1 //===- polly/ScopInfo.h -----------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Store the polyhedral model representation of a static control flow region, 10 // also called SCoP (Static Control Part). 11 // 12 // This representation is shared among several tools in the polyhedral 13 // community, which are e.g. CLooG, Pluto, Loopo, Graphite. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #ifndef POLLY_SCOPINFO_H 18 #define POLLY_SCOPINFO_H 19 20 #include "polly/ScopDetection.h" 21 #include "polly/Support/SCEVAffinator.h" 22 #include "polly/Support/ScopHelper.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/Analysis/RegionPass.h" 27 #include "llvm/IR/DebugLoc.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/PassManager.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Pass.h" 33 #include "isl/isl-noexceptions.h" 34 #include <cassert> 35 #include <cstddef> 36 #include <forward_list> 37 #include <optional> 38 39 namespace polly { 40 using llvm::AnalysisInfoMixin; 41 using llvm::ArrayRef; 42 using llvm::AssertingVH; 43 using llvm::AssumptionCache; 44 using llvm::cast; 45 using llvm::DataLayout; 46 using llvm::DenseMap; 47 using llvm::DenseSet; 48 using llvm::function_ref; 49 using llvm::isa; 50 using llvm::iterator_range; 51 using llvm::LoadInst; 52 using llvm::make_range; 53 using llvm::MapVector; 54 using llvm::MemIntrinsic; 55 using llvm::PassInfoMixin; 56 using llvm::PHINode; 57 using llvm::RegionNode; 58 using llvm::RegionPass; 59 using llvm::RGPassManager; 60 using llvm::SetVector; 61 using llvm::SmallPtrSetImpl; 62 using llvm::SmallVector; 63 using llvm::SmallVectorImpl; 64 using llvm::StringMap; 65 using llvm::Type; 66 using llvm::Use; 67 using llvm::Value; 68 using llvm::ValueToValueMap; 69 70 class MemoryAccess; 71 72 //===---------------------------------------------------------------------===// 73 74 extern bool UseInstructionNames; 75 76 // The maximal number of basic sets we allow during domain construction to 77 // be created. More complex scops will result in very high compile time and 78 // are also unlikely to result in good code. 79 extern unsigned const MaxDisjunctsInDomain; 80 81 /// The different memory kinds used in Polly. 82 /// 83 /// We distinguish between arrays and various scalar memory objects. We use 84 /// the term ``array'' to describe memory objects that consist of a set of 85 /// individual data elements arranged in a multi-dimensional grid. A scalar 86 /// memory object describes an individual data element and is used to model 87 /// the definition and uses of llvm::Values. 88 /// 89 /// The polyhedral model does traditionally not reason about SSA values. To 90 /// reason about llvm::Values we model them "as if" they were zero-dimensional 91 /// memory objects, even though they were not actually allocated in (main) 92 /// memory. Memory for such objects is only alloca[ed] at CodeGeneration 93 /// time. To relate the memory slots used during code generation with the 94 /// llvm::Values they belong to the new names for these corresponding stack 95 /// slots are derived by appending suffixes (currently ".s2a" and ".phiops") 96 /// to the name of the original llvm::Value. To describe how def/uses are 97 /// modeled exactly we use these suffixes here as well. 98 /// 99 /// There are currently four different kinds of memory objects: 100 enum class MemoryKind { 101 /// MemoryKind::Array: Models a one or multi-dimensional array 102 /// 103 /// A memory object that can be described by a multi-dimensional array. 104 /// Memory objects of this type are used to model actual multi-dimensional 105 /// arrays as they exist in LLVM-IR, but they are also used to describe 106 /// other objects: 107 /// - A single data element allocated on the stack using 'alloca' is 108 /// modeled as a one-dimensional, single-element array. 109 /// - A single data element allocated as a global variable is modeled as 110 /// one-dimensional, single-element array. 111 /// - Certain multi-dimensional arrays with variable size, which in 112 /// LLVM-IR are commonly expressed as a single-dimensional access with a 113 /// complicated access function, are modeled as multi-dimensional 114 /// memory objects (grep for "delinearization"). 115 Array, 116 117 /// MemoryKind::Value: Models an llvm::Value 118 /// 119 /// Memory objects of type MemoryKind::Value are used to model the data flow 120 /// induced by llvm::Values. For each llvm::Value that is used across 121 /// BasicBlocks, one ScopArrayInfo object is created. A single memory WRITE 122 /// stores the llvm::Value at its definition into the memory object and at 123 /// each use of the llvm::Value (ignoring trivial intra-block uses) a 124 /// corresponding READ is added. For instance, the use/def chain of a 125 /// llvm::Value %V depicted below 126 /// ______________________ 127 /// |DefBB: | 128 /// | %V = float op ... | 129 /// ---------------------- 130 /// | | 131 /// _________________ _________________ 132 /// |UseBB1: | |UseBB2: | 133 /// | use float %V | | use float %V | 134 /// ----------------- ----------------- 135 /// 136 /// is modeled as if the following memory accesses occurred: 137 /// 138 /// __________________________ 139 /// |entry: | 140 /// | %V.s2a = alloca float | 141 /// -------------------------- 142 /// | 143 /// ___________________________________ 144 /// |DefBB: | 145 /// | store %float %V, float* %V.s2a | 146 /// ----------------------------------- 147 /// | | 148 /// ____________________________________ ___________________________________ 149 /// |UseBB1: | |UseBB2: | 150 /// | %V.reload1 = load float* %V.s2a | | %V.reload2 = load float* %V.s2a| 151 /// | use float %V.reload1 | | use float %V.reload2 | 152 /// ------------------------------------ ----------------------------------- 153 /// 154 Value, 155 156 /// MemoryKind::PHI: Models PHI nodes within the SCoP 157 /// 158 /// Besides the MemoryKind::Value memory object used to model the normal 159 /// llvm::Value dependences described above, PHI nodes require an additional 160 /// memory object of type MemoryKind::PHI to describe the forwarding of values 161 /// to 162 /// the PHI node. 163 /// 164 /// As an example, a PHIInst instructions 165 /// 166 /// %PHI = phi float [ %Val1, %IncomingBlock1 ], [ %Val2, %IncomingBlock2 ] 167 /// 168 /// is modeled as if the accesses occurred this way: 169 /// 170 /// _______________________________ 171 /// |entry: | 172 /// | %PHI.phiops = alloca float | 173 /// ------------------------------- 174 /// | | 175 /// __________________________________ __________________________________ 176 /// |IncomingBlock1: | |IncomingBlock2: | 177 /// | ... | | ... | 178 /// | store float %Val1 %PHI.phiops | | store float %Val2 %PHI.phiops | 179 /// | br label % JoinBlock | | br label %JoinBlock | 180 /// ---------------------------------- ---------------------------------- 181 /// \ / 182 /// \ / 183 /// _________________________________________ 184 /// |JoinBlock: | 185 /// | %PHI = load float, float* PHI.phiops | 186 /// ----------------------------------------- 187 /// 188 /// Note that there can also be a scalar write access for %PHI if used in a 189 /// different BasicBlock, i.e. there can be a memory object %PHI.phiops as 190 /// well as a memory object %PHI.s2a. 191 PHI, 192 193 /// MemoryKind::ExitPHI: Models PHI nodes in the SCoP's exit block 194 /// 195 /// For PHI nodes in the Scop's exit block a special memory object kind is 196 /// used. The modeling used is identical to MemoryKind::PHI, with the 197 /// exception 198 /// that there are no READs from these memory objects. The PHINode's 199 /// llvm::Value is treated as a value escaping the SCoP. WRITE accesses 200 /// write directly to the escaping value's ".s2a" alloca. 201 ExitPHI 202 }; 203 204 /// Maps from a loop to the affine function expressing its backedge taken count. 205 /// The backedge taken count already enough to express iteration domain as we 206 /// only allow loops with canonical induction variable. 207 /// A canonical induction variable is: 208 /// an integer recurrence that starts at 0 and increments by one each time 209 /// through the loop. 210 using LoopBoundMapType = std::map<const Loop *, const SCEV *>; 211 212 using AccFuncVector = std::vector<std::unique_ptr<MemoryAccess>>; 213 214 /// A class to store information about arrays in the SCoP. 215 /// 216 /// Objects are accessible via the ScoP, MemoryAccess or the id associated with 217 /// the MemoryAccess access function. 218 /// 219 class ScopArrayInfo final { 220 public: 221 /// Construct a ScopArrayInfo object. 222 /// 223 /// @param BasePtr The array base pointer. 224 /// @param ElementType The type of the elements stored in the array. 225 /// @param IslCtx The isl context used to create the base pointer id. 226 /// @param DimensionSizes A vector containing the size of each dimension. 227 /// @param Kind The kind of the array object. 228 /// @param DL The data layout of the module. 229 /// @param S The scop this array object belongs to. 230 /// @param BaseName The optional name of this memory reference. 231 ScopArrayInfo(Value *BasePtr, Type *ElementType, isl::ctx IslCtx, 232 ArrayRef<const SCEV *> DimensionSizes, MemoryKind Kind, 233 const DataLayout &DL, Scop *S, const char *BaseName = nullptr); 234 235 /// Destructor to free the isl id of the base pointer. 236 ~ScopArrayInfo(); 237 238 /// Update the element type of the ScopArrayInfo object. 239 /// 240 /// Memory accesses referencing this ScopArrayInfo object may use 241 /// different element sizes. This function ensures the canonical element type 242 /// stored is small enough to model accesses to the current element type as 243 /// well as to @p NewElementType. 244 /// 245 /// @param NewElementType An element type that is used to access this array. 246 void updateElementType(Type *NewElementType); 247 248 /// Update the sizes of the ScopArrayInfo object. 249 /// 250 /// A ScopArrayInfo object may be created without all outer dimensions being 251 /// available. This function is called when new memory accesses are added for 252 /// this ScopArrayInfo object. It verifies that sizes are compatible and adds 253 /// additional outer array dimensions, if needed. 254 /// 255 /// @param Sizes A vector of array sizes where the rightmost array 256 /// sizes need to match the innermost array sizes already 257 /// defined in SAI. 258 /// @param CheckConsistency Update sizes, even if new sizes are inconsistent 259 /// with old sizes 260 bool updateSizes(ArrayRef<const SCEV *> Sizes, bool CheckConsistency = true); 261 262 /// Set the base pointer to @p BP. setBasePtr(Value * BP)263 void setBasePtr(Value *BP) { BasePtr = BP; } 264 265 /// Return the base pointer. getBasePtr()266 Value *getBasePtr() const { return BasePtr; } 267 268 // Set IsOnHeap to the value in parameter. setIsOnHeap(bool value)269 void setIsOnHeap(bool value) { IsOnHeap = value; } 270 271 /// For indirect accesses return the origin SAI of the BP, else null. getBasePtrOriginSAI()272 const ScopArrayInfo *getBasePtrOriginSAI() const { return BasePtrOriginSAI; } 273 274 /// The set of derived indirect SAIs for this origin SAI. getDerivedSAIs()275 const SmallSetVector<ScopArrayInfo *, 2> &getDerivedSAIs() const { 276 return DerivedSAIs; 277 } 278 279 /// Return the number of dimensions. getNumberOfDimensions()280 unsigned getNumberOfDimensions() const { 281 if (Kind == MemoryKind::PHI || Kind == MemoryKind::ExitPHI || 282 Kind == MemoryKind::Value) 283 return 0; 284 return DimensionSizes.size(); 285 } 286 287 /// Return the size of dimension @p dim as SCEV*. 288 // 289 // Scalars do not have array dimensions and the first dimension of 290 // a (possibly multi-dimensional) array also does not carry any size 291 // information, in case the array is not newly created. getDimensionSize(unsigned Dim)292 const SCEV *getDimensionSize(unsigned Dim) const { 293 assert(Dim < getNumberOfDimensions() && "Invalid dimension"); 294 return DimensionSizes[Dim]; 295 } 296 297 /// Return the size of dimension @p dim as isl::pw_aff. 298 // 299 // Scalars do not have array dimensions and the first dimension of 300 // a (possibly multi-dimensional) array also does not carry any size 301 // information, in case the array is not newly created. getDimensionSizePw(unsigned Dim)302 isl::pw_aff getDimensionSizePw(unsigned Dim) const { 303 assert(Dim < getNumberOfDimensions() && "Invalid dimension"); 304 return DimensionSizesPw[Dim]; 305 } 306 307 /// Get the canonical element type of this array. 308 /// 309 /// @returns The canonical element type of this array. getElementType()310 Type *getElementType() const { return ElementType; } 311 312 /// Get element size in bytes. 313 int getElemSizeInBytes() const; 314 315 /// Get the name of this memory reference. 316 std::string getName() const; 317 318 /// Return the isl id for the base pointer. 319 isl::id getBasePtrId() const; 320 321 /// Return what kind of memory this represents. getKind()322 MemoryKind getKind() const { return Kind; } 323 324 /// Is this array info modeling an llvm::Value? isValueKind()325 bool isValueKind() const { return Kind == MemoryKind::Value; } 326 327 /// Is this array info modeling special PHI node memory? 328 /// 329 /// During code generation of PHI nodes, there is a need for two kinds of 330 /// virtual storage. The normal one as it is used for all scalar dependences, 331 /// where the result of the PHI node is stored and later loaded from as well 332 /// as a second one where the incoming values of the PHI nodes are stored 333 /// into and reloaded when the PHI is executed. As both memories use the 334 /// original PHI node as virtual base pointer, we have this additional 335 /// attribute to distinguish the PHI node specific array modeling from the 336 /// normal scalar array modeling. isPHIKind()337 bool isPHIKind() const { return Kind == MemoryKind::PHI; } 338 339 /// Is this array info modeling an MemoryKind::ExitPHI? isExitPHIKind()340 bool isExitPHIKind() const { return Kind == MemoryKind::ExitPHI; } 341 342 /// Is this array info modeling an array? isArrayKind()343 bool isArrayKind() const { return Kind == MemoryKind::Array; } 344 345 /// Is this array allocated on heap 346 /// 347 /// This property is only relevant if the array is allocated by Polly instead 348 /// of pre-existing. If false, it is allocated using alloca instead malloca. isOnHeap()349 bool isOnHeap() const { return IsOnHeap; } 350 351 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 352 /// Dump a readable representation to stderr. 