 
1717   /// The affinator used to translate SCEVs to isl expressions.
1718   SCEVAffinator Affinator;
1719 
1720   using ArrayInfoMapTy =
1721       std::map<std::pair<AssertingVH<const Value>, MemoryKind>,
1722                std::unique_ptr<ScopArrayInfo>>;
1723 
1724   using ArrayNameMapTy = StringMap<std::unique_ptr<ScopArrayInfo>>;
1725 
1726   using ArrayInfoSetTy = SetVector<ScopArrayInfo *>;
1727 
1728   /// A map to remember ScopArrayInfo objects for all base pointers.
1729   ///
1730   /// As PHI nodes may have two array info objects associated, we add a flag
1731   /// that distinguishes between the PHI node specific ArrayInfo object
1732   /// and the normal one.
1733   ArrayInfoMapTy ScopArrayInfoMap;
1734 
1735   /// A map to remember ScopArrayInfo objects for all names of memory
1736   ///        references.
1737   ArrayNameMapTy ScopArrayNameMap;
1738 
1739   /// A set to remember ScopArrayInfo objects.
1740   /// @see Scop::ScopArrayInfoMap
1741   ArrayInfoSetTy ScopArrayInfoSet;
1742 
1743   /// The assumptions under which this scop was built.
1744   ///
1745   /// When constructing a scop sometimes the exact representation of a statement
1746   /// or condition would be very complex, but there is a common case which is a
1747   /// lot simpler, but which is only valid under certain assumptions. The
1748   /// assumed context records the assumptions taken during the construction of
1749   /// this scop and that need to be code generated as a run-time test.
1750   isl::set AssumedContext;
1751 
1752   /// The restrictions under which this SCoP was built.
1753   ///
1754   /// The invalid context is similar to the assumed context as it contains
1755   /// constraints over the parameters. However, while we need the constraints
1756   /// in the assumed context to be "true" the constraints in the invalid context
1757   /// need to be "false". Otherwise they behave the same.
1758   isl::set InvalidContext;
1759 
1760   /// The context under which the SCoP must have defined behavior. Optimizer and
1761   /// code generator can assume that the SCoP will only be executed with
1762   /// parameter values within this context. This might be either because we can
1763   /// prove that other values are impossible or explicitly have undefined
1764   /// behavior, such as due to no-wrap flags. If this becomes too complex, can
1765   /// also be nullptr.
1766   ///
1767   /// In contrast to Scop::AssumedContext and Scop::InvalidContext, these do not
1768   /// need to be checked at runtime.
1769   ///
1770   /// Scop::Context on the other side is an overapproximation and does not
1771   /// include all requirements, but is always defined. However, there is still
1772   /// no guarantee that there is no undefined behavior in
1773   /// DefinedBehaviorContext.
1774   isl::set DefinedBehaviorContext;
1775 
1776   /// The schedule of the SCoP
1777   ///
1778   /// The schedule of the SCoP describes the execution order of the statements
1779   /// in the scop by assigning each statement instance a possibly
1780   /// multi-dimensional execution time. The schedule is stored as a tree of
1781   /// schedule nodes.
1782   ///
1783   /// The most common nodes in a schedule tree are so-called band nodes. Band
1784   /// nodes map statement instances into a multi dimensional schedule space.
1785   /// This space can be seen as a multi-dimensional clock.
1786   ///
1787   /// Example:
1788   ///
1789   /// <S,(5,4)>  may be mapped to (5,4) by this schedule:
1790   ///
1791   /// s0 = i (Year of execution)
1792   /// s1 = j (Day of execution)
1793   ///
1794   /// or to (9, 20) by this schedule:
1795   ///
1796   /// s0 = i + j (Year of execution)
1797   /// s1 = 20 (Day of execution)
1798   ///
1799   /// The order statement instances are executed is defined by the
1800   /// schedule vectors they are mapped to. A statement instance
1801   /// <A, (i, j, ..)> is executed before a statement instance <B, (i', ..)>, if
1802   /// the schedule vector of A is lexicographic smaller than the schedule
1803   /// vector of B.
1804   ///
1805   /// Besides band nodes, schedule trees contain additional nodes that specify
1806   /// a textual ordering between two subtrees or filter nodes that filter the
1807   /// set of statement instances that will be scheduled in a subtree. There
1808   /// are also several other nodes. A full description of the different nodes
1809   /// in a schedule tree is given in the isl manual.
1810   isl::schedule Schedule;
1811 
1812   /// Is this Scop marked as not to be transformed by an optimization heuristic?
1813   bool HasDisableHeuristicsHint = false;
1814 
1815   /// Whether the schedule has been modified after derived from the CFG by
1816   /// ScopBuilder.
1817   bool ScheduleModified = false;
1818 
1819   /// The set of minimal/maximal accesses for each alias group.
1820   ///
1821   /// When building runtime alias checks we look at all memory instructions and
1822   /// build so called alias groups. Each group contains a set of accesses to
1823   /// different base arrays which might alias with each other. However, between
1824   /// alias groups there is no aliasing possible.
1825   ///
1826   /// In a program with int and float pointers annotated with tbaa information
1827   /// we would probably generate two alias groups, one for the int pointers and
1828   /// one for the float pointers.
1829   ///
1830   /// During code generation we will create a runtime alias check for each alias
1831   /// group to ensure the SCoP is executed in an alias free environment.
1832   MinMaxVectorPairVectorTy MinMaxAliasGroups;
1833 
1834   /// Mapping from invariant loads to the representing invariant load of
1835   ///        their equivalence class.
1836   ValueToValueMap InvEquivClassVMap;
1837 
1838   /// List of invariant accesses.
1839   InvariantEquivClassesTy InvariantEquivClasses;
1840 
1841   /// The smallest array index not yet assigned.
1842   long ArrayIdx = 0;
1843 
1844   /// The smallest statement index not yet assigned.
1845   long StmtIdx = 0;
1846 
1847   /// A number that uniquely represents a Scop within its function
1848   const int ID;
1849 
1850   /// Map of values to the MemoryAccess that writes its definition.
1851   ///
1852   /// There must be at most one definition per llvm::Instruction in a SCoP.
1853   DenseMap<Value *, MemoryAccess *> ValueDefAccs;
1854 
1855   /// Map of values to the MemoryAccess that reads a PHI.
1856   DenseMap<PHINode *, MemoryAccess *> PHIReadAccs;
1857 
1858   /// List of all uses (i.e. read MemoryAccesses) for a MemoryKind::Value
1859   /// scalar.
