1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file defines the target-independent interfaces which should be 10// implemented by each target which is using a TableGen based code generator. 11// 12//===----------------------------------------------------------------------===// 13 14// Include all information about LLVM intrinsics. 15include "llvm/IR/Intrinsics.td" 16 17class Predicate; // Forward def 18 19//===----------------------------------------------------------------------===// 20// Register file description - These classes are used to fill in the target 21// description classes. 22 23class HwMode<string FS, list<Predicate> Ps> { 24 // A string representing subtarget features that turn on this HW mode. 25 // For example, "+feat1,-feat2" will indicate that the mode is active 26 // when "feat1" is enabled and "feat2" is disabled at the same time. 27 // Any other features are not checked. 28 // When multiple modes are used, they should be mutually exclusive, 29 // otherwise the results are unpredictable. 30 string Features = FS; 31 32 // A list of predicates that turn on this HW mode. 33 list<Predicate> Predicates = Ps; 34} 35 36// A special mode recognized by tablegen. This mode is considered active 37// when no other mode is active. For targets that do not use specific hw 38// modes, this is the only mode. 39def DefaultMode : HwMode<"", []>; 40 41// A class used to associate objects with HW modes. It is only intended to 42// be used as a base class, where the derived class should contain a member 43// "Objects", which is a list of the same length as the list of modes. 44// The n-th element on the Objects list will be associated with the n-th 45// element on the Modes list. 46class HwModeSelect<list<HwMode> Ms> { 47 list<HwMode> Modes = Ms; 48} 49 50// A common class that implements a counterpart of ValueType, which is 51// dependent on a HW mode. This class inherits from ValueType itself, 52// which makes it possible to use objects of this class where ValueType 53// objects could be used. This is specifically applicable to selection 54// patterns. 55class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts> 56 : HwModeSelect<Ms>, ValueType<0, 0> { 57 // The length of this list must be the same as the length of Ms. 58 list<ValueType> Objects = Ts; 59} 60 61// A class that implements a counterpart of PtrValueType, which is 62// dependent on a HW mode. This class inherits from PtrValueType itself, 63// which makes it possible to use objects of this class where PtrValueType 64// or ValueType could be used. This is specifically applicable to selection 65// patterns. 66class PtrValueTypeByHwMode<ValueTypeByHwMode scalar, int addrspace> 67 : HwModeSelect<scalar.Modes>, PtrValueType<ValueType<0, 0>, addrspace> { 68 list<ValueType> Objects = scalar.Objects; 69} 70 71// A class representing the register size, spill size and spill alignment 72// in bits of a register. 73class RegInfo<int RS, int SS, int SA> { 74 int RegSize = RS; // Register size in bits. 75 int SpillSize = SS; // Spill slot size in bits. 76 int SpillAlignment = SA; // Spill slot alignment in bits. 77} 78 79// The register size/alignment information, parameterized by a HW mode. 80class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []> 81 : HwModeSelect<Ms> { 82 // The length of this list must be the same as the length of Ms. 83 list<RegInfo> Objects = Ts; 84} 85 86class SubRegRange<int size, int offset = 0> { 87 int Size = size; // Sub register size in bits. 88 int Offset = offset; // Offset of the first bit of the sub-reg index. 89} 90 91class SubRegRangeByHwMode<list<HwMode> Ms = [], list<SubRegRange> Ts = []> 92 : HwModeSelect<Ms> { 93 // The length of this list must be the same as the length of Ms. 94 list<SubRegRange> Objects = Ts; 95} 96 97// SubRegIndex - Use instances of SubRegIndex to identify subregisters. 98class SubRegIndex<int size, int offset = 0> { 99 string Namespace = ""; 100 101 // The size/offset information, parameterized by a HW mode. 102 // If the HwModes provided for SubRegRanges does not include the DefaultMode, 103 // the/ Size and Offset fields below will be used for the default. Otherwise, 104 // the Size and Offset fields are ignored. 105 SubRegRangeByHwMode SubRegRanges; 106 107 // Size - Size (in bits) of the sub-registers represented by this index. 108 int Size = size; 109 110 // Offset - Offset of the first bit that is part of this sub-register index. 111 // Set it to -1 if the same index is used to represent sub-registers that can 112 // be at different offsets (for example when using an index to access an 113 // element in a register tuple). 114 int Offset = offset; 115 116 // ComposedOf - A list of two SubRegIndex instances, [A, B]. 117 // This indicates that this SubRegIndex is the result of composing A and B. 118 // See ComposedSubRegIndex. 119 list<SubRegIndex> ComposedOf = []; 120 121 // CoveringSubRegIndices - A list of two or more sub-register indexes that 122 // cover this sub-register. 123 // 124 // This field should normally be left blank as TableGen can infer it. 125 // 126 // TableGen automatically detects sub-registers that straddle the registers 127 // in the SubRegs field of a Register definition. For example: 128 // 129 // Q0 = dsub_0 -> D0, dsub_1 -> D1 130 // Q1 = dsub_0 -> D2, dsub_1 -> D3 131 // D1_D2 = dsub_0 -> D1, dsub_1 -> D2 132 // QQ0 = qsub_0 -> Q0, qsub_1 -> Q1 133 // 134 // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given 135 // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with 136 // CoveringSubRegIndices = [dsub_1, dsub_2]. 137 list<SubRegIndex> CoveringSubRegIndices = []; 138} 139 140// ComposedSubRegIndex - A sub-register that is the result of composing A and B. 141// Offset is set to the sum of A and B's Offsets. Size is set to B's Size. 142class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B> 143 : SubRegIndex<B.Size, !cond(!eq(A.Offset, -1): -1, 144 !eq(B.Offset, -1): -1, 145 true: !add(A.Offset, B.Offset))> { 146 // See SubRegIndex. 147 let ComposedOf = [A, B]; 148} 149 150// RegAltNameIndex - The alternate name set to use for register operands of 151// this register class when printing. 152class RegAltNameIndex { 153 string Namespace = ""; 154 155 // A set to be used if the name for a register is not defined in this set. 156 // This allows creating name sets with only a few alternative names. 157 RegAltNameIndex FallbackRegAltNameIndex = ?; 158} 159def NoRegAltName : RegAltNameIndex; 160 161// Register - You should define one instance of this class for each register 162// in the target machine. String n will become the "name" of the register. 163class Register<string n, list<string> altNames = []> { 164 string Namespace = ""; 165 string AsmName = n; 166 list<string> AltNames = altNames; 167 168 // Aliases - A list of registers that this register overlaps with. A read or 169 // modification of this register can potentially read or modify the aliased 170 // registers. 171 list<Register> Aliases = []; 172 173 // SubRegs - A list of registers that are parts of this register. Note these 174 // are "immediate" sub-registers and the registers within the list do not 175 // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX], 176 // not [AX, AH, AL]. 177 list<Register> SubRegs = []; 178 179 // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used 180 // to address it. Sub-sub-register indices are automatically inherited from 181 // SubRegs. 182 list<SubRegIndex> SubRegIndices = []; 183 184 // RegAltNameIndices - The alternate name indices which are valid for this 185 // register. 186 list<RegAltNameIndex> RegAltNameIndices = []; 187 188 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register. 189 // These values can be determined by locating the <target>.h file in the 190 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The 191 // order of these names correspond to the enumeration used by gcc. A value of 192 // -1 indicates that the gcc number is undefined and -2 that register number 193 // is invalid for this mode/flavour. 194 list<int> DwarfNumbers = []; 195 196 // CostPerUse - Additional cost of instructions using this register compared 197 // to other registers in its class. The register allocator will try to 198 // minimize the number of instructions using a register with a CostPerUse. 199 // This is used by the ARC target, by the ARM Thumb and x86-64 targets, where 200 // some registers require larger instruction encodings, by the RISC-V target, 201 // where some registers preclude using some C instructions. By making it a 202 // list, targets can have multiple cost models associated with each register 203 // and can choose one specific cost model per Machine Function by overriding 204 // TargetRegisterInfo::getRegisterCostTableIndex. Every target register will 205 // finally have an equal number of cost values which is the max of costPerUse 206 // values specified. Any mismatch in the cost values for a register will be 207 // filled with zeros. Restricted the cost type to uint8_t in the 208 // generated table. It will considerably reduce the table size. 209 list<int> CostPerUse = [0]; 210 211 // CoveredBySubRegs - When this bit is set, the value of this register is 212 // completely determined by the value of its sub-registers. For example, the 213 // x86 register AX is covered by its sub-registers AL and AH, but EAX is not 214 // covered by its sub-register AX. 215 bit CoveredBySubRegs = false; 216 217 // HWEncoding - The target specific hardware encoding for this register. 218 bits<16> HWEncoding = 0; 219 220 bit isArtificial = false; 221 222 // isConstant - This register always holds a constant value (e.g. the zero 223 // register in architectures such as MIPS) 224 bit isConstant = false; 225 226 /// PositionOrder - Indicate tablegen to place the newly added register at a later 227 /// position to avoid iterations on them on unsupported target. 228 int PositionOrder = 0; 229} 230 231// RegisterWithSubRegs - This can be used to define instances of Register which 232// need to specify sub-registers. 233// List "subregs" specifies which registers are sub-registers to this one. This 234// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc. 235// This allows the code generator to be careful not to put two values with 236// overlapping live ranges into registers which alias. 