353 void dump() const; 354 #endif 355 356 /// Print a readable representation to @p OS. 357 /// 358 /// @param SizeAsPwAff Print the size as isl::pw_aff 359 void print(raw_ostream &OS, bool SizeAsPwAff = false) const; 360 361 /// Access the ScopArrayInfo associated with an access function. 362 static const ScopArrayInfo *getFromAccessFunction(isl::pw_multi_aff PMA); 363 364 /// Access the ScopArrayInfo associated with an isl Id. 365 static const ScopArrayInfo *getFromId(isl::id Id); 366 367 /// Get the space of this array access. 368 isl::space getSpace() const; 369 370 /// If the array is read only 371 bool isReadOnly(); 372 373 /// Verify that @p Array is compatible to this ScopArrayInfo. 374 /// 375 /// Two arrays are compatible if their dimensionality, the sizes of their 376 /// dimensions, and their element sizes match. 377 /// 378 /// @param Array The array to compare against. 379 /// 380 /// @returns True, if the arrays are compatible, False otherwise. 381 bool isCompatibleWith(const ScopArrayInfo *Array) const; 382 383 private: addDerivedSAI(ScopArrayInfo * DerivedSAI)384 void addDerivedSAI(ScopArrayInfo *DerivedSAI) { 385 DerivedSAIs.insert(DerivedSAI); 386 } 387 388 /// For indirect accesses this is the SAI of the BP origin. 389 const ScopArrayInfo *BasePtrOriginSAI; 390 391 /// For origin SAIs the set of derived indirect SAIs. 392 SmallSetVector<ScopArrayInfo *, 2> DerivedSAIs; 393 394 /// The base pointer. 395 AssertingVH<Value> BasePtr; 396 397 /// The canonical element type of this array. 398 /// 399 /// The canonical element type describes the minimal accessible element in 400 /// this array. Not all elements accessed, need to be of the very same type, 401 /// but the allocation size of the type of the elements loaded/stored from/to 402 /// this array needs to be a multiple of the allocation size of the canonical 403 /// type. 404 Type *ElementType; 405 406 /// The isl id for the base pointer. 407 isl::id Id; 408 409 /// True if the newly allocated array is on heap. 410 bool IsOnHeap = false; 411 412 /// The sizes of each dimension as SCEV*. 413 SmallVector<const SCEV *, 4> DimensionSizes; 414 415 /// The sizes of each dimension as isl::pw_aff. 416 SmallVector<isl::pw_aff, 4> DimensionSizesPw; 417 418 /// The type of this scop array info object. 419 /// 420 /// We distinguish between SCALAR, PHI and ARRAY objects. 421 MemoryKind Kind; 422 423 /// The data layout of the module. 424 const DataLayout &DL; 425 426 /// The scop this SAI object belongs to. 427 Scop &S; 428 }; 429 430 /// Represent memory accesses in statements. 431 class MemoryAccess final { 432 friend class Scop; 433 friend class ScopStmt; 434 friend class ScopBuilder; 435 436 public: 437 /// The access type of a memory access 438 /// 439 /// There are three kind of access types: 440 /// 441 /// * A read access 442 /// 443 /// A certain set of memory locations are read and may be used for internal 444 /// calculations. 445 /// 446 /// * A must-write access 447 /// 448 /// A certain set of memory locations is definitely written. The old value is 449 /// replaced by a newly calculated value. The old value is not read or used at 450 /// all. 451 /// 452 /// * A may-write access 453 /// 454 /// A certain set of memory locations may be written. The memory location may 455 /// contain a new value if there is actually a write or the old value may 456 /// remain, if no write happens. 457 enum AccessType { 458 READ = 0x1, 459 MUST_WRITE = 0x2, 460 MAY_WRITE = 0x3, 461 }; 462 463 /// Reduction access type 464 /// 465 /// Commutative and associative binary operations suitable for reductions 466 enum ReductionType { 467 RT_NONE, ///< Indicate no reduction at all 468 RT_ADD, ///< Addition 469 RT_MUL, ///< Multiplication 470 RT_BOR, ///< Bitwise Or 471 RT_BXOR, ///< Bitwise XOr 472 RT_BAND, ///< Bitwise And 473 }; 474 475 using SubscriptsTy = SmallVector<const SCEV *, 4>; 476 477 private: 478 /// A unique identifier for this memory access. 479 /// 480 /// The identifier is unique between all memory accesses belonging to the same 481 /// scop statement. 482 isl::id Id; 483 484 /// What is modeled by this MemoryAccess. 485 /// @see MemoryKind 486 MemoryKind Kind; 487 488 /// Whether it a reading or writing access, and if writing, whether it 489 /// is conditional (MAY_WRITE). 490 enum AccessType AccType; 491 492 /// Reduction type for reduction like accesses, RT_NONE otherwise 493 /// 494 /// An access is reduction like if it is part of a load-store chain in which 495 /// both access the same memory location (use the same LLVM-IR value 496 /// as pointer reference). Furthermore, between the load and the store there 497 /// is exactly one binary operator which is known to be associative and 498 /// commutative. 499 /// 500 /// TODO: 501 /// 502 /// We can later lift the constraint that the same LLVM-IR value defines the 503 /// memory location to handle scops such as the following: 504 /// 505 /// for i 506 /// for j 507 /// sum[i+j] = sum[i] + 3; 508 /// 509 /// Here not all iterations access the same memory location, but iterations 510 /// for which j = 0 holds do. After lifting the equality check in ScopBuilder, 511 /// subsequent transformations do not only need check if a statement is 512 /// reduction like, but they also need to verify that the reduction 513 /// property is only exploited for statement instances that load from and 514 /// store to the same data location. Doing so at dependence analysis time 515 /// could allow us to handle the above example. 516 ReductionType RedType = RT_NONE; 517 518 /// Parent ScopStmt of this access. 519 ScopStmt *Statement; 520 521 /// The domain under which this access is not modeled precisely. 522 /// 523 /// The invalid domain for an access describes all parameter combinations 524 /// under which the statement looks to be executed but is in fact not because 525 /// some assumption/restriction makes the access invalid. 526 isl::set InvalidDomain; 527 528 // Properties describing the accessed array. 529 // TODO: It might be possible to move them to ScopArrayInfo. 530 // @{ 531 532 /// The base address (e.g., A for A[i+j]). 533 /// 534 /// The #BaseAddr of a memory access of kind MemoryKind::Array is the base 535 /// pointer of the memory access. 536 /// The #BaseAddr of a memory access of kind MemoryKind::PHI or 537 /// MemoryKind::ExitPHI is the PHI node itself. 538 /// The #BaseAddr of a memory access of kind MemoryKind::Value is the 539 /// instruction defining the value. 540 AssertingVH<Value> BaseAddr; 541 542 /// Type a single array element wrt. this access. 543 Type *ElementType; 544 545 /// Size of each dimension of the accessed array. 546 SmallVector<const SCEV *, 4> Sizes; 547 // @} 548 549 // Properties describing the accessed element. 550 // @{ 551 552 /// The access instruction of this memory access. 553 /// 554 /// For memory accesses of kind MemoryKind::Array the access instruction is 555 /// the Load or Store instruction performing the access. 556 /// 557 /// For memory accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI the 558 /// access instruction of a load access is the PHI instruction. The access 559 /// instruction of a PHI-store is the incoming's block's terminator 560 /// instruction. 561 /// 562 /// For memory accesses of kind MemoryKind::Value the access instruction of a 563 /// load access is nullptr because generally there can be multiple 564 /// instructions in the statement using the same llvm::Value. The access 565 /// instruction of a write access is the instruction that defines the 566 /// llvm::Value. 567 Instruction *AccessInstruction = nullptr; 568 569 /// Incoming block and value of a PHINode. 570 SmallVector<std::pair<BasicBlock *, Value *>, 4> Incoming; 571 572 /// The value associated with this memory access. 573 /// 574 /// - For array memory accesses (MemoryKind::Array) it is the loaded result 575 /// or the stored value. If the access instruction is a memory intrinsic it 576 /// the access value is also the memory intrinsic. 577 /// - For accesses of kind MemoryKind::Value it is the access instruction 578 /// itself. 579 /// - For accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI it is the 580 /// PHI node itself (for both, READ and WRITE accesses). 581 /// 582 AssertingVH<Value> AccessValue; 583 584 /// Are all the subscripts affine expression? 585 bool IsAffine = true; 586 587 /// Subscript expression for each dimension. 588 SubscriptsTy Subscripts; 589 590 /// Relation from statement instances to the accessed array elements. 591 /// 592 /// In the common case this relation is a function that maps a set of loop 593 /// indices to the memory address from which a value is loaded/stored: 594 /// 595 /// for i 596 /// for j 597 /// S: A[i + 3 j] = ... 598 /// 599 /// => { S[i,j] -> A[i + 3j] } 600 /// 601 /// In case the exact access function is not known, the access relation may 602 /// also be a one to all mapping { S[i,j] -> A[o] } describing that any 603 /// element accessible through A might be accessed. 604 /// 605 /// In case of an access to a larger element belonging to an array that also 606 /// contains smaller elements, the access relation models the larger access 607 /// with multiple smaller accesses of the size of the minimal array element 608 /// type: 609 /// 610 /// short *A; 611 /// 612 /// for i 613 /// S: A[i] = *((double*)&A[4 * i]); 614 /// 615 /// => { S[i] -> A[i]; S[i] -> A[o] : 4i <= o <= 4i + 3 } 616 isl::map AccessRelation; 617 618 /// Updated access relation read from JSCOP file. 619 isl::map NewAccessRelation; 620 // @} 621 622 isl::basic_map createBasicAccessMap(ScopStmt *Statement); 623 624 isl::set assumeNoOutOfBound(); 625 626 /// Compute bounds on an over approximated access relation. 627 /// 628 /// @param ElementSize The size of one element accessed. 629 void computeBoundsOnAccessRelation(unsigned ElementSize); 630 631 /// Get the original access function as read from IR. 632 isl::map getOriginalAccessRelation() const; 633 634 /// Return the space in which the access relation lives in. 635 isl::space getOriginalAccessRelationSpace() const; 636 637 /// Get the new access function imported or set by a pass 638 isl::map getNewAccessRelation() const; 639 640 /// Fold the memory access to consider parametric offsets 641 /// 642 /// To recover memory accesses with array size parameters in the subscript 643 /// expression we post-process the delinearization results. 644 /// 645 /// We would normally recover from an access A[exp0(i) * N + exp1(i)] into an 646 /// array A[][N] the 2D access A[exp0(i)][exp1(i)]. However, another valid 647 /// delinearization is A[exp0(i) - 1][exp1(i) + N] which - depending on the 648 /// range of exp1(i) - may be preferable. Specifically, for cases where we 649 /// know exp1(i) is negative, we want to choose the latter expression. 650 /// 651 /// As we commonly do not have any information about the range of exp1(i), 652 /// we do not choose one of the two options, but instead create a piecewise 653 /// access function that adds the (-1, N) offsets as soon as exp1(i) becomes 654 /// negative. For a 2D array such an access function is created by applying 655 /// the piecewise map: 656 /// 657 /// [i,j] -> [i, j] : j >= 0 658 /// [i,j] -> [i-1, j+N] : j < 0 659 /// 660 /// We can generalize this mapping to arbitrary dimensions by applying this 661 /// piecewise mapping pairwise from the rightmost to the leftmost access 662 /// dimension. It would also be possible to cover a wider range by introducing 663 /// more cases and adding multiple of Ns to these cases. However, this has 664 /// not yet been necessary. 665 /// The introduction of different cases necessarily complicates the memory 666 /// access function, but cases that can be statically proven to not happen 667 /// will be eliminated later on. 668 void foldAccessRelation(); 669 670 /// Create the access relation for the underlying memory intrinsic. 671 void buildMemIntrinsicAccessRelation(); 672 673 /// Assemble the access relation from all available information. 674 /// 675 /// In particular, used the information passes in the constructor and the 676 /// parent ScopStmt set by setStatment(). 677 /// 678 /// @param SAI Info object for the accessed array. 679 void buildAccessRelation(const ScopArrayInfo *SAI); 680 681 /// Carry index overflows of dimensions with constant size to the next higher 682 /// dimension. 683 /// 684 /// For dimensions that have constant size, modulo the index by the size and 685 /// add up the carry (floored division) to the next higher dimension. This is 686 /// how overflow is defined in row-major order. 687 /// It happens e.g. when ScalarEvolution computes the offset to the base 688 /// pointer and would algebraically sum up all lower dimensions' indices of 689 /// constant size. 690 /// 691 /// Example: 692 /// float (*A)[4]; 693 /// A[1][6] -> A[2][2] 694 void wrapConstantDimensions(); 695 696 public: 697 /// Create a new MemoryAccess. 698 /// 699 /// @param Stmt The parent statement. 700 /// @param AccessInst The instruction doing the access. 701 /// @param BaseAddr The accessed array's address. 702 /// @param ElemType The type of the accessed array elements. 703 /// @param AccType Whether read or write access. 704 /// @param IsAffine Whether the subscripts are affine expressions. 705 /// @param Kind The kind of memory accessed. 706 /// @param Subscripts Subscript expressions 707 /// @param Sizes Dimension lengths of the accessed array. 708 MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst, AccessType AccType, 709 Value *BaseAddress, Type *ElemType, bool Affine, 710 ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes, 711 Value *AccessValue, MemoryKind Kind); 712 713 /// Create a new MemoryAccess that corresponds to @p AccRel. 714 /// 715 /// Along with @p Stmt and @p AccType it uses information about dimension 716 /// lengths of the accessed array, the type of the accessed array elements, 717 /// the name of the accessed array that is derived from the object accessible 718 /// via @p AccRel. 719 /// 720 /// @param Stmt The parent statement. 721 /// @param AccType Whether read or write access. 722 /// @param AccRel The access relation that describes the memory access. 