1860   DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>> ValueUseAccs;
1861 
1862   /// List of all incoming values (write MemoryAccess) of a MemoryKind::PHI or
1863   /// MemoryKind::ExitPHI scalar.
1864   DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>>
1865       PHIIncomingAccs;
1866 
1867   /// Scop constructor; invoked from ScopBuilder::buildScop.
1868   Scop(Region &R, ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT,
1869        ScopDetection::DetectionContext &DC, OptimizationRemarkEmitter &ORE,
1870        int ID);
1871 
1872   //@}
1873 
1874   /// Return the access for the base ptr of @p MA if any.
1875   MemoryAccess *lookupBasePtrAccess(MemoryAccess *MA);
1876 
1877   /// Create an id for @p Param and store it in the ParameterIds map.
1878   void createParameterId(const SCEV *Param);
1879 
1880   /// Build the Context of the Scop.
1881   void buildContext();
1882 
1883   /// Add the bounds of the parameters to the context.
1884   void addParameterBounds();
1885 
1886   /// Simplify the assumed and invalid context.
1887   void simplifyContexts();
1888 
1889   /// Create a new SCoP statement for @p BB.
1890   ///
1891   /// A new statement for @p BB will be created and added to the statement
1892   /// vector
1893   /// and map.
1894   ///
1895   /// @param BB              The basic block we build the statement for.
1896   /// @param Name            The name of the new statement.
1897   /// @param SurroundingLoop The loop the created statement is contained in.
1898   /// @param Instructions    The instructions in the statement.
1899   void addScopStmt(BasicBlock *BB, StringRef Name, Loop *SurroundingLoop,
1900                    std::vector<Instruction *> Instructions);
1901 
1902   /// Create a new SCoP statement for @p R.
1903   ///
1904   /// A new statement for @p R will be created and added to the statement vector
1905   /// and map.
1906   ///
1907   /// @param R                      The region we build the statement for.
1908   /// @param Name                   The name of the new statement.
1909   /// @param SurroundingLoop        The loop the created statement is contained
1910   ///                               in.
1911   /// @param EntryBlockInstructions The (interesting) instructions in the
1912   ///                               entry block of the region statement.
1913   void addScopStmt(Region *R, StringRef Name, Loop *SurroundingLoop,
1914                    std::vector<Instruction *> EntryBlockInstructions);
1915 
1916   /// Removes @p Stmt from the StmtMap.
1917   void removeFromStmtMap(ScopStmt &Stmt);
1918 
1919   /// Removes all statements where the entry block of the statement does not
1920   /// have a corresponding domain in the domain map (or it is empty).
1921   void removeStmtNotInDomainMap();
1922 
1923   /// Collect all memory access relations of a given type.
1924   ///
1925   /// @param Predicate A predicate function that returns true if an access is
1926   ///                  of a given type.
1927   ///
1928   /// @returns The set of memory accesses in the scop that match the predicate.
1929   isl::union_map
1930   getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate);
1931 
1932   /// @name Helper functions for printing the Scop.
1933   ///
1934   //@{
1935   void printContext(raw_ostream &OS) const;
1936   void printArrayInfo(raw_ostream &OS) const;
1937   void printStatements(raw_ostream &OS, bool PrintInstructions) const;
1938   void printAliasAssumptions(raw_ostream &OS) const;
1939   //@}
1940 
1941 public:
1942   Scop(const Scop &) = delete;
1943   Scop &operator=(const Scop &) = delete;
1944   ~Scop();
1945 
1946   /// Increment actual number of aliasing assumptions taken
1947   ///
1948   /// @param Step    Number of new aliasing assumptions which should be added to
1949   /// the number of already taken assumptions.
1950   static void incrementNumberOfAliasingAssumptions(unsigned Step);
1951 
1952   /// Get the count of copy statements added to this Scop.
1953   ///
1954   /// @return The count of copy statements added to this Scop.
getCopyStmtsNum()1955   unsigned getCopyStmtsNum() { return CopyStmtsNum; }
1956 
1957   /// Create a new copy statement.
1958   ///
1959   /// A new statement will be created and added to the statement vector.
1960   ///
1961   /// @param SourceRel  The source location.
1962   /// @param TargetRel  The target location.
1963   /// @param Domain     The original domain under which the copy statement would
1964   ///                   be executed.
1965   ScopStmt *addScopStmt(isl::map SourceRel, isl::map TargetRel,
1966                         isl::set Domain);
1967 
1968   /// Add the access function to all MemoryAccess objects of the Scop
1969   ///        created in this pass.
addAccessFunction(MemoryAccess * Access)1970   void addAccessFunction(MemoryAccess *Access) {
1971     AccessFunctions.emplace_back(Access);
1972 
1973     // Register value definitions.
1974     if (Access->isWrite() && Access->isOriginalValueKind()) {
1975       assert(!ValueDefAccs.count(Access->getAccessValue()) &&
1976              "there can be just one definition per value");
1977       ValueDefAccs[Access->getAccessValue()] = Access;
1978     } else if (Access->isRead() && Access->isOriginalPHIKind()) {
1979       PHINode *PHI = cast<PHINode>(Access->getAccessInstruction());
1980       assert(!PHIReadAccs.count(PHI) &&
1981              "there can be just one PHI read per PHINode");
1982       PHIReadAccs[PHI] = Access;
1983     }
1984   }
1985 
1986   /// Add metadata for @p Access.
1987   void addAccessData(MemoryAccess *Access);
1988 
1989   /// Add new invariant access equivalence class
1990   void
addInvariantEquivClass(const InvariantEquivClassTy & InvariantEquivClass)1991   addInvariantEquivClass(const InvariantEquivClassTy &InvariantEquivClass) {
1992     InvariantEquivClasses.emplace_back(InvariantEquivClass);
1993   }
1994 
1995   /// Add mapping from invariant loads to the representing invariant load of
1996   ///        their equivalence class.
addInvariantLoadMapping(const Value * LoadInst,Value * ClassRep)1997   void addInvariantLoadMapping(const Value *LoadInst, Value *ClassRep) {
1998     InvEquivClassVMap[LoadInst] = ClassRep;
1999   }
2000 
2001   /// Remove the metadata stored for @p Access.
2002   void removeAccessData(MemoryAccess *Access);
2003 
2004   /// Return the scalar evolution.