237class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> { 238 let SubRegs = subregs; 239} 240 241// DAGOperand - An empty base class that unifies RegisterClass's and other forms 242// of Operand's that are legal as type qualifiers in DAG patterns. This should 243// only ever be used for defining multiclasses that are polymorphic over both 244// RegisterClass's and other Operand's. 245class DAGOperand { 246 string OperandNamespace = "MCOI"; 247 string DecoderMethod = ""; 248} 249 250// RegisterClass - Now that all of the registers are defined, and aliases 251// between registers are defined, specify which registers belong to which 252// register classes. This also defines the default allocation order of 253// registers by register allocators. 254// 255class RegisterClass<string namespace, list<ValueType> regTypes, int alignment, 256 dag regList, RegAltNameIndex idx = NoRegAltName> 257 : DAGOperand { 258 string Namespace = namespace; 259 260 // The register size/alignment information, parameterized by a HW mode. 261 RegInfoByHwMode RegInfos; 262 263 // RegType - Specify the list ValueType of the registers in this register 264 // class. Note that all registers in a register class must have the same 265 // ValueTypes. This is a list because some targets permit storing different 266 // types in same register, for example vector values with 128-bit total size, 267 // but different count/size of items, like SSE on x86. 268 // 269 list<ValueType> RegTypes = regTypes; 270 271 // Size - Specify the spill size in bits of the registers. A default value of 272 // zero lets tablegen pick an appropriate size. 273 int Size = 0; 274 275 // Alignment - Specify the alignment required of the registers when they are 276 // stored or loaded to memory. 277 // 278 int Alignment = alignment; 279 280 // CopyCost - This value is used to specify the cost of copying a value 281 // between two registers in this register class. The default value is one 282 // meaning it takes a single instruction to perform the copying. A negative 283 // value means copying is extremely expensive or impossible. 284 int CopyCost = 1; 285 286 // MemberList - Specify which registers are in this class. If the 287 // allocation_order_* method are not specified, this also defines the order of 288 // allocation used by the register allocator. 289 // 290 dag MemberList = regList; 291 292 // AltNameIndex - The alternate register name to use when printing operands 293 // of this register class. Every register in the register class must have 294 // a valid alternate name for the given index. 295 RegAltNameIndex altNameIndex = idx; 296 297 // isAllocatable - Specify that the register class can be used for virtual 298 // registers and register allocation. Some register classes are only used to 299 // model instruction operand constraints, and should have isAllocatable = 0. 300 bit isAllocatable = true; 301 302 // AltOrders - List of alternative allocation orders. The default order is 303 // MemberList itself, and that is good enough for most targets since the 304 // register allocators automatically remove reserved registers and move 305 // callee-saved registers to the end. 306 list<dag> AltOrders = []; 307 308 // AltOrderSelect - The body of a function that selects the allocation order 309 // to use in a given machine function. The code will be inserted in a 310 // function like this: 311 // 312 // static inline unsigned f(const MachineFunction &MF) { ... } 313 // 314 // The function should return 0 to select the default order defined by 315 // MemberList, 1 to select the first AltOrders entry and so on. 316 code AltOrderSelect = [{}]; 317 318 // Specify allocation priority for register allocators using a greedy 319 // heuristic. Classes with higher priority values are assigned first. This is 320 // useful as it is sometimes beneficial to assign registers to highly 321 // constrained classes first. The value has to be in the range [0,31]. 322 int AllocationPriority = 0; 323 324 // Force register class to use greedy's global heuristic for all 325 // registers in this class. This should more aggressively try to 326 // avoid spilling in pathological cases. 327 bit GlobalPriority = false; 328 329 // Generate register pressure set for this register class and any class 330 // synthesized from it. Set to 0 to inhibit unneeded pressure sets. 331 bit GeneratePressureSet = true; 332 333 // Weight override for register pressure calculation. This is the value 334 // TargetRegisterClass::getRegClassWeight() will return. The weight is in 335 // units of pressure for this register class. If unset tablegen will 336 // calculate a weight based on a number of register units in this register 337 // class registers. The weight is per register. 338 int Weight = ?; 339 340 // The diagnostic type to present when referencing this operand in a match 341 // failure error message. If this is empty, the default Match_InvalidOperand 342 // diagnostic type will be used. If this is "<name>", a Match_<name> enum 343 // value will be generated and used for this operand type. The target 344 // assembly parser is responsible for converting this into a user-facing 345 // diagnostic message. 346 string DiagnosticType = ""; 347 348 // A diagnostic message to emit when an invalid value is provided for this 349 // register class when it is being used as an assembly operand. If this is 350 // non-empty, an anonymous diagnostic type enum value will be generated, and 351 // the assembly matcher will provide a function to map from diagnostic types 352 // to message strings. 353 string DiagnosticString = ""; 354 355 // Target-specific flags. This becomes the TSFlags field in TargetRegisterClass. 356 bits<8> TSFlags = 0; 357 358 // If set then consider this register class to be the base class for registers in 359 // its MemberList. The base class for registers present in multiple base register 360 // classes will be resolved in the order defined by this value, with lower values 361 // taking precedence over higher ones. Ties are resolved by enumeration order. 362 int BaseClassOrder = ?; 363} 364 365// The memberList in a RegisterClass is a dag of set operations. TableGen 366// evaluates these set operations and expand them into register lists. These 367// are the most common operation, see test/TableGen/SetTheory.td for more 368// examples of what is possible: 369// 370// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a 371// register class, or a sub-expression. This is also the way to simply list 372// registers. 373// 374// (sub GPR, SP) - Set difference. Subtract the last arguments from the first. 375// 376// (and GPR, CSR) - Set intersection. All registers from the first set that are 377// also in the second set. 378// 379// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of 380// numbered registers. Takes an optional 4th operand which is a stride to use 381// when generating the sequence. 382// 383// (shl GPR, 4) - Remove the first N elements. 384// 385// (trunc GPR, 4) - Truncate after the first N elements. 386// 387// (rotl GPR, 1) - Rotate N places to the left. 388// 389// (rotr GPR, 1) - Rotate N places to the right. 390// 391// (decimate GPR, 2) - Pick every N'th element, starting with the first. 392// 393// (interleave A, B, ...) - Interleave the elements from each argument list. 394// 395// All of these operators work on ordered sets, not lists. That means 396// duplicates are removed from sub-expressions. 397 398// Set operators. The rest is defined in TargetSelectionDAG.td. 399def sequence; 400def decimate; 401def interleave; 402 403// RegisterTuples - Automatically generate super-registers by forming tuples of 404// sub-registers. This is useful for modeling register sequence constraints 405// with pseudo-registers that are larger than the architectural registers. 406// 407// The sub-register lists are zipped together: 408// 409// def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>; 410// 411// Generates the same registers as: 412// 413// let SubRegIndices = [sube, subo] in { 414// def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>; 415// def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>; 416// } 417// 418// The generated pseudo-registers inherit super-classes and fields from their 419// first sub-register. Most fields from the Register class are inferred, and 420// the AsmName and Dwarf numbers are cleared. 421// 422// RegisterTuples instances can be used in other set operations to form 423// register classes and so on. This is the only way of using the generated 424// registers. 425// 426// RegNames may be specified to supply asm names for the generated tuples. 427// If used must have the same size as the list of produced registers. 428class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs, 429 list<string> RegNames = []> { 430 // SubRegs - N lists of registers to be zipped up. Super-registers are 431 // synthesized from the first element of each SubRegs list, the second 432 // element and so on. 433 list<dag> SubRegs = Regs; 434 435 // SubRegIndices - N SubRegIndex instances. This provides the names of the 436 // sub-registers in the synthesized super-registers. 437 list<SubRegIndex> SubRegIndices = Indices; 438 439 // List of asm names for the generated tuple registers. 440 list<string> RegAsmNames = RegNames; 441 442 // PositionOrder - Indicate tablegen to place the newly added register at a later 443 // position to avoid iterations on them on unsupported target. 444 int PositionOrder = 0; 445} 446 447// RegisterCategory - This class is a list of RegisterClasses that belong to a 448// general cateogry --- e.g. "general purpose" or "fixed" registers. This is 449// useful for identifying registers in a generic way instead of having 450// information about a specific target's registers. 451class RegisterCategory<list<RegisterClass> classes> { 452 // Classes - A list of register classes that fall within the category. 453 list<RegisterClass> Classes = classes; 454} 455 456//===----------------------------------------------------------------------===// 457// DwarfRegNum - This class provides a mapping of the llvm register enumeration 458// to the register numbering used by gcc and gdb. These values are used by a 459// debug information writer to describe where values may be located during 460// execution. 461class DwarfRegNum<list<int> Numbers> { 462 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register. 