723 MemoryAccess(ScopStmt *Stmt, AccessType AccType, isl::map AccRel); 724 725 MemoryAccess(const MemoryAccess &) = delete; 726 MemoryAccess &operator=(const MemoryAccess &) = delete; 727 ~MemoryAccess(); 728 729 /// Add a new incoming block/value pairs for this PHI/ExitPHI access. 730 /// 731 /// @param IncomingBlock The PHI's incoming block. 732 /// @param IncomingValue The value when reaching the PHI from the @p 733 /// IncomingBlock. addIncoming(BasicBlock * IncomingBlock,Value * IncomingValue)734 void addIncoming(BasicBlock *IncomingBlock, Value *IncomingValue) { 735 assert(!isRead()); 736 assert(isAnyPHIKind()); 737 Incoming.emplace_back(std::make_pair(IncomingBlock, IncomingValue)); 738 } 739 740 /// Return the list of possible PHI/ExitPHI values. 741 /// 742 /// After code generation moves some PHIs around during region simplification, 743 /// we cannot reliably locate the original PHI node and its incoming values 744 /// anymore. For this reason we remember these explicitly for all PHI-kind 745 /// accesses. getIncoming()746 ArrayRef<std::pair<BasicBlock *, Value *>> getIncoming() const { 747 assert(isAnyPHIKind()); 748 return Incoming; 749 } 750 751 /// Get the type of a memory access. getType()752 enum AccessType getType() { return AccType; } 753 754 /// Is this a reduction like access? isReductionLike()755 bool isReductionLike() const { return RedType != RT_NONE; } 756 757 /// Is this a read memory access? isRead()758 bool isRead() const { return AccType == MemoryAccess::READ; } 759 760 /// Is this a must-write memory access? isMustWrite()761 bool isMustWrite() const { return AccType == MemoryAccess::MUST_WRITE; } 762 763 /// Is this a may-write memory access? isMayWrite()764 bool isMayWrite() const { return AccType == MemoryAccess::MAY_WRITE; } 765 766 /// Is this a write memory access? isWrite()767 bool isWrite() const { return isMustWrite() || isMayWrite(); } 768 769 /// Is this a memory intrinsic access (memcpy, memset, memmove)? isMemoryIntrinsic()770 bool isMemoryIntrinsic() const { 771 return isa<MemIntrinsic>(getAccessInstruction()); 772 } 773 774 /// Check if a new access relation was imported or set by a pass. hasNewAccessRelation()775 bool hasNewAccessRelation() const { return !NewAccessRelation.is_null(); } 776 777 /// Return the newest access relation of this access. 778 /// 779 /// There are two possibilities: 780 /// 1) The original access relation read from the LLVM-IR. 781 /// 2) A new access relation imported from a json file or set by another 782 /// pass (e.g., for privatization). 783 /// 784 /// As 2) is by construction "newer" than 1) we return the new access 785 /// relation if present. 786 /// getLatestAccessRelation()787 isl::map getLatestAccessRelation() const { 788 return hasNewAccessRelation() ? getNewAccessRelation() 789 : getOriginalAccessRelation(); 790 } 791 792 /// Old name of getLatestAccessRelation(). getAccessRelation()793 isl::map getAccessRelation() const { return getLatestAccessRelation(); } 794 795 /// Get an isl map describing the memory address accessed. 796 /// 797 /// In most cases the memory address accessed is well described by the access 798 /// relation obtained with getAccessRelation. However, in case of arrays 799 /// accessed with types of different size the access relation maps one access 800 /// to multiple smaller address locations. This method returns an isl map that 801 /// relates each dynamic statement instance to the unique memory location 802 /// that is loaded from / stored to. 803 /// 804 /// For an access relation { S[i] -> A[o] : 4i <= o <= 4i + 3 } this method 805 /// will return the address function { S[i] -> A[4i] }. 806 /// 807 /// @returns The address function for this memory access. 808 isl::map getAddressFunction() const; 809 810 /// Return the access relation after the schedule was applied. 811 isl::pw_multi_aff 812 applyScheduleToAccessRelation(isl::union_map Schedule) const; 813 814 /// Get an isl string representing the access function read from IR. 815 std::string getOriginalAccessRelationStr() const; 816 817 /// Get an isl string representing a new access function, if available. 818 std::string getNewAccessRelationStr() const; 819 820 /// Get an isl string representing the latest access relation. 821 std::string getAccessRelationStr() const; 822 823 /// Get the original base address of this access (e.g. A for A[i+j]) when 824 /// detected. 825 /// 826 /// This address may differ from the base address referenced by the original 827 /// ScopArrayInfo to which this array belongs, as this memory access may 828 /// have been canonicalized to a ScopArrayInfo which has a different but 829 /// identically-valued base pointer in case invariant load hoisting is 830 /// enabled. getOriginalBaseAddr()831 Value *getOriginalBaseAddr() const { return BaseAddr; } 832 833 /// Get the detection-time base array isl::id for this access. 834 isl::id getOriginalArrayId() const; 835 836 /// Get the base array isl::id for this access, modifiable through 837 /// setNewAccessRelation(). 838 isl::id getLatestArrayId() const; 839 840 /// Old name of getOriginalArrayId(). getArrayId()841 isl::id getArrayId() const { return getOriginalArrayId(); } 842 843 /// Get the detection-time ScopArrayInfo object for the base address. 844 const ScopArrayInfo *getOriginalScopArrayInfo() const; 845 846 /// Get the ScopArrayInfo object for the base address, or the one set 847 /// by setNewAccessRelation(). 848 const ScopArrayInfo *getLatestScopArrayInfo() const; 849 850 /// Legacy name of getOriginalScopArrayInfo(). getScopArrayInfo()851 const ScopArrayInfo *getScopArrayInfo() const { 852 return getOriginalScopArrayInfo(); 853 } 854 855 /// Return a string representation of the access's reduction type. 856 const std::string getReductionOperatorStr() const; 857 858 /// Return a string representation of the reduction type @p RT. 859 static const std::string getReductionOperatorStr(ReductionType RT); 860 861 /// Return the element type of the accessed array wrt. this access. getElementType()862 Type *getElementType() const { return ElementType; } 863 864 /// Return the access value of this memory access. getAccessValue()865 Value *getAccessValue() const { return AccessValue; } 866 867 /// Return llvm::Value that is stored by this access, if available. 868 /// 869 /// PHI nodes may not have a unique value available that is stored, as in 870 /// case of region statements one out of possibly several llvm::Values 871 /// might be stored. In this case nullptr is returned. tryGetValueStored()872 Value *tryGetValueStored() { 873 assert(isWrite() && "Only write statement store values"); 874 if (isAnyPHIKind()) { 875 if (Incoming.size() == 1) 876 return Incoming[0].second; 877 return nullptr; 878 } 879 return AccessValue; 880 } 881 882 /// Return the access instruction of this memory access. getAccessInstruction()883 Instruction *getAccessInstruction() const { return AccessInstruction; } 884 885 /// Return an iterator range containing the subscripts. subscripts()886 iterator_range<SubscriptsTy::const_iterator> subscripts() const { 887 return make_range(Subscripts.begin(), Subscripts.end()); 888 } 889 890 /// Return the number of access function subscript. getNumSubscripts()891 unsigned getNumSubscripts() const { return Subscripts.size(); } 892 893 /// Return the access function subscript in the dimension @p Dim. getSubscript(unsigned Dim)894 const SCEV *getSubscript(unsigned Dim) const { return Subscripts[Dim]; } 895 896 /// Compute the isl representation for the SCEV @p E wrt. this access. 897 /// 898 /// Note that this function will also adjust the invalid context accordingly. 899 isl::pw_aff getPwAff(const SCEV *E); 900 901 /// Get the invalid domain for this access. getInvalidDomain()902 isl::set getInvalidDomain() const { return InvalidDomain; } 903 904 /// Get the invalid context for this access. getInvalidContext()905 isl::set getInvalidContext() const { return getInvalidDomain().params(); } 906 907 /// Get the stride of this memory access in the specified Schedule. Schedule 908 /// is a map from the statement to a schedule where the innermost dimension is 909 /// the dimension of the innermost loop containing the statement. 910 isl::set getStride(isl::map Schedule) const; 911 912 /// Is the stride of the access equal to a certain width? Schedule is a map 913 /// from the statement to a schedule where the innermost dimension is the 914 /// dimension of the innermost loop containing the statement. 915 bool isStrideX(isl::map Schedule, int StrideWidth) const; 916 917 /// Is consecutive memory accessed for a given statement instance set? 918 /// Schedule is a map from the statement to a schedule where the innermost 919 /// dimension is the dimension of the innermost loop containing the 920 /// statement. 921 bool isStrideOne(isl::map Schedule) const; 922 923 /// Is always the same memory accessed for a given statement instance set? 924 /// Schedule is a map from the statement to a schedule where the innermost 925 /// dimension is the dimension of the innermost loop containing the 926 /// statement. 927 bool isStrideZero(isl::map Schedule) const; 928 929 /// Return the kind when this access was first detected. getOriginalKind()930 MemoryKind getOriginalKind() const { 931 assert(!getOriginalScopArrayInfo() /* not yet initialized */ || 932 getOriginalScopArrayInfo()->getKind() == Kind); 933 return Kind; 934 } 935 936 /// Return the kind considering a potential setNewAccessRelation. getLatestKind()937 MemoryKind getLatestKind() const { 938 return getLatestScopArrayInfo()->getKind(); 939 } 940 941 /// Whether this is an access of an explicit load or store in the IR. isOriginalArrayKind()942 bool isOriginalArrayKind() const { 943 return getOriginalKind() == MemoryKind::Array; 944 } 945 946 /// Whether storage memory is either an custom .s2a/.phiops alloca 947 /// (false) or an existing pointer into an array (true). isLatestArrayKind()948 bool isLatestArrayKind() const { 949 return getLatestKind() == MemoryKind::Array; 950 } 951 952 /// Old name of isOriginalArrayKind. isArrayKind()953 bool isArrayKind() const { return isOriginalArrayKind(); } 954 955 /// Whether this access is an array to a scalar memory object, without 956 /// considering changes by setNewAccessRelation. 957 /// 958 /// Scalar accesses are accesses to MemoryKind::Value, MemoryKind::PHI or 959 /// MemoryKind::ExitPHI. isOriginalScalarKind()960 bool isOriginalScalarKind() const { 961 return getOriginalKind() != MemoryKind::Array; 962 } 963 964 /// Whether this access is an array to a scalar memory object, also 965 /// considering changes by setNewAccessRelation. isLatestScalarKind()966 bool isLatestScalarKind() const { 967 return getLatestKind() != MemoryKind::Array; 968 } 969 970 /// Old name of isOriginalScalarKind. isScalarKind()971 bool isScalarKind() const { return isOriginalScalarKind(); } 972 973 /// Was this MemoryAccess detected as a scalar dependences? isOriginalValueKind()974 bool isOriginalValueKind() const { 975 return getOriginalKind() == MemoryKind::Value; 976 } 977 978 /// Is this MemoryAccess currently modeling scalar dependences? isLatestValueKind()979 bool isLatestValueKind() const { 980 return getLatestKind() == MemoryKind::Value; 981 } 982 983 /// Old name of isOriginalValueKind(). isValueKind()984 bool isValueKind() const { return isOriginalValueKind(); } 985 986 /// Was this MemoryAccess detected as a special PHI node access? isOriginalPHIKind()987 bool isOriginalPHIKind() const { 988 return getOriginalKind() == MemoryKind::PHI; 989 } 990 991 /// Is this MemoryAccess modeling special PHI node accesses, also 992 /// considering a potential change by setNewAccessRelation? isLatestPHIKind()993 bool isLatestPHIKind() const { return getLatestKind() == MemoryKind::PHI; } 994 995 /// Old name of isOriginalPHIKind. isPHIKind()996 bool isPHIKind() const { return isOriginalPHIKind(); } 997 998 /// Was this MemoryAccess detected as the accesses of a PHI node in the 999 /// SCoP's exit block? isOriginalExitPHIKind()1000 bool isOriginalExitPHIKind() const { 1001 return getOriginalKind() == MemoryKind::ExitPHI; 1002 } 1003 1004 /// Is this MemoryAccess modeling the accesses of a PHI node in the 1005 /// SCoP's exit block? Can be changed to an array access using 1006 /// setNewAccessRelation(). isLatestExitPHIKind()1007 bool isLatestExitPHIKind() const { 1008 return getLatestKind() == MemoryKind::ExitPHI; 1009 } 1010 1011 /// Old name of isOriginalExitPHIKind(). isExitPHIKind()1012 bool isExitPHIKind() const { return isOriginalExitPHIKind(); } 1013 1014 /// Was this access detected as one of the two PHI types? isOriginalAnyPHIKind()1015 bool isOriginalAnyPHIKind() const { 1016 return isOriginalPHIKind() || isOriginalExitPHIKind(); 1017 } 1018 1019 /// Does this access originate from one of the two PHI types? Can be 1020 /// changed to an array access using setNewAccessRelation(). isLatestAnyPHIKind()1021 bool isLatestAnyPHIKind() const { 1022 return isLatestPHIKind() || isLatestExitPHIKind(); 1023 } 1024 1025 /// Old name of isOriginalAnyPHIKind(). isAnyPHIKind()1026 bool isAnyPHIKind() const { return isOriginalAnyPHIKind(); } 1027 1028 /// Get the statement that contains this memory access. getStatement()1029 ScopStmt *getStatement() const { return Statement; } 1030 1031 /// Get the reduction type of this access getReductionType()1032 ReductionType getReductionType() const { return RedType; } 1033 1034 /// Update the original access relation. 1035 /// 1036 /// We need to update the original access relation during scop construction, 1037 /// when unifying the memory accesses that access the same scop array info 1038 /// object. After the scop has been constructed, the original access relation 1039 /// should not be changed any more. Instead setNewAccessRelation should 1040 /// be called. 1041 void setAccessRelation(isl::map AccessRelation); 1042 1043 /// Set the updated access relation read from JSCOP file. 1044 void setNewAccessRelation(isl::map NewAccessRelation); 1045 1046 /// Return whether the MemoryyAccess is a partial access. That is, the access 1047 /// is not executed in some instances of the parent statement's domain. 1048 bool isLatestPartialAccess() const; 1049 1050 /// Mark this a reduction like access markAsReductionLike(ReductionType RT)1051 void markAsReductionLike(ReductionType RT) { RedType = RT; } 1052 1053 /// Align the parameters in the access relation to the scop context 1054 void realignParams(); 1055 1056 /// Update the dimensionality of the memory access. 