2005   ScalarEvolution *getSE() const;
2006 
2007   /// Return the dominator tree.
getDT()2008   DominatorTree *getDT() const { return DT; }
2009 
2010   /// Return the LoopInfo used for this Scop.
getLI()2011   LoopInfo *getLI() const { return Affinator.getLI(); }
2012 
2013   /// Get the count of parameters used in this Scop.
2014   ///
2015   /// @return The count of parameters used in this Scop.
getNumParams()2016   size_t getNumParams() const { return Parameters.size(); }
2017 
2018   /// Return whether given SCEV is used as the parameter in this Scop.
isParam(const SCEV * Param)2019   bool isParam(const SCEV *Param) const { return Parameters.count(Param); }
2020 
2021   /// Take a list of parameters and add the new ones to the scop.
2022   void addParams(const ParameterSetTy &NewParameters);
2023 
2024   /// Return an iterator range containing the scop parameters.
parameters()2025   iterator_range<ParameterSetTy::iterator> parameters() const {
2026     return make_range(Parameters.begin(), Parameters.end());
2027   }
2028 
2029   /// Return an iterator range containing invariant accesses.
invariantEquivClasses()2030   iterator_range<InvariantEquivClassesTy::iterator> invariantEquivClasses() {
2031     return make_range(InvariantEquivClasses.begin(),
2032                       InvariantEquivClasses.end());
2033   }
2034 
2035   /// Return an iterator range containing all the MemoryAccess objects of the
2036   /// Scop.
access_functions()2037   iterator_range<AccFuncVector::iterator> access_functions() {
2038     return make_range(AccessFunctions.begin(), AccessFunctions.end());
2039   }
2040 
2041   /// Return whether this scop is empty, i.e. contains no statements that
2042   /// could be executed.
isEmpty()2043   bool isEmpty() const { return Stmts.empty(); }
2044 
getName()2045   StringRef getName() {
2046     if (!name)
2047       name = R.getNameStr();
2048     return *name;
2049   }
2050 
2051   using array_iterator = ArrayInfoSetTy::iterator;
2052   using const_array_iterator = ArrayInfoSetTy::const_iterator;
2053   using array_range = iterator_range<ArrayInfoSetTy::iterator>;
2054   using const_array_range = iterator_range<ArrayInfoSetTy::const_iterator>;
2055 
array_begin()2056   inline array_iterator array_begin() { return ScopArrayInfoSet.begin(); }
2057 
array_end()2058   inline array_iterator array_end() { return ScopArrayInfoSet.end(); }
2059 
array_begin()2060   inline const_array_iterator array_begin() const {
2061     return ScopArrayInfoSet.begin();
2062   }
2063 
array_end()2064   inline const_array_iterator array_end() const {
2065     return ScopArrayInfoSet.end();
2066   }
2067 
arrays()2068   inline array_range arrays() {
2069     return array_range(array_begin(), array_end());
2070   }
2071 
arrays()2072   inline const_array_range arrays() const {
2073     return const_array_range(array_begin(), array_end());
2074   }
2075 
2076   /// Return the isl_id that represents a certain parameter.
2077   ///
2078   /// @param Parameter A SCEV that was recognized as a Parameter.
2079   ///
2080   /// @return The corresponding isl_id or NULL otherwise.
2081   isl::id getIdForParam(const SCEV *Parameter) const;
2082 
2083   /// Get the maximum region of this static control part.
2084   ///
2085   /// @return The maximum region of this static control part.
getRegion()2086   inline const Region &getRegion() const { return R; }
getRegion()2087   inline Region &getRegion() { return R; }
2088 
2089   /// Return the function this SCoP is in.
getFunction()2090   Function &getFunction() const { return *R.getEntry()->getParent(); }
2091 
2092   /// Check if @p L is contained in the SCoP.
contains(const Loop * L)2093   bool contains(const Loop *L) const { return R.contains(L); }
2094 
2095   /// Check if @p BB is contained in the SCoP.
contains(const BasicBlock * BB)2096   bool contains(const BasicBlock *BB) const { return R.contains(BB); }
2097 
2098   /// Check if @p I is contained in the SCoP.
contains(const Instruction * I)2099   bool contains(const Instruction *I) const { return R.contains(I); }
2100 
2101   /// Return the unique exit block of the SCoP.
getExit()2102   BasicBlock *getExit() const { return R.getExit(); }
2103 
2104   /// Return the unique exiting block of the SCoP if any.
getExitingBlock()2105   BasicBlock *getExitingBlock() const { return R.getExitingBlock(); }
2106 
2107   /// Return the unique entry block of the SCoP.
getEntry()2108   BasicBlock *getEntry() const { return R.getEntry(); }
2109 
2110   /// Return the unique entering block of the SCoP if any.
getEnteringBlock()2111   BasicBlock *getEnteringBlock() const { return R.getEnteringBlock(); }
2112 
2113   /// Return true if @p BB is the exit block of the SCoP.
isExit(BasicBlock * BB)2114   bool isExit(BasicBlock *BB) const { return getExit() == BB; }
2115 
2116   /// Return a range of all basic blocks in the SCoP.
blocks()2117   Region::block_range blocks() const { return R.blocks(); }
2118 
2119   /// Return true if and only if @p BB dominates the SCoP.
2120   bool isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const;
2121 
2122   /// Get the maximum depth of the loop.
2123   ///
2124   /// @return The maximum depth of the loop.
getMaxLoopDepth()2125   inline unsigned getMaxLoopDepth() const { return MaxLoopDepth; }
2126 
2127   /// Return the invariant equivalence class for @p Val if any.
2128   InvariantEquivClassTy *lookupInvariantEquivClass(Value *Val);
2129 
2130   /// Return the set of invariant accesses.
getInvariantAccesses()2131   InvariantEquivClassesTy &getInvariantAccesses() {
2132     return InvariantEquivClasses;
2133   }
2134 
2135   /// Check if the scop has any invariant access.
hasInvariantAccesses()2136   bool hasInvariantAccesses() { return !InvariantEquivClasses.empty(); }
2137 
2138   /// Mark the SCoP as optimized by the scheduler.
markAsOptimized()2139   void markAsOptimized() { IsOptimized = true; }
2140 
2141   /// Check if the SCoP has been optimized by the scheduler.
isOptimized()2142   bool isOptimized() const { return IsOptimized; }
2143 
2144   /// Return the ID of the Scop
getID()2145   int getID() const { return ID; }
2146 
2147   /// Get the name of the entry and exit blocks of this Scop.
2148   ///
2149   /// These along with the function name can uniquely identify a Scop.