463 // These values can be determined by locating the <target>.h file in the 464 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The 465 // order of these names correspond to the enumeration used by gcc. A value of 466 // -1 indicates that the gcc number is undefined and -2 that register number 467 // is invalid for this mode/flavour. 468 list<int> DwarfNumbers = Numbers; 469} 470 471// DwarfRegAlias - This class declares that a given register uses the same dwarf 472// numbers as another one. This is useful for making it clear that the two 473// registers do have the same number. It also lets us build a mapping 474// from dwarf register number to llvm register. 475class DwarfRegAlias<Register reg> { 476 Register DwarfAlias = reg; 477} 478 479//===----------------------------------------------------------------------===// 480// SubtargetFeature - A characteristic of the chip set. 481// 482class SubtargetFeature<string n, string f, string v, string d, 483 list<SubtargetFeature> i = []> { 484 // Name - Feature name. Used by command line (-mattr=) to determine the 485 // appropriate target chip. 486 // 487 string Name = n; 488 489 // FieldName - Field in XXXSubtarget to be set by feature. 490 // 491 string FieldName = f; 492 493 // Value - Value the XXXSubtarget field to be set to by feature. 494 // 495 // A value of "true" or "false" implies the field is a bool. Otherwise, 496 // it is assumed to be an integer. the integer value may be the name of an 497 // enum constant. If multiple features use the same integer field, the 498 // field will be set to the maximum value of all enabled features that 499 // share the field. 500 // 501 string Value = v; 502 503 // Desc - Feature description. Used by command line (-mattr=) to display help 504 // information. 505 // 506 string Desc = d; 507 508 // Implies - Features that this feature implies are present. If one of those 509 // features isn't set, then this one shouldn't be set either. 510 // 511 list<SubtargetFeature> Implies = i; 512} 513 514/// Specifies a Subtarget feature that this instruction is deprecated on. 515class Deprecated<SubtargetFeature dep> { 516 SubtargetFeature DeprecatedFeatureMask = dep; 517} 518 519/// A custom predicate used to determine if an instruction is 520/// deprecated or not. 521class ComplexDeprecationPredicate<string dep> { 522 string ComplexDeprecationPredicate = dep; 523} 524 525//===----------------------------------------------------------------------===// 526// Pull in the common support for MCPredicate (portable scheduling predicates). 527// 528include "llvm/Target/TargetInstrPredicate.td" 529 530//===----------------------------------------------------------------------===// 531// Pull in the common support for scheduling 532// 533include "llvm/Target/TargetSchedule.td" 534 535class InstructionEncoding { 536 // Size of encoded instruction. 537 int Size; 538 539 // The "namespace" in which this instruction exists, on targets like ARM 540 // which multiple ISA namespaces exist. 541 string DecoderNamespace = ""; 542 543 // List of predicates which will be turned into isel matching code. 544 list<Predicate> Predicates = []; 545 546 string DecoderMethod = ""; 547 548 // Is the instruction decoder method able to completely determine if the 549 // given instruction is valid or not. If the TableGen definition of the 550 // instruction specifies bitpattern A??B where A and B are static bits, the 551 // hasCompleteDecoder flag says whether the decoder method fully handles the 552 // ?? space, i.e. if it is a final arbiter for the instruction validity. 553 // If not then the decoder attempts to continue decoding when the decoder 554 // method fails. 555 // 556 // This allows to handle situations where the encoding is not fully 557 // orthogonal. Example: 558 // * InstA with bitpattern 0b0000????, 559 // * InstB with bitpattern 0b000000?? but the associated decoder method 560 // DecodeInstB() returns Fail when ?? is 0b00 or 0b11. 561 // 562 // The decoder tries to decode a bitpattern that matches both InstA and 563 // InstB bitpatterns first as InstB (because it is the most specific 564 // encoding). In the default case (hasCompleteDecoder = 1), when 565 // DecodeInstB() returns Fail the bitpattern gets rejected. By setting 566 // hasCompleteDecoder = 0 in InstB, the decoder is informed that 567 // DecodeInstB() is not able to determine if all possible values of ?? are 568 // valid or not. If DecodeInstB() returns Fail the decoder will attempt to 569 // decode the bitpattern as InstA too. 570 bit hasCompleteDecoder = true; 571} 572 573// Allows specifying an InstructionEncoding by HwMode. If an Instruction specifies 574// an EncodingByHwMode, its Inst and Size members are ignored and Ts are used 575// to encode and decode based on HwMode. 576class EncodingByHwMode<list<HwMode> Ms = [], list<InstructionEncoding> Ts = []> 577 : HwModeSelect<Ms> { 578 // The length of this list must be the same as the length of Ms. 579 list<InstructionEncoding> Objects = Ts; 580} 581 582//===----------------------------------------------------------------------===// 583// Instruction set description - These classes correspond to the C++ classes in 584// the Target/TargetInstrInfo.h file. 585// 586class Instruction : InstructionEncoding { 587 string Namespace = ""; 588 589 dag OutOperandList; // An dag containing the MI def operand list. 590 dag InOperandList; // An dag containing the MI use operand list. 591 string AsmString = ""; // The .s format to print the instruction with. 592 593 // Allows specifying a canonical InstructionEncoding by HwMode. If non-empty, 594 // the Inst member of this Instruction is ignored. 595 EncodingByHwMode EncodingInfos; 596 597 // Pattern - Set to the DAG pattern for this instruction, if we know of one, 598 // otherwise, uninitialized. 599 list<dag> Pattern; 600 601 // The follow state will eventually be inferred automatically from the 602 // instruction pattern. 603 604 list<Register> Uses = []; // Default to using no non-operand registers 605 list<Register> Defs = []; // Default to modifying no non-operand registers 606 607 // Predicates - List of predicates which will be turned into isel matching 608 // code. 609 list<Predicate> Predicates = []; 610 611 // Size - Size of encoded instruction, or zero if the size cannot be determined 612 // from the opcode. 613 int Size = 0; 614 615 // Code size, for instruction selection. 616 // FIXME: What does this actually mean? 617 int CodeSize = 0; 618 619 // Added complexity passed onto matching pattern. 620 int AddedComplexity = 0; 621 622 // Indicates if this is a pre-isel opcode that should be 623 // legalized/regbankselected/selected. 624 bit isPreISelOpcode = false; 625 626 // These bits capture information about the high-level semantics of the 627 // instruction. 628 bit isReturn = false; // Is this instruction a return instruction? 629 bit isBranch = false; // Is this instruction a branch instruction? 630 bit isEHScopeReturn = false; // Does this instruction end an EH scope? 631 bit isIndirectBranch = false; // Is this instruction an indirect branch? 632 bit isCompare = false; // Is this instruction a comparison instruction? 633 bit isMoveImm = false; // Is this instruction a move immediate instruction? 634 bit isMoveReg = false; // Is this instruction a move register instruction? 635 bit isBitcast = false; // Is this instruction a bitcast instruction? 636 bit isSelect = false; // Is this instruction a select instruction? 637 bit isBarrier = false; // Can control flow fall through this instruction? 638 bit isCall = false; // Is this instruction a call instruction? 639 bit isAdd = false; // Is this instruction an add instruction? 640 bit isTrap = false; // Is this instruction a trap instruction? 641 bit canFoldAsLoad = false; // Can this be folded as a simple memory operand? 642 bit mayLoad = ?; // Is it possible for this inst to read memory? 643 bit mayStore = ?; // Is it possible for this inst to write memory? 644 bit mayRaiseFPException = false; // Can this raise a floating-point exception? 645 bit isConvertibleToThreeAddress = false; // Can this 2-addr instruction promote? 646 bit isCommutable = false; // Is this 3 operand instruction commutable? 647 bit isTerminator = false; // Is this part of the terminator for a basic block? 648 bit isReMaterializable = false; // Is this instruction re-materializable? 649 bit isPredicable = false; // 1 means this instruction is predicable 650 // even if it does not have any operand 651 // tablegen can identify as a predicate 652 bit isUnpredicable = false; // 1 means this instruction is not predicable 653 // even if it _does_ have a predicate operand 654 bit hasDelaySlot = false; // Does this instruction have an delay slot? 655 bit usesCustomInserter = false; // Pseudo instr needing special help. 656 bit hasPostISelHook = false; // To be *adjusted* after isel by target hook. 657 bit hasCtrlDep = false; // Does this instruction r/w ctrl-flow chains? 658 bit isNotDuplicable = false; // Is it unsafe to duplicate this instruction? 659 bit isConvergent = false; // Is this instruction convergent? 660 bit isAuthenticated = false; // Does this instruction authenticate a pointer? 661 bit isAsCheapAsAMove = false; // As cheap (or cheaper) than a move instruction. 662 bit hasExtraSrcRegAllocReq = false; // Sources have special regalloc requirement? 663 bit hasExtraDefRegAllocReq = false; // Defs have special regalloc requirement? 664 bit isRegSequence = false; // Is this instruction a kind of reg sequence? 665 // If so, make sure to override 666 // TargetInstrInfo::getRegSequenceLikeInputs. 667 bit isPseudo = false; // Is this instruction a pseudo-instruction? 668 // If so, won't have encoding information for 669 // the [MC]CodeEmitter stuff. 670 bit isMeta = false; // Is this instruction a meta-instruction? 671 // If so, won't produce any output in the form of 672 // executable instructions 673 bit isExtractSubreg = false; // Is this instruction a kind of extract subreg? 674 // If so, make sure to override 675 // TargetInstrInfo::getExtractSubregLikeInputs. 676 bit isInsertSubreg = false; // Is this instruction a kind of insert subreg? 677 // If so, make sure to override 678 // TargetInstrInfo::getInsertSubregLikeInputs. 679 bit variadicOpsAreDefs = false; // Are variadic operands definitions? 