1057 /// 1058 /// During scop construction some memory accesses may not be constructed with 1059 /// their full dimensionality, but outer dimensions may have been omitted if 1060 /// they took the value 'zero'. By updating the dimensionality of the 1061 /// statement we add additional zero-valued dimensions to match the 1062 /// dimensionality of the ScopArrayInfo object that belongs to this memory 1063 /// access. 1064 void updateDimensionality(); 1065 1066 /// Get identifier for the memory access. 1067 /// 1068 /// This identifier is unique for all accesses that belong to the same scop 1069 /// statement. 1070 isl::id getId() const; 1071 1072 /// Print the MemoryAccess. 1073 /// 1074 /// @param OS The output stream the MemoryAccess is printed to. 1075 void print(raw_ostream &OS) const; 1076 1077 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1078 /// Print the MemoryAccess to stderr. 1079 void dump() const; 1080 #endif 1081 1082 /// Is the memory access affine? isAffine()1083 bool isAffine() const { return IsAffine; } 1084 }; 1085 1086 raw_ostream &operator<<(raw_ostream &OS, MemoryAccess::ReductionType RT); 1087 1088 /// Ordered list type to hold accesses. 1089 using MemoryAccessList = std::forward_list<MemoryAccess *>; 1090 1091 /// Helper structure for invariant memory accesses. 1092 struct InvariantAccess { 1093 /// The memory access that is (partially) invariant. 1094 MemoryAccess *MA; 1095 1096 /// The context under which the access is not invariant. 1097 isl::set NonHoistableCtx; 1098 }; 1099 1100 /// Ordered container type to hold invariant accesses. 1101 using InvariantAccessesTy = SmallVector<InvariantAccess, 8>; 1102 1103 /// Type for equivalent invariant accesses and their domain context. 1104 struct InvariantEquivClassTy { 1105 /// The pointer that identifies this equivalence class 1106 const SCEV *IdentifyingPointer; 1107 1108 /// Memory accesses now treated invariant 1109 /// 1110 /// These memory accesses access the pointer location that identifies 1111 /// this equivalence class. They are treated as invariant and hoisted during 1112 /// code generation. 1113 MemoryAccessList InvariantAccesses; 1114 1115 /// The execution context under which the memory location is accessed 1116 /// 1117 /// It is the union of the execution domains of the memory accesses in the 1118 /// InvariantAccesses list. 1119 isl::set ExecutionContext; 1120 1121 /// The type of the invariant access 1122 /// 1123 /// It is used to differentiate between differently typed invariant loads from 1124 /// the same location. 1125 Type *AccessType; 1126 }; 1127 1128 /// Type for invariant accesses equivalence classes. 1129 using InvariantEquivClassesTy = SmallVector<InvariantEquivClassTy, 8>; 1130 1131 /// Statement of the Scop 1132 /// 1133 /// A Scop statement represents an instruction in the Scop. 1134 /// 1135 /// It is further described by its iteration domain, its schedule and its data 1136 /// accesses. 1137 /// At the moment every statement represents a single basic block of LLVM-IR. 1138 class ScopStmt final { 1139 friend class ScopBuilder; 1140 1141 public: 1142 /// Create the ScopStmt from a BasicBlock. 1143 ScopStmt(Scop &parent, BasicBlock &bb, StringRef Name, Loop *SurroundingLoop, 1144 std::vector<Instruction *> Instructions); 1145 1146 /// Create an overapproximating ScopStmt for the region @p R. 1147 /// 1148 /// @param EntryBlockInstructions The list of instructions that belong to the 1149 /// entry block of the region statement. 1150 /// Instructions are only tracked for entry 1151 /// blocks for now. We currently do not allow 1152 /// to modify the instructions of blocks later 1153 /// in the region statement. 1154 ScopStmt(Scop &parent, Region &R, StringRef Name, Loop *SurroundingLoop, 1155 std::vector<Instruction *> EntryBlockInstructions); 1156 1157 /// Create a copy statement. 1158 /// 1159 /// @param Stmt The parent statement. 1160 /// @param SourceRel The source location. 1161 /// @param TargetRel The target location. 1162 /// @param Domain The original domain under which the copy statement would 1163 /// be executed. 1164 ScopStmt(Scop &parent, isl::map SourceRel, isl::map TargetRel, 1165 isl::set Domain); 1166 1167 ScopStmt(const ScopStmt &) = delete; 1168 const ScopStmt &operator=(const ScopStmt &) = delete; 1169 ~ScopStmt(); 1170 1171 private: 1172 /// Polyhedral description 1173 //@{ 1174 1175 /// The Scop containing this ScopStmt. 1176 Scop &Parent; 1177 1178 /// The domain under which this statement is not modeled precisely. 1179 /// 1180 /// The invalid domain for a statement describes all parameter combinations 1181 /// under which the statement looks to be executed but is in fact not because 1182 /// some assumption/restriction makes the statement/scop invalid. 1183 isl::set InvalidDomain; 1184 1185 /// The iteration domain describes the set of iterations for which this 1186 /// statement is executed. 1187 /// 1188 /// Example: 1189 /// for (i = 0; i < 100 + b; ++i) 1190 /// for (j = 0; j < i; ++j) 1191 /// S(i,j); 1192 /// 1193 /// 'S' is executed for different values of i and j. A vector of all 1194 /// induction variables around S (i, j) is called iteration vector. 1195 /// The domain describes the set of possible iteration vectors. 1196 /// 1197 /// In this case it is: 1198 /// 1199 /// Domain: 0 <= i <= 100 + b 1200 /// 0 <= j <= i 1201 /// 1202 /// A pair of statement and iteration vector (S, (5,3)) is called statement 1203 /// instance. 1204 isl::set Domain; 1205 1206 /// The memory accesses of this statement. 1207 /// 1208 /// The only side effects of a statement are its memory accesses. 1209 using MemoryAccessVec = llvm::SmallVector<MemoryAccess *, 8>; 1210 MemoryAccessVec MemAccs; 1211 1212 /// Mapping from instructions to (scalar) memory accesses. 1213 DenseMap<const Instruction *, MemoryAccessList> InstructionToAccess; 1214 1215 /// The set of values defined elsewhere required in this ScopStmt and 1216 /// their MemoryKind::Value READ MemoryAccesses. 1217 DenseMap<Value *, MemoryAccess *> ValueReads; 1218 1219 /// The set of values defined in this ScopStmt that are required 1220 /// elsewhere, mapped to their MemoryKind::Value WRITE MemoryAccesses. 1221 DenseMap<Instruction *, MemoryAccess *> ValueWrites; 1222 1223 /// Map from PHI nodes to its incoming value when coming from this 1224 /// statement. 1225 /// 1226 /// Non-affine subregions can have multiple exiting blocks that are incoming 1227 /// blocks of the PHI nodes. This map ensures that there is only one write 1228 /// operation for the complete subregion. A PHI selecting the relevant value 1229 /// will be inserted. 1230 DenseMap<PHINode *, MemoryAccess *> PHIWrites; 1231 1232 /// Map from PHI nodes to its read access in this statement. 1233 DenseMap<PHINode *, MemoryAccess *> PHIReads; 1234 1235 //@} 1236 1237 /// A SCoP statement represents either a basic block (affine/precise case) or 1238 /// a whole region (non-affine case). 1239 /// 1240 /// Only one of the following two members will therefore be set and indicate 1241 /// which kind of statement this is. 1242 /// 1243 ///{ 1244 1245 /// The BasicBlock represented by this statement (in the affine case). 1246 BasicBlock *BB = nullptr; 1247 1248 /// The region represented by this statement (in the non-affine case). 1249 Region *R = nullptr; 1250 1251 ///} 1252 1253 /// The isl AST build for the new generated AST. 1254 isl::ast_build Build; 1255 1256 SmallVector<Loop *, 4> NestLoops; 1257 1258 std::string BaseName; 1259 1260 /// The closest loop that contains this statement. 1261 Loop *SurroundingLoop; 1262 1263 /// Vector for Instructions in this statement. 1264 std::vector<Instruction *> Instructions; 1265 1266 /// Remove @p MA from dictionaries pointing to them. 1267 void removeAccessData(MemoryAccess *MA); 1268 1269 public: 1270 /// Get an isl_ctx pointer. 1271 isl::ctx getIslCtx() const; 1272 1273 /// Get the iteration domain of this ScopStmt. 1274 /// 1275 /// @return The iteration domain of this ScopStmt. 1276 isl::set getDomain() const; 1277 1278 /// Get the space of the iteration domain 1279 /// 1280 /// @return The space of the iteration domain 1281 isl::space getDomainSpace() const; 1282 1283 /// Get the id of the iteration domain space 1284 /// 1285 /// @return The id of the iteration domain space 1286 isl::id getDomainId() const; 1287 1288 /// Get an isl string representing this domain. 1289 std::string getDomainStr() const; 1290 1291 /// Get the schedule function of this ScopStmt. 1292 /// 1293 /// @return The schedule function of this ScopStmt, if it does not contain 1294 /// extension nodes, and nullptr, otherwise. 1295 isl::map getSchedule() const; 1296 1297 /// Get an isl string representing this schedule. 1298 /// 1299 /// @return An isl string representing this schedule, if it does not contain 1300 /// extension nodes, and an empty string, otherwise. 1301 std::string getScheduleStr() const; 1302 1303 /// Get the invalid domain for this statement. getInvalidDomain()1304 isl::set getInvalidDomain() const { return InvalidDomain; } 1305 1306 /// Get the invalid context for this statement. getInvalidContext()1307 isl::set getInvalidContext() const { return getInvalidDomain().params(); } 1308 1309 /// Set the invalid context for this statement to @p ID. 1310 void setInvalidDomain(isl::set ID); 1311 1312 /// Get the BasicBlock represented by this ScopStmt (if any). 1313 /// 1314 /// @return The BasicBlock represented by this ScopStmt, or null if the 1315 /// statement represents a region. getBasicBlock()1316 BasicBlock *getBasicBlock() const { return BB; } 1317 1318 /// Return true if this statement represents a single basic block. isBlockStmt()1319 bool isBlockStmt() const { return BB != nullptr; } 1320 1321 /// Return true if this is a copy statement. isCopyStmt()1322 bool isCopyStmt() const { return BB == nullptr && R == nullptr; } 1323 1324 /// Get the region represented by this ScopStmt (if any). 1325 /// 1326 /// @return The region represented by this ScopStmt, or null if the statement 1327 /// represents a basic block. getRegion()1328 Region *getRegion() const { return R; } 1329 1330 /// Return true if this statement represents a whole region. isRegionStmt()1331 bool isRegionStmt() const { return R != nullptr; } 1332 1333 /// Return a BasicBlock from this statement. 1334 /// 1335 /// For block statements, it returns the BasicBlock itself. For subregion 1336 /// statements, return its entry block. 1337 BasicBlock *getEntryBlock() const; 1338 1339 /// Return whether @p L is boxed within this statement. contains(const Loop * L)1340 bool contains(const Loop *L) const { 1341 // Block statements never contain loops. 1342 if (isBlockStmt()) 1343 return false; 1344 1345 return getRegion()->contains(L); 1346 } 1347 1348 /// Return whether this statement represents @p BB. represents(BasicBlock * BB)1349 bool represents(BasicBlock *BB) const { 1350 if (isCopyStmt()) 1351 return false; 1352 if (isBlockStmt()) 1353 return BB == getBasicBlock(); 1354 return getRegion()->contains(BB); 1355 } 1356 1357 /// Return whether this statement contains @p Inst. contains(Instruction * Inst)1358 bool contains(Instruction *Inst) const { 1359 if (!Inst) 1360 return false; 1361 if (isBlockStmt()) 1362 return llvm::is_contained(Instructions, Inst); 1363 return represents(Inst->getParent()); 1364 } 1365 1366 /// Return the closest innermost loop that contains this statement, but is not 1367 /// contained in it. 1368 /// 1369 /// For block statement, this is just the loop that contains the block. Region 1370 /// statements can contain boxed loops, so getting the loop of one of the 1371 /// region's BBs might return such an inner loop. For instance, the region's 1372 /// entry could be a header of a loop, but the region might extend to BBs 1373 /// after the loop exit. Similarly, the region might only contain parts of the 1374 /// loop body and still include the loop header. 1375 /// 1376 /// Most of the time the surrounding loop is the top element of #NestLoops, 1377 /// except when it is empty. In that case it return the loop that the whole 1378 /// SCoP is contained in. That can be nullptr if there is no such loop. getSurroundingLoop()1379 Loop *getSurroundingLoop() const { 1380 assert(!isCopyStmt() && 1381 "No surrounding loop for artificially created statements"); 1382 return SurroundingLoop; 1383 } 1384 1385 /// Return true if this statement does not contain any accesses. isEmpty()1386 bool isEmpty() const { return MemAccs.empty(); } 1387 1388 /// Find all array accesses for @p Inst. 1389 /// 1390 /// @param Inst The instruction accessing an array. 1391 /// 1392 /// @return A list of array accesses (MemoryKind::Array) accessed by @p Inst. 1393 /// If there is no such access, it returns nullptr. 1394 const MemoryAccessList * lookupArrayAccessesFor(const Instruction * Inst)1395 lookupArrayAccessesFor(const Instruction *Inst) const { 1396 auto It = InstructionToAccess.find(Inst); 1397 if (It == InstructionToAccess.end()) 1398 return nullptr; 1399 if (It->second.empty()) 1400 return nullptr; 1401 return &It->second; 1402 } 1403 1404 /// Return the only array access for @p Inst, if existing. 1405 /// 1406 /// @param Inst The instruction for which to look up the access. 1407 /// @returns The unique array memory access related to Inst or nullptr if 1408 /// no array access exists getArrayAccessOrNULLFor(const Instruction * Inst)1409 MemoryAccess *getArrayAccessOrNULLFor(const Instruction *Inst) const { 1410 auto It = InstructionToAccess.find(Inst); 1411 if (It == InstructionToAccess.end()) 1412 return nullptr; 1413 1414 MemoryAccess *ArrayAccess = nullptr; 1415 1416 for (auto Access : It->getSecond()) { 1417 if (!Access->isArrayKind()) 1418 continue; 1419 1420 assert(!ArrayAccess && "More then one array access for instruction"); 1421 1422 ArrayAccess = Access; 1423 } 1424 1425 return ArrayAccess; 1426 } 1427 1428 /// Return the only array access for @p Inst. 1429 /// 1430 /// @param Inst The instruction for which to look up the access. 