2150   ///
2151   /// @return std::pair whose first element is the entry name & second element
2152   ///         is the exit name.
2153   std::pair<std::string, std::string> getEntryExitStr() const;
2154 
2155   /// Get the name of this Scop.
2156   std::string getNameStr() const;
2157 
2158   /// Get the constraint on parameter of this Scop.
2159   ///
2160   /// @return The constraint on parameter of this Scop.
2161   isl::set getContext() const;
2162 
2163   /// Return the context where execution behavior is defined. Might return
2164   /// nullptr.
getDefinedBehaviorContext()2165   isl::set getDefinedBehaviorContext() const { return DefinedBehaviorContext; }
2166 
2167   /// Return the define behavior context, or if not available, its approximation
2168   /// from all other contexts.
getBestKnownDefinedBehaviorContext()2169   isl::set getBestKnownDefinedBehaviorContext() const {
2170     if (!DefinedBehaviorContext.is_null())
2171       return DefinedBehaviorContext;
2172 
2173     return Context.intersect_params(AssumedContext).subtract(InvalidContext);
2174   }
2175 
2176   /// Return space of isl context parameters.
2177   ///
2178   /// Returns the set of context parameters that are currently constrained. In
2179   /// case the full set of parameters is needed, see @getFullParamSpace.
2180   isl::space getParamSpace() const;
2181 
2182   /// Return the full space of parameters.
2183   ///
2184   /// getParamSpace will only return the parameters of the context that are
2185   /// actually constrained, whereas getFullParamSpace will return all
2186   //  parameters. This is useful in cases, where we need to ensure all
2187   //  parameters are available, as certain isl functions will abort if this is
2188   //  not the case.
2189   isl::space getFullParamSpace() const;
2190 
2191   /// Get the assumed context for this Scop.
2192   ///
2193   /// @return The assumed context of this Scop.
2194   isl::set getAssumedContext() const;
2195 
2196   /// Return true if the optimized SCoP can be executed.
2197   ///
2198   /// In addition to the runtime check context this will also utilize the domain
2199   /// constraints to decide it the optimized version can actually be executed.
2200   ///
2201   /// @returns True if the optimized SCoP can be executed.
2202   bool hasFeasibleRuntimeContext() const;
2203 
2204   /// Check if the assumption in @p Set is trivial or not.
2205   ///
2206   /// @param Set  The relations between parameters that are assumed to hold.
2207   /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2208   ///             (needed/assumptions) or negative (invalid/restrictions).
2209   ///
2210   /// @returns True if the assumption @p Set is not trivial.
2211   bool isEffectiveAssumption(isl::set Set, AssumptionSign Sign);
2212 
2213   /// Track and report an assumption.
2214   ///
2215   /// Use 'clang -Rpass-analysis=polly-scops' or 'opt
2216   /// -pass-remarks-analysis=polly-scops' to output the assumptions.
2217   ///
2218   /// @param Kind The assumption kind describing the underlying cause.
2219   /// @param Set  The relations between parameters that are assumed to hold.
2220   /// @param Loc  The location in the source that caused this assumption.
2221   /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2222   ///             (needed/assumptions) or negative (invalid/restrictions).
2223   /// @param BB   The block in which this assumption was taken. Used to
2224   ///             calculate hotness when emitting remark.
2225   ///
2226   /// @returns True if the assumption is not trivial.
2227   bool trackAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
2228                        AssumptionSign Sign, BasicBlock *BB);
2229 
2230   /// Add the conditions from @p Set (or subtract them if @p Sign is
2231   /// AS_RESTRICTION) to the defined behaviour context.
2232   void intersectDefinedBehavior(isl::set Set, AssumptionSign Sign);
2233 
2234   /// Add assumptions to assumed context.
2235   ///
2236   /// The assumptions added will be assumed to hold during the execution of the
2237   /// scop. However, as they are generally not statically provable, at code
2238   /// generation time run-time checks will be generated that ensure the
2239   /// assumptions hold.
2240   ///
2241   /// WARNING: We currently exploit in simplifyAssumedContext the knowledge
2242   ///          that assumptions do not change the set of statement instances
2243   ///          executed.
2244   ///
2245   /// @param Kind The assumption kind describing the underlying cause.
2246   /// @param Set  The relations between parameters that are assumed to hold.
2247   /// @param Loc  The location in the source that caused this assumption.
2248   /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2249   ///             (needed/assumptions) or negative (invalid/restrictions).
2250   /// @param BB   The block in which this assumption was taken. Used to
2251   ///             calculate hotness when emitting remark.
2252   /// @param RTC  Does the assumption require a runtime check?
2253   void addAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
2254                      AssumptionSign Sign, BasicBlock *BB, bool RTC = true);
2255 
2256   /// Mark the scop as invalid.
2257   ///
2258   /// This method adds an assumption to the scop that is always invalid. As a
2259   /// result, the scop will not be optimized later on. This function is commonly
2260   /// called when a condition makes it impossible (or too compile time
2261   /// expensive) to process this scop any further.
2262   ///
2263   /// @param Kind The assumption kind describing the underlying cause.
2264   /// @param Loc  The location in the source that triggered .
2265   /// @param BB   The BasicBlock where it was triggered.
2266   void invalidate(AssumptionKind Kind, DebugLoc Loc, BasicBlock *BB = nullptr);
2267 
2268   /// Get the invalid context for this Scop.
2269   ///
2270   /// @return The invalid context of this Scop.
2271   isl::set getInvalidContext() const;
2272 
2273   /// Return true if and only if the InvalidContext is trivial (=empty).
hasTrivialInvalidContext()2274   bool hasTrivialInvalidContext() const { return InvalidContext.is_empty(); }
2275 
2276   /// Return all alias groups for this SCoP.
getAliasGroups()2277   const MinMaxVectorPairVectorTy &getAliasGroups() const {
2278     return MinMaxAliasGroups;
2279   }
2280 
addAliasGroup(MinMaxVectorTy & MinMaxAccessesReadWrite,MinMaxVectorTy & MinMaxAccessesReadOnly)2281   void addAliasGroup(MinMaxVectorTy &MinMaxAccessesReadWrite,
2282                      MinMaxVectorTy &MinMaxAccessesReadOnly) {
2283     MinMaxAliasGroups.emplace_back();
2284     MinMaxAliasGroups.back().first = MinMaxAccessesReadWrite;
2285     MinMaxAliasGroups.back().second = MinMaxAccessesReadOnly;
2286   }
2287 
2288   /// Remove statements from the list of scop statements.