680 681 // Does the instruction have side effects that are not captured by any 682 // operands of the instruction or other flags? 683 bit hasSideEffects = ?; 684 685 // Is this instruction a "real" instruction (with a distinct machine 686 // encoding), or is it a pseudo instruction used for codegen modeling 687 // purposes. 688 // FIXME: For now this is distinct from isPseudo, above, as code-gen-only 689 // instructions can (and often do) still have encoding information 690 // associated with them. Once we've migrated all of them over to true 691 // pseudo-instructions that are lowered to real instructions prior to 692 // the printer/emitter, we can remove this attribute and just use isPseudo. 693 // 694 // The intended use is: 695 // isPseudo: Does not have encoding information and should be expanded, 696 // at the latest, during lowering to MCInst. 697 // 698 // isCodeGenOnly: Does have encoding information and can go through to the 699 // CodeEmitter unchanged, but duplicates a canonical instruction 700 // definition's encoding and should be ignored when constructing the 701 // assembler match tables. 702 bit isCodeGenOnly = false; 703 704 // Is this instruction a pseudo instruction for use by the assembler parser. 705 bit isAsmParserOnly = false; 706 707 // This instruction is not expected to be queried for scheduling latencies 708 // and therefore needs no scheduling information even for a complete 709 // scheduling model. 710 bit hasNoSchedulingInfo = false; 711 712 InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling. 713 714 // Scheduling information from TargetSchedule.td. 715 list<SchedReadWrite> SchedRW; 716 717 /// Support for operand constraints. There are currently two kinds: 718 /// "$src = $dst" 719 /// Ensures that the operands are allocated to the same register. 720 /// 721 /// "@earlyclobber $rd" 722 /// Ensures that LLVM will not use the same register for any inputs (other 723 /// than an input tied to this output). 724 /// 725 /// See also: 726 /// - MC/MCInstrDesc.h:OperandConstraint::{TIED_TO, EARLY_CLOBBER}. 727 /// - CodeGen/MachineOperand.h:MachineOperand::{TiedTo, IsEarlyClobber}. 728 /// - The LLVM IR specification: Section `Output constraints` in the 729 /// discussion of inline assembly constraint strings. 730 string Constraints = ""; 731 732 /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not 733 /// be encoded into the output machineinstr. 734 string DisableEncoding = ""; 735 736 string PostEncoderMethod = ""; 737 738 /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc. 739 bits<64> TSFlags = 0; 740 741 ///@name Assembler Parser Support 742 ///@{ 743 744 string AsmMatchConverter = ""; 745 746 /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a 747 /// two-operand matcher inst-alias for a three operand instruction. 748 /// For example, the arm instruction "add r3, r3, r5" can be written 749 /// as "add r3, r5". The constraint is of the same form as a tied-operand 750 /// constraint. For example, "$Rn = $Rd". 751 string TwoOperandAliasConstraint = ""; 752 753 /// Assembler variant name to use for this instruction. If specified then 754 /// instruction will be presented only in MatchTable for this variant. If 755 /// not specified then assembler variants will be determined based on 756 /// AsmString 757 string AsmVariantName = ""; 758 759 ///@} 760 761 /// UseNamedOperandTable - If set, the operand indices of this instruction 762 /// can be queried via the getNamedOperandIdx() function which is generated 763 /// by TableGen. 764 bit UseNamedOperandTable = false; 765 766 /// Should generate helper functions that help you to map a logical operand's 767 /// index to the underlying MIOperand's index. 768 /// In most architectures logical operand indicies are equal to 769 /// MIOperand indicies, but for some CISC architectures, a logical operand 770 /// might be consist of multiple MIOperand (e.g. a logical operand that 771 /// uses complex address mode). 772 bit UseLogicalOperandMappings = false; 773 774 /// Should FastISel ignore this instruction. For certain ISAs, they have 775 /// instructions which map to the same ISD Opcode, value type operands and 776 /// instruction selection predicates. FastISel cannot handle such cases, but 777 /// SelectionDAG can. 778 bit FastISelShouldIgnore = false; 779 780 /// HasPositionOrder: Indicate tablegen to sort the instructions by record 781 /// ID, so that instruction that is defined earlier can be sorted earlier 782 /// in the assembly matching table. 783 bit HasPositionOrder = false; 784} 785 786/// Defines a Pat match between compressed and uncompressed instruction. 787/// The relationship and helper function generation are handled by 788/// CompressInstEmitter backend. 789class CompressPat<dag input, dag output, list<Predicate> predicates = []> { 790 /// Uncompressed instruction description. 791 dag Input = input; 792 /// Compressed instruction description. 793 dag Output = output; 794 /// Predicates that must be true for this to match. 795 list<Predicate> Predicates = predicates; 796 /// Duplicate match when tied operand is just different. 797 bit isCompressOnly = false; 798} 799 800/// Defines an additional encoding that disassembles to the given instruction 801/// Like Instruction, the Inst and SoftFail fields are omitted to allow targets 802// to specify their size. 803class AdditionalEncoding<Instruction I> : InstructionEncoding { 804 Instruction AliasOf = I; 805} 806 807/// PseudoInstExpansion - Expansion information for a pseudo-instruction. 808/// Which instruction it expands to and how the operands map from the 809/// pseudo. 810class PseudoInstExpansion<dag Result> { 811 dag ResultInst = Result; // The instruction to generate. 812 bit isPseudo = true; 813} 814 815/// Predicates - These are extra conditionals which are turned into instruction 816/// selector matching code. Currently each predicate is just a string. 817class Predicate<string cond> { 818 string CondString = cond; 819 820 /// AssemblerMatcherPredicate - If this feature can be used by the assembler 821 /// matcher, this is true. Targets should set this by inheriting their 822 /// feature from the AssemblerPredicate class in addition to Predicate. 823 bit AssemblerMatcherPredicate = false; 824 825 /// AssemblerCondDag - Set of subtarget features being tested used 826 /// as alternative condition string used for assembler matcher. Must be used 827 /// with (all_of) to indicate that all features must be present, or (any_of) 828 /// to indicate that at least one must be. The required lack of presence of 829 /// a feature can be tested using a (not) node including the feature. 830 /// e.g. "(all_of ModeThumb)" is translated to "(Bits & ModeThumb) != 0". 831 /// "(all_of (not ModeThumb))" is translated to 832 /// "(Bits & ModeThumb) == 0". 833 /// "(all_of ModeThumb, FeatureThumb2)" is translated to 834 /// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0". 835 /// "(any_of ModeTumb, FeatureThumb2)" is translated to 836 /// "(Bits & ModeThumb) != 0 || (Bits & FeatureThumb2) != 0". 837 /// all_of and any_of cannot be combined in a single dag, instead multiple 838 /// predicates can be placed onto Instruction definitions. 839 dag AssemblerCondDag; 840 841 /// PredicateName - User-level name to use for the predicate. Mainly for use 842 /// in diagnostics such as missing feature errors in the asm matcher. 843 string PredicateName = ""; 844 845 /// Setting this to '1' indicates that the predicate must be recomputed on 846 /// every function change. Most predicates can leave this at '0'. 847 /// 848 /// Ignored by SelectionDAG, it always recomputes the predicate on every use. 849 bit RecomputePerFunction = false; 850} 851 852/// NoHonorSignDependentRounding - This predicate is true if support for 853/// sign-dependent-rounding is not enabled. 854def NoHonorSignDependentRounding 855 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">; 856 857class Requires<list<Predicate> preds> { 858 list<Predicate> Predicates = preds; 859} 860 861/// ops definition - This is just a simple marker used to identify the operand 862/// list for an instruction. outs and ins are identical both syntactically and 863/// semantically; they are used to define def operands and use operands to 864/// improve readability. This should be used like this: 865/// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar. 866def ops; 867def outs; 868def ins; 869 870/// variable_ops definition - Mark this instruction as taking a variable number 871/// of operands. 872def variable_ops; 873 874/// variable-length instruction encoding utilities. 875/// The `ascend` operator should be used like this: 876/// (ascend 0b0010, 0b1101) 877/// Which represent a seqence of encoding fragments placing from LSB to MSB. 878/// Thus, in this case the final encoding will be 0b1101_0010. 879/// The arguments for `ascend` can either be `bits` or another DAG. 880def ascend; 881/// In addition, we can use `descend` to describe an encoding that places 882/// its arguments (i.e. encoding fragments) from MSB to LSB. For instance: 883/// (descend 0b0010, 0b1101) 884/// This results in an encoding of 0b0010_1101. 885def descend; 886/// The `operand` operator should be used like this: 887/// (operand "$src", 4) 888/// Which represents a 4-bit encoding for an instruction operand named `$src`. 889def operand; 890/// Similar to `operand`, we can reference only part of the operand's encoding: 891/// (slice "$src", 6, 8) 892/// (slice "$src", 8, 6) 893/// Both DAG represent bit 6 to 8 (total of 3 bits) in the encoding of operand 894/// `$src`. 895def slice; 896/// You can use `encoder` or `decoder` to specify a custom encoder or decoder 897/// function for a specific `operand` or `slice` directive. For example: 898/// (operand "$src", 4, (encoder "encodeMyImm")) 899/// (slice "$src", 8, 6, (encoder "encodeMyReg")) 900/// (operand "$src", 4, (encoder "encodeMyImm"), (decoder "decodeMyImm")) 901/// The ordering of `encoder` and `decoder` in the same `operand` or `slice` 902/// doesn't matter. 903/// Note that currently we cannot assign different decoders in the same 904/// (instruction) operand. 