1 //===-- llvm/Target/TargetMachine.h - Target Information --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the TargetMachine and LLVMTargetMachine classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_TARGET_TARGETMACHINE_H
14 #define LLVM_TARGET_TARGETMACHINE_H
15 
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/PassManager.h"
19 #include "llvm/Support/Allocator.h"
20 #include "llvm/Support/CodeGen.h"
21 #include "llvm/Support/Error.h"
22 #include "llvm/Support/PGOOptions.h"
23 #include "llvm/Target/CGPassBuilderOption.h"
24 #include "llvm/Target/TargetOptions.h"
25 #include "llvm/TargetParser/Triple.h"
26 #include <optional>
27 #include <string>
28 #include <utility>
29 
30 namespace llvm {
31 
32 class AAManager;
33 using ModulePassManager = PassManager<Module>;
34 
35 class Function;
36 class GlobalValue;
37 class MachineModuleInfoWrapperPass;
38 class Mangler;
39 class MCAsmInfo;
40 class MCContext;
41 class MCInstrInfo;
42 class MCRegisterInfo;
43 class MCStreamer;
44 class MCSubtargetInfo;
45 class MCSymbol;
46 class raw_pwrite_stream;
47 class PassBuilder;
48 struct PerFunctionMIParsingState;
49 class SMDiagnostic;
50 class SMRange;
51 class Target;
52 class TargetIntrinsicInfo;
53 class TargetIRAnalysis;
54 class TargetTransformInfo;
55 class TargetLoweringObjectFile;
56 class TargetPassConfig;
57 class TargetSubtargetInfo;
58 
59 // The old pass manager infrastructure is hidden in a legacy namespace now.
60 namespace legacy {
61 class PassManagerBase;
62 }
63 using legacy::PassManagerBase;
64 
65 struct MachineFunctionInfo;
66 namespace yaml {
67 struct MachineFunctionInfo;
68 }
69 
70 //===----------------------------------------------------------------------===//
71 ///
72 /// Primary interface to the complete machine description for the target
73 /// machine.  All target-specific information should be accessible through this
74 /// interface.
75 ///
76 class TargetMachine {
77 protected: // Can only create subclasses.
78   TargetMachine(const Target &T, StringRef DataLayoutString,
79                 const Triple &TargetTriple, StringRef CPU, StringRef FS,
80                 const TargetOptions &Options);
81 
82   /// The Target that this machine was created for.
83   const Target &TheTarget;
84 
85   /// DataLayout for the target: keep ABI type size and alignment.
86   ///
87   /// The DataLayout is created based on the string representation provided
88   /// during construction. It is kept here only to avoid reparsing the string
89   /// but should not really be used during compilation, because it has an
90   /// internal cache that is context specific.
91   const DataLayout DL;
92 
93   /// Triple string, CPU name, and target feature strings the TargetMachine
94   /// instance is created with.
95   Triple TargetTriple;
96   std::string TargetCPU;
97   std::string TargetFS;
98 
99   Reloc::Model RM = Reloc::Static;
100   CodeModel::Model CMModel = CodeModel::Small;
101   uint64_t LargeDataThreshold = 0;
102   CodeGenOptLevel OptLevel = CodeGenOptLevel::Default;
103 
104   /// Contains target specific asm information.
105   std::unique_ptr<const MCAsmInfo> AsmInfo;
106   std::unique_ptr<const MCRegisterInfo> MRI;
107   std::unique_ptr<const MCInstrInfo> MII;
108   std::unique_ptr<const MCSubtargetInfo> STI;
109 
110   unsigned RequireStructuredCFG : 1;
111   unsigned O0WantsFastISel : 1;
112 
113   // PGO related tunables.