2289   ///
2290   /// @param ShouldDelete  A function that returns true if the statement passed
2291   ///                      to it should be deleted.
2292   /// @param AfterHoisting If true, also remove from data access lists.
2293   ///                      These lists are filled during
2294   ///                      ScopBuilder::buildAccessRelations. Therefore, if this
2295   ///                      method is called before buildAccessRelations, false
2296   ///                      must be passed.
2297   void removeStmts(function_ref<bool(ScopStmt &)> ShouldDelete,
2298                    bool AfterHoisting = true);
2299 
2300   /// Get an isl string representing the context.
2301   std::string getContextStr() const;
2302 
2303   /// Get an isl string representing the assumed context.
2304   std::string getAssumedContextStr() const;
2305 
2306   /// Get an isl string representing the invalid context.
2307   std::string getInvalidContextStr() const;
2308 
2309   /// Return the list of ScopStmts that represent the given @p BB.
2310   ArrayRef<ScopStmt *> getStmtListFor(BasicBlock *BB) const;
2311 
2312   /// Get the statement to put a PHI WRITE into.
2313   ///
2314   /// @param U The operand of a PHINode.
2315   ScopStmt *getIncomingStmtFor(const Use &U) const;
2316 
2317   /// Return the last statement representing @p BB.
2318   ///
2319   /// Of the sequence of statements that represent a @p BB, this is the last one
2320   /// to be executed. It is typically used to determine which instruction to add
2321   /// a MemoryKind::PHI WRITE to. For this purpose, it is not strictly required
2322   /// to be executed last, only that the incoming value is available in it.
2323   ScopStmt *getLastStmtFor(BasicBlock *BB) const;
2324 
2325   /// Return the ScopStmts that represents the Region @p R, or nullptr if
2326   ///        it is not represented by any statement in this Scop.
2327   ArrayRef<ScopStmt *> getStmtListFor(Region *R) const;
2328 
2329   /// Return the ScopStmts that represents @p RN; can return nullptr if
2330   ///        the RegionNode is not within the SCoP or has been removed due to
2331   ///        simplifications.
2332   ArrayRef<ScopStmt *> getStmtListFor(RegionNode *RN) const;
2333 
2334   /// Return the ScopStmt an instruction belongs to, or nullptr if it
2335   ///        does not belong to any statement in this Scop.
getStmtFor(Instruction * Inst)2336   ScopStmt *getStmtFor(Instruction *Inst) const {
2337     return InstStmtMap.lookup(Inst);
2338   }
2339 
2340   /// Return the number of statements in the SCoP.
getSize()2341   size_t getSize() const { return Stmts.size(); }
2342 
2343   /// @name Statements Iterators
2344   ///
2345   /// These iterators iterate over all statements of this Scop.
2346   //@{
2347   using iterator = StmtSet::iterator;
2348   using const_iterator = StmtSet::const_iterator;
2349 
begin()2350   iterator begin() { return Stmts.begin(); }
end()2351   iterator end() { return Stmts.end(); }
begin()2352   const_iterator begin() const { return Stmts.begin(); }
end()2353   const_iterator end() const { return Stmts.end(); }
2354 
2355   using reverse_iterator = StmtSet::reverse_iterator;
2356   using const_reverse_iterator = StmtSet::const_reverse_iterator;
2357 
rbegin()2358   reverse_iterator rbegin() { return Stmts.rbegin(); }
rend()2359   reverse_iterator rend() { return Stmts.rend(); }
rbegin()2360   const_reverse_iterator rbegin() const { return Stmts.rbegin(); }
rend()2361   const_reverse_iterator rend() const { return Stmts.rend(); }
2362   //@}
2363 
2364   /// Return the set of required invariant loads.
getRequiredInvariantLoads()2365   const InvariantLoadsSetTy &getRequiredInvariantLoads() const {
2366     return DC.RequiredILS;
2367   }
2368 
2369   /// Add @p LI to the set of required invariant loads.
addRequiredInvariantLoad(LoadInst * LI)2370   void addRequiredInvariantLoad(LoadInst *LI) { DC.RequiredILS.insert(LI); }
2371 
2372   /// Return the set of boxed (thus overapproximated) loops.
getBoxedLoops()2373   const BoxedLoopsSetTy &getBoxedLoops() const { return DC.BoxedLoopsSet; }
2374 
2375   /// Return true if and only if @p R is a non-affine subregion.
isNonAffineSubRegion(const Region * R)2376   bool isNonAffineSubRegion(const Region *R) {
2377     return DC.NonAffineSubRegionSet.count(R);
2378   }
2379 
getInsnToMemAccMap()2380   const MapInsnToMemAcc &getInsnToMemAccMap() const { return DC.InsnToMemAcc; }
2381 
2382   /// Return the (possibly new) ScopArrayInfo object for @p Access.
2383   ///
2384   /// @param ElementType The type of the elements stored in this array.
2385   /// @param Kind        The kind of the array info object.
2386   /// @param BaseName    The optional name of this memory reference.
2387   ScopArrayInfo *getOrCreateScopArrayInfo(Value *BasePtr, Type *ElementType,
2388                                           ArrayRef<const SCEV *> Sizes,
2389                                           MemoryKind Kind,
2390                                           const char *BaseName = nullptr);
2391 
2392   /// Create an array and return the corresponding ScopArrayInfo object.
2393   ///
2394   /// @param ElementType The type of the elements stored in this array.
2395   /// @param BaseName    The name of this memory reference.
2396   /// @param Sizes       The sizes of dimensions.
2397   ScopArrayInfo *createScopArrayInfo(Type *ElementType,
2398                                      const std::string &BaseName,
2399                                      const std::vector<unsigned> &Sizes);
2400 
2401   /// Return the cached ScopArrayInfo object for @p BasePtr.
2402   ///
2403   /// @param BasePtr   The base pointer the object has been stored for.
2404   /// @param Kind      The kind of array info object.
2405   ///
2406   /// @returns The ScopArrayInfo pointer or NULL if no such pointer is
2407   ///          available.
2408   ScopArrayInfo *getScopArrayInfoOrNull(Value *BasePtr, MemoryKind Kind);
2409 
2410   /// Return the cached ScopArrayInfo object for @p BasePtr.
2411   ///
2412   /// @param BasePtr   The base pointer the object has been stored for.
2413   /// @param Kind      The kind of array info object.