905def encoder; 906def decoder; 907 908/// PointerLikeRegClass - Values that are designed to have pointer width are 909/// derived from this. TableGen treats the register class as having a symbolic 910/// type that it doesn't know, and resolves the actual regclass to use by using 911/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time. 912class PointerLikeRegClass<int Kind> { 913 int RegClassKind = Kind; 914} 915 916 917/// ptr_rc definition - Mark this operand as being a pointer value whose 918/// register class is resolved dynamically via a callback to TargetInstrInfo. 919/// FIXME: We should probably change this to a class which contain a list of 920/// flags. But currently we have but one flag. 921def ptr_rc : PointerLikeRegClass<0>; 922 923/// unknown definition - Mark this operand as being of unknown type, causing 924/// it to be resolved by inference in the context it is used. 925class unknown_class; 926def unknown : unknown_class; 927 928/// AsmOperandClass - Representation for the kinds of operands which the target 929/// specific parser can create and the assembly matcher may need to distinguish. 930/// 931/// Operand classes are used to define the order in which instructions are 932/// matched, to ensure that the instruction which gets matched for any 933/// particular list of operands is deterministic. 934/// 935/// The target specific parser must be able to classify a parsed operand into a 936/// unique class which does not partially overlap with any other classes. It can 937/// match a subset of some other class, in which case the super class field 938/// should be defined. 939class AsmOperandClass { 940 /// The name to use for this class, which should be usable as an enum value. 941 string Name = ?; 942 943 /// The super classes of this operand. 944 list<AsmOperandClass> SuperClasses = []; 945 946 /// The name of the method on the target specific operand to call to test 947 /// whether the operand is an instance of this class. If not set, this will 948 /// default to "isFoo", where Foo is the AsmOperandClass name. The method 949 /// signature should be: 950 /// bool isFoo() const; 951 string PredicateMethod = ?; 952 953 /// The name of the method on the target specific operand to call to add the 954 /// target specific operand to an MCInst. If not set, this will default to 955 /// "addFooOperands", where Foo is the AsmOperandClass name. The method 956 /// signature should be: 957 /// void addFooOperands(MCInst &Inst, unsigned N) const; 958 string RenderMethod = ?; 959 960 /// The name of the method on the target specific operand to call to custom 961 /// handle the operand parsing. This is useful when the operands do not relate 962 /// to immediates or registers and are very instruction specific (as flags to 963 /// set in a processor register, coprocessor number, ...). 964 string ParserMethod = ?; 965 966 // The diagnostic type to present when referencing this operand in a 967 // match failure error message. By default, use a generic "invalid operand" 968 // diagnostic. The target AsmParser maps these codes to text. 969 string DiagnosticType = ""; 970 971 /// A diagnostic message to emit when an invalid value is provided for this 972 /// operand. 973 string DiagnosticString = ""; 974 975 /// Set to 1 if this operand is optional and not always required. Typically, 976 /// the AsmParser will emit an error when it finishes parsing an 977 /// instruction if it hasn't matched all the operands yet. However, this 978 /// error will be suppressed if all of the remaining unmatched operands are 979 /// marked as IsOptional. 980 bit IsOptional = false; 981 982 /// The name of the method on the target specific asm parser that returns the 983 /// default operand for this optional operand. This method is only used if 984 /// IsOptional == 1. If not set, this will default to "defaultFooOperands", 985 /// where Foo is the AsmOperandClass name. The method signature should be: 986 /// std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const; 987 string DefaultMethod = ?; 988} 989 990def ImmAsmOperand : AsmOperandClass { 991 let Name = "Imm"; 992} 993 994/// Operand Types - These provide the built-in operand types that may be used 995/// by a target. Targets can optionally provide their own operand types as 996/// needed, though this should not be needed for RISC targets. 997class Operand<ValueType ty> : DAGOperand { 998 ValueType Type = ty; 999 string PrintMethod = "printOperand"; 1000 string EncoderMethod = ""; 1001 bit hasCompleteDecoder = true; 1002 string OperandType = "OPERAND_UNKNOWN"; 1003 dag MIOperandInfo = (ops); 1004 1005 // MCOperandPredicate - Optionally, a code fragment operating on 1006 // const MCOperand &MCOp, and returning a bool, to indicate if 1007 // the value of MCOp is valid for the specific subclass of Operand 1008 code MCOperandPredicate; 1009 1010 // ParserMatchClass - The "match class" that operands of this type fit 1011 // in. Match classes are used to define the order in which instructions are 1012 // match, to ensure that which instructions gets matched is deterministic. 1013 // 1014 // The target specific parser must be able to classify an parsed operand into 1015 // a unique class, which does not partially overlap with any other classes. It 1016 // can match a subset of some other class, in which case the AsmOperandClass 1017 // should declare the other operand as one of its super classes. 1018 AsmOperandClass ParserMatchClass = ImmAsmOperand; 1019} 1020 1021class RegisterOperand<RegisterClass regclass, string pm = "printOperand"> 1022 : DAGOperand { 1023 // RegClass - The register class of the operand. 1024 RegisterClass RegClass = regclass; 1025 // PrintMethod - The target method to call to print register operands of 1026 // this type. The method normally will just use an alt-name index to look 1027 // up the name to print. Default to the generic printOperand(). 1028 string PrintMethod = pm; 1029 1030 // EncoderMethod - The target method name to call to encode this register 1031 // operand. 1032 string EncoderMethod = ""; 1033 1034 // ParserMatchClass - The "match class" that operands of this type fit 1035 // in. Match classes are used to define the order in which instructions are 1036 // match, to ensure that which instructions gets matched is deterministic. 1037 // 1038 // The target specific parser must be able to classify an parsed operand into 1039 // a unique class, which does not partially overlap with any other classes. It 1040 // can match a subset of some other class, in which case the AsmOperandClass 1041 // should declare the other operand as one of its super classes. 1042 AsmOperandClass ParserMatchClass; 1043 1044 string OperandType = "OPERAND_REGISTER"; 1045 1046 // When referenced in the result of a CodeGen pattern, GlobalISel will 1047 // normally copy the matched operand to the result. When this is set, it will 1048 // emit a special copy that will replace zero-immediates with the specified 1049 // zero-register. 1050 Register GIZeroRegister = ?; 1051} 1052 1053let OperandType = "OPERAND_IMMEDIATE" in { 1054def i1imm : Operand<i1>; 1055def i8imm : Operand<i8>; 1056def i16imm : Operand<i16>; 1057def i32imm : Operand<i32>; 1058def i64imm : Operand<i64>; 1059 1060def f32imm : Operand<f32>; 1061def f64imm : Operand<f64>; 1062} 1063 1064// Register operands for generic instructions don't have an MVT, but do have 1065// constraints linking the operands (e.g. all operands of a G_ADD must 1066// have the same LLT). 1067class TypedOperand<string Ty> : Operand<untyped> { 1068 let OperandType = Ty; 1069 bit IsPointer = false; 1070 bit IsImmediate = false; 1071} 1072 1073def type0 : TypedOperand<"OPERAND_GENERIC_0">; 1074def type1 : TypedOperand<"OPERAND_GENERIC_1">; 1075def type2 : TypedOperand<"OPERAND_GENERIC_2">; 1076def type3 : TypedOperand<"OPERAND_GENERIC_3">; 1077def type4 : TypedOperand<"OPERAND_GENERIC_4">; 1078def type5 : TypedOperand<"OPERAND_GENERIC_5">; 1079 1080let IsPointer = true in { 1081 def ptype0 : TypedOperand<"OPERAND_GENERIC_0">; 1082 def ptype1 : TypedOperand<"OPERAND_GENERIC_1">; 1083 def ptype2 : TypedOperand<"OPERAND_GENERIC_2">; 1084 def ptype3 : TypedOperand<"OPERAND_GENERIC_3">; 1085 def ptype4 : TypedOperand<"OPERAND_GENERIC_4">; 1086 def ptype5 : TypedOperand<"OPERAND_GENERIC_5">; 1087} 1088 1089// untyped_imm is for operands where isImm() will be true. It currently has no 1090// special behaviour and is only used for clarity. 1091def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> { 1092 let IsImmediate = true; 1093} 1094 1095/// zero_reg definition - Special node to stand for the zero register. 1096/// 1097def zero_reg; 1098 1099/// undef_tied_input - Special node to indicate an input register tied 1100/// to an output which defaults to IMPLICIT_DEF. 1101def undef_tied_input; 1102 1103/// All operands which the MC layer classifies as predicates should inherit from 1104/// this class in some manner. This is already handled for the most commonly 1105/// used PredicateOperand, but may be useful in other circumstances. 1106class PredicateOp; 1107 1108/// OperandWithDefaultOps - This Operand class can be used as the parent class 1109/// for an Operand that needs to be initialized with a default value if 1110/// no value is supplied in a pattern. This class can be used to simplify the 1111/// pattern definitions for instructions that have target specific flags 1112/// encoded as immediate operands. 1113class OperandWithDefaultOps<ValueType ty, dag defaultops> 1114 : Operand<ty> { 1115 dag DefaultOps = defaultops; 1116} 1117 1118/// PredicateOperand - This can be used to define a predicate operand for an 1119/// instruction. OpTypes specifies the MIOperandInfo for the operand, and 1120/// AlwaysVal specifies the value of this predicate when set to "always 1121/// execute". 1122class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal> 1123 : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp { 1124 let MIOperandInfo = OpTypes; 1125} 1126 1127/// OptionalDefOperand - This is used to define a optional definition operand 1128/// for an instruction. DefaultOps is the register the operand represents if 1129/// none is supplied, e.g. zero_reg. 1130class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops> 1131 : OperandWithDefaultOps<ty, defaultops> { 1132 let MIOperandInfo = OpTypes; 1133} 1134 1135 1136// InstrInfo - This class should only be instantiated once to provide parameters 1137// which are global to the target machine. 1138// 1139class InstrInfo { 1140 // Target can specify its instructions in either big or little-endian formats. 