114   std::optional<PGOOptions> PGOOption;
115 
116 public:
117   mutable TargetOptions Options;
118 
119   TargetMachine(const TargetMachine &) = delete;
120   void operator=(const TargetMachine &) = delete;
121   virtual ~TargetMachine();
122 
getTarget()123   const Target &getTarget() const { return TheTarget; }
124 
getTargetTriple()125   const Triple &getTargetTriple() const { return TargetTriple; }
getTargetCPU()126   StringRef getTargetCPU() const { return TargetCPU; }
getTargetFeatureString()127   StringRef getTargetFeatureString() const { return TargetFS; }
setTargetFeatureString(StringRef FS)128   void setTargetFeatureString(StringRef FS) { TargetFS = std::string(FS); }
129 
130   /// Virtual method implemented by subclasses that returns a reference to that
131   /// target's TargetSubtargetInfo-derived member variable.
getSubtargetImpl(const Function &)132   virtual const TargetSubtargetInfo *getSubtargetImpl(const Function &) const {
133     return nullptr;
134   }
getObjFileLowering()135   virtual TargetLoweringObjectFile *getObjFileLowering() const {
136     return nullptr;
137   }
138 
139   /// Create the target's instance of MachineFunctionInfo
140   virtual MachineFunctionInfo *
createMachineFunctionInfo(BumpPtrAllocator & Allocator,const Function & F,const TargetSubtargetInfo * STI)141   createMachineFunctionInfo(BumpPtrAllocator &Allocator, const Function &F,
142                             const TargetSubtargetInfo *STI) const {
143     return nullptr;
144   }
145 
146   /// Allocate and return a default initialized instance of the YAML
147   /// representation for the MachineFunctionInfo.
createDefaultFuncInfoYAML()148   virtual yaml::MachineFunctionInfo *createDefaultFuncInfoYAML() const {
149     return nullptr;
150   }
151 
152   /// Allocate and initialize an instance of the YAML representation of the
153   /// MachineFunctionInfo.
154   virtual yaml::MachineFunctionInfo *
convertFuncInfoToYAML(const MachineFunction & MF)155   convertFuncInfoToYAML(const MachineFunction &MF) const {
156     return nullptr;
157   }
158 
159   /// Parse out the target's MachineFunctionInfo from the YAML reprsentation.
parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,PerFunctionMIParsingState & PFS,SMDiagnostic & Error,SMRange & SourceRange)160   virtual bool parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,
161                                         PerFunctionMIParsingState &PFS,
162                                         SMDiagnostic &Error,
163                                         SMRange &SourceRange) const {
164     return false;
165   }
166 
167   /// This method returns a pointer to the specified type of
168   /// TargetSubtargetInfo.  In debug builds, it verifies that the object being
169   /// returned is of the correct type.
getSubtarget(const Function & F)170   template <typename STC> const STC &getSubtarget(const Function &F) const {
171     return *static_cast<const STC*>(getSubtargetImpl(F));
172   }
173 
174   /// Create a DataLayout.
createDataLayout()175   const DataLayout createDataLayout() const { return DL; }
176 
177   /// Test if a DataLayout if compatible with the CodeGen for this target.
178   ///
179   /// The LLVM Module owns a DataLayout that is used for the target independent
180   /// optimizations and code generation. This hook provides a target specific
181   /// check on the validity of this DataLayout.
isCompatibleDataLayout(const DataLayout & Candidate)182   bool isCompatibleDataLayout(const DataLayout &Candidate) const {
183     return DL == Candidate;
184   }
185 
186   /// Get the pointer size for this target.
187   ///
188   /// This is the only time the DataLayout in the TargetMachine is used.
getPointerSize(unsigned AS)189   unsigned getPointerSize(unsigned AS) const {
190     return DL.getPointerSize(AS);
191   }
192 
getPointerSizeInBits(unsigned AS)193   unsigned getPointerSizeInBits(unsigned AS) const {
194     return DL.getPointerSizeInBits(AS);
195   }
196 
getProgramPointerSize()197   unsigned getProgramPointerSize() const {
198     return DL.getPointerSize(DL.getProgramAddressSpace());
199   }
200 
getAllocaPointerSize()201   unsigned getAllocaPointerSize() const {
202     return DL.getPointerSize(DL.getAllocaAddrSpace());
203   }
204 
205   /// Reset the target options based on the function's attributes.
206   // FIXME: Remove TargetOptions that affect per-function code generation
207   // from TargetMachine.