1431 /// @returns The unique array memory access related to Inst. getArrayAccessFor(const Instruction * Inst)1432 MemoryAccess &getArrayAccessFor(const Instruction *Inst) const { 1433 MemoryAccess *ArrayAccess = getArrayAccessOrNULLFor(Inst); 1434 1435 assert(ArrayAccess && "No array access found for instruction!"); 1436 return *ArrayAccess; 1437 } 1438 1439 /// Return the MemoryAccess that writes the value of an instruction 1440 /// defined in this statement, or nullptr if not existing, respectively 1441 /// not yet added. lookupValueWriteOf(Instruction * Inst)1442 MemoryAccess *lookupValueWriteOf(Instruction *Inst) const { 1443 assert((isRegionStmt() && R->contains(Inst)) || 1444 (!isRegionStmt() && Inst->getParent() == BB)); 1445 return ValueWrites.lookup(Inst); 1446 } 1447 1448 /// Return the MemoryAccess that reloads a value, or nullptr if not 1449 /// existing, respectively not yet added. lookupValueReadOf(Value * Inst)1450 MemoryAccess *lookupValueReadOf(Value *Inst) const { 1451 return ValueReads.lookup(Inst); 1452 } 1453 1454 /// Return the MemoryAccess that loads a PHINode value, or nullptr if not 1455 /// existing, respectively not yet added. lookupPHIReadOf(PHINode * PHI)1456 MemoryAccess *lookupPHIReadOf(PHINode *PHI) const { 1457 return PHIReads.lookup(PHI); 1458 } 1459 1460 /// Return the PHI write MemoryAccess for the incoming values from any 1461 /// basic block in this ScopStmt, or nullptr if not existing, 1462 /// respectively not yet added. lookupPHIWriteOf(PHINode * PHI)1463 MemoryAccess *lookupPHIWriteOf(PHINode *PHI) const { 1464 assert(isBlockStmt() || R->getExit() == PHI->getParent()); 1465 return PHIWrites.lookup(PHI); 1466 } 1467 1468 /// Return the input access of the value, or null if no such MemoryAccess 1469 /// exists. 1470 /// 1471 /// The input access is the MemoryAccess that makes an inter-statement value 1472 /// available in this statement by reading it at the start of this statement. 1473 /// This can be a MemoryKind::Value if defined in another statement or a 1474 /// MemoryKind::PHI if the value is a PHINode in this statement. lookupInputAccessOf(Value * Val)1475 MemoryAccess *lookupInputAccessOf(Value *Val) const { 1476 if (isa<PHINode>(Val)) 1477 if (auto InputMA = lookupPHIReadOf(cast<PHINode>(Val))) { 1478 assert(!lookupValueReadOf(Val) && "input accesses must be unique; a " 1479 "statement cannot read a .s2a and " 1480 ".phiops simultaneously"); 1481 return InputMA; 1482 } 1483 1484 if (auto *InputMA = lookupValueReadOf(Val)) 1485 return InputMA; 1486 1487 return nullptr; 1488 } 1489 1490 /// Add @p Access to this statement's list of accesses. 1491 /// 1492 /// @param Access The access to add. 1493 /// @param Prepend If true, will add @p Access before all other instructions 1494 /// (instead of appending it). 1495 void addAccess(MemoryAccess *Access, bool Preprend = false); 1496 1497 /// Remove a MemoryAccess from this statement. 1498 /// 1499 /// Note that scalar accesses that are caused by MA will 1500 /// be eliminated too. 1501 void removeMemoryAccess(MemoryAccess *MA); 1502 1503 /// Remove @p MA from this statement. 1504 /// 1505 /// In contrast to removeMemoryAccess(), no other access will be eliminated. 1506 /// 1507 /// @param MA The MemoryAccess to be removed. 1508 /// @param AfterHoisting If true, also remove from data access lists. 1509 /// These lists are filled during 1510 /// ScopBuilder::buildAccessRelations. Therefore, if this 1511 /// method is called before buildAccessRelations, false 1512 /// must be passed. 1513 void removeSingleMemoryAccess(MemoryAccess *MA, bool AfterHoisting = true); 1514 1515 using iterator = MemoryAccessVec::iterator; 1516 using const_iterator = MemoryAccessVec::const_iterator; 1517 begin()1518 iterator begin() { return MemAccs.begin(); } end()1519 iterator end() { return MemAccs.end(); } begin()1520 const_iterator begin() const { return MemAccs.begin(); } end()1521 const_iterator end() const { return MemAccs.end(); } size()1522 size_t size() const { return MemAccs.size(); } 1523 1524 unsigned getNumIterators() const; 1525 getParent()1526 Scop *getParent() { return &Parent; } getParent()1527 const Scop *getParent() const { return &Parent; } 1528 getInstructions()1529 const std::vector<Instruction *> &getInstructions() const { 1530 return Instructions; 1531 } 1532 1533 /// Set the list of instructions for this statement. It replaces the current 1534 /// list. setInstructions(ArrayRef<Instruction * > Range)1535 void setInstructions(ArrayRef<Instruction *> Range) { 1536 Instructions.assign(Range.begin(), Range.end()); 1537 } 1538 insts_begin()1539 std::vector<Instruction *>::const_iterator insts_begin() const { 1540 return Instructions.begin(); 1541 } 1542 insts_end()1543 std::vector<Instruction *>::const_iterator insts_end() const { 1544 return Instructions.end(); 1545 } 1546 1547 /// The range of instructions in this statement. insts()1548 iterator_range<std::vector<Instruction *>::const_iterator> insts() const { 1549 return {insts_begin(), insts_end()}; 1550 } 1551 1552 /// Insert an instruction before all other instructions in this statement. prependInstruction(Instruction * Inst)1553 void prependInstruction(Instruction *Inst) { 1554 Instructions.insert(Instructions.begin(), Inst); 1555 } 1556 1557 const char *getBaseName() const; 1558 1559 /// Set the isl AST build. setAstBuild(isl::ast_build B)1560 void setAstBuild(isl::ast_build B) { Build = B; } 1561 1562 /// Get the isl AST build. getAstBuild()1563 isl::ast_build getAstBuild() const { return Build; } 1564 1565 /// Restrict the domain of the statement. 1566 /// 1567 /// @param NewDomain The new statement domain. 1568 void restrictDomain(isl::set NewDomain); 1569 1570 /// Get the loop for a dimension. 1571 /// 1572 /// @param Dimension The dimension of the induction variable 1573 /// @return The loop at a certain dimension. 1574 Loop *getLoopForDimension(unsigned Dimension) const; 1575 1576 /// Align the parameters in the statement to the scop context 1577 void realignParams(); 1578 1579 /// Print the ScopStmt. 1580 /// 1581 /// @param OS The output stream the ScopStmt is printed to. 1582 /// @param PrintInstructions Whether to print the statement's instructions as 1583 /// well. 1584 void print(raw_ostream &OS, bool PrintInstructions) const; 1585 1586 /// Print the instructions in ScopStmt. 1587 /// 1588 void printInstructions(raw_ostream &OS) const; 1589 1590 /// Check whether there is a value read access for @p V in this statement, and 1591 /// if not, create one. 1592 /// 1593 /// This allows to add MemoryAccesses after the initial creation of the Scop 1594 /// by ScopBuilder. 1595 /// 1596 /// @return The already existing or newly created MemoryKind::Value READ 1597 /// MemoryAccess. 1598 /// 1599 /// @see ScopBuilder::ensureValueRead(Value*,ScopStmt*) 1600 MemoryAccess *ensureValueRead(Value *V); 1601 1602 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1603 /// Print the ScopStmt to stderr. 1604 void dump() const; 1605 #endif 1606 }; 1607 1608 /// Print ScopStmt S to raw_ostream OS. 1609 raw_ostream &operator<<(raw_ostream &OS, const ScopStmt &S); 1610 1611 /// Static Control Part 1612 /// 1613 /// A Scop is the polyhedral representation of a control flow region detected 1614 /// by the Scop detection. It is generated by translating the LLVM-IR and 1615 /// abstracting its effects. 1616 /// 1617 /// A Scop consists of a set of: 1618 /// 1619 /// * A set of statements executed in the Scop. 1620 /// 1621 /// * A set of global parameters 1622 /// Those parameters are scalar integer values, which are constant during 1623 /// execution. 1624 /// 1625 /// * A context 1626 /// This context contains information about the values the parameters 1627 /// can take and relations between different parameters. 1628 class Scop final { 1629 public: 1630 /// Type to represent a pair of minimal/maximal access to an array. 1631 using MinMaxAccessTy = std::pair<isl::pw_multi_aff, isl::pw_multi_aff>; 1632 1633 /// Vector of minimal/maximal accesses to different arrays. 1634 using MinMaxVectorTy = SmallVector<MinMaxAccessTy, 4>; 1635 1636 /// Pair of minimal/maximal access vectors representing 1637 /// read write and read only accesses 1638 using MinMaxVectorPairTy = std::pair<MinMaxVectorTy, MinMaxVectorTy>; 1639 1640 /// Vector of pair of minimal/maximal access vectors representing 1641 /// non read only and read only accesses for each alias group. 1642 using MinMaxVectorPairVectorTy = SmallVector<MinMaxVectorPairTy, 4>; 1643 1644 private: 1645 friend class ScopBuilder; 1646 1647 /// Isl context. 1648 /// 1649 /// We need a shared_ptr with reference counter to delete the context when all 1650 /// isl objects are deleted. We will distribute the shared_ptr to all objects 1651 /// that use the context to create isl objects, and increase the reference 1652 /// counter. By doing this, we guarantee that the context is deleted when we 1653 /// delete the last object that creates isl objects with the context. This 1654 /// declaration needs to be the first in class to gracefully destroy all isl 1655 /// objects before the context. 1656 std::shared_ptr<isl_ctx> IslCtx; 1657 1658 ScalarEvolution *SE; 1659 DominatorTree *DT; 1660 1661 /// The underlying Region. 1662 Region &R; 1663 1664 /// The name of the SCoP (identical to the regions name) 1665 std::optional<std::string> name; 1666 1667 // Access functions of the SCoP. 1668 // 1669 // This owns all the MemoryAccess objects of the Scop created in this pass. 1670 AccFuncVector AccessFunctions; 1671 1672 /// Flag to indicate that the scheduler actually optimized the SCoP. 1673 bool IsOptimized = false; 1674 1675 /// True if the underlying region has a single exiting block. 1676 bool HasSingleExitEdge; 1677 1678 /// Flag to remember if the SCoP contained an error block or not. 1679 bool HasErrorBlock = false; 1680 1681 /// Max loop depth. 1682 unsigned MaxLoopDepth = 0; 1683 1684 /// Number of copy statements. 1685 unsigned CopyStmtsNum = 0; 1686 1687 using StmtSet = std::list<ScopStmt>; 1688 1689 /// The statements in this Scop. 1690 StmtSet Stmts; 1691 1692 /// Parameters of this Scop 1693 ParameterSetTy Parameters; 1694 1695 /// Mapping from parameters to their ids. 1696 DenseMap<const SCEV *, isl::id> ParameterIds; 1697 1698 /// The context of the SCoP created during SCoP detection. 1699 ScopDetection::DetectionContext &DC; 1700 1701 /// OptimizationRemarkEmitter object for displaying diagnostic remarks 1702 OptimizationRemarkEmitter &ORE; 1703 1704 /// A map from basic blocks to vector of SCoP statements. Currently this 1705 /// vector comprises only of a single statement. 1706 DenseMap<BasicBlock *, std::vector<ScopStmt *>> StmtMap; 1707 1708 /// A map from instructions to SCoP statements. 1709 DenseMap<Instruction *, ScopStmt *> InstStmtMap; 1710 1711 /// A map from basic blocks to their domains. 1712 DenseMap<BasicBlock *, isl::set> DomainMap; 1713 1714 /// Constraints on parameters. 1715 isl::set Context; 1716 1717 /// The affinator used to translate SCEVs to isl expressions. 1718 SCEVAffinator Affinator; 1719 1720 using ArrayInfoMapTy = 1721 std::map<std::pair<AssertingVH<const Value>, MemoryKind>, 1722 std::unique_ptr<ScopArrayInfo>>; 1723 1724 using ArrayNameMapTy = StringMap<std::unique_ptr<ScopArrayInfo>>; 1725 1726 using ArrayInfoSetTy = SetVector<ScopArrayInfo *>; 1727 1728 /// A map to remember ScopArrayInfo objects for all base pointers. 1729 /// 1730 /// As PHI nodes may have two array info objects associated, we add a flag 1731 /// that distinguishes between the PHI node specific ArrayInfo object 1732 /// and the normal one. 1733 ArrayInfoMapTy ScopArrayInfoMap; 1734 1735 /// A map to remember ScopArrayInfo objects for all names of memory 1736 /// references. 1737 ArrayNameMapTy ScopArrayNameMap; 1738 1739 /// A set to remember ScopArrayInfo objects. 1740 /// @see Scop::ScopArrayInfoMap 1741 ArrayInfoSetTy ScopArrayInfoSet; 1742 1743 /// The assumptions under which this scop was built. 1744 /// 1745 /// When constructing a scop sometimes the exact representation of a statement 1746 /// or condition would be very complex, but there is a common case which is a 1747 /// lot simpler, but which is only valid under certain assumptions. The 1748 /// assumed context records the assumptions taken during the construction of 1749 /// this scop and that need to be code generated as a run-time test. 1750 isl::set AssumedContext; 1751 1752 /// The restrictions under which this SCoP was built. 1753 /// 1754 /// The invalid context is similar to the assumed context as it contains 1755 /// constraints over the parameters. However, while we need the constraints 1756 /// in the assumed context to be "true" the constraints in the invalid context 1757 /// need to be "false". Otherwise they behave the same. 1758 isl::set InvalidContext; 1759 1760 /// The context under which the SCoP must have defined behavior. Optimizer and 1761 /// code generator can assume that the SCoP will only be executed with 1762 /// parameter values within this context. This might be either because we can 1763 /// prove that other values are impossible or explicitly have undefined 1764 /// behavior, such as due to no-wrap flags. If this becomes too complex, can 1765 /// also be nullptr. 1766 /// 1767 /// In contrast to Scop::AssumedContext and Scop::InvalidContext, these do not 1768 /// need to be checked at runtime. 1769 /// 1770 /// Scop::Context on the other side is an overapproximation and does not 1771 /// include all requirements, but is always defined. However, there is still 1772 /// no guarantee that there is no undefined behavior in 1773 /// DefinedBehaviorContext. 1774 isl::set DefinedBehaviorContext; 1775 1776 /// The schedule of the SCoP 1777 /// 1778 /// The schedule of the SCoP describes the execution order of the statements 1779 /// in the scop by assigning each statement instance a possibly 1780 /// multi-dimensional execution time. The schedule is stored as a tree of 1781 /// schedule nodes. 1782 /// 1783 /// The most common nodes in a schedule tree are so-called band nodes. Band 1784 /// nodes map statement instances into a multi dimensional schedule space. 1785 /// This space can be seen as a multi-dimensional clock. 1786 /// 1787 /// Example: 1788 /// 1789 /// <S,(5,4)> may be mapped to (5,4) by this schedule: 1790 /// 1791 /// s0 = i (Year of execution) 1792 /// s1 = j (Day of execution) 1793 /// 1794 /// or to (9, 20) by this schedule: 1795 /// 1796 /// s0 = i + j (Year of execution) 1797 /// s1 = 20 (Day of execution) 1798 /// 1799 /// The order statement instances are executed is defined by the 1800 /// schedule vectors they are mapped to. A statement instance 1801 /// <A, (i, j, ..)> is executed before a statement instance <B, (i', ..)