1141 // For instance, while both Sparc and PowerPC are big-endian platforms, the 1142 // Sparc manual specifies its instructions in the format [31..0] (big), while 1143 // PowerPC specifies them using the format [0..31] (little). 1144 bit isLittleEndianEncoding = false; 1145 1146 // The instruction properties mayLoad, mayStore, and hasSideEffects are unset 1147 // by default, and TableGen will infer their value from the instruction 1148 // pattern when possible. 1149 // 1150 // Normally, TableGen will issue an error if it can't infer the value of a 1151 // property that hasn't been set explicitly. When guessInstructionProperties 1152 // is set, it will guess a safe value instead. 1153 // 1154 // This option is a temporary migration help. It will go away. 1155 bit guessInstructionProperties = true; 1156} 1157 1158// Standard Pseudo Instructions. 1159// This list must match TargetOpcodes.def. 1160// Only these instructions are allowed in the TargetOpcode namespace. 1161// Ensure mayLoad and mayStore have a default value, so as not to break 1162// targets that set guessInstructionProperties=0. Any local definition of 1163// mayLoad/mayStore takes precedence over these default values. 1164class StandardPseudoInstruction : Instruction { 1165 let mayLoad = false; 1166 let mayStore = false; 1167 let isCodeGenOnly = true; 1168 let isPseudo = true; 1169 let hasNoSchedulingInfo = true; 1170 let Namespace = "TargetOpcode"; 1171} 1172def PHI : StandardPseudoInstruction { 1173 let OutOperandList = (outs unknown:$dst); 1174 let InOperandList = (ins variable_ops); 1175 let AsmString = "PHINODE"; 1176 let hasSideEffects = false; 1177} 1178def INLINEASM : StandardPseudoInstruction { 1179 let OutOperandList = (outs); 1180 let InOperandList = (ins variable_ops); 1181 let AsmString = ""; 1182 let hasSideEffects = false; // Note side effect is encoded in an operand. 1183} 1184def INLINEASM_BR : StandardPseudoInstruction { 1185 let OutOperandList = (outs); 1186 let InOperandList = (ins variable_ops); 1187 let AsmString = ""; 1188 // Unlike INLINEASM, this is always treated as having side-effects. 1189 let hasSideEffects = true; 1190 // Despite potentially branching, this instruction is intentionally _not_ 1191 // marked as a terminator or a branch. 1192} 1193def CFI_INSTRUCTION : StandardPseudoInstruction { 1194 let OutOperandList = (outs); 1195 let InOperandList = (ins i32imm:$id); 1196 let AsmString = ""; 1197 let hasCtrlDep = true; 1198 let hasSideEffects = false; 1199 let isNotDuplicable = true; 1200 let isMeta = true; 1201} 1202def EH_LABEL : StandardPseudoInstruction { 1203 let OutOperandList = (outs); 1204 let InOperandList = (ins i32imm:$id); 1205 let AsmString = ""; 1206 let hasCtrlDep = true; 1207 let hasSideEffects = false; 1208 let isNotDuplicable = true; 1209 let isMeta = true; 1210} 1211def GC_LABEL : StandardPseudoInstruction { 1212 let OutOperandList = (outs); 1213 let InOperandList = (ins i32imm:$id); 1214 let AsmString = ""; 1215 let hasCtrlDep = true; 1216 let hasSideEffects = false; 1217 let isNotDuplicable = true; 1218 let isMeta = true; 1219} 1220def ANNOTATION_LABEL : StandardPseudoInstruction { 1221 let OutOperandList = (outs); 1222 let InOperandList = (ins i32imm:$id); 1223 let AsmString = ""; 1224 let hasCtrlDep = true; 1225 let hasSideEffects = false; 1226 let isNotDuplicable = true; 1227} 1228def KILL : StandardPseudoInstruction { 1229 let OutOperandList = (outs); 1230 let InOperandList = (ins variable_ops); 1231 let AsmString = ""; 1232 let hasSideEffects = false; 1233 let isMeta = true; 1234} 1235def EXTRACT_SUBREG : StandardPseudoInstruction { 1236 let OutOperandList = (outs unknown:$dst); 1237 let InOperandList = (ins unknown:$supersrc, i32imm:$subidx); 1238 let AsmString = ""; 1239 let hasSideEffects = false; 1240} 1241def INSERT_SUBREG : StandardPseudoInstruction { 1242 let OutOperandList = (outs unknown:$dst); 1243 let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx); 1244 let AsmString = ""; 1245 let hasSideEffects = false; 1246 let Constraints = "$supersrc = $dst"; 1247} 1248def IMPLICIT_DEF : StandardPseudoInstruction { 1249 let OutOperandList = (outs unknown:$dst); 1250 let InOperandList = (ins); 1251 let AsmString = ""; 1252 let hasSideEffects = false; 1253 let isReMaterializable = true; 1254 let isAsCheapAsAMove = true; 1255 let isMeta = true; 1256} 1257def SUBREG_TO_REG : StandardPseudoInstruction { 1258 let OutOperandList = (outs unknown:$dst); 1259 let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx); 1260 let AsmString = ""; 1261 let hasSideEffects = false; 1262} 1263def COPY_TO_REGCLASS : StandardPseudoInstruction { 1264 let OutOperandList = (outs unknown:$dst); 1265 let InOperandList = (ins unknown:$src, i32imm:$regclass); 1266 let AsmString = ""; 1267 let hasSideEffects = false; 1268 let isAsCheapAsAMove = true; 1269} 1270def DBG_VALUE : StandardPseudoInstruction { 1271 let OutOperandList = (outs); 1272 let InOperandList = (ins variable_ops); 1273 let AsmString = "DBG_VALUE"; 1274 let hasSideEffects = false; 1275 let isMeta = true; 1276} 1277def DBG_VALUE_LIST : StandardPseudoInstruction { 1278 let OutOperandList = (outs); 1279 let InOperandList = (ins variable_ops); 1280 let AsmString = "DBG_VALUE_LIST"; 1281 let hasSideEffects = 0; 1282 let isMeta = true; 1283} 1284def DBG_INSTR_REF : StandardPseudoInstruction { 1285 let OutOperandList = (outs); 1286 let InOperandList = (ins variable_ops); 1287 let AsmString = "DBG_INSTR_REF"; 1288 let hasSideEffects = false; 1289 let isMeta = true; 1290} 1291def DBG_PHI : StandardPseudoInstruction { 1292 let OutOperandList = (outs); 1293 let InOperandList = (ins variable_ops); 1294 let AsmString = "DBG_PHI"; 1295 let hasSideEffects = 0; 1296 let isMeta = true; 1297} 1298def DBG_LABEL : StandardPseudoInstruction { 1299 let OutOperandList = (outs); 1300 let InOperandList = (ins unknown:$label); 1301 let AsmString = "DBG_LABEL"; 1302 let hasSideEffects = false; 1303 let isMeta = true; 1304} 1305def REG_SEQUENCE : StandardPseudoInstruction { 1306 let OutOperandList = (outs unknown:$dst); 1307 let InOperandList = (ins unknown:$supersrc, variable_ops); 1308 let AsmString = ""; 1309 let hasSideEffects = false; 1310 let isAsCheapAsAMove = true; 1311} 1312def COPY : StandardPseudoInstruction { 1313 let OutOperandList = (outs unknown:$dst); 1314 let InOperandList = (ins unknown:$src); 1315 let AsmString = ""; 1316 let hasSideEffects = false; 1317 let isAsCheapAsAMove = true; 1318 let hasNoSchedulingInfo = false; 1319} 1320def BUNDLE : StandardPseudoInstruction { 1321 let OutOperandList = (outs); 1322 let InOperandList = (ins variable_ops); 1323 let AsmString = "BUNDLE"; 1324 let hasSideEffects = false; 1325} 1326def LIFETIME_START : StandardPseudoInstruction { 1327 let OutOperandList = (outs); 1328 let InOperandList = (ins i32imm:$id); 1329 let AsmString = "LIFETIME_START"; 1330 let hasSideEffects = false; 1331 let isMeta = true; 1332} 1333def LIFETIME_END : StandardPseudoInstruction { 1334 let OutOperandList = (outs); 1335 let InOperandList = (ins i32imm:$id); 1336 let AsmString = "LIFETIME_END"; 1337 let hasSideEffects = false; 1338 let isMeta = true; 1339} 1340def PSEUDO_PROBE : StandardPseudoInstruction { 1341 let OutOperandList = (outs); 1342 let InOperandList = (ins i64imm:$guid, i64imm:$index, i8imm:$type, i32imm:$attr); 1343 let AsmString = "PSEUDO_PROBE"; 1344 let hasSideEffects = 1; 1345 let isMeta = true; 1346} 1347def ARITH_FENCE : StandardPseudoInstruction { 1348 let OutOperandList = (outs unknown:$dst); 1349 let InOperandList = (ins unknown:$src); 1350 let AsmString = ""; 1351 let hasSideEffects = false; 1352 let Constraints = "$src = $dst"; 1353 let isMeta = true; 1354} 1355 1356def STACKMAP : StandardPseudoInstruction { 1357 let OutOperandList = (outs); 1358 let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops); 1359 let hasSideEffects = true; 1360 let isCall = true; 1361 let mayLoad = true; 1362 let usesCustomInserter = true; 1363} 1364def PATCHPOINT : StandardPseudoInstruction { 1365 let OutOperandList = (outs unknown:$dst); 1366 let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee, 1367 i32imm:$nargs, i32imm:$cc, variable_ops); 1368 let hasSideEffects = true; 1369 let isCall = true; 1370 let mayLoad = true; 1371 let usesCustomInserter = true; 1372} 1373def STATEPOINT : StandardPseudoInstruction { 1374 let OutOperandList = (outs variable_ops); 1375 let InOperandList = (ins variable_ops); 1376 let usesCustomInserter = true; 1377 let mayLoad = true; 1378 let mayStore = true; 1379 let hasSideEffects = true; 1380 let isCall = true; 1381} 1382def LOAD_STACK_GUARD : StandardPseudoInstruction { 1383 let OutOperandList = (outs ptr_rc:$dst); 1384 let InOperandList = (ins); 1385 let mayLoad = true; 1386 bit isReMaterializable = true; 1387 let hasSideEffects = false; 1388 bit isPseudo = true; 1389} 1390def PREALLOCATED_SETUP : StandardPseudoInstruction { 1391 let OutOperandList = (outs); 1392 let InOperandList = (ins i32imm:$a); 1393 let usesCustomInserter = true; 1394 let hasSideEffects = true; 1395} 1396def PREALLOCATED_ARG : StandardPseudoInstruction { 1397 let OutOperandList = (outs ptr_rc:$loc); 1398 let InOperandList = (ins i32imm:$a, i32imm:$b); 1399 let usesCustomInserter = true; 1400 let hasSideEffects = true; 1401} 1402def LOCAL_ESCAPE : StandardPseudoInstruction { 1403 // This instruction is really just a label. It has to be part of the chain so 1404 // that it doesn't get dropped from the DAG, but it produces nothing and has 1405 // no side effects. 