208   void resetTargetOptions(const Function &F) const;
209 
210   /// Return target specific asm information.
getMCAsmInfo()211   const MCAsmInfo *getMCAsmInfo() const { return AsmInfo.get(); }
212 
getMCRegisterInfo()213   const MCRegisterInfo *getMCRegisterInfo() const { return MRI.get(); }
getMCInstrInfo()214   const MCInstrInfo *getMCInstrInfo() const { return MII.get(); }
getMCSubtargetInfo()215   const MCSubtargetInfo *getMCSubtargetInfo() const { return STI.get(); }
216 
217   /// If intrinsic information is available, return it.  If not, return null.
getIntrinsicInfo()218   virtual const TargetIntrinsicInfo *getIntrinsicInfo() const {
219     return nullptr;
220   }
221 
requiresStructuredCFG()222   bool requiresStructuredCFG() const { return RequireStructuredCFG; }
setRequiresStructuredCFG(bool Value)223   void setRequiresStructuredCFG(bool Value) { RequireStructuredCFG = Value; }
224 
225   /// Returns the code generation relocation model. The choices are static, PIC,
226   /// and dynamic-no-pic, and target default.
227   Reloc::Model getRelocationModel() const;
228 
229   /// Returns the code model. The choices are small, kernel, medium, large, and
230   /// target default.
getCodeModel()231   CodeModel::Model getCodeModel() const { return CMModel; }
232 
233   /// Returns the maximum code size possible under the code model.
234   uint64_t getMaxCodeSize() const;
235 
236   /// Set the code model.
setCodeModel(CodeModel::Model CM)237   void setCodeModel(CodeModel::Model CM) { CMModel = CM; }
238 
setLargeDataThreshold(uint64_t LDT)239   void setLargeDataThreshold(uint64_t LDT) { LargeDataThreshold = LDT; }
240   bool isLargeGlobalValue(const GlobalValue *GV) const;
241 
242   bool isPositionIndependent() const;
243 
244   bool shouldAssumeDSOLocal(const GlobalValue *GV) const;
245 
246   /// Returns true if this target uses emulated TLS.
247   bool useEmulatedTLS() const;
248 
249   /// Returns true if this target uses TLS Descriptors.
250   bool useTLSDESC() const;
251 
252   /// Returns the TLS model which should be used for the given global variable.
253   TLSModel::Model getTLSModel(const GlobalValue *GV) const;
254 
255   /// Returns the optimization level: None, Less, Default, or Aggressive.
256   CodeGenOptLevel getOptLevel() const;
257 
258   /// Overrides the optimization level.
259   void setOptLevel(CodeGenOptLevel Level);
260 
setFastISel(bool Enable)261   void setFastISel(bool Enable) { Options.EnableFastISel = Enable; }
getO0WantsFastISel()262   bool getO0WantsFastISel() { return O0WantsFastISel; }
setO0WantsFastISel(bool Enable)263   void setO0WantsFastISel(bool Enable) { O0WantsFastISel = Enable; }
setGlobalISel(bool Enable)264   void setGlobalISel(bool Enable) { Options.EnableGlobalISel = Enable; }
setGlobalISelAbort(GlobalISelAbortMode Mode)265   void setGlobalISelAbort(GlobalISelAbortMode Mode) {
266     Options.GlobalISelAbort = Mode;
267   }
setMachineOutliner(bool Enable)268   void setMachineOutliner(bool Enable) {
269     Options.EnableMachineOutliner = Enable;
270   }
setSupportsDefaultOutlining(bool Enable)271   void setSupportsDefaultOutlining(bool Enable) {
272     Options.SupportsDefaultOutlining = Enable;
273   }
setSupportsDebugEntryValues(bool Enable)274   void setSupportsDebugEntryValues(bool Enable) {
275     Options.SupportsDebugEntryValues = Enable;
276   }
277 
setCFIFixup(bool Enable)278   void setCFIFixup(bool Enable) { Options.EnableCFIFixup = Enable; }
279 
getAIXExtendedAltivecABI()280   bool getAIXExtendedAltivecABI() const {
281     return Options.EnableAIXExtendedAltivecABI;
282   }
283 
getUniqueSectionNames()284   bool getUniqueSectionNames() const { return Options.UniqueSectionNames; }
285 
286   /// Return true if unique basic block section names must be generated.
getUniqueBasicBlockSectionNames()287   bool getUniqueBasicBlockSectionNames() const {
288     return Options.UniqueBasicBlockSectionNames;
289   }
290 
getSeparateNamedSections()291   bool getSeparateNamedSections() const {
292     return Options.SeparateNamedSections;
293   }
294 
295   /// Return true if data objects should be emitted into their own section,
296   /// corresponds to -fdata-sections.