>, if 1802 /// the schedule vector of A is lexicographic smaller than the schedule 1803 /// vector of B. 1804 /// 1805 /// Besides band nodes, schedule trees contain additional nodes that specify 1806 /// a textual ordering between two subtrees or filter nodes that filter the 1807 /// set of statement instances that will be scheduled in a subtree. There 1808 /// are also several other nodes. A full description of the different nodes 1809 /// in a schedule tree is given in the isl manual. 1810 isl::schedule Schedule; 1811 1812 /// Is this Scop marked as not to be transformed by an optimization heuristic? 1813 bool HasDisableHeuristicsHint = false; 1814 1815 /// Whether the schedule has been modified after derived from the CFG by 1816 /// ScopBuilder. 1817 bool ScheduleModified = false; 1818 1819 /// The set of minimal/maximal accesses for each alias group. 1820 /// 1821 /// When building runtime alias checks we look at all memory instructions and 1822 /// build so called alias groups. Each group contains a set of accesses to 1823 /// different base arrays which might alias with each other. However, between 1824 /// alias groups there is no aliasing possible. 1825 /// 1826 /// In a program with int and float pointers annotated with tbaa information 1827 /// we would probably generate two alias groups, one for the int pointers and 1828 /// one for the float pointers. 1829 /// 1830 /// During code generation we will create a runtime alias check for each alias 1831 /// group to ensure the SCoP is executed in an alias free environment. 1832 MinMaxVectorPairVectorTy MinMaxAliasGroups; 1833 1834 /// Mapping from invariant loads to the representing invariant load of 1835 /// their equivalence class. 1836 ValueToValueMap InvEquivClassVMap; 1837 1838 /// List of invariant accesses. 1839 InvariantEquivClassesTy InvariantEquivClasses; 1840 1841 /// The smallest array index not yet assigned. 1842 long ArrayIdx = 0; 1843 1844 /// The smallest statement index not yet assigned. 1845 long StmtIdx = 0; 1846 1847 /// A number that uniquely represents a Scop within its function 1848 const int ID; 1849 1850 /// Map of values to the MemoryAccess that writes its definition. 1851 /// 1852 /// There must be at most one definition per llvm::Instruction in a SCoP. 1853 DenseMap<Value *, MemoryAccess *> ValueDefAccs; 1854 1855 /// Map of values to the MemoryAccess that reads a PHI. 1856 DenseMap<PHINode *, MemoryAccess *> PHIReadAccs; 1857 1858 /// List of all uses (i.e. read MemoryAccesses) for a MemoryKind::Value 1859 /// scalar. 1860 DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>> ValueUseAccs; 1861 1862 /// List of all incoming values (write MemoryAccess) of a MemoryKind::PHI or 1863 /// MemoryKind::ExitPHI scalar. 1864 DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>> 1865 PHIIncomingAccs; 1866 1867 /// Scop constructor; invoked from ScopBuilder::buildScop. 1868 Scop(Region &R, ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, 1869 ScopDetection::DetectionContext &DC, OptimizationRemarkEmitter &ORE, 1870 int ID); 1871 1872 //@} 1873 1874 /// Return the access for the base ptr of @p MA if any. 1875 MemoryAccess *lookupBasePtrAccess(MemoryAccess *MA); 1876 1877 /// Create an id for @p Param and store it in the ParameterIds map. 1878 void createParameterId(const SCEV *Param); 1879 1880 /// Build the Context of the Scop. 1881 void buildContext(); 1882 1883 /// Add the bounds of the parameters to the context. 1884 void addParameterBounds(); 1885 1886 /// Simplify the assumed and invalid context. 1887 void simplifyContexts(); 1888 1889 /// Create a new SCoP statement for @p BB. 1890 /// 1891 /// A new statement for @p BB will be created and added to the statement 1892 /// vector 1893 /// and map. 1894 /// 1895 /// @param BB The basic block we build the statement for. 1896 /// @param Name The name of the new statement. 1897 /// @param SurroundingLoop The loop the created statement is contained in. 1898 /// @param Instructions The instructions in the statement. 1899 void addScopStmt(BasicBlock *BB, StringRef Name, Loop *SurroundingLoop, 1900 std::vector<Instruction *> Instructions); 1901 1902 /// Create a new SCoP statement for @p R. 1903 /// 1904 /// A new statement for @p R will be created and added to the statement vector 1905 /// and map. 1906 /// 1907 /// @param R The region we build the statement for. 1908 /// @param Name The name of the new statement. 1909 /// @param SurroundingLoop The loop the created statement is contained 1910 /// in. 1911 /// @param EntryBlockInstructions The (interesting) instructions in the 1912 /// entry block of the region statement. 1913 void addScopStmt(Region *R, StringRef Name, Loop *SurroundingLoop, 1914 std::vector<Instruction *> EntryBlockInstructions); 1915 1916 /// Removes @p Stmt from the StmtMap. 1917 void removeFromStmtMap(ScopStmt &Stmt); 1918 1919 /// Removes all statements where the entry block of the statement does not 1920 /// have a corresponding domain in the domain map (or it is empty). 1921 void removeStmtNotInDomainMap(); 1922 1923 /// Collect all memory access relations of a given type. 1924 /// 1925 /// @param Predicate A predicate function that returns true if an access is 1926 /// of a given type. 1927 /// 1928 /// @returns The set of memory accesses in the scop that match the predicate. 1929 isl::union_map 1930 getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate); 1931 1932 /// @name Helper functions for printing the Scop. 1933 /// 1934 //@{ 1935 void printContext(raw_ostream &OS) const; 1936 void printArrayInfo(raw_ostream &OS) const; 1937 void printStatements(raw_ostream &OS, bool PrintInstructions) const; 1938 void printAliasAssumptions(raw_ostream &OS) const; 1939 //@} 1940 1941 public: 1942 Scop(const Scop &) = delete; 1943 Scop &operator=(const Scop &) = delete; 1944 ~Scop(); 1945 1946 /// Increment actual number of aliasing assumptions taken 1947 /// 1948 /// @param Step Number of new aliasing assumptions which should be added to 1949 /// the number of already taken assumptions. 1950 static void incrementNumberOfAliasingAssumptions(unsigned Step); 1951 1952 /// Get the count of copy statements added to this Scop. 1953 /// 1954 /// @return The count of copy statements added to this Scop. getCopyStmtsNum()1955 unsigned getCopyStmtsNum() { return CopyStmtsNum; } 1956 1957 /// Create a new copy statement. 1958 /// 1959 /// A new statement will be created and added to the statement vector. 1960 /// 1961 /// @param SourceRel The source location. 1962 /// @param TargetRel The target location. 1963 /// @param Domain The original domain under which the copy statement would 1964 /// be executed. 1965 ScopStmt *addScopStmt(isl::map SourceRel, isl::map TargetRel, 1966 isl::set Domain); 1967 1968 /// Add the access function to all MemoryAccess objects of the Scop 1969 /// created in this pass. addAccessFunction(MemoryAccess * Access)1970 void addAccessFunction(MemoryAccess *Access) { 1971 AccessFunctions.emplace_back(Access); 1972 1973 // Register value definitions. 1974 if (Access->isWrite() && Access->isOriginalValueKind()) { 1975 assert(!ValueDefAccs.count(Access->getAccessValue()) && 1976 "there can be just one definition per value"); 1977 ValueDefAccs[Access->getAccessValue()] = Access; 1978 } else if (Access->isRead() && Access->isOriginalPHIKind()) { 1979 PHINode *PHI = cast<PHINode>(Access->getAccessInstruction()); 1980 assert(!PHIReadAccs.count(PHI) && 1981 "there can be just one PHI read per PHINode"); 1982 PHIReadAccs[PHI] = Access; 1983 } 1984 } 1985 1986 /// Add metadata for @p Access. 1987 void addAccessData(MemoryAccess *Access); 1988 1989 /// Add new invariant access equivalence class 1990 void addInvariantEquivClass(const InvariantEquivClassTy & InvariantEquivClass)1991 addInvariantEquivClass(const InvariantEquivClassTy &InvariantEquivClass) { 1992 InvariantEquivClasses.emplace_back(InvariantEquivClass); 1993 } 1994 1995 /// Add mapping from invariant loads to the representing invariant load of 1996 /// their equivalence class. addInvariantLoadMapping(const Value * LoadInst,Value * ClassRep)1997 void addInvariantLoadMapping(const Value *LoadInst, Value *ClassRep) { 1998 InvEquivClassVMap[LoadInst] = ClassRep; 1999 } 2000 2001 /// Remove the metadata stored for @p Access. 2002 void removeAccessData(MemoryAccess *Access); 2003 2004 /// Return the scalar evolution. 2005 ScalarEvolution *getSE() const; 2006 2007 /// Return the dominator tree. getDT()2008 DominatorTree *getDT() const { return DT; } 2009 2010 /// Return the LoopInfo used for this Scop. getLI()2011 LoopInfo *getLI() const { return Affinator.getLI(); } 2012 2013 /// Get the count of parameters used in this Scop. 2014 /// 2015 /// @return The count of parameters used in this Scop. getNumParams()2016 size_t getNumParams() const { return Parameters.size(); } 2017 2018 /// Return whether given SCEV is used as the parameter in this Scop. isParam(const SCEV * Param)2019 bool isParam(const SCEV *Param) const { return Parameters.count(Param); } 2020 2021 /// Take a list of parameters and add the new ones to the scop. 2022 void addParams(const ParameterSetTy &NewParameters); 2023 2024 /// Return an iterator range containing the scop parameters. parameters()2025 iterator_range<ParameterSetTy::iterator> parameters() const { 2026 return make_range(Parameters.begin(), Parameters.end()); 2027 } 2028 2029 /// Return an iterator range containing invariant accesses. invariantEquivClasses()2030 iterator_range<InvariantEquivClassesTy::iterator> invariantEquivClasses() { 2031 return make_range(InvariantEquivClasses.begin(), 2032 InvariantEquivClasses.end()); 2033 } 2034 2035 /// Return an iterator range containing all the MemoryAccess objects of the 2036 /// Scop. access_functions()2037 iterator_range<AccFuncVector::iterator> access_functions() { 2038 return make_range(AccessFunctions.begin(), AccessFunctions.end()); 2039 } 2040 2041 /// Return whether this scop is empty, i.e. contains no statements that 2042 /// could be executed. isEmpty()2043 bool isEmpty() const { return Stmts.empty(); } 2044 getName()2045 StringRef getName() { 2046 if (!name) 2047 name = R.getNameStr(); 2048 return *name; 2049 } 2050 2051 using array_iterator = ArrayInfoSetTy::iterator; 2052 using const_array_iterator = ArrayInfoSetTy::const_iterator; 2053 using array_range = iterator_range<ArrayInfoSetTy::iterator>; 2054 using const_array_range = iterator_range<ArrayInfoSetTy::const_iterator>; 2055 array_begin()2056 inline array_iterator array_begin() { return ScopArrayInfoSet.begin(); } 2057 array_end()2058 inline array_iterator array_end() { return ScopArrayInfoSet.end(); } 2059 array_begin()2060 inline const_array_iterator array_begin() const { 2061 return ScopArrayInfoSet.begin(); 2062 } 2063 array_end()2064 inline const_array_iterator array_end() const { 2065 return ScopArrayInfoSet.end(); 2066 } 2067 arrays()2068 inline array_range arrays() { 2069 return array_range(array_begin(), array_end()); 2070 } 2071 arrays()2072 inline const_array_range arrays() const { 2073 return const_array_range(array_begin(), array_end()); 2074 } 2075 2076 /// Return the isl_id that represents a certain parameter. 2077 /// 2078 /// @param Parameter A SCEV that was recognized as a Parameter. 2079 /// 2080 /// @return The corresponding isl_id or NULL otherwise. 2081 isl::id getIdForParam(const SCEV *Parameter) const; 2082 2083 /// Get the maximum region of this static control part. 2084 /// 2085 /// @return The maximum region of this static control part. getRegion()2086 inline const Region &getRegion() const { return R; } getRegion()2087 inline Region &getRegion() { return R; } 2088 2089 /// Return the function this SCoP is in. getFunction()2090 Function &getFunction() const { return *R.getEntry()->getParent(); } 2091 2092 /// Check if @p L is contained in the SCoP. contains(const Loop * L)2093 bool contains(const Loop *L) const { return R.contains(L); } 2094 2095 /// Check if @p BB is contained in the SCoP. contains(const BasicBlock * BB)2096 bool contains(const BasicBlock *BB) const { return R.contains(BB); } 2097 2098 /// Check if @p I is contained in the SCoP. contains(const Instruction * I)2099 bool contains(const Instruction *I) const { return R.contains(I); } 2100 2101 /// Return the unique exit block of the SCoP. getExit()2102 BasicBlock *getExit() const { return R.getExit(); } 2103 2104 /// Return the unique exiting block of the SCoP if any. getExitingBlock()2105 BasicBlock *getExitingBlock() const { return R.getExitingBlock(); } 2106 2107 /// Return the unique entry block of the SCoP. getEntry()2108 BasicBlock *getEntry() const { return R.getEntry(); } 2109 2110 /// Return the unique entering block of the SCoP if any. getEnteringBlock()2111 BasicBlock *getEnteringBlock() const { return R.getEnteringBlock(); } 2112 2113 /// Return true if @p BB is the exit block of the SCoP. isExit(BasicBlock * BB)2114 bool isExit(BasicBlock *BB) const { return getExit() == BB; } 2115 2116 /// Return a range of all basic blocks in the SCoP. blocks()2117 Region::block_range blocks() const { return R.blocks(); } 2118 2119 /// Return true if and only if @p BB dominates the SCoP. 2120 bool isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const; 2121 2122 /// Get the maximum depth of the loop. 2123 /// 2124 /// @return The maximum depth of the loop. getMaxLoopDepth()2125 inline unsigned getMaxLoopDepth() const { return MaxLoopDepth; } 2126 2127 /// Return the invariant equivalence class for @p Val if any. 2128 InvariantEquivClassTy *lookupInvariantEquivClass(Value *Val); 2129 2130 /// Return the set of invariant accesses. getInvariantAccesses()2131 InvariantEquivClassesTy &getInvariantAccesses() { 2132 return InvariantEquivClasses; 2133 } 2134 2135 /// Check if the scop has any invariant access. hasInvariantAccesses()2136 bool hasInvariantAccesses() { return !InvariantEquivClasses.empty(); } 2137 2138 /// Mark the SCoP as optimized by the scheduler. markAsOptimized()2139 void markAsOptimized() { IsOptimized = true; } 2140 2141 /// Check if the SCoP has been optimized by the scheduler. isOptimized()2142 bool isOptimized() const { return IsOptimized; } 2143 2144 /// Return the ID of the Scop getID()2145 int getID() const { return ID; } 2146 2147 /// Get the name of the entry and exit blocks of this Scop. 2148 /// 2149 /// These along with the function name can uniquely identify a Scop. 2150 /// 2151 /// @return std::pair whose first element is the entry name & second element 2152 /// is the exit name. 2153 std::pair<std::string, std::string> getEntryExitStr() const; 2154 2155 /// Get the name of this Scop. 2156 std::string getNameStr() const; 2157 2158 /// Get the constraint on parameter of this Scop. 2159 /// 2160 /// @return The constraint on parameter of this Scop. 2161 isl::set getContext() const; 2162 2163 /// Return the context where execution behavior is defined. Might return 2164 /// nullptr. getDefinedBehaviorContext()2165 isl::set getDefinedBehaviorContext() const { return DefinedBehaviorContext; } 2166 2167 /// Return the define behavior context, or if not available, its approximation 2168 /// from all other contexts. getBestKnownDefinedBehaviorContext()2169 isl::set getBestKnownDefinedBehaviorContext() const { 2170 if (!DefinedBehaviorContext.is_null()) 2171 return DefinedBehaviorContext; 2172 2173 return Context.intersect_params(AssumedContext).subtract(InvalidContext); 2174 } 2175 2176 /// Return space of isl context parameters. 