1406 let OutOperandList = (outs); 1407 let InOperandList = (ins ptr_rc:$symbol, i32imm:$id); 1408 let hasSideEffects = false; 1409 let hasCtrlDep = true; 1410} 1411def FAULTING_OP : StandardPseudoInstruction { 1412 let OutOperandList = (outs unknown:$dst); 1413 let InOperandList = (ins variable_ops); 1414 let usesCustomInserter = true; 1415 let hasSideEffects = true; 1416 let mayLoad = true; 1417 let mayStore = true; 1418 let isTerminator = true; 1419 let isBranch = true; 1420} 1421def PATCHABLE_OP : StandardPseudoInstruction { 1422 let OutOperandList = (outs); 1423 let InOperandList = (ins variable_ops); 1424 let usesCustomInserter = true; 1425 let mayLoad = true; 1426 let mayStore = true; 1427 let hasSideEffects = true; 1428} 1429def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction { 1430 let OutOperandList = (outs); 1431 let InOperandList = (ins); 1432 let AsmString = "# XRay Function Enter."; 1433 let usesCustomInserter = true; 1434 let hasSideEffects = true; 1435} 1436def PATCHABLE_RET : StandardPseudoInstruction { 1437 let OutOperandList = (outs); 1438 let InOperandList = (ins variable_ops); 1439 let AsmString = "# XRay Function Patchable RET."; 1440 let usesCustomInserter = true; 1441 let hasSideEffects = true; 1442 let isTerminator = true; 1443 let isReturn = true; 1444} 1445def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction { 1446 let OutOperandList = (outs); 1447 let InOperandList = (ins); 1448 let AsmString = "# XRay Function Exit."; 1449 let usesCustomInserter = true; 1450 let hasSideEffects = true; 1451 let isReturn = false; // Original return instruction will follow 1452} 1453def PATCHABLE_TAIL_CALL : StandardPseudoInstruction { 1454 let OutOperandList = (outs); 1455 let InOperandList = (ins variable_ops); 1456 let AsmString = "# XRay Tail Call Exit."; 1457 let usesCustomInserter = true; 1458 let hasSideEffects = true; 1459 let isReturn = true; 1460} 1461def PATCHABLE_EVENT_CALL : StandardPseudoInstruction { 1462 let OutOperandList = (outs); 1463 let InOperandList = (ins ptr_rc:$event, unknown:$size); 1464 let AsmString = "# XRay Custom Event Log."; 1465 let usesCustomInserter = true; 1466 let isCall = true; 1467 let mayLoad = true; 1468 let mayStore = true; 1469 let hasSideEffects = true; 1470} 1471def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction { 1472 let OutOperandList = (outs); 1473 let InOperandList = (ins unknown:$type, ptr_rc:$event, unknown:$size); 1474 let AsmString = "# XRay Typed Event Log."; 1475 let usesCustomInserter = true; 1476 let isCall = true; 1477 let mayLoad = true; 1478 let mayStore = true; 1479 let hasSideEffects = true; 1480} 1481def FENTRY_CALL : StandardPseudoInstruction { 1482 let OutOperandList = (outs); 1483 let InOperandList = (ins); 1484 let AsmString = "# FEntry call"; 1485 let usesCustomInserter = true; 1486 let isCall = true; 1487 let mayLoad = true; 1488 let mayStore = true; 1489 let hasSideEffects = true; 1490} 1491def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction { 1492 let OutOperandList = (outs); 1493 let InOperandList = (ins variable_ops); 1494 let AsmString = ""; 1495 let hasSideEffects = true; 1496} 1497def MEMBARRIER : StandardPseudoInstruction { 1498 let OutOperandList = (outs); 1499 let InOperandList = (ins); 1500 let AsmString = ""; 1501 let hasSideEffects = true; 1502 let Size = 0; 1503 let isMeta = true; 1504} 1505def JUMP_TABLE_DEBUG_INFO : StandardPseudoInstruction { 1506 let OutOperandList = (outs); 1507 let InOperandList = (ins i64imm:$jti); 1508 let AsmString = ""; 1509 let hasSideEffects = false; 1510 let Size = 0; 1511 let isMeta = true; 1512} 1513 1514let hasSideEffects = false, isMeta = true, isConvergent = true in { 1515def CONVERGENCECTRL_ANCHOR : StandardPseudoInstruction { 1516 let OutOperandList = (outs unknown:$dst); 1517 let InOperandList = (ins); 1518} 1519def CONVERGENCECTRL_ENTRY : StandardPseudoInstruction { 1520 let OutOperandList = (outs unknown:$dst); 1521 let InOperandList = (ins); 1522} 1523def CONVERGENCECTRL_LOOP : StandardPseudoInstruction { 1524 let OutOperandList = (outs unknown:$dst); 1525 let InOperandList = (ins unknown:$src); 1526} 1527def CONVERGENCECTRL_GLUE : StandardPseudoInstruction { 1528 let OutOperandList = (outs); 1529 let InOperandList = (ins unknown:$src); 1530} 1531} 1532 1533// Generic opcodes used in GlobalISel. 1534include "llvm/Target/GenericOpcodes.td" 1535 1536//===----------------------------------------------------------------------===// 1537// AsmParser - This class can be implemented by targets that wish to implement 1538// .s file parsing. 1539// 1540// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel 1541// syntax on X86 for example). 1542// 1543class AsmParser { 1544 // AsmParserClassName - This specifies the suffix to use for the asmparser 1545 // class. Generated AsmParser classes are always prefixed with the target 1546 // name. 1547 string AsmParserClassName = "AsmParser"; 1548 1549 // AsmParserInstCleanup - If non-empty, this is the name of a custom member 1550 // function of the AsmParser class to call on every matched instruction. 1551 // This can be used to perform target specific instruction post-processing. 1552 string AsmParserInstCleanup = ""; 1553 1554 // ShouldEmitMatchRegisterName - Set to false if the target needs a hand 1555 // written register name matcher 1556 bit ShouldEmitMatchRegisterName = true; 1557 1558 // Set to true if the target needs a generated 'alternative register name' 1559 // matcher. 1560 // 1561 // This generates a function which can be used to lookup registers from 1562 // their aliases. This function will fail when called on targets where 1563 // several registers share the same alias (i.e. not a 1:1 mapping). 1564 bit ShouldEmitMatchRegisterAltName = false; 1565 1566 // Set to true if MatchRegisterName and MatchRegisterAltName functions 1567 // should be generated even if there are duplicate register names. The 1568 // target is responsible for coercing aliased registers as necessary 1569 // (e.g. in validateTargetOperandClass), and there are no guarantees about 1570 // which numeric register identifier will be returned in the case of 1571 // multiple matches. 1572 bit AllowDuplicateRegisterNames = false; 1573 1574 // HasMnemonicFirst - Set to false if target instructions don't always 1575 // start with a mnemonic as the first token. 1576 bit HasMnemonicFirst = true; 1577 1578 // ReportMultipleNearMisses - 1579 // When 0, the assembly matcher reports an error for one encoding or operand 1580 // that did not match the parsed instruction. 1581 // When 1, the assembly matcher returns a list of encodings that were close 1582 // to matching the parsed instruction, so to allow more detailed error 1583 // messages. 1584 bit ReportMultipleNearMisses = false; 1585 1586 // OperandParserMethod - If non-empty, this is the name of a custom 1587 // member function of the AsmParser class to call for every instruction 1588 // operand to be parsed. 1589 string OperandParserMethod = ""; 1590 1591 // CallCustomParserForAllOperands - Set to true if the custom parser 1592 // method shall be called for all operands as opposed to only those 1593 // that have their own specified custom parsers. 1594 bit CallCustomParserForAllOperands = false; 1595 1596 // PreferSmallerInstructions - Should the assembly matcher prefer the smaller 1597 // instructions. 1598 // 1599 // This is useful for the ARM instructions set where smaller encodings must 1600 // be preferentially selected. 1601 // 1602 // The preference order is: 1603 // Instrution size (if this option is enabled, smallest first) 1604 // Number of Operands (least first), 1605 // Operand Classes (lexicographically by operand), 1606 // (Optional) Instruction id (see AsmMatcherEmitter.cpp for details), 1607 // Number of required features (least first) 1608 bit PreferSmallerInstructions = false; 1609} 1610def DefaultAsmParser : AsmParser; 1611 1612//===----------------------------------------------------------------------===// 1613// AsmParserVariant - Subtargets can have multiple different assembly parsers 1614// (e.g. AT&T vs Intel syntax on X86 for example). This class can be 1615// implemented by targets to describe such variants. 1616// 1617class AsmParserVariant { 1618 // Variant - AsmParsers can be of multiple different variants. Variants are 1619 // used to support targets that need to parse multiple formats for the 1620 // assembly language. 1621 int Variant = 0; 1622 1623 // Name - The AsmParser variant name (e.g., AT&T vs Intel). 1624 string Name = ""; 1625 1626 // CommentDelimiter - If given, the delimiter string used to recognize 1627 // comments which are hard coded in the .td assembler strings for individual 1628 // instructions. 1629 string CommentDelimiter = ""; 1630 1631 // RegisterPrefix - If given, the token prefix which indicates a register 1632 // token. This is used by the matcher to automatically recognize hard coded 1633 // register tokens as constrained registers, instead of tokens, for the 1634 // purposes of matching. 1635 string RegisterPrefix = ""; 1636 1637 // TokenizingCharacters - Characters that are standalone tokens 1638 string TokenizingCharacters = "[]*!"; 1639 1640 // SeparatorCharacters - Characters that are not tokens 1641 string SeparatorCharacters = " \t,"; 1642 1643 // BreakCharacters - Characters that start new identifiers 1644 string BreakCharacters = ""; 1645} 1646def DefaultAsmParserVariant : AsmParserVariant; 1647 1648// Operators for combining SubtargetFeatures in AssemblerPredicates 1649def any_of; 1650def all_of; 1651 1652/// AssemblerPredicate - This is a Predicate that can be used when the assembler 1653/// matches instructions and aliases. 1654class AssemblerPredicate<dag cond, string name = ""> { 1655 bit AssemblerMatcherPredicate = true; 1656 dag AssemblerCondDag = cond; 1657 string PredicateName = name; 1658} 1659 1660/// TokenAlias - This class allows targets to define assembler token 1661/// operand aliases. That is, a token literal operand which is equivalent 1662/// to another, canonical, token literal. For example, ARM allows: 1663/// vmov.u32 s4, #0 -> vmov.i32, #0 1664/// 'u32' is a more specific designator for the 32-bit integer type specifier 1665/// and is legal for any instruction which accepts 'i32' as a datatype suffix. 1666/// def : TokenAlias<".u32", ".i32">; 1667/// 1668/// This works by marking the match class of 'From' as a subclass of the 1669/// match class of 'To'. 1670class TokenAlias<string From, string To> { 1671 string FromToken = From; 1672 string ToToken = To; 1673} 1674 1675/// MnemonicAlias - This class allows targets to define assembler mnemonic 1676/// aliases. This should be used when all forms of one mnemonic are accepted 1677/// with a different mnemonic. For example, X86 allows: 1678/// sal %al, 1 -> shl %al, 1 1679/// sal %ax, %cl -> shl %ax, %cl 1680/// sal %eax, %cl -> shl %eax, %cl 1681/// etc. Though "sal" is accepted with many forms, all of them are directly 1682/// translated to a shl, so it can be handled with (in the case of X86, it 1683/// actually has one for each suffix as well): 1684/// def : MnemonicAlias<"sal", "shl">; 1685/// 1686/// Mnemonic aliases are mapped before any other translation in the match phase, 1687/// and do allow Requires predicates, e.g.: 1688/// 1689/// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>; 1690/// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>; 1691/// 1692/// Mnemonic aliases can also be constrained to specific variants, e.g.: 1693/// 1694/// def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>; 1695/// 1696/// If no variant (e.g., "att" or "intel") is specified then the alias is 1697/// applied unconditionally. 