getDataSections()297   bool getDataSections() const {
298     return Options.DataSections;
299   }
300 
301   /// Return true if functions should be emitted into their own section,
302   /// corresponding to -ffunction-sections.
getFunctionSections()303   bool getFunctionSections() const {
304     return Options.FunctionSections;
305   }
306 
307   /// Return true if visibility attribute should not be emitted in XCOFF,
308   /// corresponding to -mignore-xcoff-visibility.
getIgnoreXCOFFVisibility()309   bool getIgnoreXCOFFVisibility() const {
310     return Options.IgnoreXCOFFVisibility;
311   }
312 
313   /// Return true if XCOFF traceback table should be emitted,
314   /// corresponding to -xcoff-traceback-table.
getXCOFFTracebackTable()315   bool getXCOFFTracebackTable() const { return Options.XCOFFTracebackTable; }
316 
317   /// If basic blocks should be emitted into their own section,
318   /// corresponding to -fbasic-block-sections.
getBBSectionsType()319   llvm::BasicBlockSection getBBSectionsType() const {
320     return Options.BBSections;
321   }
322 
323   /// Get the list of functions and basic block ids that need unique sections.
getBBSectionsFuncListBuf()324   const MemoryBuffer *getBBSectionsFuncListBuf() const {
325     return Options.BBSectionsFuncListBuf.get();
326   }
327 
328   /// Returns true if a cast between SrcAS and DestAS is a noop.
isNoopAddrSpaceCast(unsigned SrcAS,unsigned DestAS)329   virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
330     return false;
331   }
332 
setPGOOption(std::optional<PGOOptions> PGOOpt)333   void setPGOOption(std::optional<PGOOptions> PGOOpt) { PGOOption = PGOOpt; }
getPGOOption()334   const std::optional<PGOOptions> &getPGOOption() const { return PGOOption; }
335 
336   /// If the specified generic pointer could be assumed as a pointer to a
337   /// specific address space, return that address space.
338   ///
339   /// Under offloading programming, the offloading target may be passed with
340   /// values only prepared on the host side and could assume certain
341   /// properties.
getAssumedAddrSpace(const Value * V)342   virtual unsigned getAssumedAddrSpace(const Value *V) const { return -1; }
343 
344   /// If the specified predicate checks whether a generic pointer falls within
345   /// a specified address space, return that generic pointer and the address
346   /// space being queried.
347   ///
348   /// Such predicates could be specified in @llvm.assume intrinsics for the
349   /// optimizer to assume that the given generic pointer always falls within
350   /// the address space based on that predicate.
351   virtual std::pair<const Value *, unsigned>
getPredicatedAddrSpace(const Value * V)352   getPredicatedAddrSpace(const Value *V) const {
353     return std::make_pair(nullptr, -1);
354   }
355 
356   /// Get a \c TargetIRAnalysis appropriate for the target.
357   ///
358   /// This is used to construct the new pass manager's target IR analysis pass,
359   /// set up appropriately for this target machine. Even the old pass manager
360   /// uses this to answer queries about the IR.
361   TargetIRAnalysis getTargetIRAnalysis() const;
362 
363   /// Return a TargetTransformInfo for a given function.
364   ///
365   /// The returned TargetTransformInfo is specialized to the subtarget
366   /// corresponding to \p F.
367   virtual TargetTransformInfo getTargetTransformInfo(const Function &F) const;
368 
369   /// Allow the target to modify the pass pipeline.
370   // TODO: Populate all pass names by using <Target>PassRegistry.def.
registerPassBuilderCallbacks(PassBuilder &,bool PopulateClassToPassNames)371   virtual void registerPassBuilderCallbacks(PassBuilder &,
372                                             bool PopulateClassToPassNames) {}
373 
374   /// Allow the target to register alias analyses with the AAManager for use
375   /// with the new pass manager. Only affects the "default" AAManager.
registerDefaultAliasAnalyses(AAManager &)376   virtual void registerDefaultAliasAnalyses(AAManager &) {}
377 
378   /// Add passes to the specified pass manager to get the specified file
379   /// emitted.  Typically this will involve several steps of code generation.