2177 /// 2178 /// Returns the set of context parameters that are currently constrained. In 2179 /// case the full set of parameters is needed, see @getFullParamSpace. 2180 isl::space getParamSpace() const; 2181 2182 /// Return the full space of parameters. 2183 /// 2184 /// getParamSpace will only return the parameters of the context that are 2185 /// actually constrained, whereas getFullParamSpace will return all 2186 // parameters. This is useful in cases, where we need to ensure all 2187 // parameters are available, as certain isl functions will abort if this is 2188 // not the case. 2189 isl::space getFullParamSpace() const; 2190 2191 /// Get the assumed context for this Scop. 2192 /// 2193 /// @return The assumed context of this Scop. 2194 isl::set getAssumedContext() const; 2195 2196 /// Return true if the optimized SCoP can be executed. 2197 /// 2198 /// In addition to the runtime check context this will also utilize the domain 2199 /// constraints to decide it the optimized version can actually be executed. 2200 /// 2201 /// @returns True if the optimized SCoP can be executed. 2202 bool hasFeasibleRuntimeContext() const; 2203 2204 /// Check if the assumption in @p Set is trivial or not. 2205 /// 2206 /// @param Set The relations between parameters that are assumed to hold. 2207 /// @param Sign Enum to indicate if the assumptions in @p Set are positive 2208 /// (needed/assumptions) or negative (invalid/restrictions). 2209 /// 2210 /// @returns True if the assumption @p Set is not trivial. 2211 bool isEffectiveAssumption(isl::set Set, AssumptionSign Sign); 2212 2213 /// Track and report an assumption. 2214 /// 2215 /// Use 'clang -Rpass-analysis=polly-scops' or 'opt 2216 /// -pass-remarks-analysis=polly-scops' to output the assumptions. 2217 /// 2218 /// @param Kind The assumption kind describing the underlying cause. 2219 /// @param Set The relations between parameters that are assumed to hold. 2220 /// @param Loc The location in the source that caused this assumption. 2221 /// @param Sign Enum to indicate if the assumptions in @p Set are positive 2222 /// (needed/assumptions) or negative (invalid/restrictions). 2223 /// @param BB The block in which this assumption was taken. Used to 2224 /// calculate hotness when emitting remark. 2225 /// 2226 /// @returns True if the assumption is not trivial. 2227 bool trackAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc, 2228 AssumptionSign Sign, BasicBlock *BB); 2229 2230 /// Add the conditions from @p Set (or subtract them if @p Sign is 2231 /// AS_RESTRICTION) to the defined behaviour context. 2232 void intersectDefinedBehavior(isl::set Set, AssumptionSign Sign); 2233 2234 /// Add assumptions to assumed context. 2235 /// 2236 /// The assumptions added will be assumed to hold during the execution of the 2237 /// scop. However, as they are generally not statically provable, at code 2238 /// generation time run-time checks will be generated that ensure the 2239 /// assumptions hold. 2240 /// 2241 /// WARNING: We currently exploit in simplifyAssumedContext the knowledge 2242 /// that assumptions do not change the set of statement instances 2243 /// executed. 2244 /// 2245 /// @param Kind The assumption kind describing the underlying cause. 2246 /// @param Set The relations between parameters that are assumed to hold. 2247 /// @param Loc The location in the source that caused this assumption. 2248 /// @param Sign Enum to indicate if the assumptions in @p Set are positive 2249 /// (needed/assumptions) or negative (invalid/restrictions). 2250 /// @param BB The block in which this assumption was taken. Used to 2251 /// calculate hotness when emitting remark. 2252 /// @param RTC Does the assumption require a runtime check? 2253 void addAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc, 2254 AssumptionSign Sign, BasicBlock *BB, bool RTC = true); 2255 2256 /// Mark the scop as invalid. 2257 /// 2258 /// This method adds an assumption to the scop that is always invalid. As a 2259 /// result, the scop will not be optimized later on. This function is commonly 2260 /// called when a condition makes it impossible (or too compile time 2261 /// expensive) to process this scop any further. 2262 /// 2263 /// @param Kind The assumption kind describing the underlying cause. 2264 /// @param Loc The location in the source that triggered . 2265 /// @param BB The BasicBlock where it was triggered. 2266 void invalidate(AssumptionKind Kind, DebugLoc Loc, BasicBlock *BB = nullptr); 2267 2268 /// Get the invalid context for this Scop. 2269 /// 2270 /// @return The invalid context of this Scop. 2271 isl::set getInvalidContext() const; 2272 2273 /// Return true if and only if the InvalidContext is trivial (=empty). hasTrivialInvalidContext()2274 bool hasTrivialInvalidContext() const { return InvalidContext.is_empty(); } 2275 2276 /// Return all alias groups for this SCoP. getAliasGroups()2277 const MinMaxVectorPairVectorTy &getAliasGroups() const { 2278 return MinMaxAliasGroups; 2279 } 2280 addAliasGroup(MinMaxVectorTy & MinMaxAccessesReadWrite,MinMaxVectorTy & MinMaxAccessesReadOnly)2281 void addAliasGroup(MinMaxVectorTy &MinMaxAccessesReadWrite, 2282 MinMaxVectorTy &MinMaxAccessesReadOnly) { 2283 MinMaxAliasGroups.emplace_back(); 2284 MinMaxAliasGroups.back().first = MinMaxAccessesReadWrite; 2285 MinMaxAliasGroups.back().second = MinMaxAccessesReadOnly; 2286 } 2287 2288 /// Remove statements from the list of scop statements. 2289 /// 2290 /// @param ShouldDelete A function that returns true if the statement passed 2291 /// to it should be deleted. 2292 /// @param AfterHoisting If true, also remove from data access lists. 2293 /// These lists are filled during 2294 /// ScopBuilder::buildAccessRelations. Therefore, if this 2295 /// method is called before buildAccessRelations, false 2296 /// must be passed. 2297 void removeStmts(function_ref<bool(ScopStmt &)> ShouldDelete, 2298 bool AfterHoisting = true); 2299 2300 /// Get an isl string representing the context. 2301 std::string getContextStr() const; 2302 2303 /// Get an isl string representing the assumed context. 2304 std::string getAssumedContextStr() const; 2305 2306 /// Get an isl string representing the invalid context. 2307 std::string getInvalidContextStr() const; 2308 2309 /// Return the list of ScopStmts that represent the given @p BB. 2310 ArrayRef<ScopStmt *> getStmtListFor(BasicBlock *BB) const; 2311 2312 /// Get the statement to put a PHI WRITE into. 2313 /// 2314 /// @param U The operand of a PHINode. 2315 ScopStmt *getIncomingStmtFor(const Use &U) const; 2316 2317 /// Return the last statement representing @p BB. 2318 /// 2319 /// Of the sequence of statements that represent a @p BB, this is the last one 2320 /// to be executed. It is typically used to determine which instruction to add 2321 /// a MemoryKind::PHI WRITE to. For this purpose, it is not strictly required 2322 /// to be executed last, only that the incoming value is available in it. 2323 ScopStmt *getLastStmtFor(BasicBlock *BB) const; 2324 2325 /// Return the ScopStmts that represents the Region @p R, or nullptr if 2326 /// it is not represented by any statement in this Scop. 2327 ArrayRef<ScopStmt *> getStmtListFor(Region *R) const; 2328 2329 /// Return the ScopStmts that represents @p RN; can return nullptr if 2330 /// the RegionNode is not within the SCoP or has been removed due to 2331 /// simplifications. 2332 ArrayRef<ScopStmt *> getStmtListFor(RegionNode *RN) const; 2333 2334 /// Return the ScopStmt an instruction belongs to, or nullptr if it 2335 /// does not belong to any statement in this Scop. getStmtFor(Instruction * Inst)2336 ScopStmt *getStmtFor(Instruction *Inst) const { 2337 return InstStmtMap.lookup(Inst); 2338 } 2339 2340 /// Return the number of statements in the SCoP. getSize()2341 size_t getSize() const { return Stmts.size(); } 2342 2343 /// @name Statements Iterators 2344 /// 2345 /// These iterators iterate over all statements of this Scop. 2346 //@{ 2347 using iterator = StmtSet::iterator; 2348 using const_iterator = StmtSet::const_iterator; 2349 begin()2350 iterator begin() { return Stmts.begin(); } end()2351 iterator end() { return Stmts.end(); } begin()2352 const_iterator begin() const { return Stmts.begin(); } end()2353 const_iterator end() const { return Stmts.end(); } 2354 2355 using reverse_iterator = StmtSet::reverse_iterator; 2356 using const_reverse_iterator = StmtSet::const_reverse_iterator; 2357 rbegin()2358 reverse_iterator rbegin() { return Stmts.rbegin(); } rend()2359 reverse_iterator rend() { return Stmts.rend(); } rbegin()2360 const_reverse_iterator rbegin() const { return Stmts.rbegin(); } rend()2361 const_reverse_iterator rend() const { return Stmts.rend(); } 2362 //@} 2363 2364 /// Return the set of required invariant loads. getRequiredInvariantLoads()2365 const InvariantLoadsSetTy &getRequiredInvariantLoads() const { 2366 return DC.RequiredILS; 2367 } 2368 2369 /// Add @p LI to the set of required invariant loads. addRequiredInvariantLoad(LoadInst * LI)2370 void addRequiredInvariantLoad(LoadInst *LI) { DC.RequiredILS.insert(LI); } 2371 2372 /// Return the set of boxed (thus overapproximated) loops. getBoxedLoops()2373 const BoxedLoopsSetTy &getBoxedLoops() const { return DC.BoxedLoopsSet; } 2374 2375 /// Return true if and only if @p R is a non-affine subregion. isNonAffineSubRegion(const Region * R)2376 bool isNonAffineSubRegion(const Region *R) { 2377 return DC.NonAffineSubRegionSet.count(R); 2378 } 2379 getInsnToMemAccMap()2380 const MapInsnToMemAcc &getInsnToMemAccMap() const { return DC.InsnToMemAcc; } 2381 2382 /// Return the (possibly new) ScopArrayInfo object for @p Access. 2383 /// 2384 /// @param ElementType The type of the elements stored in this array. 2385 /// @param Kind The kind of the array info object. 2386 /// @param BaseName The optional name of this memory reference. 2387 ScopArrayInfo *getOrCreateScopArrayInfo(Value *BasePtr, Type *ElementType, 2388 ArrayRef<const SCEV *> Sizes, 2389 MemoryKind Kind, 2390 const char *BaseName = nullptr); 2391 2392 /// Create an array and return the corresponding ScopArrayInfo object. 2393 /// 2394 /// @param ElementType The type of the elements stored in this array. 2395 /// @param BaseName The name of this memory reference. 2396 /// @param Sizes The sizes of dimensions. 2397 ScopArrayInfo *createScopArrayInfo(Type *ElementType, 2398 const std::string &BaseName, 2399 const std::vector<unsigned> &Sizes); 2400 2401 /// Return the cached ScopArrayInfo object for @p BasePtr. 2402 /// 2403 /// @param BasePtr The base pointer the object has been stored for. 2404 /// @param Kind The kind of array info object. 2405 /// 2406 /// @returns The ScopArrayInfo pointer or NULL if no such pointer is 2407 /// available. 2408 ScopArrayInfo *getScopArrayInfoOrNull(Value *BasePtr, MemoryKind Kind); 2409 2410 /// Return the cached ScopArrayInfo object for @p BasePtr. 2411 /// 2412 /// @param BasePtr The base pointer the object has been stored for. 2413 /// @param Kind The kind of array info object. 2414 /// 2415 /// @returns The ScopArrayInfo pointer (may assert if no such pointer is 2416 /// available). 2417 ScopArrayInfo *getScopArrayInfo(Value *BasePtr, MemoryKind Kind); 2418 2419 /// Invalidate ScopArrayInfo object for base address. 2420 /// 2421 /// @param BasePtr The base pointer of the ScopArrayInfo object to invalidate. 2422 /// @param Kind The Kind of the ScopArrayInfo object. invalidateScopArrayInfo(Value * BasePtr,MemoryKind Kind)2423 void invalidateScopArrayInfo(Value *BasePtr, MemoryKind Kind) { 2424 auto It = ScopArrayInfoMap.find(std::make_pair(BasePtr, Kind)); 2425 if (It == ScopArrayInfoMap.end()) 2426 return; 2427 ScopArrayInfoSet.remove(It->second.get()); 2428 ScopArrayInfoMap.erase(It); 2429 } 2430 2431 /// Set new isl context. 2432 void setContext(isl::set NewContext); 2433 2434 /// Update maximal loop depth. If @p Depth is smaller than current value, 2435 /// then maximal loop depth is not updated. updateMaxLoopDepth(unsigned Depth)2436 void updateMaxLoopDepth(unsigned Depth) { 2437 MaxLoopDepth = std::max(MaxLoopDepth, Depth); 2438 } 2439 2440 /// Align the parameters in the statement to the scop context 2441 void realignParams(); 2442 2443 /// Return true if this SCoP can be profitably optimized. 2444 /// 2445 /// @param ScalarsAreUnprofitable Never consider statements with scalar writes 2446 /// as profitably optimizable. 2447 /// 2448 /// @return Whether this SCoP can be profitably optimized. 2449 bool isProfitable(bool ScalarsAreUnprofitable) const; 2450 2451 /// Return true if the SCoP contained at least one error block. hasErrorBlock()2452 bool hasErrorBlock() const { return HasErrorBlock; } 2453 2454 /// Notify SCoP that it contains an error block notifyErrorBlock()2455 void notifyErrorBlock() { HasErrorBlock = true; } 2456 2457 /// Return true if the underlying region has a single exiting block. hasSingleExitEdge()2458 bool hasSingleExitEdge() const { return HasSingleExitEdge; } 2459 2460 /// Print the static control part. 2461 /// 2462 /// @param OS The output stream the static control part is printed to. 2463 /// @param PrintInstructions Whether to print the statement's instructions as 2464 /// well. 2465 void print(raw_ostream &OS, bool PrintInstructions) const; 2466 2467 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2468 /// Print the ScopStmt to stderr. 