2414   ///
2415   /// @returns The ScopArrayInfo pointer (may assert if no such pointer is
2416   ///          available).
2417   ScopArrayInfo *getScopArrayInfo(Value *BasePtr, MemoryKind Kind);
2418 
2419   /// Invalidate ScopArrayInfo object for base address.
2420   ///
2421   /// @param BasePtr The base pointer of the ScopArrayInfo object to invalidate.
2422   /// @param Kind    The Kind of the ScopArrayInfo object.
invalidateScopArrayInfo(Value * BasePtr,MemoryKind Kind)2423   void invalidateScopArrayInfo(Value *BasePtr, MemoryKind Kind) {
2424     auto It = ScopArrayInfoMap.find(std::make_pair(BasePtr, Kind));
2425     if (It == ScopArrayInfoMap.end())
2426       return;
2427     ScopArrayInfoSet.remove(It->second.get());
2428     ScopArrayInfoMap.erase(It);
2429   }
2430 
2431   /// Set new isl context.
2432   void setContext(isl::set NewContext);
2433 
2434   /// Update maximal loop depth. If @p Depth is smaller than current value,
2435   /// then maximal loop depth is not updated.
updateMaxLoopDepth(unsigned Depth)2436   void updateMaxLoopDepth(unsigned Depth) {
2437     MaxLoopDepth = std::max(MaxLoopDepth, Depth);
2438   }
2439 
2440   /// Align the parameters in the statement to the scop context
2441   void realignParams();
2442 
2443   /// Return true if this SCoP can be profitably optimized.
2444   ///
2445   /// @param ScalarsAreUnprofitable Never consider statements with scalar writes
2446   ///                               as profitably optimizable.
2447   ///
2448   /// @return Whether this SCoP can be profitably optimized.
2449   bool isProfitable(bool ScalarsAreUnprofitable) const;
2450 
2451   /// Return true if the SCoP contained at least one error block.
hasErrorBlock()2452   bool hasErrorBlock() const { return HasErrorBlock; }
2453 
2454   /// Notify SCoP that it contains an error block
notifyErrorBlock()2455   void notifyErrorBlock() { HasErrorBlock = true; }
2456 
2457   /// Return true if the underlying region has a single exiting block.
hasSingleExitEdge()2458   bool hasSingleExitEdge() const { return HasSingleExitEdge; }
2459 
2460   /// Print the static control part.
2461   ///
2462   /// @param OS The output stream the static control part is printed to.
2463   /// @param PrintInstructions Whether to print the statement's instructions as
2464   ///                          well.
2465   void print(raw_ostream &OS, bool PrintInstructions) const;
2466 
2467 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2468   /// Print the ScopStmt to stderr.
2469   void dump() const;
2470 #endif
2471 
2472   /// Get the isl context of this static control part.
2473   ///
2474   /// @return The isl context of this static control part.
2475   isl::ctx getIslCtx() const;
2476 
2477   /// Directly return the shared_ptr of the context.
getSharedIslCtx()2478   const std::shared_ptr<isl_ctx> &getSharedIslCtx() const { return IslCtx; }
2479 
2480   /// Compute the isl representation for the SCEV @p E
2481   ///
2482   /// @param E  The SCEV that should be translated.
2483   /// @param BB An (optional) basic block in which the isl_pw_aff is computed.
2484   ///           SCEVs known to not reference any loops in the SCoP can be
2485   ///           passed without a @p BB.
2486   /// @param NonNegative Flag to indicate the @p E has to be non-negative.
2487   ///
2488   /// Note that this function will always return a valid isl_pw_aff. However, if
2489   /// the translation of @p E was deemed to complex the SCoP is invalidated and
2490   /// a dummy value of appropriate dimension is returned. This allows to bail
2491   /// for complex cases without "error handling code" needed on the users side.
2492   PWACtx getPwAff(const SCEV *E, BasicBlock *BB = nullptr,
2493                   bool NonNegative = false,
2494                   RecordedAssumptionsTy *RecordedAssumptions = nullptr);
2495 
2496   /// Compute the isl representation for the SCEV @p E
2497   ///
2498   /// This function is like @see Scop::getPwAff() but strips away the invalid
2499   /// domain part associated with the piecewise affine function.
2500   isl::pw_aff
2501   getPwAffOnly(const SCEV *E, BasicBlock *BB = nullptr,
2502                RecordedAssumptionsTy *RecordedAssumptions = nullptr);
2503 
2504   /// Check if an <nsw> AddRec for the loop L is cached.
hasNSWAddRecForLoop(Loop * L)2505   bool hasNSWAddRecForLoop(Loop *L) { return Affinator.hasNSWAddRecForLoop(L); }
2506 
2507   /// Return the domain of @p Stmt.
2508   ///
2509   /// @param Stmt The statement for which the conditions should be returned.
2510   isl::set getDomainConditions(const ScopStmt *Stmt) const;
2511 
2512   /// Return the domain of @p BB.
2513   ///
2514   /// @param BB The block for which the conditions should be returned.
2515   isl::set getDomainConditions(BasicBlock *BB) const;
2516 
2517   /// Return the domain of @p BB. If it does not exist, create an empty one.
getOrInitEmptyDomain(BasicBlock * BB)2518   isl::set &getOrInitEmptyDomain(BasicBlock *BB) { return DomainMap[BB]; }
2519 
2520   /// Check if domain is determined for @p BB.
isDomainDefined(BasicBlock * BB)2521   bool isDomainDefined(BasicBlock *BB) const { return DomainMap.count(BB) > 0; }
2522 
2523   /// Set domain for @p BB.
setDomain(BasicBlock * BB,isl::set & Domain)2524   void setDomain(BasicBlock *BB, isl::set &Domain) { DomainMap[BB] = Domain; }
2525 
2526   /// Get a union set containing the iteration domains of all statements.
2527   isl::union_set getDomains() const;
2528 
2529   /// Get a union map of all may-writes performed in the SCoP.
2530   isl::union_map getMayWrites();
2531 
2532   /// Get a union map of all must-writes performed in the SCoP.
2533   isl::union_map getMustWrites();
2534 
2535   /// Get a union map of all writes performed in the SCoP.
2536   isl::union_map getWrites();
2537 
2538   /// Get a union map of all reads performed in the SCoP.
2539   isl::union_map getReads();
2540 
2541   /// Get a union map of all memory accesses performed in the SCoP.
2542   isl::union_map getAccesses();
2543 
2544   /// Get a union map of all memory accesses performed in the SCoP.