380   /// This method should return true if emission of this file type is not
381   /// supported, or false on success.
382   /// \p MMIWP is an optional parameter that, if set to non-nullptr,
383   /// will be used to set the MachineModuloInfo for this PM.
384   virtual bool
385   addPassesToEmitFile(PassManagerBase &, raw_pwrite_stream &,
386                       raw_pwrite_stream *, CodeGenFileType,
387                       bool /*DisableVerify*/ = true,
388                       MachineModuleInfoWrapperPass *MMIWP = nullptr) {
389     return true;
390   }
391 
392   /// Add passes to the specified pass manager to get machine code emitted with
393   /// the MCJIT. This method returns true if machine code is not supported. It
394   /// fills the MCContext Ctx pointer which can be used to build custom
395   /// MCStreamer.
396   ///
397   virtual bool addPassesToEmitMC(PassManagerBase &, MCContext *&,
398                                  raw_pwrite_stream &,
399                                  bool /*DisableVerify*/ = true) {
400     return true;
401   }
402 
403   /// True if subtarget inserts the final scheduling pass on its own.
404   ///
405   /// Branch relaxation, which must happen after block placement, can
406   /// on some targets (e.g. SystemZ) expose additional post-RA
407   /// scheduling opportunities.
targetSchedulesPostRAScheduling()408   virtual bool targetSchedulesPostRAScheduling() const { return false; };
409 
410   void getNameWithPrefix(SmallVectorImpl<char> &Name, const GlobalValue *GV,
411                          Mangler &Mang, bool MayAlwaysUsePrivate = false) const;
412   MCSymbol *getSymbol(const GlobalValue *GV) const;
413 
414   /// The integer bit size to use for SjLj based exception handling.
415   static constexpr unsigned DefaultSjLjDataSize = 32;
getSjLjDataSize()416   virtual unsigned getSjLjDataSize() const { return DefaultSjLjDataSize; }
417 
418   static std::pair<int, int> parseBinutilsVersion(StringRef Version);
419 
420   /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
421   /// (e.g. stack) the target returns the corresponding address space.
getAddressSpaceForPseudoSourceKind(unsigned Kind)422   virtual unsigned getAddressSpaceForPseudoSourceKind(unsigned Kind) const {
423     return 0;
424   }
425 
426   /// Entry point for module splitting. Targets can implement custom module
427   /// splitting logic, mainly used by LTO for --lto-partitions.
428   ///
429   /// \returns `true` if the module was split, `false` otherwise. When  `false`
430   /// is returned, it is assumed that \p ModuleCallback has never been called
431   /// and \p M has not been modified.
splitModule(Module & M,unsigned NumParts,function_ref<void (std::unique_ptr<Module> MPart)> ModuleCallback)432   virtual bool splitModule(
433       Module &M, unsigned NumParts,
434       function_ref<void(std::unique_ptr<Module> MPart)> ModuleCallback) const {
435     return false;
436   }
437 };
438 
439 /// This class describes a target machine that is implemented with the LLVM
440 /// target-independent code generator.
441 ///
442 class LLVMTargetMachine : public TargetMachine {
443 protected: // Can only create subclasses.
444   LLVMTargetMachine(const Target &T, StringRef DataLayoutString,
445                     const Triple &TT, StringRef CPU, StringRef FS,
446                     const TargetOptions &Options, Reloc::Model RM,
447                     CodeModel::Model CM, CodeGenOptLevel OL);
448 
449   void initAsmInfo();
450 
451 public:
452   /// Get a TargetTransformInfo implementation for the target.
453   ///
454   /// The TTI returned uses the common code generator to answer queries about
455   /// the IR.
456   TargetTransformInfo getTargetTransformInfo(const Function &F) const override;
457 
458   /// Create a pass configuration object to be used by addPassToEmitX methods
459   /// for generating a pipeline of CodeGen passes.
460   virtual TargetPassConfig *createPassConfig(PassManagerBase &PM);
461 
462   /// Add passes to the specified pass manager to get the specified file
463   /// emitted.  Typically this will involve several steps of code generation.
464   /// \p MMIWP is an optional parameter that, if set to non-nullptr,
465   /// will be used to set the MachineModuloInfo for this PM.