2469 void dump() const; 2470 #endif 2471 2472 /// Get the isl context of this static control part. 2473 /// 2474 /// @return The isl context of this static control part. 2475 isl::ctx getIslCtx() const; 2476 2477 /// Directly return the shared_ptr of the context. getSharedIslCtx()2478 const std::shared_ptr<isl_ctx> &getSharedIslCtx() const { return IslCtx; } 2479 2480 /// Compute the isl representation for the SCEV @p E 2481 /// 2482 /// @param E The SCEV that should be translated. 2483 /// @param BB An (optional) basic block in which the isl_pw_aff is computed. 2484 /// SCEVs known to not reference any loops in the SCoP can be 2485 /// passed without a @p BB. 2486 /// @param NonNegative Flag to indicate the @p E has to be non-negative. 2487 /// 2488 /// Note that this function will always return a valid isl_pw_aff. However, if 2489 /// the translation of @p E was deemed to complex the SCoP is invalidated and 2490 /// a dummy value of appropriate dimension is returned. This allows to bail 2491 /// for complex cases without "error handling code" needed on the users side. 2492 PWACtx getPwAff(const SCEV *E, BasicBlock *BB = nullptr, 2493 bool NonNegative = false, 2494 RecordedAssumptionsTy *RecordedAssumptions = nullptr); 2495 2496 /// Compute the isl representation for the SCEV @p E 2497 /// 2498 /// This function is like @see Scop::getPwAff() but strips away the invalid 2499 /// domain part associated with the piecewise affine function. 2500 isl::pw_aff 2501 getPwAffOnly(const SCEV *E, BasicBlock *BB = nullptr, 2502 RecordedAssumptionsTy *RecordedAssumptions = nullptr); 2503 2504 /// Check if an <nsw> AddRec for the loop L is cached. hasNSWAddRecForLoop(Loop * L)2505 bool hasNSWAddRecForLoop(Loop *L) { return Affinator.hasNSWAddRecForLoop(L); } 2506 2507 /// Return the domain of @p Stmt. 2508 /// 2509 /// @param Stmt The statement for which the conditions should be returned. 2510 isl::set getDomainConditions(const ScopStmt *Stmt) const; 2511 2512 /// Return the domain of @p BB. 2513 /// 2514 /// @param BB The block for which the conditions should be returned. 2515 isl::set getDomainConditions(BasicBlock *BB) const; 2516 2517 /// Return the domain of @p BB. If it does not exist, create an empty one. getOrInitEmptyDomain(BasicBlock * BB)2518 isl::set &getOrInitEmptyDomain(BasicBlock *BB) { return DomainMap[BB]; } 2519 2520 /// Check if domain is determined for @p BB. isDomainDefined(BasicBlock * BB)2521 bool isDomainDefined(BasicBlock *BB) const { return DomainMap.count(BB) > 0; } 2522 2523 /// Set domain for @p BB. setDomain(BasicBlock * BB,isl::set & Domain)2524 void setDomain(BasicBlock *BB, isl::set &Domain) { DomainMap[BB] = Domain; } 2525 2526 /// Get a union set containing the iteration domains of all statements. 2527 isl::union_set getDomains() const; 2528 2529 /// Get a union map of all may-writes performed in the SCoP. 2530 isl::union_map getMayWrites(); 2531 2532 /// Get a union map of all must-writes performed in the SCoP. 2533 isl::union_map getMustWrites(); 2534 2535 /// Get a union map of all writes performed in the SCoP. 2536 isl::union_map getWrites(); 2537 2538 /// Get a union map of all reads performed in the SCoP. 2539 isl::union_map getReads(); 2540 2541 /// Get a union map of all memory accesses performed in the SCoP. 2542 isl::union_map getAccesses(); 2543 2544 /// Get a union map of all memory accesses performed in the SCoP. 2545 /// 2546 /// @param Array The array to which the accesses should belong. 2547 isl::union_map getAccesses(ScopArrayInfo *Array); 2548 2549 /// Get the schedule of all the statements in the SCoP. 2550 /// 2551 /// @return The schedule of all the statements in the SCoP, if the schedule of 2552 /// the Scop does not contain extension nodes, and nullptr, otherwise. 2553 isl::union_map getSchedule() const; 2554 2555 /// Get a schedule tree describing the schedule of all statements. 2556 isl::schedule getScheduleTree() const; 2557 2558 /// Update the current schedule 2559 /// 2560 /// NewSchedule The new schedule (given as a flat union-map). 2561 void setSchedule(isl::union_map NewSchedule); 2562 2563 /// Update the current schedule 2564 /// 2565 /// NewSchedule The new schedule (given as schedule tree). 2566 void setScheduleTree(isl::schedule NewSchedule); 2567 2568 /// Whether the schedule is the original schedule as derived from the CFG by 2569 /// ScopBuilder. isOriginalSchedule()2570 bool isOriginalSchedule() const { return !ScheduleModified; } 2571 2572 /// Intersects the domains of all statements in the SCoP. 2573 /// 2574 /// @return true if a change was made 2575 bool restrictDomains(isl::union_set Domain); 2576 2577 /// Get the depth of a loop relative to the outermost loop in the Scop. 2578 /// 2579 /// This will return 2580 /// 0 if @p L is an outermost loop in the SCoP 2581 /// >0 for other loops in the SCoP 2582 /// -1 if @p L is nullptr or there is no outermost loop in the SCoP 2583 int getRelativeLoopDepth(const Loop *L) const; 2584 2585 /// Find the ScopArrayInfo associated with an isl Id 2586 /// that has name @p Name. 2587 ScopArrayInfo *getArrayInfoByName(const std::string BaseName); 2588 2589 /// Simplify the SCoP representation. 2590 /// 2591 /// @param AfterHoisting Whether it is called after invariant load hoisting. 2592 /// When true, also removes statements without 2593 /// side-effects. 2594 void simplifySCoP(bool AfterHoisting); 2595 2596 /// Get the next free array index. 2597 /// 2598 /// This function returns a unique index which can be used to identify an 2599 /// array. getNextArrayIdx()2600 long getNextArrayIdx() { return ArrayIdx++; } 2601 2602 /// Get the next free statement index. 2603 /// 2604 /// This function returns a unique index which can be used to identify a 2605 /// statement. getNextStmtIdx()2606 long getNextStmtIdx() { return StmtIdx++; } 2607 2608 /// Get the representing SCEV for @p S if applicable, otherwise @p S. 2609 /// 2610 /// Invariant loads of the same location are put in an equivalence class and 2611 /// only one of them is chosen as a representing element that will be 2612 /// modeled as a parameter. The others have to be normalized, i.e., 2613 /// replaced by the representing element of their equivalence class, in order 2614 /// to get the correct parameter value, e.g., in the SCEVAffinator. 2615 /// 2616 /// @param S The SCEV to normalize. 2617 /// 2618 /// @return The representing SCEV for invariant loads or @p S if none. 2619 const SCEV *getRepresentingInvariantLoadSCEV(const SCEV *S) const; 2620 2621 /// Return the MemoryAccess that writes an llvm::Value, represented by a 2622 /// ScopArrayInfo. 2623 /// 2624 /// There can be at most one such MemoryAccess per llvm::Value in the SCoP. 2625 /// Zero is possible for read-only values. 2626 MemoryAccess *getValueDef(const ScopArrayInfo *SAI) const; 2627 2628 /// Return all MemoryAccesses that us an llvm::Value, represented by a 2629 /// ScopArrayInfo. 2630 ArrayRef<MemoryAccess *> getValueUses(const ScopArrayInfo *SAI) const; 2631 2632 /// Return the MemoryAccess that represents an llvm::PHINode. 2633 /// 2634 /// ExitPHIs's PHINode is not within the SCoPs. This function returns nullptr 2635 /// for them. 2636 MemoryAccess *getPHIRead(const ScopArrayInfo *SAI) const; 2637 2638 /// Return all MemoryAccesses for all incoming statements of a PHINode, 2639 /// represented by a ScopArrayInfo. 2640 ArrayRef<MemoryAccess *> getPHIIncomings(const ScopArrayInfo *SAI) const; 2641 2642 /// Return whether @p Inst has a use outside of this SCoP. 2643 bool isEscaping(Instruction *Inst); 2644 2645 struct ScopStatistics { 2646 int NumAffineLoops = 0; 2647 int NumBoxedLoops = 0; 2648 2649 int NumValueWrites = 0; 2650 int NumValueWritesInLoops = 0; 2651 int NumPHIWrites = 0; 2652 int NumPHIWritesInLoops = 0; 2653 int NumSingletonWrites = 0; 2654 int NumSingletonWritesInLoops = 0; 2655 }; 2656 2657 /// Collect statistic about this SCoP. 2658 /// 2659 /// These are most commonly used for LLVM's static counters (Statistic.h) in 2660 /// various places. If statistics are disabled, only zeros are returned to 2661 /// avoid the overhead. 2662 ScopStatistics getStatistics() const; 2663 2664 /// Is this Scop marked as not to be transformed by an optimization heuristic? 2665 /// In this case, only user-directed transformations are allowed. hasDisableHeuristicsHint()2666 bool hasDisableHeuristicsHint() const { return HasDisableHeuristicsHint; } 2667 2668 /// Mark this Scop to not apply an optimization heuristic. markDisableHeuristics()2669 void markDisableHeuristics() { HasDisableHeuristicsHint = true; } 2670 }; 2671 2672 /// Print Scop scop to raw_ostream OS. 2673 raw_ostream &operator<<(raw_ostream &OS, const Scop &scop); 2674 2675 /// The legacy pass manager's analysis pass to compute scop information 2676 /// for a region. 2677 class ScopInfoRegionPass final : public RegionPass { 2678 /// The Scop pointer which is used to construct a Scop. 2679 std::unique_ptr<Scop> S; 2680 2681 public: 2682 static char ID; // Pass identification, replacement for typeid 2683 ScopInfoRegionPass()2684 ScopInfoRegionPass() : RegionPass(ID) {} 2685 ~ScopInfoRegionPass() override = default; 2686 2687 /// Build Scop object, the Polly IR of static control 2688 /// part for the current SESE-Region. 2689 /// 2690 /// @return If the current region is a valid for a static control part, 2691 /// return the Polly IR representing this static control part, 2692 /// return null otherwise. getScop()2693 Scop *getScop() { return S.get(); } getScop()2694 const Scop *getScop() const { return S.get(); } 2695 2696 /// Calculate the polyhedral scop information for a given Region. 2697 bool runOnRegion(Region *R, RGPassManager &RGM) override; 2698 releaseMemory()2699 void releaseMemory() override { S.reset(); } 2700 2701 void print(raw_ostream &O, const Module *M = nullptr) const override; 2702 2703 void getAnalysisUsage(AnalysisUsage &AU) const override; 2704 }; 2705 2706 llvm::Pass *createScopInfoPrinterLegacyRegionPass(raw_ostream &OS); 2707 2708 class ScopInfo { 2709 public: 2710 using RegionToScopMapTy = MapVector<Region *, std::unique_ptr<Scop>>; 2711 using reverse_iterator = RegionToScopMapTy::reverse_iterator; 2712 using const_reverse_iterator = RegionToScopMapTy::const_reverse_iterator; 2713 using iterator = RegionToScopMapTy::iterator; 2714 using const_iterator = RegionToScopMapTy::const_iterator; 2715 2716 private: 2717 /// A map of Region to its Scop object containing 2718 /// Polly IR of static control part. 2719 RegionToScopMapTy RegionToScopMap; 2720 const DataLayout &DL; 2721 ScopDetection &SD; 2722 ScalarEvolution &SE; 2723 LoopInfo &LI; 2724 AAResults &AA; 2725 DominatorTree &DT; 2726 AssumptionCache &AC; 2727 OptimizationRemarkEmitter &ORE; 2728 2729 public: 2730 ScopInfo(const DataLayout &DL, ScopDetection &SD, ScalarEvolution &SE, 2731 LoopInfo &LI, AAResults &AA, DominatorTree &DT, AssumptionCache &AC, 2732 OptimizationRemarkEmitter &ORE); 2733 2734 /// Get the Scop object for the given Region. 2735 /// 2736 /// @return If the given region is the maximal region within a scop, return 2737 /// the scop object. If the given region is a subregion, return a 2738 /// nullptr. Top level region containing the entry block of a function 2739 /// is not considered in the scop creation. getScop(Region * R)2740 Scop *getScop(Region *R) const { 2741 auto MapIt = RegionToScopMap.find(R); 2742 if (MapIt != RegionToScopMap.end()) 2743 return MapIt->second.get(); 2744 return nullptr; 2745 } 2746 2747 /// Recompute the Scop-Information for a function. 2748 /// 2749 /// This invalidates any iterators. 2750 void recompute(); 2751 2752 /// Handle invalidation explicitly 2753 bool invalidate(Function &F, const PreservedAnalyses &PA, 2754 FunctionAnalysisManager::Invalidator &Inv); 2755 begin()2756 iterator begin() { return RegionToScopMap.begin(); } end()2757 iterator end() { return RegionToScopMap.end(); } begin()2758 const_iterator begin() const { return RegionToScopMap.begin(); } end()2759 const_iterator end() const { return RegionToScopMap.end(); } rbegin()2760 reverse_iterator rbegin() { return RegionToScopMap.rbegin(); } rend()2761 reverse_iterator rend() { return RegionToScopMap.rend(); } rbegin()2762 const_reverse_iterator rbegin() const { return RegionToScopMap.rbegin(); } rend()2763 const_reverse_iterator rend() const { return RegionToScopMap.rend(); } empty()2764 bool empty() const { return RegionToScopMap.empty(); } 2765 }; 2766 2767 struct ScopInfoAnalysis : AnalysisInfoMixin<ScopInfoAnalysis> { 2768 static AnalysisKey Key; 2769 2770 using Result = ScopInfo; 2771 2772 Result run(Function &, FunctionAnalysisManager &); 2773 }; 2774 2775 struct ScopInfoPrinterPass final : PassInfoMixin<ScopInfoPrinterPass> { ScopInfoPrinterPassfinal2776 ScopInfoPrinterPass(raw_ostream &OS) : Stream(OS) {} 2777 2778 PreservedAnalyses run(Function &, FunctionAnalysisManager &); 2779 2780 raw_ostream &Stream; 2781 }; 2782 2783 //===----------------------------------------------------------------------===// 2784 /// The legacy pass manager's analysis pass to compute scop information 2785 /// for the whole function. 2786 /// 2787 /// This pass will maintain a map of the maximal region within a scop to its 2788 /// scop object for all the feasible scops present in a function. 2789 /// This pass is an alternative to the ScopInfoRegionPass in order to avoid a 2790 /// region pass manager. 2791 class ScopInfoWrapperPass final : public FunctionPass { 2792 std::unique_ptr<ScopInfo> Result; 2793 2794 public: ScopInfoWrapperPass()2795 ScopInfoWrapperPass() : FunctionPass(ID) {} 2796 ~ScopInfoWrapperPass() override = default; 2797 2798 static char ID; // Pass identification, replacement for typeid 2799 getSI()2800 ScopInfo *getSI() { return Result.get(); } getSI()2801 const ScopInfo *getSI() const { return Result.get(); } 2802 2803 /// Calculate all the polyhedral scops for a given function. 2804 bool runOnFunction(Function &F) override; 2805 releaseMemory()2806 void releaseMemory() override { Result.reset(); } 2807 2808 void print(raw_ostream &O, const Module *M = nullptr) const override; 2809 2810 void getAnalysisUsage(AnalysisUsage &AU) const override; 2811 }; 2812 2813 llvm::Pass *createScopInfoPrinterLegacyFunctionPass(llvm::raw_ostream &OS); 2814 } // end namespace polly 2815 2816 namespace llvm { 2817 void initializeScopInfoRegionPassPass(PassRegistry &); 2818 void initializeScopInfoPrinterLegacyRegionPassPass(PassRegistry &); 2819 void initializeScopInfoWrapperPassPass(PassRegistry &); 2820 void initializeScopInfoPrinterLegacyFunctionPassPass(PassRegistry &); 2821 } // end namespace llvm 2822 2823 #endif // POLLY_SCOPINFO_H 2824