2545   ///
2546   /// @param Array The array to which the accesses should belong.
2547   isl::union_map getAccesses(ScopArrayInfo *Array);
2548 
2549   /// Get the schedule of all the statements in the SCoP.
2550   ///
2551   /// @return The schedule of all the statements in the SCoP, if the schedule of
2552   /// the Scop does not contain extension nodes, and nullptr, otherwise.
2553   isl::union_map getSchedule() const;
2554 
2555   /// Get a schedule tree describing the schedule of all statements.
2556   isl::schedule getScheduleTree() const;
2557 
2558   /// Update the current schedule
2559   ///
2560   /// NewSchedule The new schedule (given as a flat union-map).
2561   void setSchedule(isl::union_map NewSchedule);
2562 
2563   /// Update the current schedule
2564   ///
2565   /// NewSchedule The new schedule (given as schedule tree).
2566   void setScheduleTree(isl::schedule NewSchedule);
2567 
2568   /// Whether the schedule is the original schedule as derived from the CFG by
2569   /// ScopBuilder.
isOriginalSchedule()2570   bool isOriginalSchedule() const { return !ScheduleModified; }
2571 
2572   /// Intersects the domains of all statements in the SCoP.
2573   ///
2574   /// @return true if a change was made
2575   bool restrictDomains(isl::union_set Domain);
2576 
2577   /// Get the depth of a loop relative to the outermost loop in the Scop.
2578   ///
2579   /// This will return
2580   ///    0 if @p L is an outermost loop in the SCoP
2581   ///   >0 for other loops in the SCoP
2582   ///   -1 if @p L is nullptr or there is no outermost loop in the SCoP
2583   int getRelativeLoopDepth(const Loop *L) const;
2584 
2585   /// Find the ScopArrayInfo associated with an isl Id
2586   ///        that has name @p Name.
2587   ScopArrayInfo *getArrayInfoByName(const std::string BaseName);
2588 
2589   /// Simplify the SCoP representation.
2590   ///
2591   /// @param AfterHoisting Whether it is called after invariant load hoisting.
2592   ///                      When true, also removes statements without
2593   ///                      side-effects.
2594   void simplifySCoP(bool AfterHoisting);
2595 
2596   /// Get the next free array index.
2597   ///
2598   /// This function returns a unique index which can be used to identify an
2599   /// array.
getNextArrayIdx()2600   long getNextArrayIdx() { return ArrayIdx++; }
2601 
2602   /// Get the next free statement index.
2603   ///
2604   /// This function returns a unique index which can be used to identify a
2605   /// statement.
getNextStmtIdx()2606   long getNextStmtIdx() { return StmtIdx++; }
2607 
2608   /// Get the representing SCEV for @p S if applicable, otherwise @p S.
2609   ///
2610   /// Invariant loads of the same location are put in an equivalence class and
2611   /// only one of them is chosen as a representing element that will be
2612   /// modeled as a parameter. The others have to be normalized, i.e.,
2613   /// replaced by the representing element of their equivalence class, in order
2614   /// to get the correct parameter value, e.g., in the SCEVAffinator.
2615   ///
2616   /// @param S The SCEV to normalize.
2617   ///
2618   /// @return The representing SCEV for invariant loads or @p S if none.
2619   const SCEV *getRepresentingInvariantLoadSCEV(const SCEV *S) const;
2620 
2621   /// Return the MemoryAccess that writes an llvm::Value, represented by a
2622   /// ScopArrayInfo.
2623   ///
2624   /// There can be at most one such MemoryAccess per llvm::Value in the SCoP.
2625   /// Zero is possible for read-only values.
2626   MemoryAccess *getValueDef(const ScopArrayInfo *SAI) const;
2627 
2628   /// Return all MemoryAccesses that us an llvm::Value, represented by a
2629   /// ScopArrayInfo.
2630   ArrayRef<MemoryAccess *> getValueUses(const ScopArrayInfo *SAI) const;
2631 
2632   /// Return the MemoryAccess that represents an llvm::PHINode.
2633   ///
2634   /// ExitPHIs's PHINode is not within the SCoPs. This function returns nullptr
2635   /// for them.
2636   MemoryAccess *getPHIRead(const ScopArrayInfo *SAI) const;
2637 
2638   /// Return all MemoryAccesses for all incoming statements of a PHINode,
2639   /// represented by a ScopArrayInfo.
2640   ArrayRef<MemoryAccess *> getPHIIncomings(const ScopArrayInfo *SAI) const;
2641 
2642   /// Return whether @p Inst has a use outside of this SCoP.
2643   bool isEscaping(Instruction *Inst);
2644 
2645   struct ScopStatistics {
2646     int NumAffineLoops = 0;
2647     int NumBoxedLoops = 0;
2648 
2649     int NumValueWrites = 0;
2650     int NumValueWritesInLoops = 0;
2651     int NumPHIWrites = 0;
2652     int NumPHIWritesInLoops = 0;
2653     int NumSingletonWrites = 0;
2654     int NumSingletonWritesInLoops = 0;
2655   };
2656 
2657   /// Collect statistic about this SCoP.
2658   ///
2659   /// These are most commonly used for LLVM's static counters (Statistic.h) in
2660   /// various places. If statistics are disabled, only zeros are returned to
2661   /// avoid the overhead.
2662   ScopStatistics getStatistics() const;
2663 
2664   /// Is this Scop marked as not to be transformed by an optimization heuristic?
2665   /// In this case, only user-directed transformations are allowed.
hasDisableHeuristicsHint()2666   bool hasDisableHeuristicsHint() const { return HasDisableHeuristicsHint; }
2667 
2668   /// Mark this Scop to not apply an optimization heuristic.
markDisableHeuristics()2669   void markDisableHeuristics() { HasDisableHeuristicsHint = true; }
2670 };
2671 
2672 /// Print Scop scop to raw_ostream OS.
2673 raw_ostream &operator<<(raw_ostream &OS, const Scop &scop);
2674 
2675 /// The legacy pass manager's analysis pass to compute scop information
2676 ///        for a region.
2677 class ScopInfoRegionPass final : public RegionPass {
2678   /// The Scop pointer which is used to construct a Scop.
2679   std::unique_ptr<Scop> S;
2680 
2681 public:
2682   static char ID; // Pass identification, replacement for typeid
2683 
ScopInfoRegionPass()2684   ScopInfoRegionPass() : RegionPass(ID) {}
2685   ~ScopInfoRegionPass() override = default;
2686 
2687   /// Build Scop object, the Polly IR of static control
2688   ///        part for the current SESE-Region.