466   bool
467   addPassesToEmitFile(PassManagerBase &PM, raw_pwrite_stream &Out,
468                       raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
469                       bool DisableVerify = true,
470                       MachineModuleInfoWrapperPass *MMIWP = nullptr) override;
471 
buildCodeGenPipeline(ModulePassManager &,raw_pwrite_stream &,raw_pwrite_stream *,CodeGenFileType,const CGPassBuilderOption &,PassInstrumentationCallbacks *)472   virtual Error buildCodeGenPipeline(ModulePassManager &, raw_pwrite_stream &,
473                                      raw_pwrite_stream *, CodeGenFileType,
474                                      const CGPassBuilderOption &,
475                                      PassInstrumentationCallbacks *) {
476     return make_error<StringError>("buildCodeGenPipeline is not overridden",
477                                    inconvertibleErrorCode());
478   }
479 
480   /// Add passes to the specified pass manager to get machine code emitted with
481   /// the MCJIT. This method returns true if machine code is not supported. It
482   /// fills the MCContext Ctx pointer which can be used to build custom
483   /// MCStreamer.
484   bool addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
485                          raw_pwrite_stream &Out,
486                          bool DisableVerify = true) override;
487 
488   /// Returns true if the target is expected to pass all machine verifier
489   /// checks. This is a stopgap measure to fix targets one by one. We will
490   /// remove this at some point and always enable the verifier when
491   /// EXPENSIVE_CHECKS is enabled.
isMachineVerifierClean()492   virtual bool isMachineVerifierClean() const { return true; }
493 
494   /// Adds an AsmPrinter pass to the pipeline that prints assembly or
495   /// machine code from the MI representation.
496   bool addAsmPrinter(PassManagerBase &PM, raw_pwrite_stream &Out,
497                      raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
498                      MCContext &Context);
499 
500   Expected<std::unique_ptr<MCStreamer>>
501   createMCStreamer(raw_pwrite_stream &Out, raw_pwrite_stream *DwoOut,
502                    CodeGenFileType FileType, MCContext &Ctx);
503 
504   /// True if the target uses physical regs (as nearly all targets do). False
505   /// for stack machines such as WebAssembly and other virtual-register
506   /// machines. If true, all vregs must be allocated before PEI. If false, then
507   /// callee-save register spilling and scavenging are not needed or used. If
508   /// false, implicitly defined registers will still be assumed to be physical
509   /// registers, except that variadic defs will be allocated vregs.
usesPhysRegsForValues()510   virtual bool usesPhysRegsForValues() const { return true; }
511 
512   /// True if the target wants to use interprocedural register allocation by
513   /// default. The -enable-ipra flag can be used to override this.
useIPRA()514   virtual bool useIPRA() const {
515     return false;
516   }
517 
518   /// The default variant to use in unqualified `asm` instructions.
519   /// If this returns 0, `asm "$(foo$|bar$)"` will evaluate to `asm "foo"`.
unqualifiedInlineAsmVariant()520   virtual int unqualifiedInlineAsmVariant() const { return 0; }
521 
522   // MachineRegisterInfo callback function
registerMachineRegisterInfoCallback(MachineFunction & MF)523   virtual void registerMachineRegisterInfoCallback(MachineFunction &MF) const {}
524 };
525 
526 /// Helper method for getting the code model, returning Default if
527 /// CM does not have a value. The tiny and kernel models will produce
528 /// an error, so targets that support them or require more complex codemodel
529 /// selection logic should implement and call their own getEffectiveCodeModel.
530 inline CodeModel::Model
getEffectiveCodeModel(std::optional<CodeModel::Model> CM,CodeModel::Model Default)531 getEffectiveCodeModel(std::optional<CodeModel::Model> CM,
532                       CodeModel::Model Default) {
533   if (CM) {
534     // By default, targets do not support the tiny and kernel models.
535     if (*CM == CodeModel::Tiny)
536       report_fatal_error("Target does not support the tiny CodeModel", false);
537     if (*CM == CodeModel::Kernel)
538       report_fatal_error("Target does not support the kernel CodeModel", false);
539     return *CM;
540   }
541   return Default;
542 }
543 
544 } // end namespace llvm
545 
546 #endif // LLVM_TARGET_TARGETMACHINE_H
547