1698class MnemonicAlias<string From, string To, string VariantName = ""> { 1699 string FromMnemonic = From; 1700 string ToMnemonic = To; 1701 string AsmVariantName = VariantName; 1702 1703 // Predicates - Predicates that must be true for this remapping to happen. 1704 list<Predicate> Predicates = []; 1705} 1706 1707/// InstAlias - This defines an alternate assembly syntax that is allowed to 1708/// match an instruction that has a different (more canonical) assembly 1709/// representation. 1710class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> { 1711 string AsmString = Asm; // The .s format to match the instruction with. 1712 dag ResultInst = Result; // The MCInst to generate. 1713 1714 // This determines which order the InstPrinter detects aliases for 1715 // printing. A larger value makes the alias more likely to be 1716 // emitted. The Instruction's own definition is notionally 0.5, so 0 1717 // disables printing and 1 enables it if there are no conflicting aliases. 1718 int EmitPriority = Emit; 1719 1720 // Predicates - Predicates that must be true for this to match. 1721 list<Predicate> Predicates = []; 1722 1723 // If the instruction specified in Result has defined an AsmMatchConverter 1724 // then setting this to 1 will cause the alias to use the AsmMatchConverter 1725 // function when converting the OperandVector into an MCInst instead of the 1726 // function that is generated by the dag Result. 1727 // Setting this to 0 will cause the alias to ignore the Result instruction's 1728 // defined AsmMatchConverter and instead use the function generated by the 1729 // dag Result. 1730 bit UseInstAsmMatchConverter = true; 1731 1732 // Assembler variant name to use for this alias. If not specified then 1733 // assembler variants will be determined based on AsmString 1734 string AsmVariantName = VariantName; 1735} 1736 1737//===----------------------------------------------------------------------===// 1738// AsmWriter - This class can be implemented by targets that need to customize 1739// the format of the .s file writer. 1740// 1741// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax 1742// on X86 for example). 1743// 1744class AsmWriter { 1745 // AsmWriterClassName - This specifies the suffix to use for the asmwriter 1746 // class. Generated AsmWriter classes are always prefixed with the target 1747 // name. 1748 string AsmWriterClassName = "InstPrinter"; 1749 1750 // PassSubtarget - Determines whether MCSubtargetInfo should be passed to 1751 // the various print methods. 1752 // FIXME: Remove after all ports are updated. 1753 int PassSubtarget = 0; 1754 1755 // Variant - AsmWriters can be of multiple different variants. Variants are 1756 // used to support targets that need to emit assembly code in ways that are 1757 // mostly the same for different targets, but have minor differences in 1758 // syntax. If the asmstring contains {|} characters in them, this integer 1759 // will specify which alternative to use. For example "{x|y|z}" with Variant 1760 // == 1, will expand to "y". 1761 int Variant = 0; 1762} 1763def DefaultAsmWriter : AsmWriter; 1764 1765 1766//===----------------------------------------------------------------------===// 1767// Target - This class contains the "global" target information 1768// 1769class Target { 1770 // InstructionSet - Instruction set description for this target. 1771 InstrInfo InstructionSet; 1772 1773 // AssemblyParsers - The AsmParser instances available for this target. 1774 list<AsmParser> AssemblyParsers = [DefaultAsmParser]; 1775 1776 /// AssemblyParserVariants - The AsmParserVariant instances available for 1777 /// this target. 1778 list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant]; 1779 1780 // AssemblyWriters - The AsmWriter instances available for this target. 1781 list<AsmWriter> AssemblyWriters = [DefaultAsmWriter]; 1782 1783 // AllowRegisterRenaming - Controls whether this target allows 1784 // post-register-allocation renaming of registers. This is done by 1785 // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1 1786 // for all opcodes if this flag is set to 0. 1787 int AllowRegisterRenaming = 0; 1788} 1789 1790//===----------------------------------------------------------------------===// 1791// Processor chip sets - These values represent each of the chip sets supported 1792// by the scheduler. Each Processor definition requires corresponding 1793// instruction itineraries. 1794// 1795class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f, 1796 list<SubtargetFeature> tunef = []> { 1797 // Name - Chip set name. Used by command line (-mcpu=) to determine the 1798 // appropriate target chip. 1799 // 1800 string Name = n; 1801 1802 // SchedModel - The machine model for scheduling and instruction cost. 1803 // 1804 SchedMachineModel SchedModel = NoSchedModel; 1805 1806 // ProcItin - The scheduling information for the target processor. 1807 // 1808 ProcessorItineraries ProcItin = pi; 1809 1810 // Features - list of 1811 list<SubtargetFeature> Features = f; 1812 1813 // TuneFeatures - list of features for tuning for this CPU. If the target 1814 // supports -mtune, this should contain the list of features used to make 1815 // microarchitectural optimization decisions for a given processor. While 1816 // Features should contain the architectural features for the processor. 1817 list<SubtargetFeature> TuneFeatures = tunef; 1818} 1819 1820// ProcessorModel allows subtargets to specify the more general 1821// SchedMachineModel instead if a ProcessorItinerary. Subtargets will 1822// gradually move to this newer form. 1823// 1824// Although this class always passes NoItineraries to the Processor 1825// class, the SchedMachineModel may still define valid Itineraries. 1826class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f, 1827 list<SubtargetFeature> tunef = []> 1828 : Processor<n, NoItineraries, f, tunef> { 1829 let SchedModel = m; 1830} 1831 1832//===----------------------------------------------------------------------===// 1833// InstrMapping - This class is used to create mapping tables to relate 1834// instructions with each other based on the values specified in RowFields, 1835// ColFields, KeyCol and ValueCols. 1836// 1837class InstrMapping { 1838 // FilterClass - Used to limit search space only to the instructions that 1839 // define the relationship modeled by this InstrMapping record. 1840 string FilterClass; 1841 1842 // RowFields - List of fields/attributes that should be same for all the 1843 // instructions in a row of the relation table. Think of this as a set of 1844 // properties shared by all the instructions related by this relationship 1845 // model and is used to categorize instructions into subgroups. For instance, 1846 // if we want to define a relation that maps 'Add' instruction to its 1847 // predicated forms, we can define RowFields like this: 1848 // 1849 // let RowFields = BaseOp 1850 // All add instruction predicated/non-predicated will have to set their BaseOp 1851 // to the same value. 1852 // 1853 // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' } 1854 // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' } 1855 // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false' } 1856 list<string> RowFields = []; 1857 1858 // List of fields/attributes that are same for all the instructions 1859 // in a column of the relation table. 1860 // Ex: let ColFields = 'predSense' -- It means that the columns are arranged 1861 // based on the 'predSense' values. All the instruction in a specific 1862 // column have the same value and it is fixed for the column according 1863 // to the values set in 'ValueCols'. 1864 list<string> ColFields = []; 1865 1866 // Values for the fields/attributes listed in 'ColFields'. 1867 // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction 1868 // that models this relation) should be non-predicated. 1869 // In the example above, 'Add' is the key instruction. 1870 list<string> KeyCol = []; 1871 1872 // List of values for the fields/attributes listed in 'ColFields', one for 1873 // each column in the relation table. 1874 // 1875 // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the 1876 // table. First column requires all the instructions to have predSense 1877 // set to 'true' and second column requires it to be 'false'. 1878 list<list<string> > ValueCols = []; 1879} 1880 1881//===----------------------------------------------------------------------===// 1882// Pull in the common support for calling conventions. 1883// 1884include "llvm/Target/TargetCallingConv.td" 1885 1886//===----------------------------------------------------------------------===// 1887// Pull in the common support for DAG isel generation. 1888// 1889include "llvm/Target/TargetSelectionDAG.td" 1890 1891//===----------------------------------------------------------------------===// 1892// Pull in the common support for Global ISel register bank info generation. 1893// 1894include "llvm/Target/GlobalISel/RegisterBank.td" 1895 1896//===----------------------------------------------------------------------===// 1897// Pull in the common support for DAG isel generation. 1898// 1899include "llvm/Target/GlobalISel/Target.td" 1900 1901//===----------------------------------------------------------------------===// 1902// Pull in the common support for the Global ISel DAG-based selector generation. 1903// 1904include "llvm/Target/GlobalISel/SelectionDAGCompat.td" 1905 1906//===----------------------------------------------------------------------===// 1907// Pull in the common support for Pfm Counters generation. 1908// 1909include "llvm/Target/TargetPfmCounters.td" 1910 1911//===----------------------------------------------------------------------===// 1912// Pull in the common support for macro fusion. 1913// 1914include "llvm/Target/TargetMacroFusion.td" 1915