2689   ///
2690   /// @return If the current region is a valid for a static control part,
2691   ///         return the Polly IR representing this static control part,
2692   ///         return null otherwise.
getScop()2693   Scop *getScop() { return S.get(); }
getScop()2694   const Scop *getScop() const { return S.get(); }
2695 
2696   /// Calculate the polyhedral scop information for a given Region.
2697   bool runOnRegion(Region *R, RGPassManager &RGM) override;
2698 
releaseMemory()2699   void releaseMemory() override { S.reset(); }
2700 
2701   void print(raw_ostream &O, const Module *M = nullptr) const override;
2702 
2703   void getAnalysisUsage(AnalysisUsage &AU) const override;
2704 };
2705 
2706 llvm::Pass *createScopInfoPrinterLegacyRegionPass(raw_ostream &OS);
2707 
2708 class ScopInfo {
2709 public:
2710   using RegionToScopMapTy = MapVector<Region *, std::unique_ptr<Scop>>;
2711   using reverse_iterator = RegionToScopMapTy::reverse_iterator;
2712   using const_reverse_iterator = RegionToScopMapTy::const_reverse_iterator;
2713   using iterator = RegionToScopMapTy::iterator;
2714   using const_iterator = RegionToScopMapTy::const_iterator;
2715 
2716 private:
2717   /// A map of Region to its Scop object containing
2718   ///        Polly IR of static control part.
2719   RegionToScopMapTy RegionToScopMap;
2720   const DataLayout &DL;
2721   ScopDetection &SD;
2722   ScalarEvolution &SE;
2723   LoopInfo &LI;
2724   AAResults &AA;
2725   DominatorTree &DT;
2726   AssumptionCache &AC;
2727   OptimizationRemarkEmitter &ORE;
2728 
2729 public:
2730   ScopInfo(const DataLayout &DL, ScopDetection &SD, ScalarEvolution &SE,
2731            LoopInfo &LI, AAResults &AA, DominatorTree &DT, AssumptionCache &AC,
2732            OptimizationRemarkEmitter &ORE);
2733 
2734   /// Get the Scop object for the given Region.
2735   ///
2736   /// @return If the given region is the maximal region within a scop, return
2737   ///         the scop object. If the given region is a subregion, return a
2738   ///         nullptr. Top level region containing the entry block of a function
2739   ///         is not considered in the scop creation.
getScop(Region * R)2740   Scop *getScop(Region *R) const {
2741     auto MapIt = RegionToScopMap.find(R);
2742     if (MapIt != RegionToScopMap.end())
2743       return MapIt->second.get();
2744     return nullptr;
2745   }
2746 
2747   /// Recompute the Scop-Information for a function.
2748   ///
2749   /// This invalidates any iterators.
2750   void recompute();
2751 
2752   /// Handle invalidation explicitly
2753   bool invalidate(Function &F, const PreservedAnalyses &PA,
2754                   FunctionAnalysisManager::Invalidator &Inv);
2755 
begin()2756   iterator begin() { return RegionToScopMap.begin(); }
end()2757   iterator end() { return RegionToScopMap.end(); }
begin()2758   const_iterator begin() const { return RegionToScopMap.begin(); }
end()2759   const_iterator end() const { return RegionToScopMap.end(); }
rbegin()2760   reverse_iterator rbegin() { return RegionToScopMap.rbegin(); }
rend()2761   reverse_iterator rend() { return RegionToScopMap.rend(); }
rbegin()2762   const_reverse_iterator rbegin() const { return RegionToScopMap.rbegin(); }
rend()2763   const_reverse_iterator rend() const { return RegionToScopMap.rend(); }
empty()2764   bool empty() const { return RegionToScopMap.empty(); }
2765 };
2766 
2767 struct ScopInfoAnalysis : AnalysisInfoMixin<ScopInfoAnalysis> {
2768   static AnalysisKey Key;
2769 
2770   using Result = ScopInfo;
2771 
2772   Result run(Function &, FunctionAnalysisManager &);
2773 };
2774 
2775 struct ScopInfoPrinterPass final : PassInfoMixin<ScopInfoPrinterPass> {
ScopInfoPrinterPassfinal2776   ScopInfoPrinterPass(raw_ostream &OS) : Stream(OS) {}
2777 
2778   PreservedAnalyses run(Function &, FunctionAnalysisManager &);
2779 
2780   raw_ostream &Stream;
2781 };
2782 
2783 //===----------------------------------------------------------------------===//
2784 /// The legacy pass manager's analysis pass to compute scop information
2785 ///        for the whole function.
2786 ///
2787 /// This pass will maintain a map of the maximal region within a scop to its
2788 /// scop object for all the feasible scops present in a function.
2789 /// This pass is an alternative to the ScopInfoRegionPass in order to avoid a
2790 /// region pass manager.
2791 class ScopInfoWrapperPass final : public FunctionPass {
2792   std::unique_ptr<ScopInfo> Result;
2793 
2794 public:
ScopInfoWrapperPass()2795   ScopInfoWrapperPass() : FunctionPass(ID) {}
2796   ~ScopInfoWrapperPass() override = default;
2797 
2798   static char ID; // Pass identification, replacement for typeid
2799 
getSI()2800   ScopInfo *getSI() { return Result.get(); }
getSI()2801   const ScopInfo *getSI() const { return Result.get(); }
2802 
2803   /// Calculate all the polyhedral scops for a given function.
2804   bool runOnFunction(Function &F) override;
2805 
releaseMemory()2806   void releaseMemory() override { Result.reset(); }
2807 
2808   void print(raw_ostream &O, const Module *M = nullptr) const override;
2809 
2810   void getAnalysisUsage(AnalysisUsage &AU) const override;
2811 };
2812 
2813 llvm::Pass *createScopInfoPrinterLegacyFunctionPass(llvm::raw_ostream &OS);
2814 } // end namespace polly
2815 
2816 namespace llvm {
2817 void initializeScopInfoRegionPassPass(PassRegistry &);
2818 void initializeScopInfoPrinterLegacyRegionPassPass(PassRegistry &);
2819 void initializeScopInfoWrapperPassPass(PassRegistry &);
2820 void initializeScopInfoPrinterLegacyFunctionPassPass(PassRegistry &);
2821 } // end namespace llvm
2822 
2823 #endif // POLLY_SCOPINFO_H
2824